2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) | 979-8-3503-0744-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICCVW60793.2023.00083

2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)

SeMask: Semantically Masked Transformers for Semantic Segmentation

Jitesh Jain!
Zilong Huang'  Jiachen Li'

Abstract

Finetuning a pretrained backbone in the encoder part
of an image transformer network has been the traditional
approach for the semantic segmentation task. However,
such an approach leaves out the semantic context that an
image provides during the encoding stage. This paper ar-
gues that incorporating semantic information of the image
into pretrained hierarchical transformer-based backbones
while finetuning improves the performance considerably.
To achieve this, we propose SeMask, a simple and effec-
tive framework that incorporates semantic information into
the encoder with the help of a semantic attention operation.
In addition, we use a lightweight semantic decoder dur-
ing training to provide supervision to the intermediate se-
mantic prior maps at every stage. Our experiments demon-
strate that incorporating semantic priors enhances the per-
formance of the established hierarchical encoders with a
slight increase in the number of FLOPs. We provide em-
pirical proof by integrating SeMask into Swin Transformer
and Mix Transformer backbones as our encoder paired
with different decoders. Our framework achieves impres-
sive performance of 58.25% mloU on the ADE20K dataset
with SeMask Swin-L backbone and improvements of over
3% in the mloU metric on the Cityscapes dataset. The
code is publicly available on https://github.com/Picsart-Al-
Research/SeMask-Segmentation.

1. Introduction

Semantic Segmentation aims to perform dense predic-
tion for labeling each pixel in an image corresponding to
the class that the pixel represents. Transformer-based vision
networks [16,43] have outperformed Convolutional Neural
Networks on the image-classification task [30]. In mod-
ern times, transformer backbones have shown impressive
performance when transferred to downstream tasks like se-
mantic segmentation [2,23,35].

Most of the architectural designs in vision transformers
approach the problem in either of the two ways: (i) Use an
existing pretrained backbone as an encoder and transfer it
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Figure 1: Comparison between popular transformer-based
network for segmentation (left) and SeMask (right). In con-
trast to most existing methods ( [35] in above figure) that
directly use the pretrained backbones without any changes,
SeMask uses semantic priors in the encoder backbones by
adding an additional semantic layer; this simple change sig-
nificantly improves performance.

to downstream tasks using pre-existing standard decoders
such as, Semantic FPN [29] or UperNet [48]; OR (ii) de-
sign a new encoder-decoder network where the encoder is
pretrained on ImageNet for the semantic segmentation task.
Both of these ways, as mentioned earlier, involve finetuning
the encoder backbone on the segmentation task. Finetun-
ing from a large-scale dataset help early attention layers to
incorporate local information at lower layers of the trans-
formers [38]. However, it can still not harness the semantic
context during finetuning due to the relatively smaller size
of the dataset and a change in the number and nature of se-
mantic classes from classification to the segmentation task.
Hierarchical vision transformers [35,49] tackle the problem
with progressive downsampling of features along the stages,
although they still lack the semantic context of the image.

Liu et al. [35] introduced the Swin Transformer, which
constructs hierarchical feature maps making it compatible
as a general-purpose backbone for major downstream vi-
sion tasks. [ 10] proposed to use two attention: globally sub-
sampled and locally sub-samples on top of PVT [45] and
CPVT [11] for effective segmentation. Xie et al. [49] fur-
ther modified the hierarchical transformer encoder by mak-
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ing it free from positional-encoding and thus robust to dif-
ferent resolutions as generally found in the segmentation
task. All these works modified the encoders to make them
work better for downstream tasks like segmentation and
achieved success to an impressive extent. Still, they did not
pay attention to capturing the semantic-level contextual in-
formation of the whole image. A lack of semantic contex-
tual information leads to sub-optimal segmentation perfor-
mance, especially in the case of small objects where those
get merged with the boundaries of the larger categories,
leading to wrong predictions. Recently, [41] tried to tackle
this issue by designing a pure transformer-based decoder
that jointly processes the patch and class embedding. How-
ever, it does not perform efficiently for tiny variants and
fails with hierarchical architectures leading to sub-optimal
performance when used with major transformer backbones
like Swin [35], and Twins [10] transformers.

