
Comparing R Bytecode Compilers Written in R,
Java, and Rust
Pierre Donat-Bouillud #Ñ

Czech Technical University in Prague, Czech Republic
Northeastern University, USA

Filip Křikava #Ñ

Czech Technical University in Prague, Czech Republic

Jakob Hain # Ñ

Purdue University, USA

Adam Plodek #

Vyper, Prague, Czech Republic

Jan Vitek #Ñ

Czech Technical University in Prague, Czech Republic
Charles University, Prague, Czech Republic

Abstract
This paper presents a comparative analysis of three implementations of the R bytecode compiler:
the official R implementation, a Java-based compiler, and a Rust-based compiler. The R compiler,
written in R itself, poses challenges in terms of performance and maintainability. We evaluate designs
of the compilers, their trade-offs, and performance characteristics. The Rust version outperforms
the Java version, which itself outperforms the R version.

2012 ACM Subject Classification Software and its engineering → Dynamic compilers

Keywords and phrases R, bytecode, compiler

Digital Object Identifier 10.4230/OASIcs.Programming.2025.1

Category Extended Abstract

Supplementary Material Software: https://github.com/PRL-PRG/rust-r-bcc [4]
archived at swh:1:dir:0dacc419ced335c4daf1d275cb34c26580acdf23

Software: https://github.com/PRL-PRG/r-compile-server/tree/main/server/src/main/java/
org/prlprg/bc [3]

archived at swh:1:dir:80fa93336159947c757722b0eea284d792b20055

Funding The research was supported by Czech Science Foundation Grant No. 23-07580X.

1 Introduction

R is a dynamic language mainly used by statisticians, which targets numerical computations
more than tree traversals. In R, integers, real numbers or strings are actually vectors, e.g. 1
is an integer vector of size 1.

R is implemented in C and interoperates well with it, serving as glue for performance
sensitive functions in native code. To boost actual R code performance, among other R
optimization projects [9, 8], based on a JIT [11, 12, 5], the R interpreter added a bytecode
interpreter [13] to its AST interpreter. The bytecode compiler is itself written in R, not in C,
which presents unique challenges in terms of performance and expressivity.

As part of our ongoing effort to build a compilation service for R, we have implemented
the R bytecode compiler in both Java and Rust. The goal is to output the very same
bytecode as the original R compiler (byte-to-byte compatible), as a first step before adding

© Pierre Donat-Bouillud, Filip Křikava, Jakob Hain, Adam Plodek, and Jan Vitek;
licensed under Creative Commons License CC-BY 4.0

Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming
(Programming 2025).
Editors: Jonathan Edwards, Roly Perera, and Tomas Petricek; Article No. 1; pp. 1:1–1:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.donat.bouillud@fit.cvut.cz
https://www.pdonatbouillud.com
https://orcid.org/0000-0003-4455-1130
mailto:filip.krikava@fit.cvut.cz
https://fikovnik.net/
https://orcid.org/0000-0002-0478-6202
mailto:jakobeha@fastmail.com
https://jakobeha.github.io/
https://orcid.org/0009-0002-7471-0702
mailto:plodek.adam@gmail.com
https://orcid.org/0009-0007-4055-0591
mailto:vitekj@me.com
https://janvitek.org/
https://orcid.org/0000-0003-4052-3458
https://doi.org/10.4230/OASIcs.Programming.2025.1
https://github.com/PRL-PRG/rust-r-bcc
https://archive.softwareheritage.org/swh:1:dir:0dacc419ced335c4daf1d275cb34c26580acdf23;origin=https://github.com/PRL-PRG/rust-r-bcc;visit=swh:1:snp:8aaa5ce6a6996c5b6445c37ac8eaac576eead033;anchor=swh:1:rev:1355b5412e279024364c61774bf50a653425f388
https://github.com/PRL-PRG/r-compile-server/tree/main/server/src/main/java/org/prlprg/bc
https://github.com/PRL-PRG/r-compile-server/tree/main/server/src/main/java/org/prlprg/bc
https://archive.softwareheritage.org/swh:1:dir:80fa93336159947c757722b0eea284d792b20055;origin=https://github.com/PRL-PRG/r-compile-server;visit=swh:1:snp:5b568d1296bb310d9b8d2c00be87e197e494ce1a;anchor=swh:1:rev:2aafbcc1f47d5c6cb45d813e23730326f772a04b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics
https://www.dagstuhl.de


1:2 Comparing R Bytecode Compilers Written in R, Java, and Rust

optimizations, to make sure the new compilers are correct. However, unlike the R compiler,
the alternative versions are separated from the rest of the R VM.1 We compare the designs of
the 3 compilers, and show performance numbers. Unsurprisingly, the Java and Rust versions
win over the R implementation.

