Cazamariposas: Automated Instability Debugging
in SMT-based Program Verification

Yi Zhou®, Amar Shah®, Zhengyao Lin®, Marijn Heule®, and Bryan Parno

Carnegie Mellon University, Pittsburgh, PA, USA
{yeet,amarshah,zhengyal ,marijn,parno}@cmu.edu

Abstract. Program verification languages such as Dafny and F* often
rely heavily on Satisfiability Modulo Theories (SMT) solvers for proof
automation. However, SMT-based verification suffers from instability,
where semantically irrelevant changes in the source program can cause
spurious proof failures. While existing mitigation techniques emphasize
preemptive measures, we propose a complementary approach that fo-
cuses on diagnosing and repairing specific instances of instability-induced
failures. Our key technique is a novel differential analysis to pinpoint
problematic quantified formulas in an unstable query. We implement this
technique in Cazamariposas, a tool that automatically identifies such
quantified formulas and suggests fixes. We evaluate Cazamariposas on
multiple large-scale systems verification projects written in three dif-
ferent program verification languages. Our results demonstrate Caza-
mariposas’ effectiveness as an instability debugger. In the majority of
cases, Cazamariposas successfully isolates the issue to a single problem-
atic quantifier, while providing a stabilizing fix.

Keywords: SMT - Program Verification - Proof Instability.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers play a prominent role in automated
program verification. In verifiers such as Dafny [22], F* [32], or Verus [20], SMT
solvers can often discharge complex verification conditions automatically, despite
the generally undecidable program properties. In this way, SMT solvers signif-
icantly reduce the need for manual proof steps, facilitating the verification of
large-scale systems [14,19,27].

However, the solvers must resort to incomplete heuristics to reason about un-
decidable program properties. Consequently, SMT-based program verifiers suffer
from a persistent problem of proof instability [15,42], where trivial, non-semantic
changes to the source program result in spurious proof failures. For instance, an
SMT solver may fail to verify (i.e., return an inconclusive result on) a previously-
proven verification condition after a simple variable renaming, even though the
program’s semantics remain unchanged.

Instability is a major impediment to the industrial deployment of automated
verification [11]. In particular, instability disrupts the usual development work

https://orcid.org/0000-0001-7597-1176
https://orcid.org/0009-0008-8282-2142
https://orcid.org/0000-0001-5475-5765
https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0002-9113-1684

2 Y. Zhou et al.

flow, incurring time and resource costs to debug spurious failures. Worse yet, the
solver provides little insight as to why it rejects the modified query. As a result,
the developer has little recourse beyond blindly modifying their source code in
the hopes of nudging the solver into an accepting state [33].

While prior work [1,21,41] has tried to preemptively mitigate instability (with
partial success—see Sec. 2), we propose a complementary approach to repair
instability. In more detail, we automatically pinpoint the source of instability
and suggest a query-specific repair strategy. Our approach is motivated by our
finding that instability is often caused by only a few quantified formulas, among
the thousands within a query; in fact, in 61% of the unstable queries we study,
there is a single problematic formula to blame! By limiting the impact of just
one ill-behaved quantified formula, we can repair most of the unstable proofs
and avoid future failures.

We present a novel differential analysis to make such a diagnosis. We ob-
serve that, by definition [42]|, semantically equivalent variants of an unstable
query lead to a mix of verification successes and failures. We thus compare the
quantifier-instantiation profiles between succeeding and failing variants, focus-
ing on quantifiers that are over-instantiated or under-instantiated in the failing
cases. We further refine the analysis using novel proof and trace mining tech-
niques, exploiting the causal relation between the instantiations.

We implement this approach in Cazamariposas, a debugging tool for SMT
instability. Cazamariposas takes as input an unstable SMT query and outputs a
concise report explaining the cause of the instability. Cazamariposas then pro-
vides a suggested repair strategy. For example, suppose Cazamariposas’ analy-
sis points to an over-instantiated quantifier ¢ within a query g. Cazamariposas
would remove ¢ from ¢, confirm that the new query is now stabilized, and suggest
that the developer remove the source-level construct that introduced ¢ to the
query. In this way, Cazamariposas provides a fix that avoids further instability-
related failures. Crucially, the repair strategy preserves the soundness of the
verification condition (Sec. 4).

In Sec. 5, we evaluate Cazamariposas on a diverse set of benchmarks, with
615 unstable SMT queries collected from 12 system verification projects written
in Dafny [22], F* [32], or Verus [20]. We find that Cazamariposas successfully
repairs 70% of the unstable queries, of which 87% involve only a single quantifier.

2 Background and Related Work

SMT-based program verification has been gathering interest in academia [19,27]
and industry [2,10]. Languages such as Dafny [22], F* [32], and Verus [20] enable
mechanized proofs of program properties (e.g., functional correctness, memory
safety) with the help of SMT solvers. In particular, developers write high-level
proof hints for their programs, while the SMT solver can often automatically
power through the rest of the proof.

Cazamariposas: Automated Instability Debugging 3

In this section, we introduce the background on SMT-based program verifi-
cation, define the notation for SMT-related concepts, and discuss prior work on
proof instability.

2.1 Notation

We use a conjunctive formula ® = A ; to represent an SMT query, where
each 1); is an assertion. We slightly abuse the notation here by treating ® as a
set of assertions. For example, we use ®\ {¢} and ®U{} to denote a new query
with an assertion 1 removed or added, respectively.

We assume the goal-azioms structure in program verification queries [41].
In particular, 19 = —6 is the negation of the properties of the procedure under
verification. Meanwhile, A = A[_; ¢; is a conjunction of azioms encoding the
semantics of: (1) the verification language’s constructs, and (2) other developer-
written procedures that have already been verified. By checking that ® = AA—0
is unsatisfiable, the SMT solver confirms that 6 is a logical consequence of A.

The use of quantifiers is common in program verification. For ease of exposi-
tion, we use single-variable quantified formulas (e.g., ¢ = Vz.p) as examples as
long as it is clear how the method under discussion generalizes to quantification
over multiple variables. We use 2 to represent the set of quantified formulas
(including nested ones) in ®.

For a universally quantified formula ¢ = V., we use [z — t] to denote the
result of capture-free substitution of some ground term ¢ for all free occurrences
of z in p. We refer to p[x — t] as an instantiation of ¢, and t as the instantiating
term. We use the calligraphic Z¢ to denote a set of instantiations of ¢. For
convenience, we define Z¢ = {} if ¢ is existentially quantified.

SMT-based verification languages rely heavily on pattern-based quantifier
instantiation [24,25]. Each universally quantified formula Vz.¢ is associated with
(at least) one syntactic pattern m, where m would be a ground term expect for the
free variable x in it. The body ¢ remains hidden until a ground term w[z +—]
enters the solver’s context, at which point the solver creates the instantiation
o[z > t]. We refer to n[z — t] as the triggering term.

2.2 Related Work

Proof instability is an obstacle to wide-scale industrial adoption of SMT-based
verification. Galois highlights the “fragility of proofs” which can be “highly sensi-
tive to minor changes in logical terms” [11]. Similarly, Amazon complains about
the serious challenge of “lack of monotonicity and stability in runtimes” [29].
Numerous other large-scale verification projects cite SMT instability as a key
pain point [2,8,10,12,15,19,28|.

In prior work, researchers applied source-program-level analysis to choose
better syntactic patterns for user-introduced quantified formulas, hoping to pro-
duce more stable SMT queries [21]. More recently, proposes using free facts [6],
where quantified axioms are replaced by specific instantiations before the query

4 Y. Zhou et al.

is dispatched to the solver. Both techniques have shown some improvement,
although they both rely on ad hoc measures of instability.

In our Mariposa [42] work, we presented a statistically rigorous approach
to characterizing proof instability. At a high level, the Mariposa tool takes in
an SMT query-solver pair (®,s), and outputs whether the query ® is stable,
unstable, or unsolvable when run with solver s. Mariposa generates mutants
of the original query ®, by (1) reordering assertions, (2) a-renaming variables,
or (3) changing the random seed. Intuitively, if the solver’s performance varies
significantly across the mutants, ® is unstable.

As part of the Mariposa project, we also curated a collection of program veri-
fication queries. In particular, we included several large-scale systems-verification
projects written in Dafny [22] and F* [32] as a part of the Mariposa benchmark
suite, where we found non-trivial amounts of instability.