Jin et al. in [28] proposed ISNet to model the image level
contextual information along with semantic level contextual
information by introducing the SLCM and ILCM modules
in the decoder structure. However there is still a caveat: IS-
Net is a CNN based method and only focuses on the decoder
part of the network, leaving out the encoder unchanged.

To address the issues mentioned above, we propose the
SeMask framework that incorporates semantic information
into hierarchical vision transformer architectures and aug-
ments the global feature information captured by the trans-
formers with the semantic context. The existing frame-
works formulate the architecture as an encoder-decoder
structure with transformers pretrained on ImageNet [30]
acting as the encoders and using a specialized decoder for
semantic segmentation. In contrast to directly using the hi-
erarchical transformers as a backbone, we insert a Seman-
tic Layer after the Transformer Layer at each stage in the
backbone, giving us the SeMask version of the backbone as
illustrated in Fig. 1. We use a lightweight semantic decoder
to accumulate the semantic maps from all the stages, and a
standard decoder like Semantic-FPN [29] for the main per-
pixel prediction. The added semantic modeling with feature
modeling throughout the encoder helps us improve the per-
formance of the semantic segmentation task. In Sec. 4, we
integrate the proposed SeMask block into the Swin Trans-
former [35] and Mix Transformer [49] backbones. Our ex-
perimental results show considerable improvement in se-
mantic segmentation for both backbones on two different
datasets. To summarize, our contributions are three fold:

* To the best of our knowledge, we are the first to study
the effect of adding semantic context to pretrained
transformer backbones for the semantic segmentation
task. Furthermore, we introduce a SeMask Block
which can be plugged into any existing hierarchical
vision transformer. We provide empirical evidence
by integrating SeMask into Swin-transformer [35]
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and Mix-Transformer [49], and achieving considerable
performance improvement.

e We also propose to use a simple semantic decoder for
aggregating the semantic priors from different stages
of the encoder. The semantic priors receive super-
vision from the ground truth using a per-pixel cross-
entropy loss.

* Lastly, we provide an in-depth analysis of the SeMask
Block’s effect on two different datasets: ADE20K and
Cityscapes. We achieve impressive performance of
58.25% mloU on the ADE20K dataset and an im-
provement above 3% on the Cityscapes dataset.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation broadly formulates to a dense
per-pixel classification task. The seminal work of FCN [36]
introduced the use of deep CNNs, removing fully connected
layers to tackle the segmentation task. Several following
works [1, 32, 39] were built upon the same idea of using
the encoder-decoder architecture. [4] introduced the use of
atrous convolutions inside the DCNN to tackle the signal
downsampling issue. Later, various works focused on the
aggregating long-range context in the final feature map:
ASPP [5-7] uses atrous convolutions with different dilation
rates; PPM [51] uses pooling with different kernel sizes.

The recent DCNN based models focus on efficiently ag-
gregating the hierarchical features from a pretrained back-
bone based encoder with specially designed modules: [40,
42, 47] introduce attention modules in the decoder; [17, 24]
use different forms of non-local blocks [46]; [31] proposes
a novel FAM module to solve the misalignment issue using
semantic flow; AlignSeg [25] proposes aligned feature ag-
gregation module and aligned context modeling module to
make contextual features be better aligned. [53] uses a seg-
mentation shelf for better information flow. In this work,
we also follow the established direction to use a pretrained
backbone and aggregating the hierarchical features [35] us-
ing the Semantic-FPN [29] decoder.

2.2, Transformers for Segmentation

After being heavily used in Natural Language Processing
field, transformer [44] based models have gained popular-
ity for various computer vision tasks since the introduction
of ViT [16] for image classification [16, 19,26,43]. SETR
used ViT [16] as an encoder and two decoders based upon
progressive upsampling and multi-level feature aggregation.
SegFormer [49] proposed to use a hierarchical pyramid vi-
sion transformer network as an encoder with an MLP based
decoder to obtain the segmentation mask. Segmenter [41]
designed mask transformer as a decoder, which uses learn-
able class-map tokens to enhance decoding performance.
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MaskFormer [9] defines the problem of per-pixel classifica-
tion from a mask classification point of view, creating an all-
in-one module for all segmentation tasks. Mask2Former [&]
further evolves masked attention to solve panoptic, instance
and semantic segmentation tasks in one framework. Most
recent transformer-based segmentation frameworks [15,35]
are based on finetuning a pretrained hierarchical backbone
as an encoder, and standard decoders like Semantic-FPN
and UperNet [29,48] to the segmentation task. In this work,
we follow the same paradigm and, in addition, propose
a framework to enhance the finetuning ability of the pre-
trained vision transformer backbone. Note that there is also
recent concurrent work like SwinV2 [34] that reaches better
performance on the ADE20k benchmark by using improved
and giant backbones (e.g. SwinV2-G with 3.0 billion pa-
rameters, which is not released publicly). That is out of the
scope of this work and we follow the current practice mainly
based on Swin-L backbone. Theoretically, we can get even
better performance if we apply our approach to such giant
models.

