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On the Convergence of Re-Centered
Chen-Fliess Series
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Abstract—Chen-Fliess functional series provide a rep-
resentation for a large class of nonlinear input-output
systems. Like any infinite series, however, their applicabil-
ity is limited by their radii of convergence. The goal of this
letter is to present a computationally feasible method to
re-center a Chen-Fliess series in order to expand its time
horizon. It extends existing results in two ways. First, it
takes a simpler combinatorial approach to the re-centering
formula that draws directly on the analogous re-centering
problem for Taylor series. Second, a convergence analysis
is presented for the re-centered series. This information
can be used to compute a lower bound on the radius of
convergence for the output function and an estimate of
the series truncation error. The method is demonstrated by
simulation on a steering problem for a car-trailer system.

Index Terms—Nonlinear systems, Chen-Fliess series,
series convergence, formal power series.

|. INTRODUCTION

ONTROL systems play a central role in most engineering

applications like autonomous vehicles, power grids, and
robotics. These systems exhibit nonlinear behavior and operate
under dynamic and uncertain conditions [1], [2], [3], [4]. A key
challenge in their analysis and design is to accurately describe
their behavior over extended time horizons and for various
input classes [5], [6]. This often involves a trade-off between
analytical precision and computational feasibility.

Among the existing approaches for representing a nonlin-
ear input-output system is the Chen-Fliess (CF) functional
series [7], [8]. It provides a noncommutative formal power
series representation which is coordinate free and suitable for
many control applications [9]. It has been applied, for example,
in adaptive control [10], for reachability analysis [6], and in
optimization problems [11]. Like any infinite series, however,
this model’s applicability is limited by its radius of conver-
gence. This places upper bounds on both the time horizon
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and the magnitude of applied inputs. Analytic continuation of
functional series is in general a difficult problem [12]. If a
state space model is available, one could re-center the series by
recomputing its coefficients about a different initial condition,
but this is computationally expensive. For systems without an
underlying state space model, there is no existing way to re-
center a CF series beyond the brute force approach proposed
by two of the authors in [13].

The goal of this letter is to present a computationally
feasible method to re-center a CF series in order to expand
its time horizon. This extends the results in [13] in two
ways. First, it takes a simpler combinatorial approach to the
re-centering formula that draws directly on the analogous
commutative re-centering problem for Taylor series. The key
insight is that the binomial theorem used in the commutative
case is replaced by Chen’s identity in the noncommutative
case [14], [15]. Second, a convergence analysis is presented
for the re-centered series. Specifically, the coefficient growth
parameters are computed as a function of the center point.
This information can be used to compute a lower bound on the
radius of convergence for the output function [5]. It can also
be used to compute series truncation error. Truncation error
analysis for CF series was originally presented in [16], [17].
In [13, Sec. II-B], the authors compute the time interval over
which the truncation error stays below a preselected value.
This is called the execution time. It is a function of the
coefficient growth parameters. The results of this letter now
permit one to compute the execution time as a function of
the center point. This can be used to construct a grid of
center points in a tracking problem so that the truncation
error is uniformly bounded. Finally, the main results of this
letter are demonstrated on two simple analytical examples fol-
lowed by a simulation example involving a car-trailer steering
system.

This letter is organized as follows. Section II summa-
rizes some preliminary concepts regarding CF series that
are used throughout this letter. Section III presents the new
re-centering method. The convergence analysis is done in
Section IV. Section V presents a collection of illustrative
examples. The conclusions of this letter are given in the final
section.

[I. NOTATION AND PRELIMINARIES

An alphabet X = {xp,x1, ..., X} 1s any nonempty finite
set of symbols referred to as letters. A word n = x;;, - - - x;; is
a finite sequence of letters from X. The number of letters in a
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word n, written as |n|, is called its length. The empty word, @,
is taken to have length zero. The collection of all words having
length k is denoted by X*. Define X* = U0 X*, which is a
monoid under the concatenation product.

