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On the Convergence of Re-Centered
Chen-Fliess Series
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Abstract—Chen-Fliess functional series provide a rep-
resentation for a large class of nonlinear input-output
systems. Like any infinite series, however, their applicabil-
ity is limited by their radii of convergence. The goal of this
letter is to present a computationally feasible method to
re-center a Chen-Fliess series in order to expand its time
horizon. It extends existing results in two ways. First, it
takes a simpler combinatorial approach to the re-centering
formula that draws directly on the analogous re-centering
problem for Taylor series. Second, a convergence analysis
is presented for the re-centered series. This information
can be used to compute a lower bound on the radius of
convergence for the output function and an estimate of
the series truncation error. The method is demonstrated by
simulation on a steering problem for a car-trailer system.

Index Terms—Nonlinear systems, Chen-Fliess series,
series convergence, formal power series.

I. INTRODUCTION

C
ONTROL systems play a central role in most engineering

applications like autonomous vehicles, power grids, and

robotics. These systems exhibit nonlinear behavior and operate

under dynamic and uncertain conditions [1], [2], [3], [4]. A key

challenge in their analysis and design is to accurately describe

their behavior over extended time horizons and for various

input classes [5], [6]. This often involves a trade-off between

analytical precision and computational feasibility.

Among the existing approaches for representing a nonlin-

ear input-output system is the Chen-Fliess (CF) functional

series [7], [8]. It provides a noncommutative formal power

series representation which is coordinate free and suitable for

many control applications [9]. It has been applied, for example,

in adaptive control [10], for reachability analysis [6], and in

optimization problems [11]. Like any infinite series, however,

this model’s applicability is limited by its radius of conver-

gence. This places upper bounds on both the time horizon
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and the magnitude of applied inputs. Analytic continuation of

functional series is in general a difficult problem [12]. If a

state space model is available, one could re-center the series by

recomputing its coefficients about a different initial condition,

but this is computationally expensive. For systems without an

underlying state space model, there is no existing way to re-

center a CF series beyond the brute force approach proposed

by two of the authors in [13].

The goal of this letter is to present a computationally

feasible method to re-center a CF series in order to expand

its time horizon. This extends the results in [13] in two

ways. First, it takes a simpler combinatorial approach to the

re-centering formula that draws directly on the analogous

commutative re-centering problem for Taylor series. The key

insight is that the binomial theorem used in the commutative

case is replaced by Chen’s identity in the noncommutative

case [14], [15]. Second, a convergence analysis is presented

for the re-centered series. Specifically, the coefficient growth

parameters are computed as a function of the center point.

This information can be used to compute a lower bound on the

radius of convergence for the output function [5]. It can also

be used to compute series truncation error. Truncation error

analysis for CF series was originally presented in [16], [17].

In [13, Sec. II-B], the authors compute the time interval over

which the truncation error stays below a preselected value.

This is called the execution time. It is a function of the

coefficient growth parameters. The results of this letter now

permit one to compute the execution time as a function of

the center point. This can be used to construct a grid of

center points in a tracking problem so that the truncation

error is uniformly bounded. Finally, the main results of this

letter are demonstrated on two simple analytical examples fol-

lowed by a simulation example involving a car-trailer steering

system.

This letter is organized as follows. Section II summa-

rizes some preliminary concepts regarding CF series that

are used throughout this letter. Section III presents the new

re-centering method. The convergence analysis is done in

Section IV. Section V presents a collection of illustrative

examples. The conclusions of this letter are given in the final

section.

II. NOTATION AND PRELIMINARIES

An alphabet X = {x0, x1, . . . , xm} is any nonempty finite

set of symbols referred to as letters. A word η = xi1 , · · · xik is

a finite sequence of letters from X. The number of letters in a
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word η, written as |η|, is called its length. The empty word, ∅,

is taken to have length zero. The collection of all words having

length k is denoted by Xk. Define X∗ =
⋃

k≥0 Xk, which is a

monoid under the concatenation product.

A. Algebras of Formal Power Series

A formal power series is a mapping c : X∗ → R
�. It is

commonly expressed as the formal sum c =
∑

η∈X∗(c, η)η,

where the coefficient (c, η) represents the image of η ∈ X∗

under c. The support of c, denoted by supp(c), is the collection

of all words in X∗ with nonzero coefficients. The R-vector

space of all noncommutative formal power series over the

alphabet X is represented by R
�〈〈X〉〉. The subspace of series

with finite support, i.e., polynomials, is denoted by R
�〈X〉. For

ξ ∈ X∗, the left-shift operator is defined as ξ−1 : X∗ → R〈X〉

such that ξ−1(η) = η′ when η = ξη′ and zero otherwise. It is

extended to R
�〈〈X〉〉 by linearity.