2.3. Semantic Context in Segmentation

Zhang et al. proposed the Context Encoding Mod-
ule in [50] which captures the global semantic context
along with a feedback loop to balance the importance of
classes in the features extracted by a ResNet backbone [20].
More recently, [27, 28] focus on capturing and integrating
the semantic-level contextual information along with the
image-level context with specially designed decoders which
shows significant improvement in DCNN based methods.
Each of these works captures the semantic context after the
encoding stage based on the extracted features and not the
encoder’s ability to capture the semantic features.

In this work, we argue that semantic information is lost
during the encoding stage and hence, propose a framework
to capture semantic information which can be plugged into
any pretrained vision transformer backbone network.

3. Method

An overview of our architecture with Swin-
Transformer [35] backbone is shown in Fig. 2. The
RGB input image, size H x W x 3, is first split into
non-overlapping patches of size 4 x 4. The smaller size
of the patch supports dense prediction in segmentation.
These patches act as tokens and are given as input to
the hierarchical vision transformer encoder, which is the
Swin-Transformer [35] in our architecture. The encoding
step consists of four different stages of hierarchical feature
modeling. Every stage during the encoding step consists of
two layers: The transformer layer, which is N4 number of
Swin Transformer blocks (Fig. 3a) stacked together and Se-
mantic Layer with Ns number of SeMask Attention blocks
(Fig. 3b). We collectively refer to the Transformer Layer
and Semantic Layer at each stage as our SeMask Block.
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The patch tokens pass through each stage at {i, %, %, %

of the original image resolution for the feature maps and
intermediate semantic-prior maps extraction.

In the encoder part of the network, the Semantic Layer
takes in features from the Transformer Layer as inputs and
returns the intermediate semantic-prior maps and seman-
tically masked features (Fig. 3b). When we plug the Se-
Mask Attention Block into other hierarchical vision trans-
formers, the Transformer Layer consists of attention blocks
corresponding to the specific backbone, like Efficient-Self
Attention-based Transformer Layer for the Mix Trans-
former [49] backbone. The semantically masked features
from each stage are aggregated using the semantic-FPN
[29] decoder for producing the final dense-pixel prediction.
Moreover, the semantic-prior maps from all the stages are
aggregated using a lightweight upsample & sum operation-
based semantic decoder to predict the semantic-prior for the
network during training. Both decoders’ outputs are super-
vised using a weighted per-pixel cross-entropy loss. These
additional semantic-prior maps greatly assist the feature ex-
traction and eventually improve the performance on the se-
mantic segmentation task.

3.1. SeMask Encoder

Each stage in our encoder consists of two layers: the
Transformer Layer and the Semantic Layer. The trans-
former layer is composed of N4 Swin Transformer blocks
stacked to extract image-level context information from the
image. The semantic layer contains Ng SeMask Attention
blocks stacked together to decouple semantic information
from the features, producing semantic-priors and then up-
dating the features with guidance from these semantic-prior
maps.
Transformer layer. For the transformer layer, we adapt
the hierarchical structure of Swin Transformer [35] which
constructs hierarchical feature maps and has linear compu-
tational complexity to the image resolution. Before feed-
ing the RGB image into the transformer layer in the first
stage, we split it into non-overlapping patches of size is
4 x 4 x 3 = 48. The first stage in the encoder has a lin-
ear embedding layer to change the feature dimension of the
patch tokens. Inside each transformer layer, there are N4
shifted window attention blocks (Fig. 3a) that have linear
computation complexity along with cross-window connec-
tions to handle non-overlapping regions, making the design
effective for image-level feature modeling. For a hierarchi-
cal representation, we shrink our feature maps from 2 x -
to % X % by patch merging layers for the next stage. This
patch merging is iterated for the next stages to obtain a hier-
archical feature map, with a resolution of 2% + 2% x C}
where i € {1,2,3,4}. X represents the input features in-
side the transformer layer block. And for computing self-
attention in the transformer layer, X is transformed into:
Q, K,V which are query, key and value matrices with same
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Figure 2: SeMask Swin Semantic FPN Framework: We add a Semantic Layer with Ng SeMask Blocks (Fig. 3b) after
the Swin Transformer Layer to capture the semantic context in the encoder network. The Semantic Maps from the Semantic
Layers at each stage are aggregated using a simple Upsample + Sum operation and passed through a weighted CE Loss to