A. Algebras of Formal Power Series

A formal power series is a mapping ¢ : X* — RE. It is
commonly expressed as the formal sum ¢ = ZHGX* (c, mn,
where the coefficient (c, ) represents the image of n € X*
under c. The support of ¢, denoted by supp(c), is the collection
of all words in X* with nonzero coefficients. The R-vector
space of all noncommutative formal power series over the
alphabet X is represented by R®((X)). The subspace of series
with finite support, i.e., polynomials, is denoted by R¢(X). For
£ € X*, the left-shift operator is defined as £~ : X* — R(X)
such that £ () = n’ when n = &5’ and zero otherwise. It is
extended to R((X)) by linearity.

The linear spaces R¢(X) and R®((X)) are both associative R-
algebras under the concatenation or Cauchy product (c, d)
cd. Tt will also be useful to view this product as the R-linear
map:

cat : R(X) ® R(X) - R(X), p® q +— pq.

Assume R(X) is endowed with an R-bilinear scalar-valued
product defined by (1,&) = 1 when n, & € X* are equal and
zero otherwise. The adjoint cat® : R(X) — R(X) ® R(X) is
defined so that

(cat(p ® q), r) = (p ® q, cat™(r)), Vp, q, r € R(X).

It is straightforward to verify that

cat*(r) = Z (r,vmv®n (D

v,nex*

[18]. The linear spaces RY(X) and R((X)) also become
associative and commutative R-algebras under the shuffle
product, which is defined inductively by

Ceimwi(x€) = x;(qu(x;€)) + x;(CemIwsé),

where x;, x; € X, n, £ € X*, and with nuw@ = fum = n. Given
a language L C X*, its characteristic series is char(L) =
> ,ern- If L= X%, it can be shown that

char(X)-

char(Xk) = 0 ,

2

where p"”k denotes the k-th shuffle power [9].

B. Chen and Chen-Fliess Series

Let p > 1 and #) < t;. For any Lebesgue measurable
function u : [f9, t1] — R™, define |lull, = max{flu;ll, : 1 <
i < m}, where [u;||, represents the standard L,-norm of a
measurable real-valued function u; on [fg, ¢1]. The set L;”[to, 1]
consists of all measurable functions on [#g, #1] with finite || -||-
norm. The bounded subset BZ‘(RM)[IO, t1] is defined as {u €
L;,"[to, 1] < lull, < Ry}. Let Clto, t1] C Lp[to, t1] denote the set
of continuous functions on [#y, ¢;]. For any n € X*, recursively

define the map E; :LIT[IO, t1] — Cltg, t1] by setting Eylu] = 1
and letting

t

Eqplul(t, 10) = / (0 Ey [z, 10) d,
fo
where x; € X, and uy = 1. The Chen series for u is the

exponential Lie series

Plu)(t, 10) =Y Eylul(t, to)n.

nex*

This series satisfies the semigroup property
Plul(, 10) = Plul(t, ©)Plul(z, t0), T € [10, 1], (3)

which is also known as Chen’s identity [14], [15].

For any generating series ¢ € RY((X)), one can generalize
the scalar product to being Rf-valued and associate a causal
m-input, £-output system via the Chen-Fliess series

(1) = Felul(t, to) = (¢, Plul(t, t9))
=Y (e, NE,ul(t, to). “)

nex*

Convergence of this series is ensured if there exist constants
K, M > 0 such that |(c, n)| < KM"|n|!, ¥y € X*, where |z| :==
max; |z;| for z € RY. Under these conditions, the series defining
y(t) converges absolutely and uniformly on BI’," R [ty, to+ T
for sufficiently small R,, T > 0. The set of all such locally
convergent generating series is denoted by Ric((X)). When ¢
satisfies the more restrictive growth condition |(c, n)| < KM,
Vn € X*, the series (4) defines an operator on the extended
space Ll'f(to), where

L) (t0) = {u: [to, 00) = R™: upg 1) € Lylt0, 11,
Vi € (to, 00)},
and u[s, ;] denotes the restriction of u to [f, #1]. This set of
globally convergent generating series is written as Réc((X ).