In our follow-up work, we demonstrate that proof stability is strongly con-
nected to the relevance of axioms [41]. In general, given a verification goal 0, if
A is populated with unnecessary or irrelevant axioms, then the query is more
likely to experience instability. We then introduce SHAKE, a context-pruning
technique that reduces the number of irrelevant axioms in program verification
queries, mitigating the instability on the Mariposa benchmark suite by 29% on
Z3 and 41% on cvch.

Amrollahi et al. preprocess an SMT query to put it into a canonical form [1] so
as to normalize away semantically irrelevant source-level changes. They demon-
strate mixed results, reducing instability on one Mariposa benchmark by 20%,
while increasing it on another by 76%. Cumulatively, their approach increased
instability by 4%.

In contrast to these approaches based on preemptive preprocessing, in this
work, we propose to diagnose and repair specific instances of unstable proofs. Our
approach draws inspiration from the field of automated theorem proving [17,30].
In particular, our query-specific diagnosis draws a parallel to the axiom selection
problem [16], where the goal is to select a small subset of axioms from a large
set of axioms to prove a theorem. Oftentimes, axiom selection is done using
techniques from machine learning [18].

3 DMotivating Examples

Programmers use metrics such as solver resource count and solving time as
proxies for instability [33]. However, these heuristics are imperfect and often
miss unstable proofs. Even when a programmer successfully detects instability,
fixing it often requires considerable effort. When a proof in an automated veri-
fication language fails, conventional wisdom suggests various manual debugging
techniques [26,33,34], including:

1. Adding source-level assertions to help guide the solver towards deriving im-

portant intermediate facts, and to trigger important quantifiers.

Cazamariposas: Automated Instability Debugging 5

2. Adding source-level annotations to hide function definitions that are un-
necessary for the proof. These annotations cause the verifier to encode the
function such that the SMT solver treats it as uninterpreted.

We observe that these techniques target different problems at the SMT level.
When the solver quickly returns unknown because of insufficient information,
this may be addressed at the source level by adding source-level assertions. If
the solver “times out” because it has spent too much time exploring extraneous
parts of the proof space, this may be addressed at the source level by hiding
unnecessary functions definitions.

In Sec. 4.3, we describe how Cazamariposas is able to automatically differen-
tiate between the two cases above and suggest the appropriate fixes. In contrast,
developers often struggle to find such fixes. To illustrate this, below we present
two examples from the Verus benchmarks (Sec. 5.2) where Cazamariposas iden-
tifies a fix that the original programmers missed.

3.1 Diagnosing and Repairing Unnecessary Instantiations

Our first example, a lemma lemma_from_after written in Verus, has an unstable
proof (see Appendix A.1 for the full example). In the original source code, the
developer added a Verus annotation asking the solver to spin off a separate SMT
query just for this lemma (normally Verus proves many goals incrementally in
the same SMT context). Verus developers often use this annotation to try to
improve stability, but Cazamariposas’ measurements indicate it is still unstable.

To fix this proof’s instability, the developer can try to hide various functions
definitions using Verus’s hide keyword. However, from the developer’s perspec-
tive, it is not obvious which function might be to blame for the instability. The
file containing lemma_from_after has 6 function definitions, and it imports 27
other Rust crates, each of which contributes many more functions that might be
causing the instability. A priori, it is not even clear that hiding a function defini-
tion is the correct fix. The developer might instead guess that adding assertions
to the body of lemma_from_after will improve stability.

In contrast, Cazamariposas explains that make_stateful_set is the cause, an
unrelated function imported from a completely different crate. Cazamariposas
suggests that the developer hide make_stateful_set, which produces a stable
SMT query.

3.2 Diagnosing and Repairing Missing Instantiations

In the Verus code below, the function entry_alive_wraps on line 7 proves
that every index i from low to high is alive if and only if BUFFER_SIZE + i is
alive.! Liveness is defined via entry_alive, which among other operations, per-
forms a division. At the SMT level, Verus represents division with the function
Euc_Div, which is guarded to prevent division by 0. The original SMT query for
entry_alive_wraps is unstable because the solver gets stuck going from Euc_Div

! We have simplified this example. The full example is in the Appendix A.2

6 Y. Zhou et al.

to SMT-LIB’s built-in division operator. As a developer, diagnosing such is quite
difficult, let alone finding a fix.

const BUFFER_SIZE = ...

fn entry_alive(i: int) -> bool {

(i / BUFFER_SIZE) % 2 ==
}

DU W N

N

fn entry_alive_wraps(low: nat, high: nat)
ensures forall|i: nat|low <= i < high ==>
entry_alive(i, BUFFER_SIZE) == entry_alive(i + BUFFER_SIZE, BUFFER_SIZE)
{}

S ©

In contrast, Cazamariposas automatically diagnoses the problem at the
SMT level and suggests a fix. At the SMT level, the ensures clause on
entry_alive_wraps is negated, turning the universal quantifier on line 8 into
an existential. Cazamariposas experiments with Skolemizing the quantified vari-
able (i.e., turning it into a constant) and then searches for universal quantifiers
in the query that might benefit from instantiation with the new Skolem con-
stant. In this case, it identifies an instantiation of a quantifier about Euc_Div
that stabilizes the proof. It suggests this fix to the developer, who can then use
appropriate Verus-level syntax to apply the fix.

4 The Cazamariposas Methodology

Cazamariposas produces SMT-level query edits as repair strategies for proof
instability. For example, given an unstable query ®, Cazamariposas may pinpoint
a quantified axiom ¢; such that ®* = ® \ {¢;} is stable. The removal of ¢; is
sound because ®* maintains the original verification goal. The developer can
therefore re-enact the SMT-level edits as source-level changes (e.g., hiding the
procedure axiomtized by ¢; in this case), stabilizing the proof.

Cazamariposas follows an “edit-and-test” scheme to identify the repair strate-
gies. Conceptually, for each quantified axiom ¢; € (A N), Cazamariposas goes
through the following:

e Hypothesize that quantifier reasoning over ¢; is the cause of instability.
Select a query edit on ® to reduce the reasoning obligations over ¢;.
Apply the query edit to create a candidate query ®*.

Test the stability of ®* using Mariposa.
If ®* is not stable, dismiss the hypothesis for now.
If ®* is stable, report ¢; as a cause of instability.

In Sec. 4.1, we discuss how we ensure that a query edit (1) weakens a particular
target axiom, and (2) preserves the rest of the query context. Therefore, if ®*
is stable, the edit is also a sound repair strategy.

While the “edit-and-test” scheme is conceptually simple, the vast number of
quantified axioms makes it impractical to exhaustively test the stability impact
of each ¢; individually. Therefore, in Sec. 4.2-Sec. 4.4, we describe how Caza-
mariposas effectively prioritize the likely suspects.

In Sec. 4.2, We make an observation on two distinctive failure modes in which
instability manifests, corresponding to under and over-instantiated axioms. We

Cazamariposas: Automated Instability Debugging 7

then take advantage of the fact that an unstable query ® has at least a passing
mutant ®, and a failing mutant ®;. In Sec. 4.3, we propose metrics based on
the instantiation profiles of ®, and ®y, highlighting quantified formulas that
are excessively or insufficiently instantiated in ®;. In Sec. 4.4, we refine the
analysis based on the failure mode with novel proof and trace mining techniques,
exploiting the causal relation between the instantiations.

Triaging Differential
QU vs. TO P Scoring
(Sec. 4.2) (Sec. 4.3)

/

¢1 : METRICS(¢1) QU | - ‘

#2 : METRICS(¢2) | | Ranker |: _ Fix v
. > 3 R Stabilizing

: |1 1O - Edits? 1" ~5 5 Ry

én : METRICS(6n)] | Ranker | Candidate No Fix !

et (Query @ No | Found X

Differential Scores Rank the Can-
didate Queries
(Sec. 4.4)

Fig. 1: The Design of Cazamariposas. We highlight SMT files in | purple|, other

data in pink , Mariposa calls in orange , and Cazamariposas components in

white. We write METRICS(¢;) to represent the metrics in Sec. 4.3. For simplicity,
we have omitted doubleton edits.

4.1 Testing the Axioms for Stability

We start with the methodology to evaluate the stability impact of individual
axiom using query edits. More formally, we define a singleton edit as a pair
(¢4, a;), where ¢; € (ANQ), and a; is an action among {del, inst, inst-del, sk}.
Table 1 summarizes the actions we consider. In particular, for the actions inst
and ins-del, we leverage the instantiation set Ig’ provided by the proof log; for
the action sk, we use fy, to denote a Skolem constant from some existential
assertion ¢; = Jx.p.