supervise the semantic context.

dimension of N x C. Based on swin transformer, we also
follow [3,21,22,35,37] to include a relative position em-
bedding (RPE) where RPE € RN*N and N = M x M
is the length of the sequence with M = window size. The
attention inside the Transformer Layer is calculated as:

T
QK ) V1)

—— + RPE
VO

The resulting feature Y from the Transformer Layer after
the last Swin Transformer block then acts as an input to the
subsequent semantic layer in the same stage as shown in
Fig. 3.

Semantic Layer. The Semantic Layer follows the
Transformer Layer at each stage of our hierarchical vision
transformer. Unlike the Transformer Layer, the Semantic
Layer’s significance is in modeling the semantic context,
which is used as a prior for calculating a segmentation score
to update the feature maps based on guidance from the se-
mantic nature present in the image. Inside each semantic
layer, there are Ng SeMask attention blocks (Fig. 3b). In-
spired by the shifted window-based division of the tokens
for efficient computation cost, we also divide the input to
our SeMask blocks into windows with cross-window con-

Attention(Q, K, V') = SoftMax (
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nections before calculating the segmentation score using a
single-head self-attention operation. The SeMask block is
responsible for capturing the semantic context in our en-
coder. It updates the features from the transformer layer
from the segmentation score providing guidance and giving
a semantic-prior map for efficient supervision of the seman-
tic modeling during training. SeMask attention block di-
vides the features Y from the preceding transformer layer
into three entities: Semantic Query (Sg), Semantic Key
(Sk), and Feature Value (Yy-). We get Sk and Sg by pro-
jecting the features onto the semantic space. The dimension
of both Sg and Sk is N x K where K is equal to the num-
ber of classes, and the dimension of Yy, is N x C where
C'is the embedding dimension, N = M x M is the length
of the sequence with M = window size which we set as
equal to that used inside the transformer layer. S¢ returns
the semantic map, and a segmentation score is calculated
using Sk and Sq. The score is passed through a softmax
and is used to update Yy, as shown in Fig. 3b. This SeMask
attention equation is expressed as follows:

2)

We perform a matrix multiplication between the feature

Score(Sq, Sk, Yv) = SoftMax(Sq Sk )Yy
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Figure 3: Attention Blocks. N4 Shifted Window Self
Attention Blocks, shown in Fig. 3a, are stacked inside
each Transformer Layer and Ng SeMask Attention Blocks,
shown in Fig. 3b, are stacked inside each Semantic Layer
at every stage (Fig. 2). The output, Y, from the last Swin
Attention Block, is fed to the first SeMask block in the Se-
mantic Layer.

values and the segmentation score. The matrix product is
later passed through a linear layer and multiplied with a
learnable scalar constant A, used for smooth finetuning. Af-
ter a residual connection [20], we finally get the modified
features, rich with semantic information which we call the
Semantically Masked features. The semantic queries Sg
are later used to predict the semantic-prior map.

3.2. Decoder

We use two decoders to aggregate the features and the
semantic-prior maps respectively from the different stages
in the encoder.