The linear spaces R�〈X〉 and R
�〈〈X〉〉 are both associative R-

algebras under the concatenation or Cauchy product (c, d) �→

cd. It will also be useful to view this product as the R-linear

map:

cat : R〈X〉 ⊗ R〈X〉 → R〈X〉, p ⊗ q �→ pq.

Assume R〈X〉 is endowed with an R-bilinear scalar-valued

product defined by (η, ξ) = 1 when η, ξ ∈ X∗ are equal and

zero otherwise. The adjoint cat∗ : R〈X〉 → R〈X〉 ⊗ R〈X〉 is

defined so that

(cat(p ⊗ q), r) = (p ⊗ q, cat∗(r)), ∀p, q, r ∈ R〈X〉.

It is straightforward to verify that

cat∗(r) =
∑

ν,η∈X∗

(r, νη) ν ⊗ η (1)

[18]. The linear spaces R
�〈X〉 and R

�〈〈X〉〉 also become

associative and commutative R-algebras under the shuffle

product, which is defined inductively by

(xiη)
∃

(xjξ) = xi(η

∃

(xjξ)) + xj((xiη)

∃

ξ),

where xi, xj ∈ X, η, ξ ∈ X∗, and with η

∃ ∅ = ∅∃

η = η. Given

a language L ⊆ X∗, its characteristic series is char(L) :=
∑

η∈L η. If L = Xk, it can be shown that

char(Xk) =
char(X)

∃

k

k!
, (2)

where p

∃

k denotes the k-th shuffle power [9].

B. Chen and Chen-Fliess Series

Let p ≥ 1 and t0 < t1. For any Lebesgue measurable

function u : [t0, t1] → R
m, define ‖u‖p = max{‖ui‖p : 1 ≤

i ≤ m}, where ‖ui‖p represents the standard Lp-norm of a

measurable real-valued function ui on [t0, t1]. The set Lm
p [t0, t1]

consists of all measurable functions on [t0, t1] with finite ‖·‖p-

norm. The bounded subset Bm
p (Ru)[t0, t1] is defined as {u ∈

Lm
p [t0, t1] : ‖u‖p ≤ Ru}. Let C[t0, t1] ⊂ Lp[t0, t1] denote the set

of continuous functions on [t0, t1]. For any η ∈ X∗, recursively

define the map Eη : Lm
p [t0, t1] → C[t0, t1] by setting E∅[u] = 1

and letting

Exiη[u](t, t0) =

∫ t

t0

ui(τ )Eη[u](τ, t0) dτ,

where xi ∈ X, and u0 = 1. The Chen series for u is the

exponential Lie series

P[u](t, t0) :=
∑

η∈X∗

Eη[u](t, t0)η.

This series satisfies the semigroup property

P[u](t, t0) = P[u](t, τ )P[u](τ, t0), τ ∈ [t0, t], (3)

which is also known as Chen’s identity [14], [15].

For any generating series c ∈ R
�〈〈X〉〉, one can generalize

the scalar product to being R
�-valued and associate a causal

m-input, �-output system via the Chen-Fliess series

y(t) = Fc[u](t, t0) = (c, P[u](t, t0))

:=
∑

η∈X∗

(c, η)Eη[u](t, t0). (4)

Convergence of this series is ensured if there exist constants

K, M ≥ 0 such that |(c, η)| ≤ KM|η||η|!, ∀η ∈ X∗, where |z| :=

maxi |zi| for z ∈ R
�. Under these conditions, the series defining

y(t) converges absolutely and uniformly on Bm
p (Ru)[t0, t0 + T]

for sufficiently small Ru, T > 0. The set of all such locally

convergent generating series is denoted by R
�
LC〈〈X〉〉. When c

satisfies the more restrictive growth condition |(c, η)| ≤ KM|η|,

∀η ∈ X∗, the series (4) defines an operator on the extended

space Lm
p (t0), where

Lm
p (t0) := {u: [t0,∞) → R

m: u[t0,t1] ∈ Lm
p [t0, t1],

∀t1 ∈ (t0,∞)},

and u[t0,t1] denotes the restriction of u to [t0, t1]. This set of

globally convergent generating series is written as R
�
GC〈〈X〉〉.

