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Characterization of hybrid quantum eigenstates in systems with mixed classical phase space
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Generic low-dimensional Hamiltonian systems feature a structured, mixed classical phase space. The tradi-
tional Percival classification of quantum spectra into regular states supported by quasi-integrable regions and
irregular states supported by quasichaotic regions turns out to be insufficient to capture the richness of the
Hilbert space. Berry’s conjecture and the eigenstate thermalization hypothesis are not applicable and quantum
effects such as tunneling, scarring, and localization do not obey the standard paradigms. We demonstrate these
statements for a prototype Bose-Hubbard model. We highlight the hybridization of chaotic and regular regions

from opposing perspectives of ergodicity and localization.
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I. INTRODUCTION

In a seminal paper, Percival suggested a classification of
quantum mechanical spectra into regular and irregular eigen-
states [1], supported, respectively, by quasiregular islands and
chaotic seas within the classical phase space [2]. Whereas
regular states are restricted to invariant tori, irregular states
are ergodic in the chaotic sea in consistency with Random
Matrix Theory (RMT) predictions [3]. For large systems, this
implies a thermal expectation value for local observables, an
observation known as the eigenstate thermalization hypothesis
(ETH) [4-7]. The binary classification of quantum eigenstates
is a widely accepted paradigm in studies of quantum chaos.

In reality, the picture is more complicated. A sharp dis-
tinction between regular and chaotic states is not generally
practical, and spectral analysis is not sufficiently revealing
[8]. In this paper, we consider a prototype mixed-phase-space
system. We find that the statistical properties of chaotic eigen-
states that dwell in phase space with mixed regular and chaotic
motion are substantially different from those of eigenstates
supported by a globally connected chaotic sea. We also iden-
tify special nonergodic states that are dynamically localized
[9-11] in chaotic regions. The existence of the latter is related
to slow dynamics near unstable stationary points (SPs) and
can be viewed as an extreme type of scarring [12-15].

Our paper demonstrates that quantization of the mixed
classical phase space is a double-edged sword. On the one
hand, quantum tunneling can connect classically separated
chaotic and regular regions, resulting in hybrid quantum
eigenstates that do not adhere to the standard classification.
On the other hand, there is also an opposite effect due to dy-
namical localization there are states that are not fully ergodic

“Contact author: varma@post.bgu.ac.il
fContact author: avardi @bgu.ac.il
*Contact author: dcohen@bgu.ac.il

2470-0045/2024/109(6)/064207(10)

064207-1

despite the prevailing chaos. The underlying mechanism of
this localization is the slow dynamics in the vicinity of an
unstable hyperbolic point embedded in chaos. As such, it is
different from previous studies of dynamical localization in
the peripheral regions of the chaotic sea [16,17] and from lo-
calization by remnants of Kolmogorov-Arnold-Moser (KAM)
tori [18-20].

II. BOSE-HUBBARD TRIMER HAMILTONIAN

The Bose-Hubbard (BH) model, see Ref. [21] and ref-
erences within, is a paradigm for quantum chaos studies.
Of particular interest is the three-site (trimer) model, whose
mixed phase-space is of interest, e.g., in the context of super-
flow stability [22] and phase separation [23]. The Hamiltonian
for N Bosons is written in terms of three second-quantized
modes:

3
U ¢ Q
H=Vin+ - > oai - 5 (@ + dia, +He), (1)

i=1

where &; and a; are Bosonic creation and annihilation oper-
ators in the ith local mode. U is the interaction strength,
is the hopping parameter, and V is the middle site bias. The
dimensionless parameters of the model are

u= E v= K )

Q Q

Throughout the paper, we use units of time such that Q = 1
and setv = 0.1.

In the classical limit, the field operators @; can be replaced
by complex numbers a; = ./n;e'”. Thus, the classical motion
has three degrees of freedom, with {n;, ¢;}, i = 1, 2, 3 serv-
ing as conjugate action-angle variables. Owing to the U(1)
symmetry, the classical phase space can be further reduced to
two degrees of freedom. Throughout this paper, our choice of
canonical variables is p; = n;/N, p» = ny/N, q1 = ¢1 — ¢3,
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and g = ¢ — ¢3, resulting in the classical Hamiltonian:

Hcl

NU
= =Vpr+— (P + 5+ A=p1—p2)?)