For ¢ € Ry ¢((X)) and card(X) the number of letters in X, the
radius of convergence is defined to be

1 _ 1
/In ~ Mecard(X)’

t(c) = : (5)
(e,m)

nl!

| card(X)

limsup,|_, o

indicating that y(f) can have a finite escape time [5]. If ¢ €
Rgce((X)), then t(c) = oo, and y(¢) is well-defined over any
finite interval.

A CF series F. defined on B;"(Ru)[to, to + T] with ¢ €
Ric((X)) is said to be realizable when there exists a state
space realization

2= g0 + ) &i@ui, (o) = 20, (6a)
i=1

yi=hi@, j=1,....¢ (6b)

with each g; being a real analytic vector field expressed in local
coordinates on some neighborhood W of zp € R”, and each
real-valued output function #4; is a real analytic function on W
such that (6a) has a well-defined solution z(f), t € [tg, tp +
T] for any given input u € B,’f’(Ru)[to, fo + T, and y;(t) =
Felul(t) = hj(z(1)), t € [ty, to+T]. Denoting the Lie derivative
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of h; with respect to g; by Lg;h;, it was shown in [7] that for
any word 1 = x;,, - - - x;, € X*
= Lg, hj(z0) == Ly, ,

(¢, m) -+ Lg; hj(z0). @)

I11. RE-CENTERING THE CHEN-FLIESS SERIES

This section describes the re-centering method for CF series.
As motivation for the approach, the Taylor series version of
the problem is given first.

Theorem 1: If f is a real analytic function on a neighbor-
hood U C R of 1y, then its Taylor series about 7 € U is

. (t—1)
— (k) —
f0 =P
k=0
with
() (¢,
(k) S (to) _ e \n—k
f <)-<§ — i) )
Proof: The proof follows directly from the binomial

theorem. That is,

) (¢
f(t)—Zf (0)(r—t)"

n=0
X £(n)
:Zf (IO)(t—r+r—t0)”
n= 0 n!
f(")(to) k n—k
_Z . %(k)(r—w (tr — t0)

)nfk

" (t— r) (‘L’—
_Zf()(t)z . myey

where 1(n) denotes the Heaviside function. Hence,

) ok
f(t)—Z(Zf (IIS))' —to)”_k)—(t k!T),

k=0

which completes the proof. |

In light of the fact that Ex(k) [ul(z, tg) = (t — to)k/k! for all
k > 0, it is evident that the binomial theorem is a commutative
version of Chen’s identity (3). Hence, the following general-
ization is formulated for CF series.

Theorem 2: Let F/lu](t,t9) be a CF series with ¢ €
RY (X)) and o € R. Select T > fo so that Fc[ul(z, t))
converges. Then the CF series re-centered at 7 is

Felul(t, 7y =) (Z(c, ME, -1 [ul(z, m))Eu[u](r, 7).

veX* “peX*
®)

I(n—k),

Proof:

Felul(t, to)
= (¢, Plu](t, 1)
= (¢, Plul(z, T)Plul(z, 1))
= (cat*(c), Plul(t, T) ® Plul(z, t9))

= < > (v @), Plul(t, T) & Plul(t, to))

n,veX*

It follows from (1) and (3) that

Y (e, vm (v ® ), Plul(t, T) ® Plul(z, o))

n,vex*

Y (e vm)(PLul(t, T), v)(PLul(z, t0), n)

n,vex*

Y (e Bt DEul(z, o).

veX* neX*

Making the change of variables 77 = vy so that n = v~ (7))
yields (8). ]

Observe that the re-centered CF series has coefficients that
are dependent on the new center point 7 and the input over
the interval [7o, T]. That is, one could write

D (er, ME[ul(, 7).

vex*

Fe [ul(r, ) =

where

(cr,v) = Y (¢, ME,y-1([ul(z, o)
nex*
= F\)*I(c)[u](r? tO)' (9)

The central question now is what are the convergence charac-
teristics of the new CF series about the center point t? This
issue is addressed in the next section.

IV. CONVERGENCE ANALYSIS

In this section, the convergence of a re-centered CF series
is considered in detail. The global case is considered first and
then the local case. For ease of notation and without loss of
generality, it will be assumed throughout that ¢ = 1. The
first theorem states that the infinite radius of convergence is
preserved under re-centering in the global case, but one of
the growth parameters becomes dependent on the new center
point.

