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Abstract

Understanding the myriad avenues through which spatial and environmental factors shape evolution is a major focus in bio-
logical research. From a molecular perspective, much work has been focused on genomic sequence variation; however, recently
there has been increased interest in how epigenetic variation may be shaped by different variables across the landscape. DNA
methylation has been of particular interest given that it is dynamic and can alter gene expression, potentially offering a path for a
rapid response to environmental change. We utilized whole genome enzymatic methyl sequencing to evaluate the distribution
of CpG methylation across the genome and to analyze patterns of spatial and environmental association in the methylomes of
two broadly distributed montane bumble bees (Bombus vancouverensis Cresson and Bombus vosnesenskii Radoszkowski)
across elevational gradients in the western US. Methylation patterns in both species are similar at the genomic scale with
~1% of CpGs being methylated and most methylation being found in exons. At the landscape scale, neither species exhibited
strong spatial or population structuring in patterns of methylation, although some weak relationships between methylation and
distance or environmental variables were detected. Differential methylation analysis suggests a stronger environment associ-
ation in B. vancouverensis given the larger number of differentially methylated CpG's compared to B. vosnesenskii. We also
observed only a handful of genes with both differentially methylated CpGs and previously detected environmentally associated
outlier SNPs. Overall results reveal a weak but present pattern in variation in methylation over the landscape in both species.
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Significance

Variation in patterns of methylation across the landscape has not yet been extensively studied in bumble bees. Here, we
provide the first study to do so in 2 different species of bumble bee, Bombus vancouverensis Cresson and Bombus vos-
nesenskii Radoszkowski. These species have different environmental niche breadths with B. vosnesenskii having a wider
niche than B. vancouverensis, especially for temperature. We find that there are landscape level patterns in methylation
variation in both species, although these patterns are fairly weak. Between the two species, the environment has a stron-
ger influence on methylation variation in B. vancouverensis than in B. vosnesenskii, which mirrors previous whole gen-
ome work and adds more evidence that niche breadth can affect the path of genome evolution within species.

Introduction landscapes (Storfer et al. 2018; Dorant et al. 2022). To
The increasing availability of genomic data has led to an date, most studies have focused on how DNA sequence-
explosion of research examining the effect of spatial and based variation such as single nucleotide polymorphisms
environmental factors on molecular evolution in natural (SNPs) or structural variants such as small indels are
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associated with environmental variables (Ahrens et al.
2018; Cayuelaetal. 2021; Hartke et al. 2021). However, in-
creasing attention is being given to the role of epigenetic
variation as a factor that can shape species responses to en-
vironmental pressures (Mccaw et al. 2020; Gao et al. 2022;
Carvalho 2023). Epigenetics refers to a suite of mechanisms
that can change gene expression without altering the se-
quence of DNA itself and includes noncoding RNAs, histone
modification, and DNA methylation. DNA methylation,
or the addition of a methyl group (CHjs) to a cytosine in cer-
tain contexts, has received much attention because DNA
methylation has been shown to alter gene expression and
because methylation patterns can change during an or-
ganism'’s lifespan (Harrison et al. 2022; Nakamura et al.
2023). There is also some evidence that methylation pat-
terns can shift in response to environmental conditions,
which may ultimately represent a possible mechanism
for tolerating rapid climate changes (Chano et al. 2021;
Gupta and Nair 2022; Carvalho 2023). For example, there
is evidence in corals that changes in methylation may
be adapting to variable thermal conditions (Dixon et al.
2018; Rodriguez-Casariego et al. 2020). Additionally,
methylation may act to guide mutation of genes that yield
adaptative phenotypes in response to certain environmen-
tal stimuli (Flores et al. 2013). Work in Daphnia exposed to
pollution also identified changes in DNA methylation that
may help populations persist (Harney et al. 2022), which
suggests that DNA methylation maybe useful across a var-
iety of different environmental stressors.