N 2
— Q(/p1p2cos(q1—q2) + +/ p2(1—=p1—p2) cos q2).

&)

The quantum Hilbert space of the N-particle system is
spanned by the Fock basis [n) = |n;, np), withnz = N —n; —
n,. Its dimension is thus

N = JN+ DN +2). “

III. EIGENSTATE CHARACTERIZATION

Diagonalizing H in the Fock basis, we obtain the quantum
spectrum H |E,) = E, |E,). The purity of each eigenstate |E,)
is § = Tr[(p®P)?], where

PP = (1/N)({a}a;))i =123 (5)

is the one-particle probability matrix. Eigenstates may be vi-
sualized via their Husimi phase-space distribution,

0u(@) = |(@|E,) P, Q)

where |o) are coherent states localized at « = (g1, g2, p1, p2)-
Alternatively, the eigenstates can be represented by their
Fock-space distribution:

X,n = |(m|E) . (M

To characterize this distribution for the various eigenstates, we
calculate the following measures:

N
Ry=Y_X{, 8)
n=1
L
M,=R,"". )

The quantities R, and M, are, respectively, the inverse partic-
ipation ratio (IPR) and the participation number (PN) in the
Fock (computational) basis. Higher ¢ > 2 moments provide
more information on the shape of the Fock space distribution.
In the limit ¢ — 1, one obtains M| = exp(R,), with R| =
— Zfl\il X,.nInX, ,, aka Shanon’s entropy.

Averaging over all eigenstates within a narrow energy
window around E, we define the mean intensities X,. The
effective dimension of this energy shell is thus

-1
Neir = [Z mﬁ} : (10)

Rescaling the intensities as
Xon = /\/efva,n (1 1)

ensures that their average is roughly unity. For GOE chaotic
states, we expect Porter-Thomas intensity statistics [24,25],

P(x) = L (12)
NG ,
resulting in
Mo — [ Zrg 1| " N (13)
q JT
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FIG. 1. Parametric evolution of the trimer spectrum. Upper
panel: Mean participation. The trimer spectrum at each given value
of u is distributed into 100 equal-width energy bins and the partici-
pation ratio M, /N is averaged over all eigenstates in each bin. High
participation ratios indicate chaos. The total number of particles is
N = 150 and the detuning is v = 0.1. The black dotted line marks
the energy Esp, while the horizontal dotted lines indicate (in order
of increasing u) the loss of dynamical stability, the onset of chaos,
and the restoration of integrability as discussed in Sec. V. Lower
panel: The r level-spacing statistics. Each bin is color-coded by the
the average r value. Regions of bad statistics are grey. GOE statistics
(r ~ 0.53) indicates underlying chaos.

It is easily verified that for ¢ = 2 one obtains the well-known
participation number PNgog = N/3. For ¢ = 10, the ex-
pected Fock-basis moment for a chaotic eigenstate is M lC;’)OE =

N/9.54.

IV. MAPPING THE TRIMER SPECTRUM

This section provides a global view of the Bose-Hubbard
trimer’s spectrum. Rescaling the eigenenergies as E, = (E, —
Enin)/(Emax — Emin) € [0, 1], we plot in Fig. 1 the mean Fock
participation number M, of energy eigenstates lying within
energy bins around E' at different values of the interaction
parameter u. The spectrum evolves parameterically in a non-
trivial way, with large PN that indicates underlying chaos
observed around u ~ 3. Subsequent analysis focuses on this
regime. In the lower panel of Fig. 1, we show the level
statistics. The definition of the spacing ratio r around E,, and
details on the statistical analysis, are provided in Appendix B
of Ref. [17]. An average value r & 0.53 that is based on
the Gaussian orthogonal ensemble (GOE), as opposed to the
Poissonian r &~ 0.386, is commonly regarded as an indication
for underlying chaos. While the r measure better identifies
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FIG. 2. Tomography of the spectrum. Detailed view of the trimer
spectrum at # = 3. Each point corresponds to one many-body eigen-
state, classified according to its rescaled energy E, and central site
occupation (f,) /N, and color-coded according to M, /N (top panel),
Myo/N (middle panel), and M,y/M, (bottom panel). Parameters are
the same as in Fig. 1.

this chaos, the M, measure, that can be large also for quasi-
integrable states, is more sensitive to variations in quantum
ergodicity.

