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The spectral form factor (SFF) captures universal spectral fluctuations as signatures of quantum chaos,
and has been instrumental in advancing multiple frontiers of physics including the studies of black holes
and quantum many-body systems. The measurement of the SFF in many-body systems is however
challenging due to the difficulty in resolving level spacings that become exponentially small with
increasing system size. Here, we utilize the random measurement toolbox to perform a direct experimental
measurement of the SFF, and hence probe the presence or absence of chaos in quantum many-body systems
on superconducting quantum processors. For a Floquet chaotic system, we observe signatures of both
short- and long-range spectral correlations in the SFF given by the ramp-plateau behavior. Furthermore, for
a Hamiltonian system we utilize the SFF to distinguish a quantum many-body chaotic phase and the
prethermal many-body localization. We observe the dip-ramp-plateau behavior of random matrix theory in
the chaotic phase and contrast the scaling of the plateau time in system size between the many-body chaotic
and localized phases. Finally, we probe the eigenstate statistics by measuring a generalization of the SFF,
known as the partial SFF, and observe distinct behaviors in the purity of the reduced density matrices in
these two phases. This work unveils a new experimental way of extracting the universal signatures of many-
body quantum chaos in quantum devices by probing short- and long-range correlations in the energy

spectrum and eigenstates.
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Spectral statistics is a powerful tool for analyzing
quantum systems, as it captures the correlations between
eigenenergies and reveals the universal features inherent to
such systems. It has served as a longstanding diagnostic of
quantum chaos as described by the Bohigas-Giannoni-
Schmidt conjecture [1]: A quantum system can be consid-
ered chaotic if its spectral statistics resemble those found in
random matrix theory (RMT) [2] at sufficiently small
energy scales. Historically, spectral statistics and RMT
have been applicable in a wide range of fields, including
complex atomic nuclei [3,4], number theory [5,6], quantum
chaos [1,7], and quantum transport in mesoscopic systems
[8,9]. Experimentally, only the nearest-neighbor level
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spacing statistics have been probed by extracting the energy
levels from the Fourier transform of a time-dependent
correlation function [10] or from spectroscopy measure-
ments [11-14], which captures the short-range energy level
correlations. Such protocols are challenging for many-body
systems due to the difficulty in resolving level spacings that
become exponentially small with increasing system size.
Beyond spectral correlations, another important diagnostic
of quantum chaos and thermalization, concerning eigen-
state correlations, is the eigenstate thermalization hypoth-
esis (ETH) [15-17]. The ETH postulates that in sufficiently
narrow energy windows, the matrix elements of few-body
operators in the energy eigenstate behave in a typical way
as captured by the RMT, thereby providing an explanation
of thermalization in isolated quantum systems through the
understanding of correlations among eigenstates. Spectral
statistics and eigenstate correlations serve as two defining
diagnoses for the presence (or absence) of quantum
chaos and thermalization, and therefore their experimental

© 2025 American Physical Society
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FIG. 1. Schematics of the SFF. (a) Spectral correlations concern

the likelihood of finding two levels with a certain distance @, and it
can be probed in the time domain by its Fourier transform known
as the SFF. (b) Floquet quantum chaotic systems without time-
reversal symmetry [c.f. Fig. 2] display universal SFF behavior that
can be captured by random matrix ensembles known as the circular
unitary ensemble (CUE). The CUE behavior displays a ramp
followed by a plateau after the Heisenberg time ty, and the
behavior around #y is also often probed with reference to the
Wigner-Dyson distribution in the inset, which is the nearest-
neighbor energy spacing distribution found in the RMT. (¢) Quan-
tum chaotic systems with time-reversal symmetry [c.f. Fig. 3]
display universal SFF behavior of the Gaussian orthogonal
ensemble (GOE, in green), while the SFF of localized systems
can be captured by Poisson distribution (blue). The corresponding
spacing distributions are given in the inset.

measurements are of immense interest in the study of out-
of-equilibrium dynamics in quantum many-body systems.

