
Academic Editor: Tongbiao Wang

Received: 3 December 2024

Revised: 24 December 2024

Accepted: 26 December 2024

Published: 27 December 2024

Citation: Chapagain, A.; Abuoliem,

D.; Cho, I.H.. Enabling Fast AI-Driven

Inverse Design of a Multifunctional

Nanosurface by Parallel Evolution

Strategies. Nanomaterials 2025, 15, 27.

https://doi.org/10.3390/

nano15010027

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Enabling Fast AI-Driven Inverse Design of a Multifunctional
Nanosurface by Parallel Evolution Strategies
Ashish Chapagain , Dima Abuoliem and In Ho Cho *

Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA;
cashish@iastate.edu (A.C.); abuoliem@iastate.edu (D.A.)
* Correspondence: icho@iastate.edu

Abstract: Multifunctional nanosurfaces receive growing attention due to their versatile
properties. Capillary force lithography (CFL) has emerged as a simple and economical
method for fabricating these surfaces. In recent works, the authors proposed to leverage
the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve
specific functionalities such as frictional, optical, and bactericidal properties. For artifi-
cial intelligence (AI)-driven inverse design, earlier research integrates basic multiphysics
principles such as dynamic viscosity, air diffusivity, surface tension, and electric potential
with backward deep learning (DL) on the framework of ES. As a successful alternative to
reinforcement learning, ES performed well for the AI-driven inverse design. However, the
computational limitations of ES pose a critical technical challenge to achieving fast and effi-
cient design. This paper addresses the challenges by proposing a parallel-computing-based
ES (named parallel ES). The parallel ES demonstrated the desired speed and scalability,
accelerating the AI-driven inverse design of multifunctional nanopatterned surfaces. De-
tailed parallel ES algorithms and cost models are presented, showing its potential as a
promising tool for advancing AI-driven nanomanufacturing.

Keywords: capillary force lithography; parallel evolution strategies; light-controlled
nanopatterning; AI-driven inverse design; multifunctional nanosurface

1. Introduction
AI and machine learning (ML) have appeared as transformative techniques in nanos-

tructure design, mainly for solving inverse design problems, which are complex and
computationally intensive due to their nature and dimensionality. In recent years, the
complexity of nanostructure design has grown significantly, emphasizing the efficiency of
implementing AI and ML to accelerate the design process [1].

In advanced technology sectors, nanoscale devices hold significant value due to the
increasing demand for compact, multifunctional devices. Nature inspires researchers in
every domain; for example, the wings of glasswing butterflies possess antireflection and
antifouling properties, making them suitable for optical implants [2]. In a similar stream,
cicadae possess antibacterial properties solely due to the interaction between bacteria and
the nanostructures on their surface [3], Spodoptera eridania (nocturnal moths) have enhanced
light perception by minimizing light reflection through matching the refractive index of air
with the lens [4], and the unique riblet structure on shark skin helps reduce drag, increasing
its efficiency and speed while swimming [5]. Mimicking these natural properties can be
helpful in multiple disciplines for achieving different functionalities. Researchers have been
able to develop nanoscale devices that have antireflection and antifouling properties, as

Nanomaterials 2025, 15, 27 https://doi.org/10.3390/nano15010027

https://doi.org/10.3390/nano15010027
https://doi.org/10.3390/nano15010027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4882-1695
https://orcid.org/0000-0002-2265-9602
https://doi.org/10.3390/nano15010027
https://www.mdpi.com/article/10.3390/nano15010027?type=check_update&version=1

Nanomaterials 2025, 15, 27 2 of 19

inspired by the glasswing butterflies [2], and simulations of a marine vessel after modifying
its hull design using a riblet structure, as inspired by shark skin, showed a reduction in
drag [5]. One of the physical properties that influence the functionality of the surface is
the height of the nanostructures and their distribution [6]. The process of creating these
surfaces and their structures is known as nanofabrication, and it is essential to produce the
nanostructures in a cost-effective manner.

Ref. [7] presents a work showing the potential of ML for discovering the nanomaterial
by predicting the cathode in the rechargeable batteries made of zinc, selecting 80 from
130,000 materials with 70 never tested before. The nanotechnology implements ML tech-
niques by using convolutional neural networks (CNNs) to analyze the scanning images of
nanosurfaces, getting 95% accurate classification of the nanoparticles. ML shows a high
ability to predict the properties of the nanomaterials and can guide the design process and
the invention of nanomachines by creating a vast dataset for training the model includes
two main key tasks: the automation of tools implemented from quantum data and the
simulation of nanodevices without a human in the process [1]. The quantum dataset
simulates the nanodevice’s appearance and operations with AI, improving the nanoscale
production, such as nanoparticles used for LEDs (perovskites) and catalytic bio-molecules.
The investigation of plasmonic nanostructure parameters’ relation between nanodisk ge-
ometry and spectra showed that ML can predict cases with less than 5% errors to the truth
performance [8]. Ref. [9] used a type of CNNs, specifically a residual network, including
various sequential units. Each unit consisted of three layers: a convolution, a batch, and an
activation layer. The network analyzes a 2D image of nanostructure data, capturing the
shape type, position, orientation, and dimension information.

Ref. [10] investigated the application of ML in designing nanomaterial phases for
sustainable development and environmental risk assessment (ERA). The study highlighted
different methods, such as regression models and CNNs, to predict the material’s toxicity
according to the size, shape, composition, and properties like thermal stability and conduc-
tivity. Ref. [11] studied the design of carbon nanotubes (CNTs) as nanomaterials for the
lubrication of different types of polymers using an ML model. Their results proved the
ability of the model to discover the complex relation between key parameters. Identifying
the parameters guarantees accurate predictions of CNT friction and wear behavior, thereby
setting a framework for optimizing different friction conditions. Ref. [12] used ML in
predicting the antibacterial capacity of nanoparticles by training regression algorithms and
diverse validation metrics. Their results showed that 78% of the dependent variables are
defined by the model prediction, with key predictive variables including the size of the
nanoparticle core, bacterium species, and exposure dose.

ML demonstrated its effectiveness in nanoengineering, especially in the artificial
neural networks (ANNs) models. Ref. [13] analyzed the physicochemical of nanoparti-
cles profile with zeta potential predictions by the temperature, pH, and ionic content of
dispersions. Their results showed that the zeta value increased by optimizing the manufac-
turing parameters, reducing the nanoparticle agglomeration, and improving production
sustainability as reinforcements. Ref. [14] included in their study the deploying of ML
for precise crystallographic predictions at the nanoscale, seeking to enhance the design
and experiment process. The model used for prediction was created with a support vector
machines (SVM) model optimized with a genetic algorithm (GA) that defines the molecular
edge, connectivity, functional correlation, and structure properties.

Conceived in the 1900s with nanoimprint lithography [15–20], which is a mechanical
process that impresses nanoscale features from a pre-patterned surface (template) to a
substrate, several lithography techniques are in use for nanofabrication. Photolithography
uses light to transfer a geometric pattern from a photomask to a light-sensitive chemical

Nanomaterials 2025, 15, 27 3 of 19

photoresist [21,22]. Focused ion beam lithography [23] uses beams of ions to mill the mate-
rial surface with high precision. CFL leverages capillary force using ultraviolet (UV) curable
polymers without the need for additional pressure [24–26]. The basic working principle of
CFL is that when a liquid-phase polymer comes into contact with a polydimethylsiloxane
(PDMS) mold, where the liquid’s total free energy is reduced drives the liquid to rise above
the capillary [26,27].