2 The R bytecode

When running R code, the source code is parsed into an AST represented as a R value, a
SEXP. Then, the compiler may transform a SEXP into a bytecode object. The R bytecode
is then executed by a stack-based VM entirely written in C.

Bytecode objects are bulky: they contain a bytecode instructions and a constant pool.
Bytecode instructions are represented by a vector of integers. The constant pool stores the
constant values in the bytecode instructions, the AST of the compiled expression and of
subexpressions, and source locations for each instruction. There are over 129 fat instructions
and some of them perform a lot of work including calling back to the AST interpreter.

The compiler is single pass and does very few optimizations: constant folding and inlining.
If a call cannot be inlined, it emits it as a call to a closure, which might or might not be
bytecode compiled.
Constant folding. It is applied directly on the AST, not on the generated bytecode. Only

some types (e.g. numbers, booleans and strings) and when they are less than a predefined
maximal size, and only some predefined functions, e.g. math operators, are folded.

Inlining. It is crucial because most syntax in R, even if and {, is a function. Without
inlining, most code is actually passed to the AST interpreter to be run. As the user can
modify any functions, the compiler inserts a guard that checks wether the target function
has been masked at runtime. Only a fixed set of functions, including control flow, math,
stats, assignments and vector operations, can be inlined.

Function bodies can be explictly compiled with cmpfun or cmpfile. Functions that are
“large enough” are also JIT-compiled after 1 or 2 invocations. Upon installation of a package,
all its functions are compiled.

3 Implementations

As we want to get the same bytecode as the R compiler, the Rust and Java 22 versions
roughly follow the same single pass design, but use different language features and data
structures.

3.1 R
The R bytecode compiler [13] is an R package, named compiler. It is written in the literate
programming style with noweb [7]. Out of the 7000 nowweb lines, about 3000 are R code
and the rest is LATEX. There are a few parts written in C located outside the package in
R’s source code within eval.c. The R bytecode compiler, as a package, is also compiled to
bytecode itself.

1 The R VM connects to a compile service through gRPC (https://grpc.io/) which also caches the
compiled bytecode.

https://grpc.io/


P. Donat-Bouillud, F. Křikava, J. Hain, A. Plodek, and J. Vitek 1:3

The compilation is architectured around a code buffer, which is a list containing an
instruction stream buffer, a constant pool, and closures to write the bytecode instructions
and in the constant pool. Both instruction buffers and constant pools are implemented as R
generic vectors, i.e., an array of pointers. R has copy-on-write semantics and the search for
a constant in the constant pool is performed with a linear search written in C.

3.2 Java
The Java implementation makes use of recent Java features, such as record or pattern
matching. We use pattern matching on the SEXPs, but Java’s support of it is limited.

The instruction stream uses the builder pattern and stores the instructions in an
ArrayList. Contrary to the R version, bytecode instructions are typed. We use Java
annotations to decorate the instruction definitions with their number of pops and pushes
(StackEffect), and names of labels for pretty-printing control flow instructions (LabelName).

Due to the typed instructions, the constant pool is indexed with a typed index. To
deduplicate indexes, it uses a Map instead of a linear search, and values are stored in an
ArrayList. Deserializing the R bytecode into the typed form entails an overhead as all jump
targets must be recomputed.

3.3 Rust
The Rust compiler stores allocations in a bump-allocated arena,2 so lifetimes are only a small
hindrance even with cyclic data-structures. A previous version of the Rust compiler heavily
used Box and clone, but it was verbose, annoying to write, and slower than the java version.
The bytecode is represented as a simple enum and they are stored in a Vec of bytes.

4 Correctness

To check the correctness of the bytecode compilers, we compare the outputs of the Rust
and Java versions to the R version. We use snapshot testing: the R interpreter is run to
generate the bytecode for crafted R functions, and functions from base, utils, graphics,
methods, and stats packages. For the Java version, we developed our own snapshot testing
framework, and for Rust, we use insta.3

5 Code size

The R version has 2 919 lines of codes, where the Java version has 8 811 lines and the Rust
one, 6 690, as shown on Fig 1. However, the Java and Rust versions required to write the
SEXP and serialization handling, which already exists in the R version.