Intuitively, the edits are meant to reduce or eliminate a solver’s reasoning
over ¢;, so a stabilized candidate also points to ¢; as a cause of instability. We
now discuss some basic properties of the edit actions, including soundness, which
ensures that a stabilizing edit is also a valid repair strategy.

Soundness. We define the soundness of the candidate ®* as:

P"F 1l = dF L

8 Y. Zhou et al.

Action a;| Applicability ¢; Edited Candidate ®*
del b € (ANQ) P\ {4}
inst ‘ o UL

nst-del | € Mo = Ve (@UZT) \{d:}
sk ¢ € D,¢i =Twp|(PU{plr = f5,,]}) \ {di}

Table 1: Cazamariposas Query Edits

We demonstrate soundness with a case analysis. When a; = sk, the queries ®*
and ® are equivalent, so soundness trivially holds. Since we have restricted sk
to be the only potential action on the goal, # remains unchanged for the rest of
the actions. Therefore, we could instead show that:

A0 = AFO

which holds as long as A* is no stronger than A. When a; = inst, because the
elements of Ig” are tautological consequences of ¢;, A* is as strong as A. When
a; € {del,inst-del}, A* might be weaker than A.

Completeness. We define completeness of the axiom set as follow:

AFO = A0

The proof instantiation set Ig’i is sufficient to establish 6 by definition, so we
maintain completeness. However, since the edits may weaken the axioms, we
do sacrifice a broader sense of completeness. Specifically, del and inst-del may
remove a quantified axiom ¢;, while the Ig’i is only a finite subset of all possible
instantiations of ¢;. Therefore do not guarantee that A* - ¢;.

Composability. We not that if we perform a series of singleton edits A =
(..., (¢i,a;),...)), we also maintain soundness and completeness. Intuitively, when
instability arises from the interaction of multiple quantified axioms, singleton
edits (i.e., ||A|| = 1) might fall short to capture the cause, and thus we need to
consider ||A|| > 2. In the case where ||A|| = 2, we call A a doubleton edit.

Practicality. In Cazamariposas, we focus on the SMT level to ensure ap-
plicability to multiple languages. Eventually, we would like to apply the edit
actions to the source code, which we leave as future work. The query edits do
generally correspond to source-level features in Dafny, F*, and Verus:

e del corresponds to source-level visibility control mechanisms. For example,
Dafny’s opaque keyword allows developers to hide the definition of a function
by default.

e inst corresponds to quantifier instantiations as source-level annotations.

e sk corresponds to Hilbert’s choice as a language construct. For example,
Dafny’s var x :| P(x) assigns x an arbitrary value such that P(x) holds.

However, the translation might not always be straightforward. As we dis-
cussed in Sec. 2, the axioms may also encode the semantics of language con-
structs. For example, del on an axiom for higher-order functions has no direct
source-level equivalent. More specific to inst, if the repair adds a large number

Cazamariposas: Automated Instability Debugging 9

of instantiations to the source code, it is arguably impractical due to mainte-
nance and readability concerns. Nevertheless, we have some empirical evidence
that the repairs are often practical, which would make it interesting to explore
automatic translation in the future.

Complexity. Another more pressing concern is the complexity of the search
space. Consider a query ® with n applicable singleton edits. The total number
of potential candidate is roughly:

% (n> - @ ’ @ et (IIZII)

The combinatorial explosion makes it infeasible to test all candidates. Mean-
while, if a stabilizing edit involves too many axioms, it also become less realistic
to reenact the repair at the source level.

Given the considerations, we limit our experiments to two classes: singleton
and doubleton edits, i.e., ||A|| < 2. Nevertheless, a massive search space remains
for each class, with typically thousands of quantified axioms in a query. We thus
further introduce a parameter k to limit the number of candidates we test for
full stability. Specifically, we first test k£ singleton edits, and then k doubleton
edits if the former fails to stabilize the query.

Figure 1 illustrates Cazamariposas’s approach to efficiently navigate the
search space of possible axioms and edits, addressing both challenges outlined
above. We use our Mariposa tool [42] (Sec. 2) to produce semantically equivalent
mutants of the original query. If the query is unstable, then some mutants will
succeed, and some will fail. Hence we extract information about the quantifier
instantiations produced in each group. We first use this information to triage
(Sec. 4.2) which kind of instability-induced failure we face: either a quick un-
known (QU) or a slow timeout (TO). In Sec. 4.3, we then leverage the solver’s
divergent behavior between a failed and a successful proof attempt to compute
key metrics to identify the problematic quantifiers. Next, using the metrics and
the failure mode, we select the query edits most likely to stabilize the query (?7?).
Finally, we use Mariposa to evaluate the edits, and if any succeed in stabilizing
the query, we report success and suggest the corresponding edit as a repair.

4.2 Triaging the Failure Mode

We begin our analysis by triaging the high-level cause of the underlying instabil-
ity. Specifically, we observe two distinct modes of an instability-induced failure,
which we name quick unknown (QU) and slow timeout (TO). In a QU, the solver
quickly terminates (e.g., in < 1 second) with an unknown result, despite being
given a generous timeout and resource limit. Meanwhile, for a TO, the solver
runs on the query until it runs out of its time budget.

As we discuss in depth in Sec. 5.3, the two failure modes correspond to dif-
ferent instantiation profiles, signifying different underlying causes of instability.
In a QU, the solver only explores a small number of instantiations before giving

10 Y. Zhou et al.

up. We therefore hypothesize that the solver is failing because it is missing key
instantiations to prove the goal 6. In contrast, a TO is associated with orders of
magnitude more instantiations, suggesting that the solver is spending significant
time and resources on quantifier reasoning irrelevant to 6.

4.3 Calculating the Differential Metrics

We now introduce three metrics, namely DericiT, Exciss, and CONTINGENCY,
which measures the degree of insufficient or excessive instantiation. We define the
metrics for quantified formulas in €2, which is a superset of applicable assertions.
In the next sections, we discuss how to aggregate metrics over €2 to rank potential
edits over the quantified axioms.

Our analysis leverages a solver’s divergent behavior between a failed and
a successful verification attempt. By definition, if a query ® is unstable, our
Mariposa tool should find structurally isomorphic mutants, ® s and ®, such that
®; fails and ®, succeeds. This allows us to compare the instantiation profiles
between ®¢ and ®, modulo the isomorphism.

Concretely, we obtain from the solver a trace log t for ®;, and a proof log
p for ®,. In theory, our method generalizes to multiple traces and proofs. In
practice, collecting even one pair of (t,p) can entail difficulties. Hence, we focus
our discussion on a pair of proof and trace. Furthermore, since we are comparing
the instantiation profiles modulo the structural isomorphism between ®; and
®,, for the ease of exposition, we omit the detailed subscripts for t and p, which
would otherwise be tg P and po,.

We now define the metrics more formally. We use Z{* and Z¢ to denote
the instantiation set of ¢; in t and p, respectively. For each quantified formula
o; € Q, we compute the following:

e Drrrorr(¢, p, t) = [|Z2% |, where Z2i = Z?* \ I, Intuitively, T is the set
of instantiations in the proof but not in the trace. When Hl'gjjt is large, the
solver may be missing instantiations of ¢; that are crucial to reaching unsat.

o Excuss(¢;, p,t) = |Z¢}]], where ¢ = Z¢+ \ 2. Intuitively, Z¢} is the set
of instantiations in the trace but not in the proof. When [|Z¢;|| is large, the
solver may be wasting time and resources instantiating ¢; without making
progress towards proving the goal.

We note that when IsExists(¢;), the instantiation set Z¢* and Z¢* are both
empty, so DericiT and Excess are trivially 0. In that case, we also introduce
CoNTINGENCY based on the instantiations that depend on ¢;:
o CoNTINGENCY(9i,p) = Dy cql{L | 1 € I, fs,, E I}, where fy,, is the
Skolem constant of ¢;, ¢; € is some (universally) quantified formula, and
I e Ig’j is some instantiation of ¢; containing fs,,. (fs,, T I denotes that
fo.. 18 a sub-term of I.) Intuitively, the metric reflects the proof instantia-
tions that depend on fy, . When ¢; has high ConTiNGENCY, other quantified
formulas cannot be sufficiently instantiated until ¢; is Skolemized.