Among various nanofabrication techniques, CFL offers several advantages. CFL is
generally less expensive than many high-resolution techniques, such as focused ion beam
lithography, because it does not need specialized equipment or chemical processes [28].
In addition, CFL does not rely on high-energy sources like focused ion beam lithography
and photolithography; instead using capillary forces to shape nanostructures, making
this technique more simple and energy efficient. The discrepancy between predicted and
fabricated nanosurfaces has been addressed by one of our collaborators [28] through precise
height modeling of nanostructures using CFL, enabling successful pattern fabrication,
such as the letters “CY”. This is achieved with variations in the height of nanoridges,
which correlated with distinct colors. Using CFL, the nanoridge module has heights of
1123 ± 16 nm, 965 ± 8 nm, and 848 ± 34 nm, resulting in the colors orange, yellow, and blue,
respectively. These structures were achieved using a PDMS mold featuring a height of
1200 nm, width of 1500 nm, and pitch grating of 3000 nm. Figure 1a presents the color
changes through height variation in the letters and background, while Figure 1b shows
the precise fabrication of the pattern “CY.” The alignment between the model and the
experiment results demonstrated the ability to achieve accurate predictions using parallel
ES for nanosurface fabrication.

Figure 1. Fabrication and visualization of the “CY” pattern using CFL. (a) The fabrication of the “CY”
pattern on the nanosurface using CFL, revealing the capability to achieve distinct colors by precisely
controlling nanoridge heights to specific dimensions. (b) A 3D representation of the “CY” pattern
showing the height of nanoridges distribution, where variations in height due to the observed color
distinctions. ((a,b) are cited from [28]).

Thus, in this study, nanostructures are fabricated using light-controlled CFL, which
involves pre-curing the photopolymer Norland Optical Adhesive (photopolymer–NOA)
using UV radiation, modifying its properties, and affecting capillary action. One problem
persists in light-controlled CFL—the “forbidden gap”, which is the sudden drop in height
attained by nanostructures when a specific threshold UV dose is reached [6].

In recent advances in addressing the problem of the “forbidden gap”, researchers
sought to uncover the pseudo-physics governing the nanoscale phenomenon [29]. Using a
hybrid intelligence framework, the authors identified the fundamental physics influencing
a liquid’s rise in nanoscale. The identified physical properties were air diffusivity, dynamic
viscosity, surface tension, and electric potential, vital in controlling nanoscale height modu-

Nanomaterials 2025, 15, 27 4 of 19

lation during the CFL process. This study enabled the authors to predict and control the
nanostructure’s height by overcoming the sudden jump [29]. The limited data could then
be enriched using pseudo-physics principles, and the required UV dose could be predicted
to attain a specific nanostructure height, thereby allowing more control over the fabrication
process. This represents a notable advancement and provides a reliable framework for
nanoscale fabrication. Further advances were made to incorporate the pseudo-physics to
design a surface with multifunctional surfaces.

In [30], the researchers introduced an algorithm capable of designing multifunctional
nanosurfaces with on-demand color, bactericidal, and frictional properties. These proper-
ties are quantified using three objective functions—Objab, Objf, and Objc. Each objective
function is normalized to a scale of 0 to 1, with 1 representing an ideal fulfillment of the
target property. The cumulative objective function, Obj, combines these three individual
objectives, optimizing the nanosurface design to meet all target properties effectively:

Obj =
1
3
(Objab + Objf + Objc) (1)

Thus, a cumulative score of Obj = 1 would signify an optimal design, achieving the
highest standards across bactericidal, frictional, and color properties. For the purpose of this
paper, the lower threshold for the objective function value is taken as 0.96. In particular, the
antibacterial objective function, Objab, quantifies the bactericidal effectiveness of the surface:

Objab = f
(

1− |δt − δp|
δt

)
, where δt is the target difference between the average height of

short and tall nanostructures and δp is the predicted difference between the heights. The
function f (x) = exp(x− 1) normalizes this difference, allowing Objab to range from 0 to 1,
with 1 indicating perfect bactericidal effectiveness. The frictional objective function, Objf,

evaluates the surface’s frictional property: Objf = f
(

1− |µt − µp|
µt

)
, where µt is the target

friction coefficient and µp is the predicted value, and the objective function is normalized
using f (x) = exp(x− 1). Objf also ranges from 0 to 1, with 1 indicating a perfect match to
the target frictional property. The color reproduction objective function, Objc, measures the
accuracy of color matching: Objc = g

(
DKL(fp ∥ ft)

)
, where DKL(fp ∥ ft) is the Kullback–

Leibler (KL) divergence between the predicted (fp) and target (ft) height distributions,
normalized with g(x) = 2

1 + exp(x/20) , to map the value between 0 and 1. Here, Objc = 1
represents perfect color reproduction. One of the most dominant tasks in computing the
objective function is finding the friction coefficient, which directly affects the aim function
for friction [30]. The nanopillars are designed with a top hemisphere and cylindrical pillar
(see Figure 2d). To understand the relationship between the normal force (P) and the
frictional force (F), a three-stage approach was adopted. In the first stage, contact occurs at
the hemispherical top, and a small deformation is observed (see Figure 2d, case 1). Young’s
modulus (E) and Poisson’s ratio (ν) of PDMS were used to define the composite elastic
modulus as E∗ = E

1 − ν2 . Under shear, the contact area of the hemisphere changes from an

initial area (a0) to a final area (a f), where B =
a f
a0

represents the extent of this change. At
the microscopic level, for each nanopillar’s hemisphere, the initial contact area for the i-th
microcontact is defined as a0,i = πR(hi − d) if hi ≥ d and a0,i = 0 if hi < d. This case is
identified based on the condition hi − d < ha, where ha is the height of the hemispherical
top. Moreover, d represents the distance between the contact surface and the base, hi is
the height of nanostructures, and R is the hemisphere is radius of curvature. The final
contact area for each hemisphere is af,i, where fi indicates the frictional force acting on the
hemispherical top. The frictional force (F) scales with the contact area (A) and is expressed
as f = sa f , where s is the frictional strength at the PDMS–glass interface.

Nanomaterials 2025, 15, 27 5 of 19

Figure 2. (a) The framework illustrates a hybrid intelligence approach, combining humans and
AI to address limited experimental data in the physical sciences. Pseudo-physics rules, derived
from human insights and machine computation, enhance the dataset with insights on UV dosage
requirements. DL models predict the necessary UV dose based on the CFL template pattern and
attained heights, while ES optimizes for functional properties, such as friction, color, and antibacterial
effectiveness. Using ES and DL in unison, the UV dose required for nanostructure height in a
grid distribution can be accurately predicted and fabricated. (b) Workflow of ES implemented on
multiple processors to leverage parallel processing, distributing tasks across processors for efficient
optimization. Each processor operates a segment of worker tasks, collectively refining functional
properties for improved performance. (c) The process of CFL, where a PDMS template is lowered into
photopolymer–NOA, which is then treated with UV dose, and thus, forms a nanopillar array. (d) The
descent of a contact surface into nanopillars one at a time, along with three cases of deformation:
case 1, spherical contact; case 2, pre-buckling; and case 3, post-buckling state. (e) The distribution
of tall and short pillars impacts bactericidal properties on a surface. The solid red line depicts
the distribution of tall nanopillars, while the solid yellow line illustrates the distribution of short
nanopillars. The green bars indicate randomly selected heights from the tall nanopillar distribution,
and the blue bars show randomly selected heights from the short nanopillar distribution. (f) A 50 × 50
grid of nanopillar arrays representing a 150 µm × 150 µm surface area with multifunctional properties
optimized using parallel version ES. (g) UV dose required to generate the surface and the time needed
to achieve this dose at an intensity of 150 J/m²/s. (h) Color of the surface generated by the sequential
version for a target wavelength of 500 nm, achieving the desired green hue. (i) Cross-sectional height
variation along the surface marked in (f). (j) Normal force (P) vs. frictional force (F) plot, where the
slope of the curve reflects the required friction coefficient (µ), reaching the target value of 2.41.