A detailed view of the spectrum for u = 3.0 is provided
in Fig. 2. Each point represents an eigenstate of the Hamil-
tonian Eq. (1). Due to mirror symmetry, specification of the
middle site’s normalized population (7;)/N is sufficient to
determine the population in the other sites. In the absence
of bias and interactions u = v = 0, the system’s eigenstates
would be orbital-Fock states, i.e., symmetrized direct products
of one-particle orbitals. In this case, the spectrum would be
degenerate in n,, because moving pairs of particles from the
dark state orbital (|1) — [3))/ /2 into the other two orbitals
does not change the energy. Introducing a small bias v # 0,
the spectrum of Fig. 2 is stretched in the vertical direction,
making it easier to understand its structure. The introduction

u=3.0
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FIG. 3. Moments of the Fock space distribution of the eigen-
states. Scatter plots of the data displayed in Fig. 2: (a) M2/ vs E;
(b) Myo/N vs E; (3) Myy/M, vs M,/ N, color coded with E. Hori-
zontal dashed lines mark the expected values according to Eq. (13)
for GOE ergodic states.

of finite interaction (u # 0) further deforms the displayed
spectrum. The value u = 3 is chosen because chaotic regions
in the classical phase space are relatively large.

The color maps in the three panels of Fig. 2 display in-
formation on the normalized participation number M, //\/, the
shape-sensitive moment Mo/, and the ratio between them
M,o/M;. The same information is displayed in Fig. 3. The
low-energy range of the spectrum exhibits small PNs. The
same applies in the high-energy range, where the interaction
induces self-trapping either in the middle or in the outer
sites. Chaos prevails at intermediate energies in the range
03<E <0.7.

Interestingly, the ergodicity measures exhibit nontrivial de-
pendence on E. Both M, and M, roughly agree with the GOE
prediction throughout the chaotic energy range, but show a
pronounced narrow dip at the energy E = Egp. This is the
energy of an underlying SP that supports the dark state, see
further discussion in the following section. Its energy for
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different values of u is indicated by the black dotted line in
Fig. 1.

More importantly, the E dependence of the M,o/M; ra-
tio reveals information that eludes the M, measure alone.
The ratio is significantly lower in the £ > Egp range com-
pared with the E < Egp range. As shown in Sec. VI,
this drop reflects an underlying classical transition from
hard chaos, where the motion on the pertinent energy sur-
face is fully chaotic, to mixed chaos, where the energy
surface contains quasi-integrable regions of non-negligible
measure.

V. THE CENTRAL STATIONARY POINT

The classical Hamiltonian has a midspectrum SP at agp =
(1/4/2,0, —1/+/2), that corresponds to the dark-state orbital.
The corresponding canonical variables are thus p; = 1/2,
q1 =1, pp =0, while ¢, is ill defined. This SP dominates
the phase-space structure. Its energy is

Esp = {Nu. (14)

Quantum mechanically the SP supports a coherent state where
all particles occupy the dark state orbital, namely,

1
V2NN

The midspectrum SP remains a stationary point of the
classical dynamics even in the presence of interaction. It
is a fixed point of the discrete nonlinear Schridinger equa-
tion [26,27]. By contrast, the SP-supported coherent state is
an exact eigenstate of the many-body Hamiltonian only for
u = 0. Calculating the overlap Q, («sp) for all the many-body
eigenstates |E,), we define an SP-supported eigenstate as the
one having the maximal overlap. We aim to relate the proper-
ties of this many-body eigenstate to the classical stability of
the underlying SP.

