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Abstract
This paper presents a comparative analysis of three implementations of the R bytecode compiler:
the official R implementation, a Java-based compiler, and a Rust-based compiler. The R compiler,
written in R itself, poses challenges in terms of performance and maintainability. We evaluate designs
of the compilers, their trade-offs, and performance characteristics. The Rust version outperforms
the Java version, which itself outperforms the R version.
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1 Introduction

R is a dynamic language mainly used by statisticians, which targets numerical computations
more than tree traversals. In R, integers, real numbers or strings are actually vectors, e.g. 1
is an integer vector of size 1.

R is implemented in C and interoperates well with it, serving as glue for performance
sensitive functions in native code. To boost actual R code performance, among other R
optimization projects [9, 8], based on a JIT [11, 12, 5], the R interpreter added a bytecode
interpreter [13] to its AST interpreter. The bytecode compiler is itself written in R, not in C,
which presents unique challenges in terms of performance and expressivity.

As part of our ongoing effort to build a compilation service for R, we have implemented
the R bytecode compiler in both Java and Rust. The goal is to output the very same
bytecode as the original R compiler (byte-to-byte compatible), as a first step before adding
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optimizations, to make sure the new compilers are correct. However, unlike the R compiler,
the alternative versions are separated from the rest of the R VM.1 We compare the designs of
the 3 compilers, and show performance numbers. Unsurprisingly, the Java and Rust versions
win over the R implementation.

2 The R bytecode

When running R code, the source code is parsed into an AST represented as a R value, a
SEXP. Then, the compiler may transform a SEXP into a bytecode object. The R bytecode
is then executed by a stack-based VM entirely written in C.

Bytecode objects are bulky: they contain a bytecode instructions and a constant pool.
Bytecode instructions are represented by a vector of integers. The constant pool stores the
constant values in the bytecode instructions, the AST of the compiled expression and of
subexpressions, and source locations for each instruction. There are over 129 fat instructions
and some of them perform a lot of work including calling back to the AST interpreter.

The compiler is single pass and does very few optimizations: constant folding and inlining.
If a call cannot be inlined, it emits it as a call to a closure, which might or might not be
bytecode compiled.
Constant folding. It is applied directly on the AST, not on the generated bytecode. Only

some types (e.g. numbers, booleans and strings) and when they are less than a predefined
maximal size, and only some predefined functions, e.g. math operators, are folded.

Inlining. It is crucial because most syntax in R, even if and {, is a function. Without
inlining, most code is actually passed to the AST interpreter to be run. As the user can
modify any functions, the compiler inserts a guard that checks wether the target function
has been masked at runtime. Only a fixed set of functions, including control flow, math,
stats, assignments and vector operations, can be inlined.

Function bodies can be explictly compiled with cmpfun or cmpfile. Functions that are
“large enough” are also JIT-compiled after 1 or 2 invocations. Upon installation of a package,
all its functions are compiled.

3 Implementations

As we want to get the same bytecode as the R compiler, the Rust and Java 22 versions
roughly follow the same single pass design, but use different language features and data
structures.

3.1 R
The R bytecode compiler [13] is an R package, named compiler. It is written in the literate
programming style with noweb [7]. Out of the 7000 nowweb lines, about 3000 are R code
and the rest is LATEX. There are a few parts written in C located outside the package in
R’s source code within eval.c. The R bytecode compiler, as a package, is also compiled to
bytecode itself.

1 The R VM connects to a compile service through gRPC (https://grpc.io/) which also caches the
compiled bytecode.

https://grpc.io/
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The compilation is architectured around a code buffer, which is a list containing an
instruction stream buffer, a constant pool, and closures to write the bytecode instructions
and in the constant pool. Both instruction buffers and constant pools are implemented as R
generic vectors, i.e., an array of pointers. R has copy-on-write semantics and the search for
a constant in the constant pool is performed with a linear search written in C.

3.2 Java
The Java implementation makes use of recent Java features, such as record or pattern
matching. We use pattern matching on the SEXPs, but Java’s support of it is limited.

The instruction stream uses the builder pattern and stores the instructions in an
ArrayList. Contrary to the R version, bytecode instructions are typed. We use Java
annotations to decorate the instruction definitions with their number of pops and pushes
(StackEffect), and names of labels for pretty-printing control flow instructions (LabelName).

Due to the typed instructions, the constant pool is indexed with a typed index. To
deduplicate indexes, it uses a Map instead of a linear search, and values are stored in an
ArrayList. Deserializing the R bytecode into the typed form entails an overhead as all jump
targets must be recomputed.

3.3 Rust
The Rust compiler stores allocations in a bump-allocated arena,2 so lifetimes are only a small
hindrance even with cyclic data-structures. A previous version of the Rust compiler heavily
used Box and clone, but it was verbose, annoying to write, and slower than the java version.
The bytecode is represented as a simple enum and they are stored in a Vec of bytes.