The spectral form factor (SFF) is the Fourier transform of
the two-level correlation function—the probability of
finding two eigenenergies with a certain distance in the
energy spectrum [Fig. 1(a)]. The SFF is arguably the
simplest analytically tractable quantity to capture not only
the short-range, but also the long-range universal spectral
fluctuations of quantum systems, and consequently, it has
been instrumental in multiple frontiers of physics, such as
the semiclassical approach to quantum chaos [7,18-20],
black holes [21-24], many-body quantum chaos [25-28],
and transition to prethermal many-body localization (MBL)
[29-32] and more [33-44]. Formally, the SFF can be
defined as

1 —= 1 ——
K(1) = [TrO(0)]* = ﬁ;e (BBt (1)

where U(t) is the time evolution operator of the system of
interest, defined through either a time-independent
Hamiltonian via U(t) = exp (~iHt), or a time-periodic
Hamiltonian via U(r = ¢T) = U" with Floquet operator
U =T exp (—ifOTdt’I:I(t’)), where 7. T, and 7 are the
time-ordering operator, the Floquet period, and the number
of Floquet cycles, respectively. {E,} are the eigenenergies
or quasienergies of A and U, respectively. N is the Hilbert

space dimension, and (...) denotes the ensemble average
over statistically similar systems. We adopt the convention
where K(¢) is normalized such that K(0) = 1. For quantum

many-body systems, a generalization of the SFF called the
partial spectral form factor (pSFF) [45-47] has been
introduced by partitioning the many-body system, and
was utilized to probe eigenstate correlations in addition
to spectral statistics. Benefiting from the development of
quantum simulators [48,49], and protocols that utilize
randomized sampling and repeated measurements
[45,50], we measure the SFF and pSFF in superconducting
quantum simulators to diagnose signatures of quantum
chaos and localization in periodically driven and time-
independent quantum many-body systems.

Our superconducting many-body quantum simulators
have one-dimensional arrays of individually controllable
qubits with tunable nearest-neighbor couplings [51].
Specifically, we simulate a one-dimensional XY model,
Hyy =J> 1 (64465, +6m61,,), along with time-
varying potential on each qubit of the form, h%(¢)6%.
Here, J and L denote the strength of tunable nearest-
neighbor coupling, and the number of qubits in the chain,
respectively. 6%, denotes a Pauli matrix acting on the mth
qubit with a = x, y, z. The driving h%(¢) of the mth qubit
along the a axis can be individually and dynamically tuned,
allowing us to simulate both many-body Floquet and time-
independent Hamiltonian systems.

We first program one of the simulators to implement a
Floquet system whose model can be constructed so that all
global symmetries and conserved quantities, including
energy, are removed. Our Floquet model with L qubits
is defined by [Fig. 2(a)]

H*, 0<1t/T<1/3,

H(t)=1{ B, 1/3<t/T <2/3,
B, 2/3<1/T <1,
L
a :HXY‘FZh%?’ﬁw (2)
m=1

where the coupling strength J/2z in Hyy is tuned to be
—5 MHz. The local potentials A§, are randomly and
independently sampled from a uniform distribution over
a range of [-W, W] with W/2x = 5 MHz, which corre-
sponds to [—1, 1]J. The periods T are chosen to be 150 ns
for L =2, 3, and 90 ns for L = 4, 5 [51]. The integrability
in this model is broken due to the driving. For quantum
chaotic systems with Hilbert space size N and without
symmetries, the behavior of the SFF can be modeled by the
circular (or Gaussian) unitary ensemble (CUE) in the RMT
of N-by-N unitary matrices. Correspondingly the SFF K(7)
at Floquet cycle 7 displays a characteristic feature known as
the “ramp-plateau behavior” [see Eq. (A1)] [2], as depicted
in Fig. 1(b). Here 7 = N is the analog of the Heisenberg
time in Floquet systems, which is a dimensionless quantity
proportional to the inverse of the mean quasienergy level
spacing. The transition between the ramp and plateau at the
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FIG. 2. Experimental measurement of the SFF for a Floquet quantum many-body system, Eq. (2), in the chaotic phase. (a) Illustration
of the Floquet system, with time-dependent driving along the x, z, y axes within a single Floquet cycle. (b)—(e) SFF of the Floquet system
against the number of Floquet cycles with system sizes up to L = 5 for 400 to 1000 realizations. The experimental data, error-mitigated
data, simulations, and RMT prediction are plotted in circles, black dots, shaded areas, and lines respectively. The error bars represent the

standard error of mean.