DNA methylation is a common form of epigenetic
modification; however, methylation may serve different
roles in different lineages. For instance, mammalian gen-
omes tend to be highly methylated (70% to 80% of
CpG's), with consistently high methylation save for near
promoters (Sharif et al. 2010; Li and Zhang 2014) and
methylation has a role in gene silencing (Smith and
Meissner 2013). Alternatively in arthropods, methylation
is much less frequent [~0% to 14% of CpG's, with most
methylation in gene bodies (Bewick et al. 2017; Lewis
et al. 2020)], and the purpose of methylation is less clear,
although unlike mammals highly methylated genes can be
expressed (Lewis et al. 2020). There is mixed evidence for
DNA methylation being involved in both alternative spli-
cing [noted in mealybugs, ants, and honeybees (Bonasio
et al. 2012; Li-Byarlay et al. 2013; Bain et al. 2021)], im-
mune response in honey bees (Li-Byarlay et al. 2020),
and the evolution of sociality (Yan et al. 2015; Bewick
et al. 2017). Thus, more work is needed to better under-
stand DNA methylation in arthropods, including how pat-
terns vary within and among species.

Species with broad geographic ranges that encompass
substantial environmental heterogeneity can be tools to
understand mechanisms of adaptation or plasticity that
can be shaped by local environmental pressures. Species

with montane distributions may be especially useful as
differences in environmental conditions can emerge at
both small and large spatial scales (Rahbek et al. 2019a,
2019b). Bumble bees (Hymenoptera: Apidae: Bombus)
are a globally distributed genus of insects that are ecologic-
al and economically important pollinators (Greenleaf and
Kremen 2006; Strange 2015; Cameron and Sadd 2020).
There has been much research on potential environmental
adaptation in bumble bees using a variety of different gen-
omic (Kent et al. 2018; Theodorou et al. 2018; Sun et al.
2020; Heraghty et al. 2022) and transcriptomic approaches
(Pimsler et al. 2020; Liu et al. 2020a; Liang et al. 2022).
However, there has been limited work studying how
DNA methylation is involved in environmental adaptation
(Dillon and Lozier 2019; Rahman and Lozier 2023). Most
studies of methylation in bumble bees have been involved
in understanding possible roles of methylation in sociality
and caste development (Lockett et al. 2016; Li et al.
2018; Bainetal. 202 1) although there are some exceptions,
like work examining the effect of neonicotinoids on methy-
lation (Bebane et al. 2019). Despite the relatively low levels
of methylation in bumble bees (~1% of CpG's) (Marshall
et al. 2019, 2023; Pozo et al. 2021; Rahman and Lozier
2023), variable CpG methylation still may have a role in
coping with environmental stress. Prior work in Bombus
found that colony identity better explains individual
methylation patterns than social caste, which suggests
genomic background strongly influences methylation pat-
terns (Marshall et al. 2019). Therefore, it is possible that
selection could act on the genome to change methylation
patterns, which in turn could affect gene expression or
other processes.

Bombus vancouverensis Cresson and Bombus vosnesens-
kii Radoszkoswki are two species of common bumble bee
found in western North America (Fig. 1, Cameron et al.
2011). These two species have partially overlapping ranges
in California, Oregon, and Washington, United States, but
also have some unigue aspects to their distributions.
Bombus vancouverensis has a broader geographic range
across the western United States and Canada, but in the
west coast states is generally associated with narrower dis-
tributions of several environmental variables (especially tem-
perature), whereas B. vosnesenskii has a smaller geographic
range but appears to have a more flexible niche that allows
persistence across a wider range of habitats and environ-
mental conditions in the region (Jackson et al. 2018). For
example, although B. vancouverensis is observed across
a broad range of elevations, because of a preference for
cooler temperatures its elevational breadth is dependent
on latitude, where bees in the southern parts of the range
(e.g. Sierra Mountains in southern California) are restricted
to high elevations and northern populations can be found
closer to sea level. In contrast, B. vosnesenskii can be found
at a broader range of elevations throughout its distribution
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Fig. 1. Maxent range map of both species (Bombus vancouverensis [left] and Bombus vosnesenskii [right]; photos on inset) using presence data from
Cameron et al. (2011). Circles indicate sampling localities. The y axis indicates degrees latitude and the x axis indicates degrees longitude.