For aggregating the semantically masked features, we
employ the popular Semantic-FPN decoder [29]. The
Semantic-FPN fuses the features from different stages with
a series of convolution, bilinear upsampling, and sum op-
erations, making it efficient and straightforward as a seg-
mentation decoder for our purpose. In addition, we use
a lightweight semantic decoder during training to provide
ground truth supervision to the semantic-prior maps at ev-
ery stage of the encoder. As the semantic-prior maps have
the channel dimension of K in each stage, we only employ
a series of upsampling and sum operations to aggregate the
maps with K being equal to the number of classes in the
dataset. Lastly, the output from both the decoders is up-
scaled x4 to the resolution of the original image for the
final predictions as shown in Fig. 2.
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Backbone \ Window Size Embedding Dim (C')  Blocks (N7,,)
Swin-T 7 [96, 192, 384, 768] [2,2,6,2]

Heads (N7,,) #Params (M)
[3,6,12,24] 28

Swin-S 7 [96,192,384,768]  [2,2,18,2]  [3,6, 12,24] 50
Swin-B! 12 [128,256,512, 10241  [2,2,18,2]  [4,8,16,32] 88
Swin-Lt 12 [192,384,768,1536]  [2,2,18,2]  [6, 12, 24, 48] 197

Table 1: Details of Swin Transformer variants. The Tiny
and Small variants are trained on ImageNet-1k and with
224x224 resolution. | stands for ImageNet-22k pre-training
on 384 x 384 resolution images.
3.3. Loss function

To train our model’s parameters, we calculate the to-
tal loss L7 as a summation of two per-pixel cross-entropy
losses: £1 and Lo. The loss £ is calculated on the main
prediction from the Semantic-FPN decoder and loss Lo is
calculated on the semantic-prior prediction from our light-
weight decoder. F contains the main prediction of the net-
work and S denotes the semantic-prior prediction. We de-
fine our losses on F and & as follows:

1
L= Z Lee (Fieig) §(GT1)) - @

1 2]
L2 = gy 2o Lee (S §(9T4n)) - @)
v
ET = [:1 =+ O{[:Q (5)

Here, § denotes for converting the ground truth class la-
bel stored in G7 into one-hot format, } _; ; denotes that the
summation is carried out over all the pixels of the GT, and
L. is the cross-entropy loss. We empirically set o« = 0.4
(check appendix for more details).

4. Experiments

We compare our approach with Swin Transformer [35],
and Mix-Transformer [49] with extensive experiments to
demonstrate the effectiveness of the SeMask framework.
We also ablate the SeMask structure and confirm that pro-
viding a semantic-prior to mask out the features improves
semantic segmentation performance. The experiments are
performed on two widely used datasets: ADE20K [14] and
Cityscapes [13]. We include more experimental results in
the appendix proving that our method is dataset agnostic.

4.1. Datasets and metrics

ADE20K. [14] ADE20K is a scene parsing dataset covering
150 fine-grained semantic concepts and it is one of the most
challenging semantic segmentation datasets. The training
set contains 20,210 images with 150 semantic classes. The
validation and test set contain 2,000 and 3,352 images re-
spectively.

Cityscapes. [13] Cityscapes is an urban street driving
dataset for semantic segmentation consisting of 5,000 im-
ages from 50 cities with 19 semantic classes. There are
2,975 images in the training set, 500 images in the valida-
tion set and 1,525 images in the test set.

Metrics. We report mean Intersection-over-Union (mlol)
over all classes.
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Method Backbone ADE20K Cityscapes

(encoder + decoder)  (pretrained) crop size  #param. (M) FLOPs (G) s.s. mloU (%) m.s. mloU (%) | cropsize #param. (M) FLOPs(G) s.s. mloU (%) m.s. mloU (%)
Swin-T FPN Swin-T 512 x 512 33 38 41.48 42.89 768 x 768 33 81 71.81 73.74
SeMask-T FPN SeMask Swin-T | 512 x 512 35 40 42.06 (+0.58)  43.36 (+0.47) | 768 x 768 34 84 74.92 (+3.11)  76.56 (+2.82)
Swin-S FPN Swin-S 512 x 512 54 61 45.20 46.96 768 x 768 54 130 75.19 77.68
SeMask-S FPN SeMask Swin-S 512 x 512 56 63 45.92 (+0.72)  47.63 (+0.67) | 768 x 768 56 134 7713 (+1.94)  79.14 (+1.46)
Swin-B FPN Swin-Bf 512 % 512 93 103 48.80 50.28 768 x 768 93 211 76.54 79.05
SeMask-B FPN SeMask Swin-Bf | 512 x 512 96 107 49.35 (+0.55)  50.98 (+0.70) | 768 x 768 96 217 77.70 (+1.16)  79.73 (+0.68)
Swin-L FPN Swin-Lt 640 x 640 204 343 50.85 5295 768 x 768 204 444 78.03 79.53
SeMask-L FPN SeMask Swin-L | 640 x 640 212 356 51.89 (+1.04)  53.52(+0.57) | 768 x 768 211 455 78.53 (+0.50)  80.39 (+0.86)

Table 2: Ablation on Swin-Transformer varaints. We provide a comparison of using SeMask Swin with Semantic-FPN
[29] decoder on all 4 varaints on the ADE20K-Val and Cityscapes-Val dataset. We evaluate the models using both, the
single scale (s.s) and multi-scale (m.s.) mloU (7). All models are trained for 80k iterations. The FLOPs are calculated for

the given crop sizes using the script provided by the MMSegmentation [12] library.