Cazamariposas: Automated Instability Debugging 11

Naively, we could already start prioritizing the quantified axioms based on
these scores alone. Next we discuss how we aggregate the scores over the axioms,
and choose the most promising edit actions for each axiom.

4.4 Ranking the Candidate Queries

As mentioned in Sec. 4.1, we use a parameter k to limit the number of candidates
we test for full stability, where we first consider top-k singleton edits, and then
doubleton edits if none of the singleton edits is stabilizing. We describe how to
compute the scores for the singleton and doubleton edits in this section. The
output of this stage are two partial maps, SScore and DSCORE.
1. We score each axiom ¢;, and then select an appropriate edit for it. When
there are multiple possible actions on ¢;, we commit to one that is likely
stabilizing. More formally, we create a partial map:

SScore = {(¢;,a;) — 8; | ¢; € P}

where a; € {del, inst, inst-del, sk} is the chosen edit action.

2. We then score ordered pair of quantified assertions, along with the most
promising actions for each assertion. More formally, we create another partial
map:

DScork = {((¢i, a:), (¢a, a;)) — sij | ¢i,¢; € D}

where a;,a; € {del, inst,inst-del sk} are the chosen edit actions.
((¢i,ai), (¢4,a;)) is the doubleton edit we apply (in order). We note that
both maps are partial because we may not find an applicable action for
certain assertions.

We split the discussion on the ranking of edits based on the hypothesized
failure mode (QU or TO), as the two failure modes require different strategies.

Ranking Edits for QU We start with how we handle QU failures, which is
more straightforward. At the general triage (Sec. 4.2) stage, we hypothesize that
the QU failures are due to the absence of certain instantiations. Intuitively, we
are looking for under-instantiated axioms, where inst is applicable, i.e.,

SScore = {(¢;, inst) — s; | ¢; € D}

There are various ways to use the differential scores to set s;. Plausible contenders
include:

1. (DericIiT, —EXCESS)

2. (—Excess, DEFICIT)

3. k- DEFiCcIT — EXCESs for some constant &

4. DEFICIT/EXCESS

We experimented with multiple examples of each of these heuristics. Eventually
we settled on the first one, using DericiT as the primary metric.

12 Y. Zhou et al.

However, the picture becomes complicated when instantiations contain
Skolem constants. In that case, we cannot fully materialize all of ¢;’s proof
instantiations Ig’i, unless all its Skolem dependencies are met. If the actual ma-
terializable instantiation count is 0 (i.e., that no instantiations can be created
without Skolemization), then we drop ¢; in the singleton phase.

We address this issue in the doubleton stage. Specifically, we use the Con-
TINGENCY score to select the first axiom ¢; for sk; i.e., the quantified assertion
with most “contingent” instantiations depending on it Skolem constant. When
choosing the second axiom ¢;, we only consider ¢; candidates that depend on
the Skolem constant fy4, in their instantiations, and we can apply inst to ¢;.
More formally,

DScore = {((¢;,sk), (¢;,inst)) — s;; | ¢, ¢, € @}

where s;; = (CONTINGENCY(¢;, p), DEFICIT(0;, P, 1)), and 3T | I € Ig’f,f@.z cCl.

Ranking Edits for TO In the general triage stage (Sec. 4.2), we hypothesize
that the solver is spending significant time and resources on irrelevant quantified
formulas in a TO failure. For this failure mode, we focus on the quantified axioms
in A as targets. Intuitively, we would need to suppress the excessive instantiation
to stabilize the query, while editing the goal is not an option.

A natural choice would be to use the Excess for SScorg, and then apply del
to the axiom ¢; with the highest Excess. However, the situation is more complex
than QU in two ways. (1) We cannot simply delete arbitrary ¢; with high Excess.
The axiom may be necessary for the proof, and deleting it will render the goal
un-provable (i.e., creating incompleteness). (2) Even if ¢; is indeed unnecessary,
other excessively instantiated axioms may also be contributing to the instability.

Problem (1) is easier to address. We use the inst-del edit action, replacing
the axiom ¢; with its instantiations from the successful proof trace Ig’i. Intu-
itively, this eliminates the need (and the ability) for the solver to instantiate ¢;:
since Ig” is sufficient for the proof, this action works around the incompleteness
issue.

Problem (2) is more challenging. Anecdotally, if we focus solely on the Excess
score, the debugging process turns into a “whack-a-mole” situation, where we
delete one axiom, only to find another axiom with high Excess taking its place,
and we fail to stabilize the query. Hence, to successfully repair the query, we need
a mechanism to identify the underlying cause of the excessive instantiations.
Dependency Analysis In order to locate the root cause of TO instability.
we further analyze the causal relations between the instantiations. Our notion
of causality extends the instantiation graph from the SMTSCOPE (formerly the
Axiom Profiler) [4], a tool to analyze instantiation loops and other sources of poor
performance in pattern-based SMT solvers. Below, we describe Axiom Profiler’s
approach and then our extension.

The instantiation graph is a directed acyclic graph over the terms (instanti-
ations) in a trace log t. More formally, we model this graph Gy with the node

Cazamariposas: Automated Instability Debugging 13

set:
{(I,¢0) | T € T, i € O}

where each instantiation is labelled with its quantified formula ¢;. Edges in the
graph indicate the causal relations, which includes the following;:

e Instantiating Dependency: an instantiation causes another one to mate-
rialize due to a matched pattern. Let (I, ¢s) and (14, $4) be two nodes in
Go, where ¢4 = Vz.¢p; is guarded by the pattern 7;. Suppose a sub-term of I
matches 7, i.e., wj[z — t] C I, for some ground term ¢. This match triggers
the creation of Iy = ¢j[x — t], corresponding to an edge (Is, ¢s) = (La, da)
in G1~

e Equational Dependency: an equational rewrite (from one instantiation)
contributes to another instantiation. Continuing the example above, I, may
only trigger 7; after additional equality rewrites. Consider a quantified for-
mula ¢eq = Va.p(x) = ¢(x) and one of its instantiations I.; = p(a) = g(a).
The solver might have to rewrite I; with I, first, where the rewrite result,
Is[p(a) — q(a)], triggers the creation of I,. In that case, there is also an edge
(legs Peq) = (La, ¢a) in Go.

We further extend this graph G from prior work into a graph G; to capture
two additional types of dependencies.

e Skolemizing Dependency: a Skolem constant is a sub-term of an instanti-
ation. Consider the existentially quantified ¢; = Jz.¢; with Skolem constant
f#..- There might be some node (Ig4, ¢q4) in Gy such that fs, C I;. In that
case, we add the node (fy,,,®s), and the edge (fs,,,%s) = (Ld, ¢q) to Gi.
This form of dependency follows the same intuition as in our definition of
CONTINGENCY, except we apply it to the trace log here.

e Nesting Dependency: an instantiation is a (previously-nested) quantified
formula, which creates further instantiations. For example, consider (I, ¢5),
where ¢ = Va.(f(x) AVy.g(x,y)), and Iy = f(t) AVy.g(t,y) for some ground
term ¢. Let ¢g = Vy.g(t, y) be the nested quantified formula. Intuitively, I is
the reason why ¢4 exists at all. We thus add an edge from (I, ¢5) to every
(Id, ¢d)7 where I; € I,?d.

The graph G captures the four types of dependencies we discussed above,
which offers a rather low-level view of the instantiation reasoning in the trace.
We further process G so that it reflects the relation between the quantified
formulas.

1. We collapse G; into a multi-edge graph G,. We initialize G5 with € as its
nodes. For each edge (Is, ¢s) — (14, ¢0q) in G1, we add an edge ¢s — ¢q4 to
Gs.

2. We reduce G5 into a weighted simple graph G3. For each neighboring nodes
¢s and ¢gq with m, 4 parallel edges in G, we keep one edge ¢, — ¢q in G3
with the weight my 4.

3. We normalize the edge weights in G3, where we set the weight for ¢s — ¢4
in G3 to:

Ms.d

)

Ws,d =
Z¢z‘—>¢d Mi,d

)

14 Y. Zhou et al.

Intuitively, wg 4 reflects the normalized “impact” of ¢, on ¢4 over all the
in-coming edges (via. other ¢;) to ¢g4.