(Koch et al. 2012; Jackson et al. 2018). Several studies have
examined these two species to gain insight into similarities
and differences in their ecology and evolution, and in
most cases B. vancouverensis tends to show clearer and
more consistent associations in traits and genetic variation
with spatial-environmental gradients. For example, B. van-
couverensis exhibits greater population structure compared
to near-panmixia in B. vosnesenskii (Jackson et al. 2018;
Heraghty et al. 2023, 2022), B. vancouverensis exhibits
greater variation in morphological traits associated with

elevation (Lozier et al. 2021), and whole genome studies
have found stronger signals of environmental association
across the genome of B. vancouverensis (Heraghty et al.
2023, 2022). Evaluating differences in methylation across
the range of both species will be a useful addition to further
understand how differences in species distributions and
demography can influence molecular evolution.

In this study, we aim to build on prior genomic work
on DNA sequence variation across the B. vancouverensis
and B. vosnesenskii ranges by characterizing genome-wide
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Table 1 The number of CpG's found in each dataset for each species after the appropriate filters were applied

B. vancouverensis B. vosnesenskii

Criteria

Total CpGs 11,351,115 26,120,126

Total CpGs with SNP filter 11,161,598 23,170,123

CpGs in Meth30 87,673 194,247

CpGs in Meth30 with 82,834 172,333
SNP filter

CpGs in Hvar 270,025 669,523

CpGs in Hvar with SNP filter 255,043 582,942

All CpGs (methylated and unmethylated) retained after basic filtering

All CpGs (methylated and unmethylated) retained after basic filtering + SNP filter

CpG's with a minimum average methylation value of 30% across all individuals

CpG’s with a minimum average methylation value of 30% across all individuals +
SNP filter

CpGs with methyation > 2 SD + have nonzero methylation in at least 4 individuals

CpGs with methyation > 2 SD + have nonzero methylation in at least 4 individuals

+SNP filter

The criteria column details the filtering criteria used for each dataset (see Materials and Methods for details)

5-CpG-3’ DNA methylation from broad latitudinal and
altitudinal gradients. We then focus on comparing the
overall distribution of genome-wide CpG methylation of
each species to test for spatially or environmentally asso-
ciated methylation that might reveal consistent differences
in methylation among populations. Overall, we seek to
identify and compare landscape level patterns in DNA
methylation between a species with weak gene flow that
occupies a broader range of environmental conditions (B.
vosnesenskii) and a species with stronger population struc-
ture and tends to be distributed in narrower climatic zones
at relatively high elevations in the region (B. vancouveren-
sis). Specifically, we aim to test the hypothesis that DNA
methylation variation will parallel previous genomic results
by exhibiting stronger spatially and environmentally asso-
ciated differentiation in B. vancouverensis.

Results

Sequencing Data Summary

A total of 53 and 54 female workers from 13 unique localities
each for B. vancouverensis and B. vosnesenskii were used for
whole-genome enzymatic methylation sequencing (Fig. 1,
supplementary table S1, Supplementary Material online).
Sequencing produced 27,750,092.6 (+5,219,102.81 SD)
paired reads per sample for B. vancouverensis (~14x cover-
age) and 43,544,649.6 (+14,655,370.3 SD) reads per sample
for B. vosnesenskii (~22x coverage). After filtering for B. van-
couverensis, 11,351,115 total CpG's (both methylated and
unmethylated) were retained for the full CpG set, with
11,161,598 retained (Table 1) after removal of SNPs from pre-
vious range-wide whole genome resequencing (Heraghty
et al. 2022). For B. vosnesenskii, 26,120,126 CpG sites
were retained in the full set, with 23,170,123 (Table 1) re-
tained after SNP removal (Heraghty et al. 2023). This differ-
ence between species was driven by sequencing depth
differences leading to fewer CpGs passing filters in B. vancou-
verensis. The average percent methylation was 0.783% and
0.777% across all CpG sites in B. vancouverensis and B. vos-
nesenskii, respectively, matching results indicating low CpG

methylation levels in other bumble bees (Marshall et al.
2019, 2023; Pozo et al. 2021; Rahman and Lozier 2023). A
total of 327,915 and 601,896 SNPs were called by BISCUIT
(Zhou 2024) from the enzymatic methyl-seq data for B. van-
couverensis and B. vosnesenskii respectively.