For c ∈ RLC〈〈X〉〉 and card(X) the number of letters in X, the

radius of convergence is defined to be

r(c) =
1

lim sup|η|→∞

∣

∣

∣

(c,η)
|η|!

∣

∣

∣

1/|η|
card(X)

=
1

Mcard(X)
, (5)

indicating that y(t) can have a finite escape time [5]. If c ∈

RGC〈〈X〉〉, then r(c) = ∞, and y(t) is well-defined over any

finite interval.

A CF series Fc defined on Bm
p (Ru)[t0, t0 + T] with c ∈

R
�
LC〈〈X〉〉 is said to be realizable when there exists a state

space realization

ż = g0(z) +

m
∑

i=1

gi(z)ui, z(t0) = z0, (6a)

yj = hj(z), j = 1, . . . , � (6b)

with each gi being a real analytic vector field expressed in local

coordinates on some neighborhood W of z0 ∈ R
n, and each

real-valued output function hj is a real analytic function on W

such that (6a) has a well-defined solution z(t), t ∈ [t0, t0 +

T] for any given input u ∈ Bm
p (Ru)[t0, t0 + T], and yj(t) =

Fc[u](t) = hj(z(t)), t ∈ [t0, t0+T]. Denoting the Lie derivative
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of hj with respect to gi by Lgihj, it was shown in [7] that for

any word η = xik , · · · xi1 ∈ X∗

(cj, η) = Lgη hj(z0) := Lgi1
, · · · Lgik

hj(z0). (7)

III. RE-CENTERING THE CHEN-FLIESS SERIES

This section describes the re-centering method for CF series.

As motivation for the approach, the Taylor series version of

the problem is given first.

Theorem 1: If f is a real analytic function on a neighbor-

hood U ⊆ R of t0, then its Taylor series about τ ∈ U is

f (t) =

∞
∑

k=0

f (k)(τ )
(t − τ)k

k!

with

f (k)(τ ) =

(

∞
∑

n=k

f (n)(t0)

(n − k)!
(τ − t0)

n−k

)

.

Proof: The proof follows directly from the binomial

theorem. That is,

f (t) =

∞
∑

n=0

f (n)(t0)

n!
(t − t0)

n

=

∞
∑

n=0

f (n)(t0)

n!
(t − τ + τ − t0)

n

=

∞
∑

n=0

f (n)(t0)

n!

n
∑

k=0

(

n

k

)

(t − τ)k(τ − t0)
n−k

=

∞
∑

n=0

f (n)(t0)

∞
∑

k=0

(t − τ)k

k!

(τ − t0)
n−k

(n − k)!
1(n − k),

where 1(n) denotes the Heaviside function. Hence,

f (t) =

∞
∑

k=0

(

∞
∑

n=k

f (n)(t0)

(n − k)!
(τ − t0)

n−k

)

(t − τ)k

k!
,

which completes the proof.

In light of the fact that Exk
0
[u](t, t0) = (t − t0)

k/k! for all

k ≥ 0, it is evident that the binomial theorem is a commutative

version of Chen’s identity (3). Hence, the following general-

ization is formulated for CF series.

Theorem 2: Let Fc[u](t, t0) be a CF series with c ∈

R
�
LC〈〈X〉〉 and t0 ∈ R. Select τ > t0 so that Fc[u](τ, t0)

converges. Then the CF series re-centered at τ is

Fc[u](t, τ ) =
∑

ν∈X∗

(

∑

η∈X∗

(c, η)Eν−1(η)[u](τ, t0)

)

Eν[u](t, τ ).

(8)

Proof: It follows from (1) and (3) that

Fc[u](t, t0)

= (c, P[u](t, t0)

= (c, P[u](t, τ )P[u](τ, t0))

=
(

cat∗(c), P[u](t, τ ) ⊗ P[u](τ, t0)
)

=

(

∑

η,ν∈X∗

(c, νη)(ν ⊗ η), P[u](t, τ ) ⊗ P[u](τ, t0)

)

=
∑

η,ν∈X∗

(c, νη)((ν ⊗ η), P[u](t, τ ) ⊗ P[u](τ, t0))

=
∑

η,ν∈X∗

(c, νη)(P[u](t, τ ), ν)(P[u](τ, t0), η)

=
∑

ν∈X∗

∑

η∈X∗

(c, νη)Eν[u](t, τ )Eη[u](τ, t0).

Making the change of variables η̄ = νη so that η = ν−1(η̄)

yields (8).