Heisenberg time 7y reflects the same physics captured by
level repulsion, see inset in Fig. 1(c).

Figures 2(b)-2(e) show the experimental data on the
SFF of the Floquet model for L =2-5. After taking
decoherence into account (see below), we find a good
qualitative agreement between the experimental data and
the numerical simulation. The ramp-plateau RMT behavior
is apparent, especially for the smaller system sizes in early
time when the decoherence effects are not prominent. We
observe that the plateau time, 7, defined to be the time
when the plateau begins, approximately coincides with the
Heisenberg time 73 = N = 2L, The observation of the
ramp-plateau behavior is compelling evidence that this
system is in the chaotic phase. Decoherence in the quantum
processor lowers the value of K(z), leading to deviations
between the experimental measurement of K(z) and the
theoretical prediction K(7) in the absence of decoherence.

To understand the deviations, we simulate the exper-
imental protocol including the decoherence parameters
[51], and find that the numerics are in qualitative agreement
with the experimental data (Fig. 2). Since 7y scales
exponentially with the system size, the observation of
the ramp-plateau behavior for larger systems at late time
is more prone to decoherence. See the Appendix for the
details on error mitigation. Next, we program the simulator
to implement a one-dimensional time-independent many-
body Hamiltonian defined by

L L
ﬁl:ﬁXY+th&fpz+Zh;18rzi1v 3)

where the coupling strength J/27 in Hyy and transverse
field h*/2x are configured at —5 MHz and 2 MHz (i.e.,
h*/J = —0.4), respectively. The local potentials 43, are

randomly and independently sampled from a uniform
distribution within the range [—-W, W|. The value of W
determines the dynamical regime of the system—whether it
exhibits the characteristics of quantum chaotic or prether-
mal MBL systems. Although the stability of the MBL
phase in the thermodynamic limit is currently under debate
[31,52], our experimental system is a finite-size system,
and MBL can exist as a metastable state.

In the presence of time-reversal symmetry with the time-
reversal symmetry operator squaring to identity, quantum
chaotic systems display RMT spectral statistics as descri-
bed by the Gaussian (or circular) orthogonal ensemble
(GOE). The connected SFF [53] of the GOE also exhibits a
ramp-plateau behavior, however, with a smoothed kink as
in Eq. (A2). Whereas for MBL, spectral statistics can be
modeled by Poisson distribution with SFF quickly
approaching N~' [32,54] [Fig. 1(c)].

The measurement results and numerical simulations of
the SFF for the time-independent Hamiltonian both in
chaotic and prethermal MBL phases are shown in
Figs. 3(c)-3(f) for system sizes up to L = 5. For both
cases, for sufficiently large time, the SFF will reach the
plateau at the plateau time f,. For W/2z =35 MHz
(W/J = 1), the SFF displays an initial dip, a ramp, and
a plateau with 7;, scaling exponentially in the system size.
The experimental data are in qualitative agreement with the
numerical simulation and theoretical prediction from the
RMT, suggesting that the system is in the chaotic phase and
that #, can be identified as #4 of the system. For W/2x =
50 MHz (W/J = 10), the SFF dips and then plateaus
relatively quickly, at times much earlier than the case of
W = J. Crucially, unlike the chaotic case, [ does not
increase exponentially with system size [Fig. 3(b)], which
is consistent with the expectation of a prethermal MBL
phase. These two cases are also numerically confirmed by
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Experimental measurement of the SFF for a Hamiltonian system, Eq. (3), in the chaotic and prethermal MBL phases.