Nanomaterials 2025, 15, 27 6 of 19

On a macroscopic level, for N asperities, the total initial and final contact areas are
A0 = ∑N

i=1 a0,i and A f = ∑N
i=1 af,i, respectively, with each af,i = B× a0,i. Using Hertz’s

model, the normal force P is calculated as:

Pi =

(
4E∗

3
R1/2(hi − d)3/2

)
, (2)

and the frictional force as:

Fi = BsπR(hi − d). (3)

This stage remains valid as long as contact is limited to the hemispherical top of
the nanopillars.

The second stage begins when the contact surface reaches the cylindrical pillars. At
this point, the cylindrical part of each nanopillar undergoes axial compression. For each
cylindrical portion, the axial force Pi is calculated using Hooke’s law as:

Pi =

(
πr2E∗

hi
(hi − d)

)
, ∀i ∈ [1, N] (4)

with lateral resistance for each pillar determined by:

Fi = sπr2. (5)

The final third stage occurs if the normal force Pi causes the nanopillars to buckle. This
stage requires evaluating the potential for buckling through Euler’s buckling formula for a
circular section, which assumes fixed support at the nanopillar base and hinged support at
the top, which can be identified when hi − d < ha and Pi > Pi

cr:

Pi
cr =

π2E∗ I
(0.7hi)2 (6)

where I is the second-moment area of the circular nanopillars. In the event of buckling, the
nanopillars are considered redundant in terms of frictional force, making both Pi and Fi

zero for buckled pillars.
Ultimately, the total normal force P and frictional force F across a surface with N

nanopillars are calculated as the summation of individual forces from each nanopillar, after
checking all three cases for each nanopillar in the nanostructure array:

P =
N

∑
i=1

Pi and F =
N

∑
i=1

Fi. (7)

The authors proposed a computational model that facilitated the rapid fabrication
of nanostructures. In this study, the researchers address the scalability challenges of
the sequential version of the ES algorithm by implementing a parallel version of the
ES algorithm based on the work of [31]. While the previous work developed a serial
version of an AI-driven multifunctional nanopattern using ES, this process successfully
optimized multifunctional nanosurfaces but faced limitations, especially with large-scale
or complex designs. However, the current work handled these limitations by introducing
a parallel version of the ES algorithm. Parallel computing has been essential for solving
large-scale and complex optimization problems in various fields. Hierarchical grouping
strategies can improve multiscale analytical performance in earlier parallel computing
studies. Researchers have elevated computational efficiency to near-superlinear speeds
in some cases by controlling the distributing workloads across symmetric multiprocessor
(SMP) clusters and minimizing inter-processor communication [32–34]. By efficiently

Nanomaterials 2025, 15, 27 7 of 19

partitioning and subdividing the problem space, these hierarchical grouping techniques
enable more effective optimization of complex, nonlinear systems by guaranteeing that
each processor functions with minimal communication overhead. This strategy is essential
to our study, as the parallel version of the ES algorithm gains a great deal from effective
communication techniques, especially when scaled to a larger number of workers.

By distributing the computational load across multiple processors, the parallel ES
algorithm provides a significant advantage in scalability and reduces the overall runtime
of the optimization process. By transitioning to a parallel version of ES enabled the authors
to explore a more extensive solution space using multiple cores in high-performance com-
puting (HPC) clusters. This transition was believed to reduce the execution time for each
loop and provide a robust exploration of search space. Figure 2a shows the workflow for
implementing Hybrid Intelligence (HI) to generate a multifunctional nanosurface, adapted
from [30]. AI-driven methods such as Bayesian Evolutionary algorithms are combined
with human knowledge in physical properties to enhance the limited experimental data.
Objective and probability density functions are developed to quantify and evaluate the
expected properties, and a DL model estimates the needed UV dosages for specific nanos-
tructure heights. The parallel version of the ES algorithm (Figure 2b) distributes worker
tasks across multiple parallel units, where each worker independently evaluates and opti-
mizes its assigned task. This method significantly accelerates the optimization process by
aggregating each worker’s results to enhance the overall reward efficiently. In addition,
Figure 2c demonstrates the CFL fabrication procedure, where a template is lowered to
come into contact with a photopolymer–NOA, after which the required UV dose is applied,
causing the photopolymer–NOA to rise into the template, thus forming the nanopillar
array. Figure 2d depicts the concept for computing friction and normal force, which ulti-
mately determine the friction coefficient (µ). The computation involves three cases, which
check the contact section (hemisphere or cylindrical portion) and buckling effect. Figure 2e
illustrates the distribution of short and tall nanopillars formed using the parallel version of
the ES algorithm employed in the paper, which forms the 3D surface depicted in Figure 2f,
with a cross-sectional surface shown in Figure 2i. Figure 2g provides the required UV dose
needed to form the surface and the color generated by the surface is shown in Figure 2h.
Finally, the P vs. N diagram, which represents the frictional performance of the surface, is
shown in Figure 2j.

2. Materials and Methods
The materials and methods section outlines the frameworks and methodologies used

in this study to achieve the research objectives. By describing the sequential and parallel
versions of the ES algorithm, the implementation of the parallel algorithm by Open_MPI,
and the setup of validating model predictions. Furthermore, the computational environ-
ment parameters and procedures for performance evaluation are outlined, including the
cost analysis of achieving consistency between the sequential and parallel methods.

2.1. Sequential Version of ES

A variation of the ES algorithms, adapted from [31], was used for our study, which
is presented in Table 1. ES optimizes the distribution of short and tall nanostructures on
a multifunctional surface. This distribution is described in terms of the height of short
nanostructures and the standard deviation of short and tall nanostructures.

In ES, a parameter vector θ is initialized with three values: θ1, representing the initial
guess for the mean height of short nanostructures (nm); θ2, representing the standard
deviation of the height of short nanostructures (nm); and θ3, representing the standard
deviation of tall nanostructures (nm). For each iteration, a perturbed version of this vector,

Nanomaterials 2025, 15, 27 8 of 19

θp, is calculated by introducing a slight change in each parameter using each row (ϵw) of
the matrix E. The matrix E has dimensions nw × 3, where nw represents the number of
workers (or variations explored) in ES. This approach enables exploration of the parameter
space through slight variations in each θi, based on a noise standard deviation (σ), where
σ ∈ R.

The objective function, Obj(), integrates three independent objectives—the loss func-
tions for color, friction, and bactericidal effect—using θp as input and returning the reward
r and a matrix G. The matrix G contains ne nanostructure heights arranged in a square with
dimensions

√
ne ×

√
ne, where ne is the number of nanostructures present in the surface.

The performance of evolution strategies is evaluated through the weighted reward w,
which is calculated as ET · r, where r is a vector of rewards from each worker. Additionally,
α, where α ∈ R, represents the learning rate used in the algorithm, which controls the
convergence speed of ES.

After running the ES algorithm for n iterations, the output for multifunctional
nanosurface optimization includes the optimized parameter vector (θp), a list of aver-
age rewards from each iteration (ra), and the nanopillar grid matrix (G) that exhibits the
desired properties.

Table 1. Sequential ES algorithm for multifunctional nanosurface development.