Observe that the re-centered CF series has coefficients that

are dependent on the new center point τ and the input over

the interval [t0, τ ]. That is, one could write

Fcτ [u](t, τ ) =
∑

ν∈X∗

(cτ , ν)Eν[u](t, τ ),

where

(cτ , ν) :=
∑

η∈X∗

(c, η)Eν−1(η)[u](τ, t0)

= Fν−1(c)[u](τ, t0). (9)

The central question now is what are the convergence charac-

teristics of the new CF series about the center point τ? This

issue is addressed in the next section.

IV. CONVERGENCE ANALYSIS

In this section, the convergence of a re-centered CF series

is considered in detail. The global case is considered first and

then the local case. For ease of notation and without loss of

generality, it will be assumed throughout that � = 1. The

first theorem states that the infinite radius of convergence is

preserved under re-centering in the global case, but one of

the growth parameters becomes dependent on the new center

point.

Theorem 3: Let c ∈ RGC〈〈X〉〉 with growth constants

K, M ≥ 0. Fix u ∈ Bm
p (Ru)[t0, t] and τ > t0. Then the re-

centered CF series about τ has growth coefficients Kτ , M ≥ 0

satisfying

|(cτ , ν)| ≤ Kτ M|ν|, ∀ν ∈ X∗

with Kτ = K exp(MFchar(X)[u](τ, t0)) and Fchar(X)[u] (τ, t0) =
∑

xi∈X Exi(τ, t0).

Proof: The worst case scenario is where all the coefficients

of c are growing at their maximum rate, i.e., (c, η) = KM|η|

for all η ∈ X∗. It was shown in [5] that

Fc[u](τ, t0) = K exp(MFchar(X)[u](τ, t0)).

Therefore, applying (9) and the identity ν−1(c) = M|ν|c gives

(cτ , ν) = Fν−1(c)[u](τ, t0)

= M|ν|Fc[u](τ, t0)

= K exp(MFchar(X)[u](τ, t0))M
|ν|

= Kτ M|ν|

as claimed.

The locally convergent case is addressed next. Here both

growth constants of the re-centered CF series become depen-

dent on the new center point τ . In which case, the finite radius

of convergence also becomes τ dependent.
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Theorem 4: Let c ∈ RLC〈〈X〉〉 with growth constants

K, M ≥ 0. Fix u ∈ Bm
p (Ru)[t0, t] and assume Fc[u] is

convergent on [t0, t]. Then the re-centered CF series about

τ ∈ (t0, t] has growth coefficients Kτ , Mτ ≥ 0 satisfying

|(cτ , ν)| ≤ Kτ M|ν|
τ |ν|!, ∀ν ∈ X∗

with

Kτ =
K

1 − MFchar(X)[u](τ, t0)
(10a)

Mτ =
M

1 − MFchar(X)[u](τ, t0)
. (10b)

Proof: The worst case scenario is where (c, η) = KM|η||η|!

for all η ∈ X∗. In order to apply (9), first observe that for any

ν ∈ X∗

ν−1(c) =
∑

η∈X∗

KM|νη||νη|! η

= KM|ν||ν|!
∑

η∈X∗

M|η|

(

|ν| + |η|

|η|

)

|η|! η

= KM|ν||ν|!

∞
∑

k=0

Mk

(

|ν| + k

k

)

k! char(Xk).

Therefore, from (2) it follows that

(cτ , ν)

= Fν−1(c)[u](τ, t0)

= KM|ν||ν|!

∞
∑

k=0

Mk

(

|ν| + k

k

)

k! Fchar(Xk)[u](τ, t0)

= KM|ν||ν|!

∞
∑

k=0

(

|ν| + k

k

)

(

MFchar(X)[u](τ, t0)
)k

.

From the identity
∑

k≥0

(|ν|+k
k

)

rk = 1/(1 − r)|ν|+1, the closed

form is

(cτ , ν) = KM|ν||ν|!
1

(

1 − MFchar(X)[u](τ, t0)
)|ν|+1

,

which gives (10).

Observe that the radius of convergence of cτ ,

r(cτ ) =
1

Mτ card(X)
=

1 − MFchar(X)[u](τ, t0)

Mcard(X)
, (11)

is both τ and u dependent.

V. EXAMPLES

Three examples are presented in this section to demonstrate

the results of the previous sections. First, a simple system

having a globally convergent generating series is analyzed.

Next, the theory is exercised on a simple system that is only

locally convergent. Finally, a more practical example involving

a car-trailer steering system is considered.