Hence the output of our dependency analysis is a directed simple graph Gg
over), where each edge weight w, 4 captures (or rather, approximates) the
normalized impact of ¢5 over ¢4. For example, w, 4 = 0.5 signifies that ¢, has
an immediate impact on 50% of the instantiations of @q.

We then compute the transitive impact through fixed-point iterations. Con-
cretely, for ¢; € A, we consider the reachable subgraph G, in G3. We initialize
a ratio rq = 0 for each ¢4 in Gy,, except for ¢;, where we set r; = 1. We then up-
date each ratio rq =) 7y - w, 4. After the fixed-point computation terminates,
we use the weighted sum of Excgess as the final score for ¢;:

SScore = {(¢;, a;) — Z ExcEss(¢;j,t,p) - 75 | ¢; € A}

;€0

The fixed-point computation is non-decreasing by transitivity. However, there
is no theoretical guarantee that it will converge. In particular, when G, contains
a cycle, certain node’s ratio may approach a limit at an exponential decay rate.
Nevertheless, this is not a threat to practical usage. In particular, since floating
point numbers represent the ratios, the convergence criteria must be threshold-
based. For our implementation, we consider a ratio to have converged if its
increment from the previous iteration is < 10~4.

Now that we have the scores for each axiom, we proceed to choose the single-
ton edit action. We do so with a simple heuristic: if we can delete an axiom with-
out causing incompleteness, we choose del. Otherwise, we instantiate the axiom
with its proof instantiations, using inst-del. However, if there is Skolemization
dependency preventing us from fully materializing the proof instantiations, we
choose inst instead. Finally, if we have no other choice beyond Skolemization
(sk), we do so.

Given the setup, ranking the doubleton edits is simple. We use the fixed-point
computation to estimate the impact of each pair of axioms; i.e., we initialize
ri = 1,r; = 1 for the pair (¢;,¢;), and then iterate over the nodes in G5 to
update the ratios. We then use the same weighted sum of Excess to calculate
the final score for each pair. We also use the same heuristic to choose the edit
actions for each pair.

5 Evaluation

In this section we perform an evaluation of Cazamariposas. We start with a
brief overview of the implementation in Sec. 5.1, followed by a discussion of the
benchmarks used in our evaluation Sec. 5.2. We then present the results of our
evaluation, structured around two research questions: (1) Does the experimental
data support our hypothesis about the different failure modes? and (2) How
effective is Cazamariposas at identifying stabilizing edits?

Cazamariposas: Automated Instability Debugging 15

5.1 Implementation

Our implementation of Cazamariposas is in 4,730 lines of Python, publicly avail-
able on Github [7], as a part of the Mariposa tool-chain. Here we also discuss
our use of other tools and the configuration settings.

Mariposa We run Mariposa with its standard configuration, creating 180 total
mutants for each query under full stability test. We use the default timeout of
60 seconds for the Mariposa benchmarks, but for the Verus benchmarks, we
adjust the timeout limit to 10 seconds, the default for the Verus projects. We
use Mariposa twice in our workflow, first to test whether the initial query @ is
stable and finally to test whether our various fixes are stable.

Z3 We use a recent version of the Z3 solver (4.13.0). We evaluate Cazamariposas
with Z3, as Dafny, F*, and Verus are designed with Z3 in mind. Past work [42]
has shown that other solvers such as cvcb [3] and VAMPIRE [17] are not optimized
for these verification languages, resulting in large numbers of unsolvable queries.
73 provides proof-production functionality, which can be complicated to use
in practice. Enabling proof production often causes Z3 to take a different path,
completely failing on an otherwise solvable query. To work around this, we have
employed the following strategies: (1) use Z3 to find an unsatisfiable core first
and then produce a proof from the core, (2) use 4 different versions of Z3 solver,
(3) use an extended timeout of 1 hour, and (4) use up to 256 mutants. We note
that these configuration are for finding proofs, not for testing stability. Despite
all these, we were unable to get proofs for 4 Mariposa queries and 3 Verus queries.
In our evaluation, we count these cases as if Cazamariposas fails to find a fix.
Ideally the proof-production failures can be addressed within the SMT solver.

SMTScOPE We created a fork of SMTSCOPE [13] to parse the Z3 trace logs, and
then we enhance their instantiation graph as described in Sec. 4.4.

5.2 Verus Benchmark Set

In addition to the Mariposa benchmark with 545 unstable queries (from five
systems projects written in Dafny and F*), we curate a new benchmark set
comprised of SMT queries from ten Verus verification projects (see Appendix B
for details). Between these Verus projects, there are a total of 7,584 queries of
which 7,514 (~99%) are stable and 70 (~1%) are unstable. We provide a detailed
breakdown per project set in Appendix B.

We conduct all of our stability tests, for benchmark creation and evaluation,
all on the same set of machines with an Intel Core 19-9900K (max 5.00 GHz)
CPU, 128 GB of RAM, and Ubuntu 20.04.3.

In summary, we evaluate Cazamariposas on 70 unstable Verus queries and
545 unstable Mariposa queries, for a total of unstable 615 queries.

5.3 Failure Mode Distinction

Cazamariposas’s first step is to triage a query’s failure mode into either quick
unknown (QU) or slow timeout (TO). Here we present empirical evidence for the

16 Y. Zhou et al.

100 100 =
904 — Mariposa-bench 904 — Mariposa TO ,{'
Verus-bench ---- Mariposa QU l/
80 801 Verus TO i
70 701 Verus QU
9 60 S 601 ‘;’
el O N 14.9% & 507 45877 270,396
C 0 35% © 40 4 /
i
30 301 !
20 2LL 20 i
20.0%] !
10 T1.0% 101 A >
0 (=

0.1 1.0 10.0 60.0 le3 led leb 1e6 leT
Time Until Failure Log Scale (seconds) Instantiation Count Log Scale

(a) Bimodal Mutant Failure Time (b) Instantiation Count Distributions

Fig.2: Failure Mode Distinction. In (a) we plot the runtime of the failed
mutants ®¢, before the triage. In (b), we plot the instantiation count for the
failed mutants ®; based on the failure modes triage.

distinction. In Figure 2a, for each original query ® in the benchmarks, we report
the runtime of its failed mutant ®¢. The plot is in log scale, and we observe
that the distribution for each benchmark is bimodal. For Verus-bench, ~43% of
the failures occur within 1 second, barely any occur between 1 and 10 seconds,
and the rest fail at 10 seconds. For Mariposa-bench, the distribution is more
spread out, but the separation is still clear, where ~19% queries fail within 10
seconds, and ~78% time out after 60 seconds. There is almost no middle ground
between the two modes. The x-axis of Figure 3 shows how many queries from
each benchmark Cazamariposas ultimately classifies as QU versus TO.

In Figure 2b, we examine our hypothesis that QU failures are due to in-
sufficient instantiation, and TO failures are due to excessive instantiation. We
perform our triage, and then plot the instantiation counts based on the failure
modes. Note the log-scale on x-axis, which highlights that the TO failures have
orders of magnitude more instantiations than the QU failures. For example, in
Mariposa TO, the median instantiation count is 270, 396 while in Mariposa QU,
the median is 4, 587. The separation is also clear within Verus benchmark.

5.4 Stabilizing Edits Found

Next, we evaluate Cazamariposas’ ability to automatically identify stabilizing
edits. Recall that Cazamariposas first tries k¥ = 10 singleton edits, and if none
works, it tries 10 doubleton edits. Overall, Cazamariposas repairs 431/615 (=
70%) of the benchmark queries. Figure 3 provides more details, reporting Caza-
mariposas’ performance on the two benchmarks, subdivided by the underlying
failure type (TO vs. QU). We note that Mariposa TO accounts for the largest
absolute number of queries. Cazamariposas appears to be more effective on Verus
queries in either failure type. Nevertheless, Cazamariposas repairs approximately

Cazamariposas: Automated Instability Debugging 17

100

80

60

40

[Unfixed
[Doubleton Repaired
I Singleton Repaired

20

Benchmark Query Percentage (%)

AT 98) 39) 1) 5)
o R Qut Jeru® ol o QU Over AUE

Ma{s?"‘:’“‘”

Fig. 3: Percentage of Benchmark Queries Repaired.

69% of the Mariposa queries and 77% of the Verus queries. This compares fa-
vorably to the best results from prior work (Sec. 2), which stabilized 29% of
the Mariposa benchmark. We also observe that 375/615 (= 61%) queries can be
stabilized with a single edit. Doubleton edits subsequently provide a small but
noticeable boost.