Method Backbone ‘ SA Block SeMask Block ‘ mloU (%) #Param (M)

Transformer [49] on the ADE20K [14] dataset.

Swin-T FPN Swin-T 41.48 33 . . ..
Trans Swin-T FPN  Trans Swin-T v 4142 36 In the following sections, we use an abbreviation to de-
SeMask-T FPN SeMask Swin-T v 42.06 35

Table 3: Ablation on Semantic Attention. We prove the
effectiveness of the SeMask Block by replacing it with a
simple Single-Head Self Attention block which harms the

performance on the Tiny variant.

scribe the model variant. For example, Swin-T denotes
the Tiny variant. The backbones pretrained on ImageNet-
22k [30] and with 384 x384 resolution are denoted with a 7:
Swin-Bf. All the other models are pretrained on ImageNet-
1k and with 224 x 224 resolution.

Network Initialization. Our SeMask models are initialized

Method Backbone A ‘ mloU (%) #Param (M)

SeMask-T FPN _ ScMask Swin-T v 42.06 35 with publicly available models. The Tiny and Small variants
SeMask-T FPN  SeMask Swin-T ~ x ‘ 41.11 35 are pre-trained on ImageNet- 1k with an image resolution of
SeMask-S FPN  SeMask Swin-S v/ 45.92 56 224 x 224. The Base and Large variants are pretrained on
SeMask-S FPN  SeMask Swin-S ‘ 45.00 56 ImageNet-22k with a resolution of 384 x 384. We keep the

Table 4: Ablation on A. We support the critical claim of
the learnable scalar constant: \ inside the SeMask Block by
removing and recording the mIoU (7).

window size (M) fixed as in the pretrained models and fine-
tune the models for the semantic segmentation task at higher
resolution depending on the dataset. Following [35], we
include relative position bias while calculating the attention

Method Backbone | Auxiliary Loss | mloU (%) scores. The decoders, described in Sec. 3.2 are initialized
Swin-T FPN Swin-T 41.48 with random weights from a normal distribution [18].
Swin-T FPN Swin-T v 41.52 Data augmentation. During training, we perform mean
Query Swin-T FPN ~ Swin-T v 40.81 K X R 7

SeMask-T EPN SeMask Swin-T 41.72 subtraction, scaling the image to a ratio randomly sam-
SeMask-T FPN SeMask Swin-T v 42.06 pled from (0.5,0.75,1.0,1.25, 1.5, 1.75), random left-right

Table 5: Ablation on Auxiliary Loss. We study the effect
of the auxiliary loss on performance. Query Swin-T FPN
uses the queries from the transformer layer for loss calcula-
tion. We observe that our SeMask performs the best.

4.2. Implementation details

Transformer models. For the encoder, we build upon
the Swin Transformer [35] and consider the Tiny, Small,
Base and Large variants as described in Tab. 1. The
variation in number of parameters among the baselines is
due to the number of transformer blocks (Nt ) (Fig. 3a)
and the embedding dimension (C') for each stage of the
model. The number of heads (Nr,) of a shifted win-
dow based multi-headed self-attention (SW-MSA) or Swin
Transformer block varies from stage to stage. The hidden
size of the MLP following SW-MSA is four times the em-
bedding dimension at the corresponding stage. We also
experiment with the MiT-B4 backbone variant of the Mix-
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flipping, and color jittering. We randomly crop large im-
ages and pad small images to a fixed size of 512 x 512
for ADE20K and 768 x 768 for Cityscapes. On ADE20K,
we train our largest model Semask-L" FPN with a 640 x
640 resolution, matching the resolution used by the Swin-
Transformer [35].