Distribution of Methylated CpGs within the Genome

Of the total CpGs, 87,673 (0.79%) and 194,247 (0.84%)
were retained (Table 1) in the dataset containing CpG's
with at least 30% methylation averaged across all indivi-
duals (Meth30 dataset) for B. vancouverensis and B. vosne-
senskii, respectively. In the high variability HVar dataset
(CpG's with methylation values with >2 SD and that are
called as methylated in at least 4 individuals), 270,025
and 669,523 CpGs were retained (Table 1) for B. vancou-
verensis and B. vosnesenskii, respectively. The SNP filter ex-
cluded a relatively small number of methylated CpGs in
B. vancouverensis [4,839 (5.2%) and 14,982 (5.2%) from
Meth30 and HVar datasets, respectively (Table 1)], with a
slightly higher proportion of CpGs excluded in B. vosne-
senskii [21,914 (10.1%) and 86,581 (12.9%) sites from
Meth30 and HVar datasets (Table 1)]. The majority of
CpG sites sequenced (methylated and unmethylated)
were in introns and intergenic regions (Fig. 2). However,
the distribution of methylated CpGs was heavily biased to
genic regions in both species (e.g. 87% in B. vancouveren-
sis and 83% for B. vosnesenskii in the SNP filtered variable
dataset), especially exons (Fig. 2, supplementary table S2,
Supplementary Material online). The differences in distribu-
tion are significant based on Chi-square analysis which
found significant differences (P <2.2e—16) in all compari-
sons (supplementary table S2, Supplementary Material
online).

Methylome-wide Variation Across the Landscape

Using the SNPs generated by BISCUIT we detected substan-
tial isolation by distance in B. vancouverensis (Mantel r=
0.57, P=0.001) but not B. vosnesenskii, indicating the
sequencing data for the individuals used in this study re-
covers the previously reported results of relatively strong
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Fig. 2. The distribution of CpG's in genomic features across all sequenced CpG's, methylated CpG'’s, and variables CpG's both with and without SNP filtering.
The height of the bar indicates the total number of CpG's found in a given feature for a given dataset. Numbers indicate the portion of sequenced CpG's

located in that feature that was methylated.

population structure in B. vancouverensis and weak struc-
ture in B. vosnesenskii (Jackson et al. 2018; Heraghty et al.
2022) (supplementary fig. S1, Supplementary Material
online). Both species exhibited a positive relationship be-
tween methylation dissimilarity and both geographic
and genetic distance, and although some correlations
were significant, overall relationships were weak and de-
pended on filtering criteria (e.g. HVar vs. Meth30 and
SNP filter vs. no filter) (Fig. 3). The strongest relationships
were observed in B. vancouverensis when comparing
methylation dissimilarity against geographic (Mantel r=
0.10, P=0.003) and genomic distance (Mantel r=0.12,
P=0.01) for the Meth30 dataset that focused on more
highly and consistently methylated CpG's, although simi-
larly positive but insignificant relationships were also ob-
served in the HVar dataset (Fig. 3). For B. vosnesenskii, a
significant, albeit weak, relationship was detected only
for the SNP-filtered HVar dataset and geographic distance
(Fig. 3a). As for SNP-based population structure, the over-
all trends in methylation suggest that B. vancouverensis
has stronger “methylation population structure” than B.
vosnesenskii, although even in B. vancouverensis, methy-
lation dissimilarity does not approach the degree of
population-level SNP differentiation observed for this spe-
cies (supplementary fig. S1, Supplementary Material on-
line; Heraghty et al. 2022).