Theorem 3: Let ¢ € Rgc((X)) with growth constants
K,M > 0. Fix u € le(Ru)[to, t] and T > ty. Then the re-
centered CF series about t has growth coefficients K;, M > 0
satisfying

(e, V)| < KM, vy e X*

with Ky = Kexp(MFchar(x)[u](7, t0)) and Fenaroy[u] (7, ) =
Zx;ex Exi(r’ tO)'

Proof: The worst case scenario is where all the coefficients
of ¢ are growing at their maximum rate, i.e., (c, 7) = KM!"
for all n € X*. It was shown in [5] that

Flul(z, to) = Kexp(MFcharx)lul(z, t0)).
Therefore, applying (9) and the identity v—!(c) = M!"I¢ gives

(cr,v) = val(c)[u](f, fo)
= MM F [ul(z, 1)
= K exp(MFeharo lul (7, 10)M"
= K,M"!
as claimed. |
The locally convergent case is addressed next. Here both
growth constants of the re-centered CF series become depen-

dent on the new center point 7. In which case, the finite radius
of convergence also becomes 7 dependent.
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Theorem 4: Let ¢ € Rpc{({(X)) with growth constants
KM > 0. Fix u € BI’,"(RM)[to,t] and assume F.[u] is
convergent on [fp, f]. Then the re-centered CF series about
T € (t, t] has growth coefficients K;, M; > 0 satisfying

l(ce,v)| < K MY, Vo e X*

with
K
K, = (10a)
1 — MFcharx)[ul (T, to)
M
M, = (10b)

1 — MFchar(x) [u)(T, 10)

Proof: The worst case scenario is where (¢, n) = KMl |n|!
for all n € X*. In order to apply (9), first observe that for any
v e X*

vy =) KMty
nex*

I+ nl
= KMy M'”'( o LKl

nex*
[o/0]
+k
— xS (M FVa chare),
Ivlg ( r char(X")

Therefore, from (2) it follows that
(CT ’ U)
= prl(c) [u](z, to)

o
lv] +k
:KMMM!ZM"( ¢ ) Fenaoon (T, 10)
k=0

9] +k
= KM|U||U|! Z (|U|k )(MFchar(X)[M](Tv t()))k~
k=0

From the identity Y- ("’I,jk)rk =1/(1 — "1 the closed
form is

1
(cr.v) = KM |u]! TSR

(1 = MFcharx) [ul (T, 10))

which gives (10). ]
Observe that the radius of convergence of ¢,

1 1 — MFp; N

t(es) = _ char(x) (1] (T 0)’ (11
M card(X) Mcard(X)

is both t and u dependent.

V. EXAMPLES

Three examples are presented in this section to demonstrate
the results of the previous sections. First, a simple system
having a globally convergent generating series is analyzed.
Next, the theory is exercised on a simple system that is only
locally convergent. Finally, a more practical example involving
a car-trailer steering system is considered.

Example 1: Consider the single-input, single-output system

z=zu, z(tp) =1, y=1z (12)

It can be shown via the method of separation of variables
that y(t) = exp(f; u(6)d6), t > 1. Alternatively, letting
X = {x1} and applying (7) gives the corresponding globally

00 T T
——y ODE

00— — _y CF series N =4
400 ||~ = =yr CF series N =4
300 [~
200
100 -

0 . .

0 0.2 0.4 0 0.8 1

Fig. 1. Simulated outputs of globally convergent system in Example 1.

convergent generating series ¢ = Y, x’f with growth
constants K = M = 1. It follows directly that F.[u](z, t9) =
ZkEOEXk[M](I, to) is exactly equal to y(f) above. Applying
Theorem 2 gives