(a) Nlustration of the Hamiltonian system, which is simulated in the chaotic phase with W = J and prethermal MBL phase with
W = 10J for 400 to 1000 realizations up to the system size L = 5. (b) The plateau time #, of the SFF increases exponentially in L in the
chaotic phase (red), but not in the prethermal MBL phase (blue). (c¢)—(f) SFF K(¢) of the Hamiltonian model in the chaotic phase (red)
and the prethermal MBL phase (blue) for up to L = 5. The experimental data, simulations, and Poissonian statistics are plotted in circles,
lines, and dashed lines, respectively. For each inset, we numerically fit the error-mitigated and normalized SFF data K'(¢) with the GOE
RMT behavior, for the domain in the shaded region of the main panel starting from ¢t = 48 ns when the SFF has reached its lowest value.
See Supplemental Material for details of the determination of ,, the fitting and error mitigation procedures. The error bars represent the

standard error of mean.

calculating the (r) parameter originating from the nearest-
neighbor level spacing statistics [51]. For both cases, the
theoretical predictions from the RMT and the Poissonian
distribution [Fig. 1] are fitted after the initial dip in error-
mitigated SFF data [see insets in Figs. 3(c)-3(f)], to avoid
the early-time nonuniversal SFF behavior appearing due to
the inhomogeneities in the density of states [S1].

The pSFF is a generalization of the SFF in quantum many-
body systems that probes the correlations of eigenstates, in
addition to the correlations of eigenenergies. Because of this
feature, the pSFF can detect the signatures of thermalization,
(prethermal) localization, or other ergodicity-breaking mech-
anisms exhibited in eigenstate correlations. Specifically, for a
subsystem A and its complement B, the pSFF is defined
as [45-47] K4(t) = (1/NN,)Trg[|TraU(1)[*], where N,
denotes the Hilbert space dimension of subsystem A, and Tr,
is the partial trace of subsystem A. Experimentally, the pSFF
can be accessed using the randomized measurement protocol
identical to the one of the SFF [45], except that only the
random measurements in the subsystem A are taken. In
Figs. 4(a) and 4(d), we experimentally measure and numeri-
cally simulate the pSFF for the Floquet and Hamiltonian
models in the chaotic phase, respectively. After accounting
for the effect of decoherence, we observe the RMT ramp-
plateau behavior in K,(z) with a qualitative agreement
between experimental data and numerical simulations. We
also observe a vertical shift in K, () that is dependent on
subsystem size, see Figs. 4(c) and 4(g). These qualitative
features are consistent with the pSFF behavior for chaotic

quantum many-body systems at sufficiently large time, such
that the systems exhibit RMT behavior as given by [45],
KMT(1) ~ K(t) + 1/N3, for Ny, N/N, > 1. In Fig. 4(e),
we measure the pSFF for the Hamiltonian model in the
prethermal MBL phase. In contrast to the chaotic phase (as in
the case of SFF), we observe that the pSFF quickly reaches
the plateau with a plateau time 7, that does not scale with the
system size. As in the chaotic case, the pSFF for MBL
displays a subsystem-size-dependent shift, but the shiftin the
MBL case is larger than the one in the chaotic phase due to
differences in eigenstate correlations in the two cases, as
reflected in the purity discussion below. For all cases, by
analyzing the data after the removal of the vertical shift, we
observe that the plateau time 7, of pSFF does not display
dependency on the subsystem size L 4, and coincides with the
t, of SFF.