6 Performance

We compile all functions in base, utils, compiler, tools, and stats packages, in total 97K
lines, and measure the time to compile, excluding deserialization, repeating the measurement
10 times. Some packages have functions that compile to many opcodes (utils, tools, stats)
while others to fewer opcodes, i.e. compiler, the R bytecode compiler itself, or base, which

2 https://docs.rs/bumpalo/latest/bumpalo/
3 https://insta.rs/

Programming 2025

https://docs.rs/bumpalo/latest/bumpalo/
https://insta.rs/


1:4 Comparing R Bytecode Compilers Written in R, Java, and Rust

Figure 1 Number of lines of code for the R, Java, and Rust bytecode compilers, excluding
comments and new lines (computed using cloc [2]).

for many functions just performs a call to a C binding (Table 1). For the Java version, for
each of those 10 iterations, we compile all the functions a first time and then repeat to
warmup the JIT.

Table 1 Number of functions, cumulated size of the bytecode in opcodes, and average number of
opcodes per function, for each package in the microbenchmark.

base utils compiler tools stats

#functions 1 144 512 139 774 925
#opcodes 125 206 117 161 15 185 282 765 199 615

Avg #opcodes/function 109 228 109 365 215

On an Apple M4 Pro with 12 cores and 24 GB of RAM, the R version takes about 17
seconds to compile all the functions. The Java version is around 33x quicker than the R
version, and the Rust version is around 48x quicker than the R version, as seen on Fig. 2.

We also measure the peak heap memory usage of each of the compilers. For R, we call the
gc() and for Java, we use the Runtime class, which give information about the memory usage
with their respective GCs. For Rust, we use valgrind[10] with the massif heap profiler.
Rust has the highest peak heap memory usage, with 1GB, as the arenas are not freed until
the end. The Java version has a peak memory usage of 200MB in average, and the R version
has a peak memory usage of 300MB.

7 Takeaways

Ergonomics. The R implementation is rather complicated to read, maintain and extend,
and would be even more so without the literate programming style. For example, one of the
features, complex assignments, requires a 3 page description just to introduce the code in the
generated pdf documentation. In Rust and Java, we have a clear interface for the compiler
and clear dependencies, unlike the R compiler which is intertwined with the rest of the VM
and for instance sometimes call the AST interpreter.



P. Donat-Bouillud, F. Křikava, J. Hain, A. Plodek, and J. Vitek 1:5

Figure 2 Compilation time for the packages in the microbenchmark depending on the language.
The y-axis is logarithmic. We indicate the speedup compared to R on top of the Java and Rust bars.

Another pain point of R is its lack of complex data structures and checked type annotations.
For instance, there are no real hash maps 4 in R, so R uses a linear search to find duplicates
in the constant pool. On the contrary, the Java and Rust codes are more readable and
expressive thanks to Java’s pattern matching and algebraic datatypes. We think that going
away from R for the compiler would make it possible to write more complex optimizations.

In terms of tooling, both Java and Rust have good editors and debuggers, whereas
refactoring R code is no better than search and replace and the debugging experience using
explicit functions debug or browser is painful. We also used mature testing libraries in Java
and Rust whereas the R version uses stopifnot assertions. We found cargo to be much
more pleasant to use than maven.

One issue in Rust is the borrow checker: although the arena allocator made it only a small
nuisance, lifetime still shows all around the place. In the GC-ed languages it was completely
painless. Garbage collector implementations exist in Rust, but they too add verbosity [6] [1].

Performance. Rust is the fastest, closely followed by Java, and R is the slowest, as expected.
The bytecode compilation mostly happens at package installation time. Using a more
performant language than R would decrease installation times for large packages, and even
for R itself. However, a more performant language would be an additional dependency.

Lessons learnt. Getting the data from and to R (serialization) was the hardest part, and
the biggest source of bugs. It was not documented except for the source code. Setting up
the infrastructure also took a lot of efforts, as to properly resolve R symbols, we need to
boostrap the R environments at the server side. Similarly, constant folding outside of the
runtime requires code. Getting the proper representation of opcodes is delicate, from a fully
typed one with a complex type hierarchy in Java to a simple ADT and a byte array in Rust.

4 It is possible to use environments as hash maps.

Programming 2025



1:6 Comparing R Bytecode Compilers Written in R, Java, and Rust

References
1 Michael Coblenz, Michelle L. Mazurek, and Michael Hicks. Garbage collection makes rust easier

to use: a randomized controlled trial of the bronze garbage collector. In Proceedings of the
44th International Conference on Software Engineering, ICSE ’22, pages 1021–1032, New York,
NY, USA, July 2022. Association for Computing Machinery. doi:10.1145/3510003.3510107.