Algorithm: Sequential ES

Input: n, nw, σ, and α.
Output: θp, ra, and G

1. Initialize parameter vector θ ∈ R3 with 100 // Initial guess values
2. Initialize ra ∈ Rn with 0 // Average reward
3. Initialize rp ← 0 // Previous reward
4. Initialize r ← 0
5. Initialize θp ∈ R3 with 0
6. For c = 1 to n do:

6.1 E← [Eij ∼ N (0, 1) : i = 1, 2, . . . , nw; j = 1, 2, 3] ∈ Rnw×3

6.2 Initialize r ∈ Rnw with 0
6.3 For w = 1 to nw do:

6.3.1 ϵw ← {Ewj : j = 1, 2, 3} ∈ R3

6.3.2 θp ← θ+ σϵw
6.3.3 If θpk

≤ 0 for k ∈ {1, 2, 3}:
6.3.3.1 rw ← rp

6.3.4 Else:
6.3.4.1 r, G← Obj(θp) // Objective function
6.3.4.2 rw ← r

6.3.5 If r > 0.96:
6.3.5.1 rac ← r
6.3.5.2 Return θp, ra, G

6.4 rac ← E(r)
6.5 rp ← rac

6.6 w← ET · r
6.7 θ← θ+ α

nwσ w
7. End for

The Sequential ES algorithm steps involve calculating and updating parameters iteratively for multifunctional
nanosurface development.

2.2. Parallel Version of ES Using Open_MPI

ES supports parallelization for parameter exploration and reward aggregation. Each
worker task, discussed in the previous section, which is performed sequentially, can be
parallelized and distributed among multiple processors. The major parameters of ES, α and

Nanomaterials 2025, 15, 27 9 of 19

σ, remain the same in this version. The parallelized version of ES is presented in Table 2.
In the algorithm, Message Passing Interface (MPI) variables such as comm, rank, and size
manage the parallel processing setup by facilitating inter-processor communication. Each
processor handles a subset, Ck, of the matrix E. The variables rw and Gw represent the
reward and the nanostructure grid matrix generated from each processor. Similarly, rw

aggregates all rw values. The aggregated variable rw from all processors is gathered into a
single vector, rf.

Table 2. Parallel ES algorithm for multifunctional nanosurface development using Open_MPI().

Algorithm: Parallel ES

Input: n, nw, σ, and α
Output: ra, θp, Gw

1. Initialize MPI environment:
1.1 comm← MPI.COMM_WORLD
1.2 rank← comm.Get_rank()
1.3 size← comm.Get_size()

2. If nw < size:
2.1 nw ← size

3. Initialize parameter vector θ ∈ R3 with 100 // Initial guess values
4. Initialize ra ∈ Rn with 0 // Average reward
5. Initialize rp ← 0
6. Initialize r ← 0
7. Initialize θp ∈ R3 with 0
8. For c = 1 to n do:

8.1 If rank = 0 then:
8.1.1 E←

[
Eij ∼ N (0, 1) : i = 1, 2, . . . , nw; j = 1, 2, 3

]
∈ Rnw×3

8.1.2 Csize
1 ←

{
Ck =

[
Eij : i = k + p · size; j = 1, 2, 3

]
: k = 1, 2, . . . , size

}
8.1.3 Initialize r ∈ Rnw with 0

8.2 Scatter: comm.scatter(Ck)∀k ∈ {1, 2, . . . , size}
8.3 Broadcast: comm.bcast(θ, rp, r)
8.4 Initialize empty list:

8.4.1 rw ∈ Rnrows(Ck) with 0
8.5 For w = 1 to nrows(Ck) do:

8.5.1 ϵw ← {[Ck]wj : j = 1, 2, 3} ∈ R3

8.5.2 θp ← θ+ σϵw, where θp ∈ R3

8.5.3 If θpk
≤ 0 for k ∈ {1, 2, 3}:

8.5.3.1 rw ← rp
8.5.4 Else:

8.5.4.1 rww , Gw ← Obj(θp) // Objective function
8.5.4.2 If rww > 0.96:

8.5.4.2.1 rac ← rww

8.5.4.2.2 Return: ra, θp, Gw, rw
8.6 If rank = 0 then:

8.6.1 Gather:

8.6.1.1 rf ←
[
r1⊤

w , r2⊤
w , . . . , rsize⊤

w

]⊤
∈ Rnw

8.6.2 rac ← E(rf)
8.6.3 rp ← rac

8.6.4 w← ET · rf
8.6.5 θ← θ+ α

nwσ w
9. End for

The Parallel ES algorithm steps involve distributed parameter updates using MPI for multifunctional nanosurface
development.

Nanomaterials 2025, 15, 27 10 of 19

After running the algorithm for n iterations and accumulating the rewards from each
processor, the same approach as in the sequential version is used to compute the weighted
reward and update the value of θ.

According to [35], the standard deviations in the distribution of short and tall nanos-
tructures in dragonfly wings exhibiting bactericidal properties are 67 nm and 62 nm,
respectively. Minor standard deviations can result in a bichromatic surface, as tall and short
nanopillar heights can lead to distinct colors. In contrast, a high standard deviation value
can negatively affect convergence time. Therefore, a good practice during the execution of
the algorithm is to set these two values to 60 nm.

Each processor handles a subset, Ck, of the matrix E. The variables rw and Gw represent
the reward and the nanostructure grid matrix generated from each processor. Similarly,
rw aggregates all rw values. The aggregated variable rw from all processors is gathered
into a single vector, rf. After running it for n iterations and accumulating the rewards from
each processor, the same approach as in the sequential version is used to compute the
weighted reward and update the value of θ. According to [35], the standard deviation in
the distribution of short and tall nanostructures in dragonfly wings exhibiting bactericidal
properties are 67 nm and 62 nm. Minor standard deviation can result in a bichromatic
surface, as tall and short nanopillar heights can result in distinct colors. In contrast, a high
standard deviation value can have a detrimental effect on the convergence time. Therefore,
a good practice used during running the algorithm is to set these two values to 60 nm.

2.3. Cost Model and Performance Analysis of the Parallel Algorithm Using Open_MPI

The total running time Ttotal of the parallel version of the ES involves both computation
and communication costs [32]. The current work uses the previous procedure to derive
Equations (8)–(12) to evaluate and estimate the implemented parallel strategy performance
in this program. The computation cost is primarily determined by the number of workers
(nw), the number of elements each worker processes (ne), and the number of processors
(p). Additionally, each computation incurs a cost per operation per element. The objective
function has a complexity of n2

e + ne × log(ne). The objective function is repeated nw times.
Therefore, the total computation cost per processor can be expressed as:

Total computation cost =
[

nw × (n2
e + ne × log(ne))

p

]
× α (8)

Next, the total number of transferred elements, N, comprises only the broadcasted
and returned elements. The total number of broadcasted elements is nw × ne

p . Similarly,

the total number of returned elements is nw × ne
p . Adding the broadcasted and returned

elements together, the total number of transferred elements is:

N =
nw × ne

p

The total communication cost depends on the communication startup cost L, the
transfer cost per element β(p), and the total number of transferred elements N. The total
communication cost is given by:

Total communication cost = p× (L + β(p)× N)

The transfer cost per element, β(p), is calculated as 1
ζ βs +

(
1− 1

ζ

)
βd, where βs repre-

sents the intranodal transfer cost, βd represents the internodal transfer cost, and ζ is the
number of groups of 36 processors, determined by ζ = floor(p/36) if mod(p, 36) = 0 and
ζ = floor(p/36) + 1 otherwise. Substituting β(p) and N into the total communication cost
expression gives:

Nanomaterials 2025, 15, 27 11 of 19

Total communication cost = p×
(

L +

(
1
ζ

βs +

(
1− 1

ζ

)
βd

)
× nw × ne

p

)
(9)

Expanding this expression yields:

Total communication cost = p× L +
nw × ne

ζ
βs + nw × neβd −

nw × ne

ζ
βd

The total running time Ttotal per iteration is then the sum of the total computation cost
and the total communication cost. Combining the terms gives:

Ttotal =

[
nw × (n2

e + ne × log(ne))

p

]
× α + p× L +

nw × ne

ζ
βs + nw × neβd −

nw × ne

ζ
βd

Reorganizing, we get Ttotal is:

Ttotal =
nw × n2

e
p

× α +
nw × ne × log(ne)

p
× α + p× L +

nw × ne

ζ
βs + nw × neβd −

nw × ne

ζ
βd (10)

2.4. Optimizing Number of Processors

To find the value of p that minimizes the total time Ttotal, Equation (10) was first
differentiated with respect to p, the derivative was then set to zero, and finally, the resulting
equation was solved for p:

dTtotal
dp

= −nw × n2
e × α

p2 − nw × ne × log(ne)× α

p2 + L = 0 (11)

which yields:

p =

√
nw · α(n2

e + ne · log(ne))

L
(12)

3. Results
3.1. Comparison Between Surfaces Generated

Using both sequential and parallel versions, the authors sought to create a bacte-
ricidal surface with a color corresponding to a wavelength of 500 nm (greenish) and a
friction coefficient (µ) of 2.41. The parallel algorithm employed 1000 workers spread across
1000 processors to boost processing performance, while the sequential algorithm employed
1000 workers in a single processor. Both the versions of the ES algorithm were able to
optimize a surface of size 150 (µm) × 150 (µm), featuring a nanograting array of size
50 × 50 (2500 nanostructures), where 50 represents the number of grating elements along
each dimension in the array.

The 3D surfaces generated by the sequential and parallel ES versions are shown
in Figure 3a,b, respectively. The study objective is to confirm that the parallel method
replicates the design of the sequential method but is not identical by improving computing
efficiency. These surfaces exhibit a structured array of alternating tall and short nanopillars
arranged in a grid. The cross-sectional height variations of each surface are depicted
in Figure 3c,d, emphasizing the uniformity achieved in both versions. While the data
seem visually similar, subtle differences are obvious, as underscored by the red circles
(Figure 3c,d). Notably, the root mean square error (RMSE) between both versions is
98.04 nm, emphasizing the consistency between the two methods. The differences in height

Nanomaterials 2025, 15, 27 12 of 19

are rooted in the optimization process, with the parallel version converging faster and
reaching the target design. The distribution of these nanostructures is further detailed
in Figure 3e,f, showing that both versions successfully adhere to the intended pattern,
ensuring the design functionalities.

Figure 3. (a) A 3D view of the surface generated by the sequential version, representing a 50 × 50
grid of nanopillar arrays over a 150 µm × 150 µm surface area with multifunctional properties. (b) A
3D view of the surface generated by the parallel version, also achieving the target wavelength and
desired green hue, with a similar 50 × 50 grid of nanopillar arrays for multifunctionality. (c) Cross-
sectional height variation for the sequential version, showing the nanostructure heights along the
section shown in (a). (d) Cross-sectional height variation for the parallel version, corresponding
to the section shown in (b). (e) Distribution of tall and short nanostructures alongside randomly
generated heights following the same distribution for the sequential version. (f) Distribution of tall
and short nanostructures alongside randomly generated heights for the parallel version, mirroring
the distribution in (e).

Additionally, the UV dose required to produce each surface in the sequential and
parallel versions are illustrated in Figure 4a,b, respectively. This UV dose calculation, based
on the grating (template) and individual nanostructure heights as detailed in Figure 2a,
was achieved using a DL program as explained in [30]. The surface generated using
sequential and parallel ES versions exhibits a greenish color corresponding to a 500 nm
wavelength, emphasizing the algorithm’s ability to meet the required surface color and
frictional properties. Figure 4c,d further shows the color of the surface formed by the
sequential and parallel versions, respectively. Additionally, Figure 4e,f illustrate the normal
force (P) vs. frictional force (F) diagram for the sequential and parallel versions, where the
slope of each curve gives the friction coefficient (µ).

Finally, the results demonstrate that both sequential and parallel versions of the
ES algorithm yield very similar performance in terms of the surface they form without
compromising accuracy or surface quality.

Nanomaterials 2025, 15, 27 13 of 19

Figure 4. (a) UV dose required to achieve the surface shown in Figure 3a for the sequential algorithm,
with exposure time at an intensity of 150 J/m²/s indicated by a secondary color bar. (b) UV dose
required for the parallel algorithm to achieve the surface shown in Figure 3b, with corresponding
exposure times. (c) Color of the surface generated by the sequential version. (d) Color of the
surface generated by the parallel version. (e) Normal force (P) vs. frictional force (F) plot for the
sequential version, where the slope represents the friction coefficient (µ), reaching the target value.
(f) Normal force (P) vs. frictional force (F) plot for the parallel version, also achieving the target
friction coefficient.

3.2. Comparison Between Accuracy and Runtime

Figure 5a compares the convergence curves of the sequential and parallel ES versions.
Although the sequential version converges in fewer iterations, this advantage becomes
redundant as the parallel version’s reduced overall runtime significantly outweighs the
sequential version’s faster convergence, thereby underscoring the efficiency of paralleliza-
tion in optimizing the multifunctional surface. Figure 5b,c compare the time required
per iteration. Specifically, Figure 5a shows that the sequential algorithm converged with
fewer iterations (52 vs. 62). Figure 5b illustrates the total execution time for the sequential
version—490,917 s (5.6 days), compared to the parallel version’s 853.55 s Figure 5c, under-
scoring the efficiency gained through parallelization. A noticeable initial spike in the time
plot shown in Figure 5b corresponds to the objective function computations, which are
especially time-intensive in the sequential version, as seen in Figure 5d. This figure shows
that the time required for the objective function computation per worker per iteration is
nearly equal to the time required for the friction coefficient computation. The objective func-
tion consists primarily of the coefficient of friction computation, which directly affects the
frictional objective function. This time variation is particularly significant in the sequential
version, as shown by the spike in Figure 5b. With 1000 workers on a single processor, the
total execution time across all iterations for the frictional and normal force computations
ranges from 10,600 to 12,000 s, as seen in Figure 5d, translating to an average of 10.6 to
12 s per iteration per worker. This average per-iteration timing aligns with the parallel
version’s per-iteration time for objective function computation, as shown in Figure 5e.
Figure 5e includes the itemized time required for all dominant time-consuming tasks in the
parallel version.

Nanomaterials 2025, 15, 27 14 of 19

Figure 5. (a) Convergence curves of the sequential and parallel versions, demonstrating convergence
at 52 and 62 iterations, respectively. While the sequential version converges in fewer iterations, the
reduced runtime of the parallel version highlights the efficiency of parallelization in optimizing the
multifunctional surface. (b) Iteration-wise time taken by the sequential version, revealing substantial
computational time per iteration, resulting in a total execution time of 490,917.74 s (approximately
5.6 days). (c) Iteration-wise time taken by the parallel version, showing a significant reduction in
computational time per iteration, with a total execution time of only 853.55 s, even though more
iterations were performed compared to the sequential version. (d) Time required per iteration for
a separate simulation to investigate spikes using the same parameters. Rerunning the sequential
code with these parameters showed iteration times closely match the duration needed for objective
function computations, where the most time-consuming part involves normal and frictional force
calculations. (e) Analysis of time spikes in the parallel version, where total execution time per
iteration includes three main tasks: objective function computation (focused on normal and frictional
forces), data scattering across processors with comm.scatter, and data gathering from all processors to
the master processor with comm.gather. (f) The data gathering phase contributes to the zigzag pattern
observed in (c).