The purity of the reduced density matrix of a subsystem
B, defined by pg := Trg[p3], quantifies the entanglement
between the subsystem and its complement, and is related
to the second Renyi entropy via S,(pp) := —log pg. The
averaged purity can be expressed in terms of the pSFF
K, (1) for r much larger than the Heisenberg time 7y as
Pp = (1/N)pg = lim,_ ;,_,oK,(t)N,. In practice, since
experimental data are collected in finite time (with
finite-depth circuits) and the decoherence is increasingly
dominant at late times, we obtain an estimation of the
purity, Py, by measuring the pSFF (for all cases) at 5ty with
n = 1.2. In Figs. 4(b) and 4(f), we present the experimental
results with numerical simulations for the Floquet and

~
~
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FIG. 4. Experimental measurement of the pSFF for the Floquet system, Eq. (2), and the Hamiltonian system, Eq. (3). The experimental
measurement of the pSFF for the Floquet system in the chaotic phase (a), the Hamiltonian system in the chaotic phase (d), and the
prethermal MBL phase (e). The system size for all cases is L = 5, and the integers toward the right of (a),(d),(e) denote the subsystem
sizes L, €[1,5]. We estimate the purity Py of the subsystem B by measuring the long time behavior of pSFF, Py = K, (yty)N, with
n = 1.2 for (b) Floquet and (f) Hamiltonian systems. We measure the dependence of the shift on L, in pSFF concerning the SFF by
computing K 4 (nty) — K (nty) for the (c) Floquet and (g) Hamiltonian systems. The gray lines are given by N32 = 272l In (h), we plot
the estimated half-system-size annealed average of the second Renyi entropy S, as a function of L by computing S, = —log Pj.

Hamiltonian models, respectively, which display decent
agreement. We see a substantial difference in purity Py in
the chaotic and localized cases, namely, that pp is more
mixed in the chaotic case compared to the localized case.
Note that in the presence of decoherence, Py obtained
under the current protocol [dots in Figs. 4(b) and 4(f)] is not
symmetric under the exchange of L, and L — L, [55]
unlike the numerical simulations without decoherence
channels (solid lines). With the accessible system sizes,
we observe in Fig. 4(h) that the estimation of the half-
system-size annealed average of second Renyi entropy, S,,
has a faster increase in the total system size in the chaotic
case. These results demonstrate that, as anticipated, sub-
systems share more entanglement in chaotic quantum
many-body systems than in prethermal MBL systems.
We have experimentally measured spectral form factors
in quantum many-body superconducting processors,
thereby demonstrating the effectiveness of such processors
in probing the signatures of quantum chaos in spectral
statistics and eigenstate correlations. For the first time to
our knowledge, we observe the long-range spectral rigidity
in both time-independent and periodically-driven quantum
many-body systems by measuring the random matrix
theory predicted ramp-plateau behavior in spectral form
factors. Further, utilizing both the spectral form factor and
partial spectral form factor as its generalization, we
demonstrated the existence of a prethermal many-body
localized regime in our time-independent setup and con-
trasted its eigenenergy and eigenstate correlations against
those in the chaotic regime. The experimental measurement
of form factors opens up exciting directions in charting the

dynamical signatures of many-body quantum systems in
the laboratory, such as the universal behavior of the spectral
form factor in earlier times than the onset of random matrix
theory [27,56-58], the emergence of random matrix theory
universality in non-Hermitian systems [59], and the cross-
over between the chaotic and prethermal many-body
localized regimes [31].
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End Matter

Appendix—For a circular unitary ensemble, the
spectral form factor is derived by utilizing the random
matrix theory [2] as

< for 0 <7 <1y,

N

Keye(r) = { 1 (Al)
N for 7 > T4,

whereas for Gaussian orthogonal ensemble, the

connected spectral form factor [53] reads
1|2 2
1 [ﬁ—iln (1 +g)} for 1 < ty,

2-tm(3)] fort> .

Keoe(t) = (A2)

Z[=

Recovering the SFF of a quantum many-body system
from the experimental data with decoherence is challeng-
ing. In this work, we adopt two simple methods to mitigate
these errors. First, we apply a formula derived in [45] under
the assumption that the decoherence can be approximated
by a global depolarization channel (see Supplemental
Material for more details). Second, we rescale the exper-
imental data with the ratio between the numerics of the SFF
in the presence and absence of decoherence (see Fig. 2). We
find that both methods qualitatively recover the ramp-
plateau behavior with plateau times that are consistent with
our expectations.
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