4.3. Ablation Studies

In this section, we ablate different variants of our Se-
Mask framework. We investigate the model size, seman-
tic attention, effect of the learnable scalar constant (\) in-
side the SeMask block and the auxiliary loss. Unless stated
otherwise, we use the Semantic-FPN [29] as our decoder
for the main prediction and report results using single-scale
(s.s.) inference on the ADE20K [14] val dataset.
Transformer size. We study the impact of transformers
size on performance in Tab. 2 by experimenting with the
four different Swin variants: Tiny, Small, Base and Large
with Ng = [1,1, 1, 1] for all the experiments. Our method
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Method Backbone Crop Size \ mloU (%) MS mloU (%)
CNN Backbones

FCN [36] ResNet-101 512 x 512 3991 41.40
PSPNet [51] ResNet-101 512 x 512 44.39 45.35
DLab.v3+ [7] ResNet-101 512 x 512 45.47 46.35
Transformer Backbones

SegFormer [49] MiT-B4 512 x 512 48.46 49.76
Swin-L FPN [35] Swin-Lt 640 x 640 50.85 52.95
Seg-L-Mask/16 [41] ViT-L/16F 640 x 640 51.80 53.56
Swin-L UPerNet [35] Swin-Lf 640 x 640 — 53.50
SwinV2-L UPerNet [34]* SwinV2-Lf 640 x 640 — 55.90
Swin-L MaskFormer [9] Swin-Lf 640 x 640 54.10 55.60
Swin-L Mask2Former [8] Swin-Lt 640 x 640 56.10 57.30
Swin-L MSFaPN-Mask2Former [8]! Swin-L{ 640 x 640 55.99 57.69
Swin-L FaPN-Mask2Former [8] Swin-Lf 640 x 640 56.40 57.70
SeMask SegFormer (Ours) SeMask MiT-B4 512 x 512 50.01 51.07
SeMask-L FPN (Ours) SeMask Swin-LT 640 x 640 51.89 53.52
SeMask-L MaskFormer (Ours) SeMask Swin-LT 640 x 640 54.75 56.15
SeMask-L Mask2Former (Ours) SeMask Swin-LT 640 x 640 56.41 57.52
SeMask-L FaPN-Mask2Former (Ours) SeMask Swin-LT 640 x 640 56.88 58.25
SeMask-L MSFaPN-Mask2Former! (Ours) SeMask Swin-Lt 640 x 640 57.00 58.25

Table 6: Comparison on ADE20K-Val. We report both single-scale (s.s.) and multi-scale (m.s.) mIOU (1) on ADE20K Val
set. ¥ We use the results from the MMSegmentation [12] library due to the reproducibility issues with the official SegFormer
repo [link]. I'we develop an MSFaPN network based on the changes done in FaPN [23] to the BasePixelDecoder [9]. *Note
that we follow the convention and compare methods based on the Swin-L backbone and we currently do not consider giant

models like SwinV2-G that have billions of parameters.

Method Backbone ‘ mloU (%) MS mloU (%)
CNN Backbones

PSANet [52] ResNet-101 77.94 79.05
DeepLabV3+ [7] Xception-71 - 79.55
CCNet [24] ResNet-101 80.50 81.30
HRNetV2-OCR+PSA [33] HRNetV2-W48 - 86.95
Transformer Backbones

Seg-L-Mask/16 [41] ViT-L/16f 79.10 81.30
Swin-L FPN [35] Swin-Lf 78.03 79.53
MaskFormer [9] ResNet-101 78.50 80.30
Mask2Former [8] Swin-Lf 83.30 84.30
SeMask-L FPN (Ours) SeMask Swin-L{ 78.53 80.39
SeMask-L Mask2Former (Ours) ~SeMask Swin-L1 83.97 84.98

Table 7: Comparison on Cityscapes-Validation. We
report both single-scale (s.s.) and multi-scale (m.s.)
mlIOU (1) on Cityscapes Validation set.

consistently improves over all the baseline variants with the
improvement on the Cityscapes dataset being more impres-
sive due to the fewer classes in the segmentation dataset
creating a stronger prior.

We evaluate and record the mloU scores for the baseline
Swin models by training our networks using their publicly
released code based on the MMSegmentation Library [12].

Semantic Attention. We study the impact of the semantic
attention operation calculated inside the SeMask Block on
performance in Tab. 3 by replacing the SeMask Block with
a simple single-head self-attention block on the Swin-Tiny
variant. It is evident that simple attention does not help im-
prove the results proving the validity and effectiveness of
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our SeMask Block.