It is worth noting that Figure 5d,e represent a separate analysis focused solely on the
initial portion of the program, covering only the first 20 iterations. Figure 5d shows the time
required for computing the objective function, as well as the normal and frictional forces,
which nearly coincide with each other, depicting that the objective function computation
time is taken mainly by normal and frictional force computation. Figure 5e shows the
total execution time taken by the parallel version, which depends upon the time taken by
the objective function (normal and frictional force computation, dominantly), scattering
time, and the gathering time. Figure 5f illustrates the gathering time, representing the time
the master processor requires to collect data from each slave processor per iteration. This

Nanomaterials 2025, 15, 27 15 of 19

gathering time shows a distinct zigzag pattern with spikes, indicating fluctuations in data
transfer times throughout the computation process.

3.3. Parallel Program Performance

Figure 6a presents a comparison between the predicted execution time for 100 iter-
ations and the actual observed total time across configurations of 64, 128, 256, 512, and
1024 processors. The close alignment between the predicted and actual time graphs for each
worker configuration highlights the accuracy of the prediction model, calculated using
Equation (10). Figure 6b demonstrates the convergence rate improvements achieved with
increasing numbers of workers: configurations with 1000, 10,000, and 100,000 workers
converge at 36, 10, and 4 iterations, respectively, showing that higher worker counts lead to
significantly faster convergence. Finally, Figure 6c illustrates the linear speedup obtained
with the parallel ES using Open_MPI. Here, the y-axis represents speedup, while the x-axis
shows the normalized number of processors. For worker counts ranging from 64 to 1024,
the graph closely follows the line x = y, indicating a nearly ideal linear speedup.

Figure 6. (a) Comparison between the predicted execution time for 100 iterations, calculated using
Equation (10) with parameters α = 0.00018, L = 0.0022, βs = 1× 10−9, and βd = 9.46× 10−5,
and the actual observed total time taken by the program. Results are shown for different processor
configurations (64, 128, 256, 512, and 1024 processors), illustrating the algorithm’s scaling performance.
(b) Convergence behavior of the ES algorithm with a fixed number of processors (p = 1000) and
varying numbers of workers (1000, 10,000, and 100,000). Convergence occurred at the 33rd iteration
for 1000 workers, the 21st iteration for 10,000 workers, and the 8th iteration for 100,000 workers,
demonstrating a significant improvement in convergence rate as the number of workers increases.
(c) Linear speedup achieved using Open_MPI in Python with the parallel algorithm, as detailed in
Table 2, showcasing the efficiency gains in processing time due to parallelization using 64, 128, 256,
512, and 1024 workers.

4. Discussion
The results from both the sequential and parallel versions ES algorithm indicate that

they perform equivalently in optimizing surface characteristics to achieve the desired

Nanomaterials 2025, 15, 27 16 of 19

color and frictional and bactericidal properties. Both versions successfully generated a
surface with a greenish color corresponding to a 500 nm wavelength and a target friction
coefficient (µ) of 2.41. Despite the difference in processing configurations with the parallel
version utilizing 1000 workers across 1000 processors and the sequential version employing
1000 workers on a single processor, the final surfaces produced were consistent in quality
and functional attributes. The structural characteristics of the surfaces generated by each
version, including height distribution and nanostructure arrangement, align closely. As
shown in Figure 3a–f, both versions formed a uniform grid of 2500 nanopillars within a
150 µm × 150 µm area, arranged in a 50 × 50 matrix of alternating tall and short pillars.
The UV dose requirements (Figure 4a,b), the resulting color (Figure 4c,d), and the frictional
properties (Figure 4e,f) were also consistent between versions, meeting the desired 500 nm
wavelength and friction coefficient (µ) of 2.41. The frictional performance, illustrated by
the P vs. F diagrams in Figure 4e,f, confirms the achievement of the targeted friction
coefficient in both cases. These results show that the parallel ES version achieves very
similar performance to the sequential version in terms of surface formation, validating it as
a scalable and effective solution without compromising quality.

To discuss the implications of Figure 5, we compare the convergence patterns of the
sequential and parallel versions. Figure 5a highlights that the sequential version converges
in fewer iterations than the parallel version. This quicker convergence, however, is offset
by the significant time cost difference illustrated in Figure 5b,c: the sequential version’s
total runtime far exceeds that of the parallel version. The parallel implementation’s ability
to perform simultaneous computations allows it to complete all iterations in just 853.55 s, a
stark contrast to the sequential version’s 490,917 s (or 5.6 days). The initial spike seen in
Figure 5c can be attributed to scattering time, as explained in Figure 5e. This scattering
overhead results from the initial data distribution to processors, introducing a time cost
early in the process. In Figure 5d, we observe that the total runtime depends directly
upon the time required for the objective function computation, which is comparable to the
time for calculating the normal and frictional forces. These force calculations depend on
the nanostructure design (Figure 2d), modeled with hemispherical tops and cylindrical
pillars, and its distribution within the grid. The complexity of these friction calculations
arises from simulating a gradual descent of the contact surface after sorting nanopillar
heights in descending order. Each pillar’s height, hi, and the distance between the base and
contact surface, di, influence the initial contact area. The deformation initially occurs at the
hemispherical tops (as seen in Figure 2d, case 1), where it depends on the composite elastic
modulus E∗, derived from Young’s modulus E and Poisson’s ratio ν. In this initial contact
phase, the normal and frictional forces P and F are computed using hemispherical contact
formulas (Equations (2) and (3)). However, additional calculations become necessary if the
contact extends into the cylindrical portion of the nanopillars (as in Figure 2d, case 2). P
and F in this case are computed using Equations (4) and (5).

If the normal force P reaches a critical threshold, pillars may buckle (as in Figure 2d,
case 3), rendering them ineffective in contributing to friction. Buckling is evaluated through
Euler’s buckling formula (Equation (6)), leading the algorithm to set both Pi and Fi to
zero for buckled pillars. These force calculations are especially sensitive to the height
distribution on the grid, which changes randomly with each perturbation and introduces
runtime variability. The three cases are determined by the decent of the contact surface and
heights of nanopillars, which in turn depends upon the probabilistic approach leading to a
spike seen in Figure 5b.

In the parallel version, these calculations still occur, but their impact on runtime is
minimized as the load is distributed across processors. However, these computations are
now dominated by communication and synchronization overhead, which becomes the

Nanomaterials 2025, 15, 27 17 of 19

primary factor affecting execution time in the parallel configuration. The spike in the
parallel version, shown in Figure 5c, indicates the additional time taken for scattering
operations. While the objective function remains the most time-consuming task, as in the
sequential version, scattering and gathering times add to the total computation time. In
the parallel implementation, perturbations are scattered across multiple processors, and
rewards are gathered, contributing to the initial spike in the first loop as memory is assigned
to each scattered perturbation (Figure 5e). The fluctuations seen in the remaining parts of
Figure 5c are attributed to the gathering time required in the parallel version, with total
times for each major task displayed in Figure 5e.