We also evaluate how well Cazamariposas ranks the stabilizing edits. First,
in Figure 4a, we show the distribution of the number of quantified formulas in
the original queries. For example, in Mariposa TO, the median count is 5,965,
which is a large search space for possible edits. The median count is lower in
Verus QU, making it potentially more tractable to fully explore.

) e —— 100
904 —— Mariposa 30 T
---- Mariposa QU 1
801 Verus TO .'I 80
70+ Verus QU i
g 601 g 60 — |
& 50] / = — T
é 478 .’,‘ 5 8 I s
404 / 40 3&0‘;0 o=]
304 ! === —— Mariposa TO
i —
y === Mariposa QU
] J
20 4 20 Verus TO
109 3.0% Verus QU
0 : - 0 L T
10° 10* 12 3 4 5 6 7 8 9 10
Quantified Formula Count Log Scale Minimal Rank of Stabilizing Singleton
(a) Quantified Formula Count. (b) Rank of Stabilizing Edits.

Fig. 4: Finding Repairs Among Large Number of Quantified Formulas.

Now that we have sense of the search space, we evaluate how well Cazamari-
posas identifies the useful edits. In Figure 4b, we report the minimal rank of
the stabilizing singleton edits. Specifically in singletons, given a query, Caza-
mariposas produces a ranked list of 10 edits, and we report the rank of the first
stabilizing edit within this list. We note the endpoints of the CDFs on the y-axis.
It is the probability that Cazamariposas finds a stabilizing edit within the first

18 Y. Zhou et al.

10 singleton edits, which corresponds to Figure 3. We note the start points of
the CDFs on the y-axis. This is the probability that the first edit Cazamariposas
tries would directly work. For a Mariposa TO query, Cazamariposas has a 36%
chance of finding a stabilizing edit with one shot.

6 Conclusions

Proof instability is a major impediment to industrial use of automated program
verification tools. Hence, we propose a new approach that targets specific in-
stances of instability. Using a novel differential analysis, we automatically classify
the type of instability a query is experiencing, rank the problematic quantifiers
in the query, and then efficiently identify targeted query edits that stabilize the
query. We implement this approach in Cazamariposas and evaluate it on SMT
queries from numerous verification projects written in three automated verifica-
tion languages. Cazamariposas successfully repairs 70% of the unstable queries.

References

1. Amrollahi, D., Preiner, M., Niemetz, A., Reynolds, A., Charikar, M., Tinelli, C.,
Barrett, C.: Using normalization to improve SMT solver stability (2024), https:
//arxiv.org/abs/2410.22419

2. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K., Rungta, N.,
Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS access
policies using SMT. In: Formal Methods in Computer Aided Design (FMCAD)
(2018). https://doi.org/10.23919/FMCAD.2018.8602994

3. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Notzli, A., et al.: cvch: A Versatile
and Industrial-Strength SMT Solver. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (2022). https://doi.org/10.1007/
978-3-030-99524-9 24

4. Becker, N., Miiller, P., Summers, A.J.: The axiom profiler: Understanding and
debugging smt quantifier instantiations. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (2019)

5. Bhardwaj, A., Kulkarni, C., Achermann, R., Calciu, I., Kashyap, S., Stutsman,
R., Tai, A., Zellweger, G.: NrOS: Effective replication and sharing in an operating
system. In: Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21) (Jul 2021)

6. Bordis, T., Leino, K.R.M.: Free facts: An alternative to inefficient axioms in Dafny.
In: Formal Methods: 26th International Symposium (FM) (2024). https://doi.org/
10.1007/978-3-031-71162-6 _8

7. Cazamariposas. https://github.com/secure-foundations/mariposa, accessed Feb.
2025

8. Chakarov, A., Geldenhuys, J., Heck, M., Hicks, M., Huang, S., Jaloyan, G.A.,
Joshi, A., Leino, R., Mayer, M., McLaughlin, S., Mritunjai, A., Claudel, C.P.,
Porncharoenwase, S., Rabe, F., Rapoport, M., Reger, G., Roux, C., Rungta, N.,
Salkeld, R., Schlaipfer, M., Schoepe, D., Schwartzentruber, J., Tasiran, S., Tomb,
A., Torlak, E., Tristan, J., Wagner, L., Whalen, M., Willems, R., Xiang, J., Byun,

https://arxiv.org/abs/2410.22419
https://arxiv.org/abs/2410.22419
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://doi.org/10.1007/978-3-031-71162-6_8
https://github.com/secure-foundations/mariposa

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Cazamariposas: Automated Instability Debugging 19

T.J., Cohen, J., Wang, R., Jang, J., Rath, J., Syeda, H.T., Wagner, D., Yuan,
Y.: Formally verified cloud-scale authorization. In: International Conference on
Software Engineering (ICSE) (2025), https://www.amazon.science/publications/
formally-verified-cloud-scale-authorization

Chen, X., Li, Z., Mesicek, L., Narayanan, V., Burtsev, A.: Atmosphere: Towards
practical verified kernels in rust. In: Proceedings of the 1st Workshop on Kernel
Isolation, Safety and Verification (KISV) (2023). https://doi.org/10.1145/3625275.
3625401

Cutler, J.W., Disselkoen, C., Eline, A., He, S., Headley, K., Hicks, M., Hietala, K.,
Ioannidis, E., Kastner, J., Mamat, A., McAdams, D., McCutchen, M., Rungta,
N., Torlak, E., Wells, A.M.: Cedar: A new language for expressive, fast, safe,
and analyzable authorization. In: Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA) (Apr
2024). https://doi.org/10.1145,/3649835

Dodds, M.: Formally Verifying Industry Cryptography. IEEE Security and Privacy
Magazine (2022). https://doi.org/10.1109/MSEC.2022.3153035

Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using Ver-
ification to Disentangle Secure-Enclave Hardware from Software. In: Proceed-
ings of the ACM Symposium on Operating Systems Principles (SOSP) (2017).
https://doi.org/10.1145/3132747.3132782

Fiala, J.: SMTSCOPE (2025), https://github.com/viperproject/smt-scope, accessed
Feb. 2025

Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: Proving practical distributed systems correct. In: Pro-
ceedings of the ACM Symposium on Operating Systems Principles (SOSP) (2015)
Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill,
B.: Ironclad Apps: End-to-end security via automated full-system verification. In:
Proceedings of the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI) (October 2014)

Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: International
Conference on Automated Deduction. pp. 299-314. Springer (2011)

Kovacs, L., Voronkov, A.: First-order theorem proving and vampire. In: Computer
Aided Verification (CAV) (2013)

Kiihlwein, D., Blanchette, J.C.: A survey of axiom selection as a machine learn-
ing problem (2014), https://www.tcs.ifi.lmu.de/mitarbeiter/jasmin-blanchette/
axiom _sel.pdf

Lattuada, A., Hance, T., Bosamiya, J., Brun, M., Cho, C., LeBlanc, H., Srinivasan,
P., Achermann, R., Chajed, T., Hawblitzel, C., Howell, J., Lorch, J., Padon, O.,
Parno, B.: Verus: A practical foundation for systems verification. In: Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP) (November 2024)
Lattuada, A., Hance, T., Cho, C., Brun, M., Subasinghe, 1., Zhou, Y., Howell,
J., Parno, B., Hawblitzel, C.: Verus: Verifying rust programs using linear ghost
types. In: Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA) (December 2023)

Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) Proceedings of the International Con-
ference on Computer Aided Verification (CAV) (2016)

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR) (2010)

https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
https://www.amazon.science/publications/formally-verified-cloud-scale-authorization
https://doi.org/10.1145/3625275.3625401
https://doi.org/10.1145/3625275.3625401
https://doi.org/10.1145/3625275.3625401
https://doi.org/10.1145/3625275.3625401
https://doi.org/10.1145/3649835
https://doi.org/10.1145/3649835
https://doi.org/10.1109/MSEC.2022.3153035
https://doi.org/10.1109/MSEC.2022.3153035
https://doi.org/10.1145/3132747.3132782
https://doi.org/10.1145/3132747.3132782
https://github.com/viperproject/smt-scope
https://www.tcs.ifi.lmu.de/mitarbeiter/jasmin-blanchette/axiom_sel.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/jasmin-blanchette/axiom_sel.pdf

20

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Y. Zhou et al.