Example 1: Consider the single-input, single-output system

ż = zu, z(t0) = 1, y = z. (12)

It can be shown via the method of separation of variables

that y(t) = exp(
∫ t

t0
u(θ) dθ), t ≥ t0. Alternatively, letting

X = {x1} and applying (7) gives the corresponding globally

Fig. 1. Simulated outputs of globally convergent system in Example 1.

convergent generating series c =
∑

k≥0 xk
1 with growth

constants K = M = 1. It follows directly that Fc[u](t, t0) =
∑

k≥0 Exk
1
[u](t, t0) is exactly equal to y(t) above. Applying

Theorem 2 gives

(cτ , ν) =
∑

η∈X∗

(c, η)Eν−1(η)[u](τ, t0)

=

∞
∑

k=|ν|

E
x

k−|ν|
1

[u](τ, t0) = exp

(∫ τ

t0

u(t) dt

)

.

From Theorem 3, the convergence constants of the re-centered

CF series are Kτ = (cτ , ν) and M = 1. As expected, global

convergence is preserved under re-centering. The correspond-

ing output about the center point τ is

yτ (t) =

∞
∑

k=0

(cτ , xk
1)Exk

1
[u](t, τ )

= Kτ

∞
∑

k=0

Exk
1
[u](t, τ ) = Kτ exp

(∫ t

τ

u(θ) dθ

)

.

The key observation is that while y(t) = yτ (t) for all

t ≥ t0, the series yτ is less sensitive to series truncation in a

neighborhood of the new center point τ . This is illustrated by

simulation in Fig. 1 when u(t) = et, t0 = 0, τ = 1, and the CF

series are truncated to words of length N = 4. Observe that

near τ = 1, the truncation error in y1 as compared against y

computed by numerically solving (12) is considerably less than

the truncation error of the original series centered at t0 = 0.

In effect, this re-centering extends the duration over which the

representation remains accurate without increasing the number

of terms in the series.

Example 2: For the single-input, single-output system

ż = z2u, z(t0) = 1, y = z, (13)

the generating series is c =
∑

k≥0 k! xk
1 ∈ RLC〈〈X〉〉 with K =

M = 1. It then follows from Theorem 2 that

(cτ , ν) =

∞
∑

k=|ν|

k! E
x

k−|ν|
1

[u](τ, t0)

=

∞
∑

k=|ν|

k!

(k − |ν|)!
(Ex1

[u](τ, t0))
k−|ν|

= |ν|!

∞
∑

k=0

(

k + |ν|

k

)

(Ex1
[u](τ, t0))

k

=
|ν|!

(1 − Ex1
[u](τ, t0))|ν|+1

,
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Fig. 2. r(cτ ) as a function of τ and u for the locally convergent series in
Example 2.

which coincides with Kτ and Mτ in Theorem 4 when X =

{x1}. The re-centered output at τ is the locally convergent

series

yτ (t) =

∞
∑

k=0

k!

(1 − Ex1
[u](τ, t0))k+1

Exk
1
[u](t, τ ).

As a check, observe that

yτ (t) =
1

1 − Ex1
[u](τ, t0)

∞
∑

k=0

(

Ex1
[u](t, τ )

1 − Ex1
[u](τ, t0)

)k

=
1

1 − Ex1
[u](τ, t0)

1

1 −
Ex1

[u](t,τ )

1−Ex1
[u](τ,t0)

=
1

1 − Ex1
[u](τ, t0) − Ex1

[u](t, τ )

=
1

1 − Ex1
[u](t, t0)

,

which matches the solution of (13) derived using the separation

of variables method. Now, the radius of convergence of c ∈

RLC〈〈X〉〉 using (5) is r(c) = 1. The radius of convergence for

the re-centered series is computed from (11) for any admissible

input u ∈ Bp(Ru)[t0, τ ]. For example, if u1(t) = u is a constant

input, then it follows that

Fchar(X)[u](τ, t0) = Ex1
[u](τ, t0) = (τ − t0)u.

If t0 = 0 and u is given, then the upper bound on τ is the

value for which r(cτ ) = 0, namely, τ = 1/u. Fig. 2 shows

r(cτ ) as a function of τ and u. As expected, all curves start at

the value r(c) = 1 when τ = 0 and decreases as u increases.

Note that the red line for u = 1 crosses the zero line at

τ = 1, which is consistent with the analysis presented in

Section IV.

Example 3: Consider the massless car-trailer system shown

in Fig. 3. This device moves in the x-y plane with linear

velocity u1 and steering rate u2 both applied only to the car

portion of the system.