The classical stability analysis of the midspectrum SP is
presented in Appendix. There are three degrees of freedom
and hence three Bogoliubov frequencies. One of them must
be wy = 0 due to the conservation of the number of particles.
The two other frequencies are real up to the lower instabil-
ity threshold u = 2v where they become complex. Then, for
large enough u, stability is regained due to self-trapping. For
v = 0, this upper stability threshold lies at u = /8, whereas
for v = 0.1 it is u = 3.2. The dependence of the Boguliobov
frequencies on u is displayed in Fig. 4. It should be noted that
while the emergence of complex frequencies in between these
thresholds indicates the loss of dynamical stability of the SP,
it does not provide a way to identify the emergence of chaos
in the vicinity of the SP.

In Fig. 5, we plot, as a function of u, the purity S,
the overlap Q(asp), and the participation number M, of the
SP-supported eigenstate. The classical instability is clearly
reflected in the low coherence measures and in the high par-
ticipation number. However, within this range of instability,
a transition takes place at u = 1.1. In what follows, we show
that this transition can be attributed to the emergence of chaos
in the vicinity of the unstable SP.

The top panels of Fig. 6 show the p, = 1/2 Poincare
sections at Egp throughout the u parameter range. In the

lorsp) = @ —ahVoy . (15)
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FIG. 4. Stability analysis of the SP. Upper panel: Upper (lower)
lines are the real (imaginary) part of the Bogoliubov frequencies,
plotted against u. Dotted thin lines and thick solid lines are for
detuning v = 0, 0.1, respectively. Dynamical instability is indicated
by the nonvanishing imaginary component of the frequencies in the
range indicated by vertical dotted lines. Lower panel: Distance from
the SP as a function of time for an individual trajectory launched
very close to the SP. The dependence on u is illustrated and reflects
the instability.

quasilinear regime (u = 0.1, left column), it is clear that the
representative trajectory is supported by a KAM torus [28,29].
For larger interaction strengths (# = 0.8, second column), the
torus is pinched and the SP becomes hyperbolic, but the classi-
cal motion remains regular. Increasing the interaction strength
further, a stochastic layer appears (¥ = 1.1, third column) and
expands until the last KAM torus is destroyed and global
chaos is attained (u = 3.0, fourth column). Self-trapping then
restores integrability in the strong interaction limit (u = 3.5,
right column). The various transitions are reflected in the
measures of Fig. 5 and in the shape of the Husimi distribution
function of the SP-supported state.

The M, measure in Fig. 5 does not provide a sharp sig-
nature for the transitions. The SP-supported state remains
localized even in regimes where the classical dynamics in
the vicinity of the SP is extremely unstable. This is further
illustrated by indicating the localization region on top of the
classical trajectories in the two bottom rows of Fig. 6. The
conclusion is that the SP serves as a pinning center for the
localization of those states, irrespective of whether it is stable
or not.

Going back to Fig. 1, we mark with horizontal lines the
interaction strength values u = 0.2, 1.1, 3.2 that indicate, re-
spectively, the bifurcation of the central SP, the emergence of
chaos near the SP, and the transition back to stability.
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FIG. 5. Characterization of the SP-supported state. The purity S
(top), the overlap with the dark state Q (middle), and the participation
ratio M, /N (bottom) of the SP-supported state are plotted versus
the interaction strength u for different values of the total particle
number N.

VI. CLASSIFICATION OF MANY-BODY EIGENSTATES

The standard classification of quantum eigenstates includes
regular eigenstates supported by quasi-integrable islands in
phase space and irregular eigenstates supported by chaos.
This classification is already challenged by the fact that the
SP-supported states are extremely localized despite being em-
bedded in chaos. However, our analysis below goes further
and reveals substantially richer structures. Specifically, while
chaotic states may display the well-known random-wave [3]
or scarred phase-space distribution, they may also exhibit
hybrid localization that is implied by the slow underlying
mixed-chaos dynamics. We note that our model has two de-
grees of freedom, hence Arnold diffusion [30,31] is excluded
and any quantum hybridization of chaotic and integrable re-
gions takes place across classically forbidden boundaries.