Lin, Z., Gancher, J., Parno, B.: Flowcert: Translation validation for asynchronous
dataflow via dynamic fractional permissions. In: Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) (October 2024)

Moskal, M.: Programming with triggers. In: Proceedings of the Workshop on Sat-
isfiability Modulo Theories (2009)

de Moura, L., Bjgrner, N.: Efficient e-matching for SMT solvers. In: Conference on
Automated Deduction (CADE) (2007)

Profiling 73 and solving proof performance issues. https:
//fstar-lang.org/tutorial /book /under the hood/uth smt.html#
profiling-z3-and-solving-proof-performance-issues

Protzenko, J., Parno, B., Fromherz, A., Hawblitzel, C., Polubelova, M., Bharga-
van, K., Beurdouche, B., Choi, J., Delignat-Lavaud, A., Fournet, C., Kulatova, N.,
Ramananandro, T., Rastogi, A., Swamy, N., Wintersteiger, C., Zanella-Beguelin,
S.: EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy (May 2020)

Reitz, A., Fromherz, A., Protzenko, J.: Starmalloc: Verifying a modern, hardened
memory allocator. Proc. ACM Program. Lang. (Oct 2024). https://doi.org/10.
1145/3689773

Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y.
(eds.) Proceedings of the International Conference on Computer Aided Verification
(CAV) (2022)

Schulz, S., Cruanes, S., Vukmirovié, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) Proc. of the 27th CADE, Natal, Brasil. pp. 495-507. No. 11716 in LNAI,
Springer (2019)

Sun, X., Ma, W., Gu, J.T., Ma, Z., Chajed, T., Howell, J., Lattuada, A., Padon,
O., Suresh, L., Szekeres, A., Xu, T.: Anvil: Verifying liveness of cluster man-
agement controllers. In: 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). USENIX Association, Santa Clara, CA (Jul 2024),
https://www.usenix.org/conference/osdi24 /presentation/sun-xudong

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoue, J.K.,
Zanella-Béguelin, S.: Dependent Types and Multi-Monadic Effects in F*. In: Pro-
ceedings of the ACM Symposium on Principles of Programming Languages (POPL)
(2016)

Tomb, A., Tristan, J.B.: Avoiding verification brittleness in Dafny.
https://dafny.org/blog/2023/12/01 /avoiding-verification-brittleness/ (2023)
Verification debugging when verification fails. https://dafny.org/dafny /DafnyRef/
DafnyRef#£sec-brittle-verification

Verified IronKV. https://github.com/verus-lang/verified-ironkv, accessed Feb.
2025

Verified memory allocator. https://github.com/verus-lang/
verified-memory-allocator, accessed Feb. 2025
Verified node replication. https://github.com/verus-lang/

verified-node-replication, accessed Feb. 2025

Verified page table for NrOS. https://github.com/utaal/verified-nrkernel, accessed
Feb. 2025

Verified splinter db. https://github.com/vmware-labs/verified-betrfs/tree/main/
Splinter, accessed Feb. 2025

Verified storage. https://github.com/microsoft /verified-storage, accessed Feb. 2025

https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#profiling-z3-and-solving-proof-performance-issues
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#profiling-z3-and-solving-proof-performance-issues
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html#profiling-z3-and-solving-proof-performance-issues
https://doi.org/10.1145/3689773
https://doi.org/10.1145/3689773
https://doi.org/10.1145/3689773
https://doi.org/10.1145/3689773
https://www.usenix.org/conference/osdi24/presentation/sun-xudong
https://dafny.org/dafny/DafnyRef/DafnyRef#sec-brittle-verification
https://dafny.org/dafny/DafnyRef/DafnyRef#sec-brittle-verification
https://github.com/verus-lang/verified-ironkv
https://github.com/verus-lang/verified-memory-allocator
https://github.com/verus-lang/verified-memory-allocator
https://github.com/verus-lang/verified-node-replication
https://github.com/verus-lang/verified-node-replication
https://github.com/utaal/verified-nrkernel
https://github.com/vmware-labs/verified-betrfs/tree/main/Splinter
https://github.com/vmware-labs/verified-betrfs/tree/main/Splinter
https://github.com/microsoft/verified-storage

Cazamariposas: Automated Instability Debugging 21

41. Zhou, Y., Bosamiya, J., Li, J., Heule, M., Parno, B.: Context pruning for more
robust smt-based program verification. In: Proceedings of the Formal Methods in
Computer-Aided Design (FMCAD) Conference (October 2024)

42. Zhou, Y., Bosamiya, J., Takashima, Y., Li, J., Heule, M., Parno, B.: Mariposa:
Measuring SMT instability in automated program verification. In: Proceedings of
the Formal Methods in Computer-Aided Design (FMCAD) (October 2023)

43. Zhou, Z., Anjali, Chen, W., Gong, S., Hawblitzel, C., Cui, W.: VERISMO: a ver-
ified security module for confidential VMs. In: Proceedings of the 18th USENIX
Conference on Operating Systems Design and Implementation (OSDI) (2024)

A Full Code Examples

A.1 Unnecessary Instantiations Example

In the example in Sec. 3.1, the lemma lemma_from_after was shortened from
lemma_from_after_get_stateful _set_step_to_after_update_stateful_set_step.

The full function definition is below. On line 33, we have the hide expression.
This is not in the original program, but including it will stabilize the correspond-
ing SMT query.

1 #[verifier(spinoff_prover)]

2 proof fn lemma_from_after_get_stateful_set_step_to_after_update_stateful_set_step(

3 spec: TempPred<RMQCluster>, rabbitmq: RabbitmqClusterView, resp_msg: RMQMessage

1)

5 requires

6 spec.entails(always(lift_action(RMQCluster: :next()))),

7 spec.entails(tla_forall(|i| RMQCluster::controller_next().weak_fairness(i))),

8 spec.entails(always(lift_state(RMQCluster::crash_disabled()))),
9 spec.entails(always(lift_state(RMQCluster: :busy_disabled()))),

10 spec.entails(always(lift_state(RMQCluster::pending_req_of_key_is_unique_with_unique_id
(rabbitmq.object_ref())))),

11 spec.entails(always(lift_state(RMQCluster::every_in_flight_msg_has_unique_id()))),

12 spec.entails(always(lift_state(RMQCluster::each_object_in_etcd_is_well_formed()))),

13 spec.entails(always(lift_state(RMQCluster::desired_state_is(rabbitmq)))),

14 spec.entails(always(lift_state(helper_invariants::
every_resource_update_request_implies_at_after_update_resource_step(SubResource::
StatefulSet, rabbitmqg)))),

15 spec.entails(always(lift_state(helper_invariants::
stateful _set_not_exists_or_matches_or_no_more_status_update(rabbitmq)))),

16 spec.entails(always(lift_state(helper_invariants::
no_delete_resource_request_msg_in_flight(SubResource::StatefulSet, rabbitmg)))),

17 spec.entails(always(lift_state(helper_invariants::
cm_rv_is_the_same_as_etcd_server_cm_if_cm_updated(rabbitmg)))),

18 spec.entails(always(lift_state(helper_invariants::
resource_object_only_has_owner_reference_pointing_to_current_cr(SubResource::
StatefulSet, rabbitmq)))),

19 spec.entails(always(lift_state(helper_invariants::
stateful _set_in_etcd_satisfies_unchangeable(rabbitmqg)))),

20 spec.entails(always(lift_action(helper_invariants::cm_rv_stays_unchanged(rabbitmg)))),

21 ensures

22 spec.entails(

23 lift_state(|s: RMQCluster| {

24 &&& resp_msg_is_the_in_flight_ok_resp_at_after_get_resource_step(SubResource::

StatefulSet, rabbitmg, resp_msg)(s)
25 &&& !sub_resource_state_matches(SubResource::StatefulSet, rabbitmq) (s)

26 D

65

66
67
68
69

~ |
w]

S R S BN

3 =7~

8

80

Y. Zhou et al.

.leads_to(lift_state(|s: RMQCluster| {
&&& pending_req_in_flight_at_after_update_resource_step(SubResource::StatefulSet,

rabbitmq) (s)
&&& !sub_resource_state_matches(SubResource::StatefulSet, rabbitmq) (s)
1))
),

hide(make_stateful_set);

let pre = |s: RMQCluster| {
&&& resp_msg_is_the_in_flight_ok_resp_at_after_get_resource_step(SubResource::
StatefulSet, rabbitmg, resp_msg)(s)
&&& !sub_resource_state_matches(SubResource::StatefulSet, rabbitmq) (s)