4 Correctness

To check the correctness of the bytecode compilers, we compare the outputs of the Rust
and Java versions to the R version. We use snapshot testing: the R interpreter is run to
generate the bytecode for crafted R functions, and functions from base, utils, graphics,
methods, and stats packages. For the Java version, we developed our own snapshot testing
framework, and for Rust, we use insta.3

5 Code size

The R version has 2 919 lines of codes, where the Java version has 8 811 lines and the Rust
one, 6 690, as shown on Fig 1. However, the Java and Rust versions required to write the
SEXP and serialization handling, which already exists in the R version.

6 Performance

We compile all functions in base, utils, compiler, tools, and stats packages, in total 97K
lines, and measure the time to compile, excluding deserialization, repeating the measurement
10 times. Some packages have functions that compile to many opcodes (utils, tools, stats)
while others to fewer opcodes, i.e. compiler, the R bytecode compiler itself, or base, which

2 https://docs.rs/bumpalo/latest/bumpalo/
3 https://insta.rs/
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Figure 1 Number of lines of code for the R, Java, and Rust bytecode compilers, excluding
comments and new lines (computed using cloc [2]).

for many functions just performs a call to a C binding (Table 1). For the Java version, for
each of those 10 iterations, we compile all the functions a first time and then repeat to
warmup the JIT.

Table 1 Number of functions, cumulated size of the bytecode in opcodes, and average number of
opcodes per function, for each package in the microbenchmark.

base utils compiler tools stats

#functions 1 144 512 139 774 925
#opcodes 125 206 117 161 15 185 282 765 199 615

Avg #opcodes/function 109 228 109 365 215

On an Apple M4 Pro with 12 cores and 24 GB of RAM, the R version takes about 17
seconds to compile all the functions. The Java version is around 33x quicker than the R
version, and the Rust version is around 48x quicker than the R version, as seen on Fig. 2.

We also measure the peak heap memory usage of each of the compilers. For R, we call the
gc() and for Java, we use the Runtime class, which give information about the memory usage
with their respective GCs. For Rust, we use valgrind[10] with the massif heap profiler.
Rust has the highest peak heap memory usage, with 1GB, as the arenas are not freed until
the end. The Java version has a peak memory usage of 200MB in average, and the R version
has a peak memory usage of 300MB.

7 Takeaways

Ergonomics. The R implementation is rather complicated to read, maintain and extend,
and would be even more so without the literate programming style. For example, one of the
features, complex assignments, requires a 3 page description just to introduce the code in the
generated pdf documentation. In Rust and Java, we have a clear interface for the compiler
and clear dependencies, unlike the R compiler which is intertwined with the rest of the VM
and for instance sometimes call the AST interpreter.



P. Donat-Bouillud, F. Křikava, J. Hain, A. Plodek, and J. Vitek 1:5

Figure 2 Compilation time for the packages in the microbenchmark depending on the language.
The y-axis is logarithmic. We indicate the speedup compared to R on top of the Java and Rust bars.

Another pain point of R is its lack of complex data structures and checked type annotations.
For instance, there are no real hash maps 4 in R, so R uses a linear search to find duplicates
in the constant pool. On the contrary, the Java and Rust codes are more readable and
expressive thanks to Java’s pattern matching and algebraic datatypes. We think that going
away from R for the compiler would make it possible to write more complex optimizations.

In terms of tooling, both Java and Rust have good editors and debuggers, whereas
refactoring R code is no better than search and replace and the debugging experience using
explicit functions debug or browser is painful. We also used mature testing libraries in Java
and Rust whereas the R version uses stopifnot assertions. We found cargo to be much
more pleasant to use than maven.

One issue in Rust is the borrow checker: although the arena allocator made it only a small
nuisance, lifetime still shows all around the place. In the GC-ed languages it was completely
painless. Garbage collector implementations exist in Rust, but they too add verbosity [6] [1].

Performance. Rust is the fastest, closely followed by Java, and R is the slowest, as expected.
The bytecode compilation mostly happens at package installation time. Using a more
performant language than R would decrease installation times for large packages, and even
for R itself. However, a more performant language would be an additional dependency.

Lessons learnt. Getting the data from and to R (serialization) was the hardest part, and
the biggest source of bugs. It was not documented except for the source code. Setting up
the infrastructure also took a lot of efforts, as to properly resolve R symbols, we need to
boostrap the R environments at the server side. Similarly, constant folding outside of the
runtime requires code. Getting the proper representation of opcodes is delicate, from a fully
typed one with a complex type hierarchy in Java to a simple ADT and a byte array in Rust.

4 It is possible to use environments as hash maps.
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