To demonstrate the above statement, we contrast two
regimes of the classical dynamics. For u = 3.0, the Esp energy

shell is globally chaotic. Nevertheless, the E > Egp range,
as opposed to the E < Egsp range, features a mixed classical
phase space that contains a large integrable island. This is
illustrated in Fig. 7, where we plot Poincare sections at rep-
resentative energies. The tiny island that appears for E < Esp
cannot be resolved quantum mechanically, as opposed to the
relatively large island that dominates in the £ > Egp range.
This observation will be further discussed and established
below.

The Percival paradigm suggests that the existence of a large
island will split the quantum many-body spectrum into regular
and irregular groups of eigenstates. Contrary to that, we argue
that hybridized states are more prevalent. These states have
unique statistical properties that distinguish them from regular
or fully chaotic eigenstates, and they are responsible for the
large spread in M, values observed in Fig. 3. Their dominance
is reflected in the intensity statistics discussed in the following
section.

The Husimi phase-space distribution of four representative
quantum eigenstates is shown in Fig. 8. The top panels are ob-
tained for parameters where the underlying classical dynamics
is globally chaotic throughout the pertinent energy surfaces.
While some eigenstates in this regime are a delocalized irreg-
ular eigenstate as the one shown in Fig. 8(a), there are also
highly localized SP-supported eigenstates like in Fig. 8(b).
The bottom panels contrast a chaotic eigenstate [Fig. 8(c)] and
an island eigenstate [Fig. 8(d)] lying on the same classically
mixed energy surface. As seen below, the distinction between
the two is blurred and most eigenstates on this surface lie
in between these extreme examples and display hybridization
between chaotic and integrable regions.

In the mixed chaos regime, we construct measures that
distinguish between chaotic and regular states. Classically,
each trajectory is either regular or irregular. The time average
of ny for all irregular trajectories (blue points in Fig. 9) is
the same and equals its mean over the chaotic sea. Doing the
same for regular trajectories gives different values associated
with the mean over the pertinent invariant tori (red points in
Fig. 9). This procedure thus generates a classical skeleton for
the many-body spectrum.

Identifying the regular trajectories associated with the red
points, we select a subset of coherent states that are located at
their Poincare sections (the intersection of the pertinent torus
with the p; = 1/2 plane). The projection Q of the many-body
eigenstates onto this subset quantifies their regularity. The
results are displayed in the scatter diagram of Fig. 10 where
the quantum eigenstates are classified according to their M,
and Q values. The states presented in Figs. 8(c) and 8(d) are,
respectively, one that has a very large value of M, (with low Q)
and one that has the maximal Q (with low M>). As such, they
are distinctly irregular (chaotic) and regular (island) examples.
However, the scatter of the points in Fig. 10 suggests that
such binary classification is inappropriate, and that typically
the many-body eigenstates cannot be associated with one or
another classical region.

VII. INTENSITY STATISTICS

Having identified different families of many-body
eigenstates, we now turn to the detailed analysis and
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FIG. 6. Classical dynamics vs quantum phase-space distribution of the SP-supported eigenstate. Top row: Poincare sections at p; = 1/2,
taken at Egp, namely, along the dashed line of Fig. 1. Five representative values of u were selected, where the SP is stable; unstable but regular;
unstable in chaos; embedded in global chaos; and restabilized by self-trapping. The color code represents the average value of p; along the
trajectory. Second row: The Husimi phasespace distribution of the SP-supported eigenstate for the same values of u. The color code represents
the values |(«|E,)|?, where v corresponds to the SP-supported eigenstate index, and the number of particles is N = 150. Other parameters are
the same as in the previous figures. Third row: Zoom on the same Husimi distributions. Last two rows: 3D plot of representative trajectory for
each u from two different view aspects. Points of the Poincare sections are color-coded as in the Husimi plots. The torodial coordinates are
x = (p2+ p1cosqi)cosqs,y = (p2 + p1€osq;)sing,, and z = p; sing;.

characterization of their Fock-basis intensity distribution,
namely, the distribution of the X, ,,, as defined in Eq. (7). The
ratio between the different M, moments of this distribution

are set either by its overall envelope or by the statistical noise
within it. In the numerical results below, we focus on the
particular ratio Mo /M,.

If the variation of X, , as a function of n follows a smooth
envelope, the M, ratios are determined by the line shape. For a
uniform distribution X, , = 1/, we have M, = N for all q.