};

let post = |s: RMQCluster| {
&&& pending_req_in_flight_at_after_update_resource_step(SubResource::StatefulSet,
rabbitmq) (s)
&&& !sub_resource_state_matches(SubResource: :StatefulSet, rabbitmq) (s)

1

let input = (Some(resp_msg), Some(rabbitmg.object_ref()));

let stronger_next = |s, s_prime: RMQCluster| {
&&& RMQCluster: :next() (s, s_prime)
&&& RMQCluster: :crash_disabled() (s)
&&& RMQCluster::busy_disabled() (s)
&&& RMQCluster::pending_req_of_key_is_unique_with_unique_id(rabbitmg.object_ref())(s)
&&& RMQCluster::every_in_flight_msg_has_unique_id() (s)
&&& RMQCluster::each_object_in_etcd_is_well_formed() (s)
&&& RMQCluster::desired_state_is(rabbitmq) (s)
&&& helper_invariants::
every_resource_update_request_implies_at_after_update_resource_step(SubResource::
StatefulSet, rabbitmq)(s)
&&& helper_invariants::stateful_set_not_exists_or_matches_or_no_more_status_update(
rabbitmq) (s)
&&& helper_invariants::no_delete_resource_request_msg_in_flight (SubResource::
StatefulSet, rabbitmq) (s)
&&& helper_invariants::cm_rv_is_the_same_as_etcd_server_cm_if_cm_updated(rabbitmq) (s)
&&& helper_invariants::resource_object_only_has_owner_reference_pointing_to_current_cr
(SubResource: :StatefulSet, rabbitmq)(s)
&&& helper_invariants::stateful_set_in_etcd_satisfies_unchangeable(rabbitmq) (s)
&&& helper_invariants::cm_rv_stays_unchanged(rabbitmg) (s, s_prime)

};

combine_spec_entails_always_n!(
spec, lift_action(stronger_next),
lift_action(RMQCluster::next()),
lift_state(RMQCluster::crash_disabled()),
lift_state(RMQCluster: :busy_disabled()),
lift_state(RMQCluster::pending_req_of_key_is_unique_with_unique_id(rabbitmq.object_ref
0)),
lift_state(RMQCluster::every_in_flight_msg_has_unique_id()),
lift_state(RMQCluster::each_object_in_etcd_is_well_formed()),
lift_state(RMQCluster::desired_state_is(rabbitmq)),
lift_state(helper_invariants::
every_resource_update_request_implies_at_after_update_resource_step(SubResource::
StatefulSet, rabbitmq)),
lift_state(helper_invariants::
stateful_set_not_exists_or_matches_or_no_more_status_update(rabbitmq)),
lift_state(helper_invariants::no_delete_resource_request_msg_in_flight(SubResource::
StatefulSet, rabbitmq)),
lift_state(helper_invariants::cm_rv_is_the_same_as_etcd_server_cm_if_cm_updated(
rabbitmq)),
lift_state(helper_invariants::
resource_object_only_has_owner_reference_pointing_to_current_cr(SubResource::
StatefulSet, rabbitmqg)),
lift_state(helper_invariants::stateful_set_in_etcd_satisfies_unchangeable(rabbitmq)),
lift_action(helper_invariants::cm_rv_stays_unchanged(rabbitmg))

J;

assert forall |s, s_prime: RMQCluster| pre(s) && #[trigger] stronger_next(s, s_prime)
implies pre(s_prime) || post(s_prime) by {
let step = choose |step| RMQCluster::next_step(s, s_prime, step);
let resource_key = get_request(SubResource::StatefulSet, rabbitmq).key;

Cazamariposas: Automated Instability Debugging 23

81 match step {

82 Step::ApiServerStep(input) => {

83 let req = input.get_Some_0(Q);

84 assert(!resource_delete_request_msg(resource_key) (req));

85 assert(!resource_update_request_msg(resource_key) (req));

86 assert(!resource_update_status_request_msg(resource_key) (req));
87 1,

88 _ = {3

89 }

90
91 RMQCluster: :lemma_pre_leads_to_post_by_controller(spec, input, stronger_next, RMQCluster
::continue_reconcile(), pre, post);

A.2 Missing Instantiations Example

In the example in Sec. 3.1, the function log_entry_alive_wrap_around was
shortened to entry_alive_wraps, the function log_entry_alive_value was short-
ened to entry_alive and buffer_size was treated the same LOG_SIZE. Addition-
ally, we omitted the function log_entry_is_alive.

Below we provide the full Verus code without any of those simplifications.
Lines 46-56 are not present in the original file, but including them will stabilize
the corresponding query.

This fix uses a forall ... implies ... block, which introduces a universally
quantified variable i with a presupposition, and tries to prove an implication
by allowing the programmer to make assertions about i. This is essentially a
source-level version of Skolemizing.

The assertion on line 55 triggers the necessary instantiations for the EucDiv
axiom.

1 pub open const LOG_SIZE: usize = 512 = 1024;

2

3 pub open spec fn log_entry_alive_value(logical: LogicallogIdx, buffer_size: nat) -> bool
1 recommends

5 buffer_size == LOG_SIZE,

6 {

7 ((logical / buffer_size as int) % 2) == 0

8}

10 /// predicate to check whether a log entry is alive
11 pub open spec fn log_entry_is_alive(

12 alive_bits: Map<LogIdx, bool>,

13 logical: LogicalLogIdx,

14 buffer_size: nat,

15) -> bool

16 recommends

17 buffer_size == LOG_SIZE,

18 {

19 let phys_id = log_entry_idx(logical, buffer_size);

20 alive_bits[phys_id as nat] == log_entry_alive_value(logical, buffer_size)
21}

22

23 spec fn add_buffersize(i: int, buffer_size: nat) -> int {
24 i + buffer_size

25 %

27 proof fn log_entry_alive_wrap_around(
28 alive_bits: Map<LogIdx, bool>,

29 buffer_size: nat,

30 low: nat,

B

Y. Zhou et al.

high: nat,
) .
requires
buffer_size == LOG_SIZE,
forall|i: nat| i < buffer_size <==> alive_bits.contains_key(i),
low <= high <= low + buffer_size,
ensures
forall|i: int|
low <= i < high ==> log_entry_is_alive(alive_bits, i, buffer_size)
== |#[trigger] log_entry_is_alive(
alive_bits,
add_buffersize(i, buffer_size),
buffer_size,
),
{
assert forall|i: int|
low <= i < high
implies
log_entry_is_alive(alive_bits, i, buffer_size)
== |#[trigger] log_entry_is_alive(
alive_bits,
add_buffersize(i, buffer_size),
buffer_size)
by {
assert ((i + buffer_size)/buffer_size==(i + buffer_size)/buffer_size);

}

Verus Benchmark Projects

We curate a new benchmark set comprised of SMT queries from the following

ten
[)

Verus verification projects.

VerusKV is a distributed key-value store [35].

VerusMimalloc is a concurrent memory allocator [36].

VerusNR is a concurrent NUMA-aware node-replication library [37].
VerusStorage is a storage system targeting persistent memory devices [40].
VerusPT is an implementation [38] of the NrOS [5] page table.
Atmosphere is a full-featured microkernel [9].

VerusSplinterDB is a key-value store designed around a B¢ tree [39].
Verismo is a security module for confidential VMs [43].

Anvil is a tool for verifying Kubernetes controllers with Verus [31]. The
project verifies three controllers: ZooKeeper, RabbitMQ, and FluentBit.
FlowCert is a tool for the translation validation of dataflow programs [23].

Cazamariposas: Automated Instability Debugging

Benchmark Stable Unstable Total
Number % Number %
VerusKV 363 100.00% 0 0.00% 363
VerusMimalloc 718 99.03% 7 0.97% 725
VerusNR 252 99.21% 2 0.79% 254
VerusStorage 374 94.44% 22 5.56% 396
VerusPT 336 99.41% 0.59% 338
Atmosphere 330 99.70% 0.30% 331
FlowCert 27 96.55% 3.45% 28
SplinterDB 1,213 99.84% 2 0.16% 1,215
Verismo 2,113 99.39% 13 0.61% 2,126
Anvil 1,788 98.89% 20 1.11% 1,808
Total 7,514 99.08% 70 0.92% 7,584

Table 2: Stability results on the Verus benchmark projects

25

	Cazamariposas: Automated Instability Debugging in SMT-based Program Verification