(cr.v) = Y (e ME, -1, [ul(. t0)

nex*
= Z E i [ul(z, 10) = eXp(f u(r) dt)-
=] fo

From Theorem 3, the convergence constants of the re-centered
CF series are K; = (c;,v) and M = 1. As expected, global
convergence is preserved under re-centering. The correspond-
ing output about the center point t is

ye() = ) (ee. ¥DEul(t, 1)
k=0

t
=K ) Eglult,v) =K exp(/ u(9) d@).
k=0 t

The key observation is that while y(tf) = y.(r) for all
t > to, the series y; is less sensitive to series truncation in a
neighborhood of the new center point t. This is illustrated by
simulation in Fig. 1 when u(f) = €', to = 0, T = 1, and the CF
series are truncated to words of length N = 4. Observe that
near T = 1, the truncation error in y; as compared against y
computed by numerically solving (12) is considerably less than
the truncation error of the original series centered at 7y = 0.
In effect, this re-centering extends the duration over which the
representation remains accurate without increasing the number
of terms in the series.

Example 2: For the single-input, single-output system

z=7u, z2t)=1, y=z (13)

the generating series is ¢ = ) ;. k!x’lC € Rrc((X)) with K =
M = 1. It then follows from Theorem 2 that

(cr,v) = Y KE pomlul(r, 10)
k=|v|
> k!
=Y ————(Eq[ul(r, 1))
v)!

k=|v| (k—

= (k
- |v|!2( ﬁ{'”')(Exl[u](r,zo))"

_ [v|!
(1= Eq [ul(z, to))H1

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on October 09,2025 at 00:16:03 UTC from IEEE Xplore. Restrictions apply.



208

IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025

T

Fig. 2. t(c;) as a function of t and u for the locally convergent series in
Example 2.

which coincides with K; and M; in Theorem 4 when X =
{x1}. The re-centered output at t is the locally convergent
series

[e.0]

k!
=3 G e T B ).

k=0

As a check, observe that

1 3 Eqld@t) \F
ye() = Z( “ )
1 — Ex, [ul(z, to) =0 1 — Ey, [ul(z, to)
_ 1 1
T 1= Eq[ul(t,tg) § — _EylWCD)
T—E,, [ul(z.10)

. 1
1= Ey [ul(t, t0) — Ex, [ul(t, T)

1

1 — Ey, [ul(t, 10)’

which matches the solution of (13) derived using the separation
of variables method. Now, the radius of convergence of ¢ €
Rpc({X)) using (5) is v(c) = 1. The radius of convergence for
the re-centered series is computed from (11) for any admissible
input u € B, (Ry)|[to, T]. For example, if u; () = u is a constant
input, then it follows that

Fenaroy [u](T, o) = Ey, [ul(T, o) = (T — fo)u.

If 1p = 0 and u is given, then the upper bound on 7 is the
value for which t(c;) = 0, namely, 7 = 1/u. Fig. 2 shows
t(cy) as a function of v and u. As expected, all curves start at
the value t(c) = 1 when v = 0 and decreases as u increases.
Note that the red line for u = 1 crosses the zero line at
T = 1, which is consistent with the analysis presented in
Section IV.

Example 3: Consider the massless car-trailer system shown
in Fig. 3. This device moves in the x-y plane with linear
velocity u; and steering rate up both applied only to the car
portion of the system.

A control-affine description of the system with states z; = x,
22 =1Y,23 = U2, 24 =0, and z5 = Oyiler and outputs y; = z;,

Fig. 3. Car-trailer steering system in Example 3.

i =1, 2 gives the following two-input, two-output state space
realization

21 rcos(z3) 0
&) rsin(z3) 0
| = 0 w + | 7 w2
24 7 tan(z3) 0
5 LTrnk sin(z4 — z5) cos(z3) 0
(14a)
Y1 71
()= ) a4

where r is the radius of the car’s wheels, L is the distance
between the wheels, and Ly, the distance between the car’s
axle and the trailer’s front axle [19], [20]. Given that the trailer
behaves passively, the choice of outputs makes the system non
differentially flat since the inputs and states cannot be written
in terms of the outputs and its derivatives [21].

The generating series, c, for the system can be computed
directly from (7) using (14). If the initial condition is z(zy) =
(1,1,0,0,0)7, then its support is

supp(c) = {xlxé: k> 0} U {4}.