0.4 0.35 0.60 By contrast, a power-law line shape results in a rapid drop of

N 034 035 M, as g is increases, leading to very low nonuniversal Myo/M,
S 033 % 050 ratio
£ B = :

o 0.0 032 2 2'22 On the other extreme, the ratio between different M, can be

‘1 031 = 0'35 affected by statistical fluctuations within an otherwise uniform

—0.4{ ; 03 . : o envelope, as in the case of a Billiard system [25]. The GOE

-04 00 04 -04 00 04

p2 Cos Qg2 P2 COSQ2

FIG. 7. Hard chaos vs mixed chaos. The p; = 1/2 Poincare sec-
tions are taken in the chaotic interaction regime at energies (a) below
and (b) above the stationary point’s energy Esp. Color code is the
average value of p; over a given trajectory.

statistics typical to fully irregular states in the presence of
time-reversal symmetry, yield a universal ratio M,o/M, ~ 0.3.
For the hybridized eigenstates that dominate the trimer spec-
trum, the challenge is to identify what feature of their intensity
distribution is responsible for the numerically observed value
of M 10 / ‘M- 2.
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FIG. 8. Husimi functions for representative states. (a) Repre-
sentative chaotic state in the hard chaos regime E ~ 0.4. (b) The
SP-supported eigenstate (zoomed). (c) Representative chaotic state
in the mixed-chaos regime £ ~ 0.6. (d) An island state at the same
energy. Color codes in (a) and (c) are rescaled with maximum overlap
[(«|E,)|? in the panels, while in (b) and (d) color code represents
ol E) P
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FIG. 9. The classical skeleton of the spectrum. The blue solid
line marks the time-averaged value of n, for chaotic trajectories. The
red dashed line is the time-averaged value of n, for regular trajec-
tories corresponding to island states. Rectangles mark the energy
windows in which all the states have been considered for scaling
and comparison analysis of chaotic states of two kinds, namely, hard
chaotic and mixed chaotic.
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FIG. 10. Hybridization of chaotic and island states. M, vs Q,
color-coded with M,y /M,. Here Q is the sum of the overlaps (normal-
ized) between the coherent states on the island and energy eigenstates
within the energy shell £ = 0.60.
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FIG. 11. Line-shape analysis. The sorted values of X, , nor-
malized as intensity =X, ,/max(X, ,), for the selected island and
SP-supported states of Fig. 8. For reference, we show the line shape
of a coherent dark state. The dashed curve is ~1/n%%. Vanishingly
small intensities that correspond to forbidden regions have been
excluded.

The values of X, ,, sorted according to their size from the
largest to the smallest, are plotted in Fig. 11 for the island and
SP-supported states. The curves of these eigenstates simply
reflect the line shape of their smooth envelope. In the sta-
ble regime (u = 0.1), the SP-supported eigenstates have an
envelope that is similar to a reference coherent dark state.
As the interaction strength is increased, stability is lost and
chaos emerges (1 = 3); the SP-supported eigenstates develop
long power-law decaying tails, identical to those of the regular
island-supported state. We conclude that both the island and
the SP-supported eigenstates are pinned down by their classi-
cal (island and fixed-point, respectively) localization centers:
The tails that extend into the mixed chaotic region reflect
power-law localization.

The same procedure is used for chaotic states. In this case,
the ordering does not reflect an overall line shape but merely
the characteristics of the statistical noise within a rather uni-
form envelope. Swapping the axes, we obtain a count of the
number of intensities that satisfy X, , > X or upon normaliza-
tion by A/ the inverse cumulative histogram Prob(X,,, > X).
The latter is displayed in Fig. 12. Chaotic GOE states are

100‘
10-14 —— HC: Ner=0.78N
—— MC: Neff= 072N
5,10—2 MC-IL: Neft = 0.76 N
% 10-3 --- PTD
©