Learnable Constant (\). We study the impact of A on per-
formance in Tab. 4, by removing it for the Tiny and Small
variants. We observe that the inclusion of A is potent to the
success of the SeMask block as it acts as a tuning factor for
the modified features, keeping the noise from weights’ ini-
tialization in check. We also observe that A € [0.05,0.3]
during inference for different stages in the encoder.
Ablation on Auxiliary Loss. We study the impact of the
auxiliary CE Loss (£2) in Tab. 5. First, we add the extra su-
pervision to the output of the transformer layer, which has
a negligible effect on the performance. Since we use Sg
for calculating £, in SeMask, we experiment with another
baseline Query Swin-T FPN where we provide extra super-
vision to the queries inside the transformer, which shows a
significant drop in performance. Thus, our SeMask-T FPN
performs the best.

4.4. Main Results

ADE20K. We compare with several recently published
methods. Using SeMask Swin-LT as the encoder and
Mask2Former-MSFaPN as our decoder for the main pre-
diction, we achieve scores of 57.00% and 58.25% on the
single-scale and multi-scale mloU metric, respectively. Fol-
lowing [35], our models were trained on 640 x 640 im-
ages. We also achieve competitive results with our Se-
Mask Swin-LT backbone with Semantic-FPN to the Swin-
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(a) Image
Figure 4: Qualitative results on the Cityscapes validation set. The dot-bordered boxes at the top show zoomed-in regions
from the images for a more detailed look at the improvement using our SeMask-T FPN. Unlike Swin-T FPN, SeMask-T FPN
does not wrongly segment the bicycle as part of the rider in the first row. For the second row, SeMask-T FPN can segment

(b) Swin-T FPN (c) Ours (d) Ground Truth

the pole. Similarly, in the third row, SeMask-T FPN segments the boundary in a better way than the baseline Swin-T FPN.

L' based UPerNet model as shown in Tab. 6.

We also integrate our SeMask into the MiT-B4 based
SegFormer model [49] as shown in Tab. 6 and achieve an
improvement of 1.55% on the single scale mIoU and 1.31%
improvememt on the multi-scale mIoU metric scores. This
supports our claim that SeMask can be plugged into any
existing hierarchical vision transformer and show perfor-
mance improvement.

Cityscapes. Tab. 7 reports the performance of SeMask
on Cityscapes. Semask Swin-Lf is competitive to other
methods with SeMask Swin-Lt Mask2Former achieving
84.98% mloU. We train our SeMask-L. Mask2Former on
512 x 1024 images following Mask2Former [8]. Further-
more, we achieve an impressive improvement of 3.11% s.s
mloU and 2.82% m.s mloU with our SeMask-T FPN over
its Swin-T FPN counterpart.

Qualitative results. Fig. 4 shows a qualitative compari-
son of Swin-T FPN and SeMask-T FPN on the Cityscapes
dataset generated using the MMSegmentation library [12].
It is evident that SeMask-T FPN is able to generate better
class-wise predictions than the Swin-T FPN. As shown in
the second row in Fig. 4, we are able to segment the pole
with our SeMask-T FPN, while Swin-T FPN fails to do so.
Similarly in the third row, we are better able to segment the
boundary.
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5. Conclusion

This paper argues that directly finetuning off-the-shelf pre-
trained transformer backbones as encoders for semantic
segmentation does not consider the semantic context tied to
the images. We claim that adding a semantic prior to guide
the encoder’s feature modeling enhances the finetuning pro-
cess for semantic segmentation. To support our claim, we
propose the SeMask Block, which can be plugged into
any existing hierarchical vision transformer and uses a se-
mantic attention operation to capture the semantic context.
We train and evaluate the proposed framework building
on the Swin-Transformer [35] and Mix-Transformer [49]
backbones-based networks and show a considerable im-
provement in the semantic segmentation performance on
the Cityscapes and ADE20K dataset, with improvements
above 3% on the Cityscapes dataset. We provide a com-
prehensive experimental analysis by applying SeMask to
different backbone variants and achieving considerable per-
formance improvement in every setting. As a direction for
future research, it will be interesting to observe the effect of
adding similar priors for other vision downstream tasks.
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