The series coefficients are

a1, n', ifn=20

(r,0)", if n =x

(LR 0)T if np = xak, k> 1 odd
(0, AT/ I T if = X105, k > 2 even.

(c,n) =

This series is clearly in Réc((X)) with X = {x1, xp}.
Numerical simulations are shown next using the parameters
r =1, L = 1, and Ljjpx = 0.5. The applied inputs are
u1(#) = 0.3sin(1.5¢) and uy(r) = 0.3. First, the system was
simulated numerically using (14) and MATLAB’s ODE45
solver. This yielded the black curves shown in Fig. 4.!
Next, the CF series was computed over the time interval
[0,4.5] seconds by truncating to words of length N = 4
and 6 as shown by the blue and light blue dashed lines,
respectively, in the same figure. Observe that the accuracy
of these approximations begins to degrade beyond r = 2
seconds, particularly in the case of y, with N = 4. Increasing
the number of terms in the approximation will improve the
accuracy, but the computational cost grows exponentially. For

n this example, non re-centered outputs are denoted by y;, while re-
centered outputs are written as yj ;.
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"9 - -y CFseries

1251 - -y, CF series N = 4
121 = “yi2r CF series N =4

:
10 [/—, ODE

®Il- - -y2 CFseries
104" =t CF serie:
Y22, CF series N = 4

102

1o / —t
I I I I I I I

Fig. 4. Simulated outputs y7 and y» in Example 3 using (14) compared
against the truncated CF series, the truncated re-centered CF series

Vi,0o Y200 Y120, and yo o with 7 = 1.5s.

TABLE |
COEFFICIENTS FOR y1 BEFORE AND AFTER RE-CENTERING

(cltg,m) | (elzsm) | (erym) | (clor,m) | (c2r,m)

0 1.00 1.33 1.33 1.24 1.24

71 1.00 1.00 1.00 1.00 1.00
z? 0.00 -0.04 | -0.04 0.04 0.03
z$ 0.00 -0.23 | -0.23 -1.59 -1.45
z2zo 0.00 0.00 -0.11 0.00 0.05
w272 0.00 -0.11 0.00 0.08 0.00
z! 0.00 0.01 0.01 -0.06 -0.00
zizo 0.00 0.00 -1.18 0.00 -5.08
22zozy | 0.00 0.00 -0.59 0.00 -2.54
zia? 0.00 0.00 -0.10 0.00 0.04
z1z22? | 0.00 -0.59 0.00 -3.26 0.00
w27} 0.00 -1.19 0.00 -6.52 0.00
z32? 0.00 -0.11 0.00 0.21 0.00

example, truncating to word length N = 6 required 1092
terms to maintain an error below 0.06 units over the first 2
seconds. In contrast, computing ¢, via the re-centering formula
in Theorem 2 for T = 1.5 seconds significantly improves the
approximation accuracy when N = 4 as shown by the green
curves in Fig. 4. This extends the time horizon of the CF series
representation to at least # = 3 seconds. Applying a second re-
centering at 2t = 3 seconds further extends the time horizon
to t = 4.5 seconds by keeping the accuracy to within 0.06 units
as indicated by the orange curves in the same figures. These
re-centered approximations required only 121 terms, which is
significantly fewer than the 1092 terms required for the N = 6
approximations.

Finally, Table I presents the coefficients of c|, c|:, ¢z,
clar, and ¢y up to word length N = 4 for the output
v1, where c|; denotes the series with coefficients (c|;, n) =
Lgnh(z(t)) as given in (7). Only words in the support of at
least one series are shown. Note that the re-centered series
differs from the series computed via Lie derivatives at the new
center point. There is simply no reason to expect these two
series to coincide. Specifically, they yield distinct input-output
maps with different domains but happen to coincide on the
intersection of their domains.

V1. CONCLUSION

A computationally feasible method to re-center a CF series
was presented. It used a simple combinatorial calculation to
derive the re-centering formula that draws directly on the
analogous re-centering problem for Taylor series. Then, a
convergence analysis was presented for the re-centered series.
Both the global and local convergence cases were considered.
Finally, two analytical examples were presented followed by
a simulation example using a car-trailer steering system.
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