\
\
A}
\
A\
\
1
\
1
1

0 50 100 150 200 250

Xn, v

FIG. 12. Intensity statistics for chaotic states. Comparison of
Porter-Thomas distribution (PTD) with the intensity distributions of
the three different kinds of chaotic groups, namely, hard chaotic
(HC), mixed chaotic (MC), and mixed chaotic with island region
excluded (MC-IL). Probability on the y axis implies the same as P(x)
in Eq. (12).
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characterized by the Porter-Thomas statistics Eq. (12). The
inverse cumulative histogram of the trimer’s eigenstates in
the hard chaos regime follows roughly the Porter-Thomas
exponential decay with a deviation that may be attributed to
an envelope effect that has not been eliminated. By contrast,
the inverse cumulative histograms of the eigenstates in the
mixed chaos regime have much longer tails. To rule out the
possibility that these tails are due to regular states localized
in the relatively large island, we eliminate the island from
the statistics and obtain a distribution that still deviates sub-
stantially from the Porter-Thomas form. We conjecture that
there is a hierarchy of smaller and smaller islands that affect
the statistics. Thus, the tails of the distribution reflect the
non-uniformity of the mixed landscape.

The different classes of many-body eigenstates discussed
above have fundamentally different dependence on the ef-
fective Planck constant /i o< 1/N. In Fig. 13, we plot the
dependence of the participation number M, and of the ratio
M,o/M; on the total number of particles N. The participa-
tion number of the ergodic eigenstates in the hard chaos
regime scales as the Hilbert space dimension of the 2 DoF
system M, oc N ~ N2, while the M,o/M, ratio approaches
the expected GOE value M;o/M; =3/9.54 =0.314 as N
is increased. In contrast, in the mixed chaos regime, the
participation number M, scales as N'® while the ratio
M,o/M; drops below the GOE expectation, indicating hybrid
localization.

Both island states and SP-supported states that are
immersed in chaos exhibit My/M, =~ 0.22. This finding sup-
ports the claim that the underlying island or the SP are merely
pinning centers for a hybrid localized state. The dependence
of M, on N in both cases is erratic if we follow an individ-
ual state that is selected by a maximum overlap criterion.
However, for island states, we can accumulate statistics and
consider the dependence of the mean participation on particle
number, obtaining M, [v/N]? as expected for a minimal
wave packet in two-degree of system system. This dependence
should be contrasted with the quasi-one-degree-of-freedom
result observed for an SP-supported state in the regular region,
namely, M, /N, same as for a dark state. In the latter case,
Mo/M;, = 0.8 as expected.

Our findings are summarized in Table I where the obtained
dependence of M, on N and the ratio Mo/M; for the dif-
ferent classes of many-body eigenstates are compared to the
expected behavior of states that possess various line shapes
and statistical fluctuations.

VIII. SUMMARY

Considering a generic many-body Hamiltonian system
that features a mixed classical phase space with chaotic and
quasiregular motion, one can identify in the spectrum irregular
and regular eigenstates. However, these are idealizations and
most quantum eigenstates do not adhere to the traditional
paradigm. In this paper, we have highlighted two notable devi-
ations from the binary regular-irregular classification: strongly
localized eigenstates in a fully chaotic classical phase space
and hybrid eigenstates that extend across chaos-integrability
borders in a mixed phase space.
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FIG. 13. The N dependence of the statistics. (a) Scaling of the
states in the hard chaos regime (left), with the slope = 1.94. (b) Scal-
ing of the states in the mixed chaos regime (right), with the slope =
1.85. (c) Scaling of the island state with the slope = 1. Black dots
in the InM, vs InN plot are the M, values of a single eigenstate
in the energy shell £ = 0.60 and fluctuates with N. (d) Scaling
of the SP-supported state with the slope = 1/2. Slope in all the
figures refers to the slope of the curve In M, vs InN.

In the first case, eigenstates remain localized in regions
where the classical chaotic dynamics is slow with respect to
some characteristic quantum timescale (e.g., the Heisenberg
time). This type of localization, known as dynamical local-
ization, is related to the theory of Anderson localization in
disordered systems [32-34]. Slow regions in phase space are
found near the boundaries of the chaotic sea, as discussed in
Ref. [17], or in the vicinity of unstable stationary points, as
illustrated in this paper.