2 Albert Danial. cloc: v2.04, December 2025. doi:10.5281/zenodo.5760077.
3 Pierre Donat-Bouillud, Filip Křikava, Jakob Hain, Adam Plodek, and Jan Vitek. PRL-

PRG/r-compile-server. Software, Czech Science Foundation Grant No. 23-07580X,
swhId: swh:1:dir:80fa93336159947c757722b0eea284d792b20055 (visited on 2025-07-
16). URL: https://github.com/PRL-PRG/r-compile-server/tree/main/server/src/main/
java/org/prlprg/bc, doi:10.4230/artifacts.23610.

4 Pierre Donat-Bouillud, Filip Křikava, Jakob Hain, Adam Plodek, and Jan Vitek. PRL-
PRG/rust-r-bcc. Software, swhId: swh:1:dir:0dacc419ced335c4daf1d275cb34c26580a
cdf23 (visited on 2025-07-16). URL: https://github.com/PRL-PRG/rust-r-bcc, doi:10.
4230/artifacts.23609.

5 Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob Hain, and Jan Vitek. R
melts brains: an IR for first-class environments and lazy effectful arguments. In Proceedings
of the 15th ACM SIGPLAN International Symposium on Dynamic Languages, pages 55–66,
2019. doi:10.1145/3359619.3359744.

6 Manish Goregaokar. Manishearth/rust-gc, May 2025. original-date: 2015-05-17T03:31:43Z.
URL: https://github.com/Manishearth/rust-gc.

7 Andrew L Johnson and Brad C Johnson. Literate programming using noweb. Linux Journal,
42:64–69, 1997.

8 Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek. A fast abstract syntax tree
interpreter for R. ACM SIGPLAN Notices, 49(7):89–102, 2014. doi:10.1145/2576195.
2576205.

9 Radford M. Neal. pqr: a pretty quick version of r. http://www.pqr-project.org/, 2013.
Accessed: 2025-25-03.

10 Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. ACM Sigplan notices, 42(6):89–100, 2007. doi:10.1145/1250734.1250746.

11 Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. Optimizing R language
execution via aggressive speculation. ACM Sigplan Notices, 52(2):84–95, 2016. doi:10.1145/
2989225.2989236.

12 Justin Talbot, Zachary DeVito, and Pat Hanrahan. Riposte: a trace-driven compiler and
parallel VM for vector code in r. In Proceedings of the 21st international conference on Parallel
architectures and compilation techniques, pages 43–52, 2012. doi:10.1145/2370816.2370825.

13 Luke Tierney. A byte code compiler for R. system, 6:0–010, 2019.

https://doi.org/10.1145/3510003.3510107
https://doi.org/10.5281/zenodo.5760077
https://archive.softwareheritage.org/swh:1:dir:80fa93336159947c757722b0eea284d792b20055;origin=https://github.com/PRL-PRG/r-compile-server;visit=swh:1:snp:5b568d1296bb310d9b8d2c00be87e197e494ce1a;anchor=swh:1:rev:2aafbcc1f47d5c6cb45d813e23730326f772a04b
https://github.com/PRL-PRG/r-compile-server/tree/main/server/src/main/java/org/prlprg/bc
https://github.com/PRL-PRG/r-compile-server/tree/main/server/src/main/java/org/prlprg/bc
https://doi.org/10.4230/artifacts.23610
https://archive.softwareheritage.org/swh:1:dir:0dacc419ced335c4daf1d275cb34c26580acdf23;origin=https://github.com/PRL-PRG/rust-r-bcc;visit=swh:1:snp:8aaa5ce6a6996c5b6445c37ac8eaac576eead033;anchor=swh:1:rev:1355b5412e279024364c61774bf50a653425f388
https://archive.softwareheritage.org/swh:1:dir:0dacc419ced335c4daf1d275cb34c26580acdf23;origin=https://github.com/PRL-PRG/rust-r-bcc;visit=swh:1:snp:8aaa5ce6a6996c5b6445c37ac8eaac576eead033;anchor=swh:1:rev:1355b5412e279024364c61774bf50a653425f388
https://github.com/PRL-PRG/rust-r-bcc
https://doi.org/10.4230/artifacts.23609
https://doi.org/10.4230/artifacts.23609
https://doi.org/10.1145/3359619.3359744
https://github.com/Manishearth/rust-gc
https://doi.org/10.1145/2576195.2576205
https://doi.org/10.1145/2576195.2576205
http://www.pqr-project.org/
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/2989225.2989236
https://doi.org/10.1145/2989225.2989236
https://doi.org/10.1145/2370816.2370825