A control-affine description of the system with states z1 = x,

z2 = y, z3 = u2, z4 = θ , and z5 = θtrailer and outputs yi = zi,

Fig. 3. Car-trailer steering system in Example 3.

i = 1, 2 gives the following two-input, two-output state space

realization
»

¼

¼

¼

½

ż1

ż2

ż3

ż4

ż5

¾

¿

¿

¿

À

=

»

¼

¼

¼

¼

½

r cos(z3)

r sin(z3)

0
r
L

tan(z3)
r

Llink
sin(z4 − z5) cos(z3)

¾

¿

¿

¿

¿

À

u1 +

»

¼

¼

¼

½

0

0
r
L
0

0

¾

¿

¿

¿

À

u2

(14a)
(

y1

y2

)

=

(

z1

z2

)

, (14b)

where r is the radius of the car’s wheels, L is the distance

between the wheels, and Llink the distance between the car’s

axle and the trailer’s front axle [19], [20]. Given that the trailer

behaves passively, the choice of outputs makes the system non

differentially flat since the inputs and states cannot be written

in terms of the outputs and its derivatives [21].

The generating series, c, for the system can be computed

directly from (7) using (14). If the initial condition is z(t0) =

(1, 1, 0, 0, 0)�, then its support is

supp(c) = {x1xk
2: k ≥ 0} ∪ {∅}.

The series coefficients are

(c, η) =

⎧

⎪

⎪

«

⎪

⎪

¬

(1, 1)�, if η = ∅

(r, 0)�, if η = x1

(rk+1/Lk, 0)�, if η = x1xk
2, k ≥ 1 odd

(0, rk+1/Lk)�, if η = x1xk
2, k ≥ 2 even.

This series is clearly in R
2
GC〈〈X〉〉 with X = {x1, x2}.

Numerical simulations are shown next using the parameters

r = 1, L = 1, and Llink = 0.5. The applied inputs are

u1(t) = 0.3 sin(1.5t) and u2(t) = 0.3. First, the system was

simulated numerically using (14) and MATLAB’s ODE45

solver. This yielded the black curves shown in Fig. 4.1

Next, the CF series was computed over the time interval

[0, 4.5] seconds by truncating to words of length N = 4

and 6 as shown by the blue and light blue dashed lines,

respectively, in the same figure. Observe that the accuracy

of these approximations begins to degrade beyond t = 2

seconds, particularly in the case of y2 with N = 4. Increasing

the number of terms in the approximation will improve the

accuracy, but the computational cost grows exponentially. For

1In this example, non re-centered outputs are denoted by yj, while re-
centered outputs are written as yj,τ .
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Fig. 4. Simulated outputs y1 and y2 in Example 3 using (14) compared
against the truncated CF series, the truncated re-centered CF series
y1,τ , y2,τ , y1,2τ , and y2,2τ with τ = 1.5 s.

TABLE I
COEFFICIENTS FOR y1 BEFORE AND AFTER RE-CENTERING

example, truncating to word length N = 6 required 1092

terms to maintain an error below 0.06 units over the first 2

seconds. In contrast, computing cτ via the re-centering formula

in Theorem 2 for τ = 1.5 seconds significantly improves the

approximation accuracy when N = 4 as shown by the green

curves in Fig. 4. This extends the time horizon of the CF series

representation to at least t = 3 seconds. Applying a second re-

centering at 2τ = 3 seconds further extends the time horizon

to t = 4.5 seconds by keeping the accuracy to within 0.06 units

as indicated by the orange curves in the same figures. These

re-centered approximations required only 121 terms, which is

significantly fewer than the 1092 terms required for the N = 6

approximations.

Finally, Table I presents the coefficients of c|t0 , c|τ , cτ ,

c|2τ , and c2τ up to word length N = 4 for the output

y1, where c|t denotes the series with coefficients (c|t, η) =
Lgηh(z(t)) as given in (7). Only words in the support of at

least one series are shown. Note that the re-centered series
differs from the series computed via Lie derivatives at the new
center point. There is simply no reason to expect these two

series to coincide. Specifically, they yield distinct input-output
maps with different domains but happen to coincide on the

intersection of their domains.

VI. CONCLUSION

A computationally feasible method to re-center a CF series

was presented. It used a simple combinatorial calculation to

derive the re-centering formula that draws directly on the

analogous re-centering problem for Taylor series. Then, a

convergence analysis was presented for the re-centered series.

Both the global and local convergence cases were considered.

Finally, two analytical examples were presented followed by

a simulation example using a car-trailer steering system.
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