The majority of the eigenstates in mixed phase space re-
gions are hybrid. They are pinned by the underlying rugged
phase-space structure. Past literature has emphasized localiza-
tion due to the last KAM torus that is destroyed in the Chirikov
scenario or due to the remnants of the last KAM torus, aka
cantori, or by remnants of unstable manifolds [18-20]. Such
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TABLE I. Characterization of quantum states. Summary of the
expected M,o/M, ratio and the power-law dependence of the partic-
ipation number M, on N for several reference states (top block) and
various classes of trimer eigenstates (bottom block).

Standard states

State type Mo /M, Slope
Dark state & = (1,0, —1) 0.80 1/2
Generic coherent state 0.65 1
Rectangular: X, = 1/N 1 2
GOE: X,, ~ 1/N +fluctuations 0.3145 2
Power law: X,, oc 1/n%3 ~0.22 ~0.45
SP state (stable) ~0.78 1/2
SP state (unstable regular) ~0.4 noisy
SP state (unstable chaotic) ~0.22 noisy
Island state: u = 3.0 ~0.22 1
Mixed chaos: u = 3.0 ~0.22 1.85
Hard chaos: u = 3.0 ~0.313 ~1.94

localization mechanisms are highly specific and occur only if
the model parameters are carefully tuned. A related scenario
can be seen in Fig. 6 for u = 1.1, where the last KAM still
survives, but it does not signify a dramatic crossover in the
global statistics.

Contrasting with previous publications, we realize here that
the signature of the mixed phase space persists for a wide
range of u values. On the practical side, we have utilized M,
ratios as a measure for the identification of families of states
that do not fall under standard categorization. Such gener-
alized entropy measures should be employed in the spectral
analysis of any system with a mixed phase space.

The effects of scarring, localization, and hybridization are
all related to the underlying classical phase space, and it
might be useful to summarize what classical ingredients are
required for the analysis. It is possibly natural to start with
Lyapunov exponent analysis as in Ref. [8]. Local dispersion in
the value of the largest exponent may indicate mixed regions
of regular and chaotic motion, as opposed to ergodic regions
where it has a well-defined value. In a fully chaotic region,
an idealized theory [12] provides a direct relation between
the scar intensity and the instability exponents of the under-
lying periodic orbits. Stationary points at the corners of phase
space are somewhat special and possibly can be regraded as
the upper unstable fixed-point of a mathematical pendulum.
More generally, near the boundaries that separate chaotic

from quasiregular regions, the distribution of the Lyapunov
exponents becomes fragmented, and dynamical localization is
related to the transport coefficients of the slow dynamics. The
latter are not determined merely by the Lyapunov spectrum,
and in some cases are related to cantori or to remnants of
unstable manifolds [18-20]. Irrespective of the localization
mechanism, dynamical tunneling allows hybridization that
blurs the classification of eigenstates.
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APPENDIX: STABILITY ANALYSIS
FOR THE CENTRAL SP

The classical SPs of the Bose-Hubbard trimer model are

found by solving
ia= (Hy+ uP)a = ua, (A1)

where a = (1/ VN)(ay, az, az) represents rescaled classical
amplitudes and the operators Hy and P are

0o -2 o0 P 0 0
H()— —% v —% s P= 0 P2 0 s
0 -2 0 0 0 P

(A2)
where P; = |a;|*>/N. The dark-state SP is given by a = agp =
(1/4/2,0, —1/+/2). The dynamical stability analysis of this
SP is carried out via diagonalization of the Bogoliubov matrix,

Hy +2uP — 1 —uP
( uP —(Ho +2uP — M))’ (A3)
resulting in three pairs of characteristic frequencies, namely,

+w, indexed by g = {0, +, —}. The trivial frequency wy = 0
is implied by conservation of particles, while

_ \/\/((u72v)2+4)2716(u272MU+1)+u274uv+4v2+4

w4 2\/5 3
_ \/7\/(u72v)(u376uzv+4u(3v272)78v(vz+2))+(1472v)2+4
w_ = 2\/5 .

For v = 0, the nonvanishing frequencies coalesce to give

1
oL = iﬁ[(4 +u?) + uvu? — 8]'/2.
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