Figure 6a compares the predicted execution time for 100 iterations, calculated us-
ing Equation (10) with the parameters α = 0.00018, L = 0.0022, βs = 1 × 10−9, and
βd = 9.46× 10−5, against the actual time taken by the program. These parameters were de-
termined by fitting the predicted curve to the actual data. The figure presents performance
across different processor configurations (64, 128, 256, 512, and 1024 processors) within a
single plot, illustrating the model’s accuracy. Therefore, Equation (12) effectively predicts
time performance for various processor and worker configurations. From Equation (12), it
can be observed that the optimal number of processors p depends on several key factors, in-
cluding the number of workers nw, the number of elements ne, the communication startup
cost L, and the computation cost per operation per element α. These parameters influence
the scalability of the parallel algorithm. With nw = 3600, ne = 2500, L = 0.0022, and
α = 0.00018, the optimal number of processors is approximately 42,903. This calculation
illustrates how the algorithm efficiently scales with increasing p, even when handling larger
workloads. Using Open_MPI in Python with the mpi4py library [36–40], linear speedup
was achieved, as demonstrated in Figure 6c. This result highlights the capability of the
parallel implementation of the Open_MPI algorithm to effectively scale by increasing the
number of processors. Figure 6b demonstrates how varying the number of workers influ-
ences convergence speed. While the number of workers varied at 1000, 10,000, and 100,000,
the number of processors was maintained at p = 1000. At the 33rd iteration with 1000 work-
ers, the 21st iteration with 10,000 workers, and the 8th iteration with 100,000 workers, it was
found that the evolution strategy converged. This indicates that convergence is noticeably
accelerated when the number of workers rises.

5. Conclusions
In conclusion, this paper proposes a parallel ES algorithm, a parallelized version of the

sequential ES for AI-driven inverse design of multifunctional nanosurfaces. The proposed
parallel ES achieved favorable speedup, reducing the computation time hundredfold
when adequate computational resources are available; for instance, reducing the runtime
from 5.6 days to 853.5 s. The comparisons between the nanopillar distribution, UV dose
requirements, and cross-sectional surface profiles between the parallel and sequential
ES show that both versions achieved a similar level of accuracy with color, friction, and
bactericidal effectiveness. This scalable AI-driven inverse-design tool holds a notable
potential for applications in broad nanomanufacturing and nanoscience areas.

Author Contributions: I.H.C. conceived the ideas and A.C. conducted the computational imple-
mentations. I.H.C. and A.C. analyzed the results and prepared the manuscript. D.A. conducted
data analyses, simulations, and manuscript preparation. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Science Foundation (NSF) under grant number
CMMI-2129796 (A.C. and I.C.). The computational simulation was partly supported by NSF grant
number CNS-2018594.

Nanomaterials 2025, 15, 27 18 of 19

Data Availability Statement: Data will be made available upon request.

Acknowledgments: This work was supported by the National Science Foundation (NSF) under the
grant CMMI-2129796 (A.C. and I.C.). The computational simulation is partly supported by NSF
CNS-2018594. Valuable discussions with Jaeyoun Kim are acknowledged.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hegde, R.S. Deep learning: A new tool for photonic nanostructure design. Nanoscale Adv. 2020, 2, 1007–1023. [CrossRef]
2. Narasimhan, V.; Siddique, R.H.; Lee, J.O.; Kumar, S.; Ndjamen, B.; Du, J.; Hong, N.; Sretavan, D.; Choo, H. Multifunctional

biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. Nat. Nanotechnol. 2018, 13, 512–519.
[CrossRef]

3. Elbourne, A.; Crawford, R.J.; Ivanova, E.P. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J. Colloid
Interface Sci. 2017, 508, 603–616. [CrossRef] [PubMed]

4. Kryuchkov, M.; Lehmann, J.; Schaab, J.; Cherepanov, V.; Blagodatski, A.; Fiebig, M.; Katanaev, V.L. Alternative moth-eye nanos-
tructures: Antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. J. Nanobiotechnol.
2017, 15, 1–7. [CrossRef]

5. Ibrahim, M.; Amran, S.; Yunos, Y.; Rahman, M.; Mohtar, M.; Wong, L.; Zulkharnain, A. The study of drag reduction on ships
inspired by simplified shark skin imitation. Appl. Bionics Biomech. 2018, 2018, 7854321. [CrossRef] [PubMed]

6. Li, Q.; Ji, M.G.; Kim, J. Grayscale nanopixel printing at sub-10-nanometer vertical resolution via light-controlled nanocapillarity.
ACS Nano 2020, 14, 6058–6066. [CrossRef] [PubMed]

7. Wang, X.; Lim, E.G.; Hoettges, K.; Song, P. A review of carbon nanotubes, graphene and nanodiamond based strain sensor in
harsh environments. C 2023, 9, 108. [CrossRef]

8. Li, X.; Shu, J.; Gu, W.; Gao, L. Deep neural network for plasmonic sensor modeling. Opt. Mater. Express 2019, 9, 3857–3862.
[CrossRef]

9. Sajedian, I.; Kim, J.; Rho, J. Finding the optical properties of plasmonic structures by image processing using a combination of
convolutional neural networks and recurrent neural networks. Microsyst. Nanoeng. 2019, 5, 27. [CrossRef] [PubMed]

10. Scott-Fordsmand, J.J.; Amorim, M.J. Using Machine Learning to make nanomaterials sustainable. Sci. Total Environ. 2023,
859, 160303. [CrossRef] [PubMed]

11. Kałużny, J.; Świetlicka, A.; Wojciechowski, Ł.; Boncel, S.; Kinal, G.; Runka, T.; Nowicki, M.; Stepanenko, O.; Gapiński, B.;
Leśniewicz, J.; et al. Machine learning approach for application-tailored nanolubricants’ design. Nanomaterials 2022, 12, 1765.
[CrossRef] [PubMed]

12. Mirzaei, M.; Furxhi, I.; Murphy, F.; Mullins, M. A machine learning tool to predict the antibacterial capacity of nanoparticles.
Nanomaterials 2021, 11, 1774. [CrossRef]

13. Marsalek, R.; Kotyrba, M.; Volna, E.; Jarusek, R. Neural network modelling for prediction of zeta potential. Mathematics 2021,
9, 3089. [CrossRef]

14. Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Digital innovation enabled nanomaterial manufacturing; machine
learning strategies and green perspectives. Nanomaterials 2022, 12, 2646. [CrossRef]

15. Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87. [CrossRef]
16. Kirchner, R.; Nüske, L.; Finn, A.; Lu, B.; Fischer, W.J. Stamp-and-repeat UV-imprinting of spin-coated films: Pre-exposure and

imprint defects. Microelectron. Eng. 2012, 97, 117–121. [CrossRef]
17. Traub, M.C.; Longsine, W.; Truskett, V.N. Advances in nanoimprint lithography. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 583–604.

[CrossRef] [PubMed]
18. Kim, J.U.; Lee, S.; Kim, T.i. Recent advances in unconventional lithography for challenging 3D hierarchical structures and their

applications. J. Nanomater. 2016, 2016, 7602395. [CrossRef]
19. Oh, D.K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J.G.; Rho, J. Nanoimprint lithography for high-throughput fabrication of metasurfaces.

Front. Optoelectron. 2021, 14, 229–251. [CrossRef]
20. Unno, N.; Mäkelä, T. Thermal nanoimprint lithography—A review of the process, mold fabrication, and material. Nanomaterials

2023, 13, 2031. [CrossRef] [PubMed]
21. Stavis, S.M.; Strychalski, E.A.; Gaitan, M. Nanofluidic structures with complex three-dimensional surfaces. Nanotechnology 2009,

20, 165302. [CrossRef]
22. Daqiqeh Rezaei, S.; Ho, J.; Naderi, A.; Tavakkoli Yaraki, M.; Wang, T.; Dong, Z.; Ramakrishna, S.; Yang, J.K. Tunable, cost-effective,

and scalable structural colors for sensing and consumer products. Adv. Opt. Mater. 2019, 7, 1900735. [CrossRef]
23. Sloyan, K.; Melkonyan, H.; Apostoleris, H.; Dahlem, M.S.; Chiesa, M.; Al Ghaferi, A. A review of focused ion beam applications

in optical fibers. Nanotechnology 2021, 32, 472004. [CrossRef] [PubMed]

http://doi.org/10.1039/C9NA00656G
http://dx.doi.org/10.1038/s41565-018-0111-5
http://dx.doi.org/10.1016/j.jcis.2017.07.021
http://www.ncbi.nlm.nih.gov/pubmed/28728752
http://dx.doi.org/10.1186/s12951-017-0297-y
http://dx.doi.org/10.1155/2018/7854321
http://www.ncbi.nlm.nih.gov/pubmed/29853998
http://dx.doi.org/10.1021/acsnano.0c01791
http://www.ncbi.nlm.nih.gov/pubmed/32336089
http://dx.doi.org/10.3390/c9040108
http://dx.doi.org/10.1364/OME.9.003857
http://dx.doi.org/10.1038/s41378-019-0069-y
http://www.ncbi.nlm.nih.gov/pubmed/31240107
http://dx.doi.org/10.1016/j.scitotenv.2022.160303
http://www.ncbi.nlm.nih.gov/pubmed/36410486
http://dx.doi.org/10.3390/nano12101765
http://www.ncbi.nlm.nih.gov/pubmed/35630989
http://dx.doi.org/10.3390/nano11071774
http://dx.doi.org/10.3390/math9233089
http://dx.doi.org/10.3390/nano12152646
http://dx.doi.org/10.1126/science.272.5258.85
http://dx.doi.org/10.1016/j.mee.2012.03.037
http://dx.doi.org/10.1146/annurev-chembioeng-080615-034635
http://www.ncbi.nlm.nih.gov/pubmed/27070763
http://dx.doi.org/10.1155/2016/7602395
http://dx.doi.org/10.1007/s12200-021-1121-8
http://dx.doi.org/10.3390/nano13142031
http://www.ncbi.nlm.nih.gov/pubmed/37513042
http://dx.doi.org/10.1088/0957-4484/20/16/165302
http://dx.doi.org/10.1002/adom.201900735
http://dx.doi.org/10.1088/1361-6528/ac1d75
http://www.ncbi.nlm.nih.gov/pubmed/34388743

Nanomaterials 2025, 15, 27 19 of 19

24. Suh, K.Y.; Kim, Y.S.; Lee, H.H. Capillary force lithography. Adv. Mater. 2001, 13, 1386–1389. [CrossRef]
25. Suh, K.Y.; Lee, H.H. Self-Organized Polymeric Microstructures. Adv. Mater. 2002, 14, 346–351. [CrossRef]
26. Ho, D.; Zou, J.; Zdyrko, B.; Iyer, K.S.; Luzinov, I. Capillary force lithography: The versatility of this facile approach in developing

nanoscale applications. Nanoscale 2015, 7, 401–414. [CrossRef] [PubMed]
27. Yoon, H.; Kim, T.i.; Choi, S.; Suh, K.Y.; Kim, M.J.; Lee, H.H. Capillary force lithography with impermeable molds. Appl. Phys. Lett.

2006, 88, 254104. [CrossRef]
28. Ji, M.G. Height Modulation of Nanopixel Arrays via Light Controlled Capillary Force Lithography. Ph.D. Thesis, Iowa State

University, Ames, IA, USA, 2024.
29. Chapagain, A.; Cho, I. Tackling Multi-Physics Nano-Scale Phenomena in Capillary Force Lithography with Small Data by Hybrid

Intelligence. Micromachines 2023, 14, 1984. [CrossRef]
30. Chapagain, A.; Cho, I. Multiphysics machine learning framework for on-demand multi-functional nano pattern design by

light-controlled capillary force lithography. Commun. Phys. 2024, 7, 213. [CrossRef]
31. Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; Sutskever, I. Evolution Strategies as a Scalable Alternative to Reinforcement Learning.

arXiv 2017, arXiv:1703.03864.
32. Cho, I.; Porter, K.A. Multilayered grouping parallel algorithm for multiple-level multiscale analyses. Int. J. Numer. Methods Eng.

2014, 100, 914–932. [CrossRef]
33. Feyel, F.; Chaboche, J.L. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite

materials. Comput. Methods Appl. Mech. Eng. 2000, 183, 309–330. [CrossRef]
34. Rahul; De, S. An efficient coarse-grained parallel algorithm for global–local multiscale computations on massively parallel

systems. Int. J. Numer. Methods Eng. 2010, 82, 379–402. [CrossRef]
35. Bandara, C.D.; Singh, S.; Afara, I.O.; Wolff, A.; Tesfamichael, T.; Ostrikov, K.; Oloyede, A. Bactericidal effects of natural

nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 2017, 9, 6746–6760. [CrossRef] [PubMed]
36. Rogowski, M.; Aseeri, S.; Keyes, D.; Dalcin, L. mpi4py.futures: MPI-Based Asynchronous Task Execution for Python. IEEE Trans.

Parallel Distrib. Syst. 2023, 34, 611–622. [CrossRef]
37. Dalcin, L.; Fang, Y.L.L. mpi4py: Status Update After 12 Years of Development. Comput. Sci. Eng. 2021, 23, 47–54. [CrossRef]
38. Dalcín, L.; Paz, R.; Storti, M.; D’Elía, J. MPI for Python: Performance improvements and MPI-2 extensions. J. Parallel Distrib.

Comput. 2008, 68, 655–662. [CrossRef]
39. Dalcín, L.; Paz, R.; Storti, M. MPI for Python. J. Parallel Distrib. Comput. 2005, 65, 1108–1115. [CrossRef]
40. Dalcin, L.D.; Paz, R.R.; Kler, P.A.; Cosimo, A. Parallel distributed computing using Python. Adv. Water Resour. 2011, 34, 1124–1139.

New Computational Methods and Software Tools. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/1521-4095(200109)13:18<1386::AID-ADMA1386>3.0.CO;2-X
http://dx.doi.org/10.1002/1521-4095(20020304)14:5<346::AID-ADMA346>3.0.CO;2-Y
http://dx.doi.org/10.1039/C4NR03565H
http://www.ncbi.nlm.nih.gov/pubmed/25331773
http://dx.doi.org/10.1063/1.2206247
http://dx.doi.org/10.3390/mi14111984
http://dx.doi.org/10.1038/s42005-024-01703-9
http://dx.doi.org/10.1002/nme.4791
http://dx.doi.org/10.1016/S0045-7825(99)00224-8
http://dx.doi.org/10.1002/nme.2776
http://dx.doi.org/10.1021/acsami.6b13666
http://www.ncbi.nlm.nih.gov/pubmed/28139904
http://dx.doi.org/10.1109/TPDS.2022.3225481
http://dx.doi.org/10.1109/MCSE.2021.3083216
http://dx.doi.org/10.1016/j.jpdc.2007.09.005
http://dx.doi.org/10.1016/j.jpdc.2005.03.010
http://dx.doi.org/10.1016/j.advwatres.2011.04.013

	Introduction
	Materials and Methods
	Sequential Version of ES
	Parallel Version of ES Using Open_MPI
	Cost Model and Performance Analysis of the Parallel Algorithm Using Open_MPI
	Optimizing Number of Processors

	Results
	Comparison Between Surfaces Generated
	Comparison Between Accuracy and Runtime
	Parallel Program Performance

	Discussion
	Conclusions
	References