We used redundance analysis (RDA) to identify the vari-
ation in overall methylation patterns in each sample that
could be explained by environmental, spatial, and popula-
tion structure variables (PC1). The difference between spe-
cies was somewhat clearer when visualized using the RDAs.
For B. vancouverensis, the full RDA model [model contain-
ing all predictors: BioClim climate variables, elevation,

latitude, longitude, and PC1 from a principal component
analysis (PCA) of BISCUIT SNPs to account for population
structure] showed samples clustering broadly into northern
and southern groups largely along RDA2 and some effects
for specific variables. The PC1 and mean annual tempera-
ture (BIO1) were largely similar to latitude, which was ex-
pected given that temperature is generally inversely
related to latitude and the previously identify population
structure being on a latitudinal gradient (Jackson et al.
2018; Heraghty et al. 2022). Samples also loosely clustered
along the elevation vector, most clearly apparent for the
positively loading southern higher elevation samples along
RDA1 (Fig. 4), similar to SNP results (Heraghty et al. 2022).
The full RDA model was also significant and showed some
latitudinal separation (largely along RDA1) for B. vosnesens-
kii. Most of the other variables also were loading along
RDAT1, although isothermality (BIO3) was primarily loading
along RDA2. For both species, the full models were able to
account for similar amounts of observed variation with
20.7% and 17.2% of variation explained for B. vancouver-
ensis and B. vosnesenskii, respectively. Of the partial mod-
els, the environmental model (BioClim variables and
elevation) performed best for both species, accounting
for 62.1% and 58.0% of the explainable variance for B.
vancouverensis and B. vosnesenskii, respectively (Table 2).
The partial model accounting for geography (latitude and
longitude), while significant, accounted for much less of
the explainable variation (~5% for both species) and the
population structure (PC1 from PCA of SNP data) model
was insignificant in both species. There was minimal con-
founded variation (~1% of explainable variation). SNP fil-
tering had a negligible impact (supplementary table S3,
Supplementary Material online).
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Fig. 3. Relationship between methylation dissimilarity and both geographic and genomic distance across the HVar and Meth30 datasets as well as with
and without SNP filtering for B. vancouverensis (a) and B. vosnesenskii (b). Results of the Mantel test for each relationship are printed with the corre-
sponding scatter plot.

CpG-level Differential Methylation significantly differentially methylated CpGs (g <0.05) in
Analysis of CpGs that were differentially methylated in asso- B. vancouverensis than in B. vosnesenskii (Table 3). In
ciation with specific environmental variables identified more B. vancouverensis, the largest number of differentially
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Table 2 Summarized results of pRDA data for both focal species

Model Inertia R? P(>F) Proportion of explainable variance Proportion of total variance

B. vancouverensis
Full model 10,591,543 0.0205 0.001 1 0.207
Environment 6,575,573 0.0129 0.001 0.621 0.128
Geography 2,728,061 0.00727 0.001 0.258 0.053
Structure 1,188,863 0.000443 0.424 0.112 0.023
Confounded 99,046 0.009 0.002
Total unexplained 40,675,527 0.793
Total inertia 51,267,070 1

B. vosnesenskii
Full model 13,356,586 0.0167 0.001 1 0.172
Environment 7,739,843 0.0114 0.001 0.579 0.01
Geography 3,810,203 0.00521 0.005 0.285 0.049
Structure 1,664,682 —-0.000315 0.614 0.125 0.021
Confounded 141,858 0.011 0.002
Total unexplained 64,388,098 0.828
Total inertia 77,744,684 1

Inertia is synonymous with variance. Model significance is reported in the P(>F) column with significant models (P < 0.05) being denoted by bold text. Proportion of
explainable variance is the ratio between the inertia of a given model and the full model. The proportion of total variance is the ratio between inertia accounted for in

a given model and the total inertia in the dataset.

methylated CpG's were found to have a statistically sig-
nificant associated with elevation (280 and 300 for SNP fil-
tered and unfiltered respectively, Table 3). Both latitude
(n=108 and n= 124 for SNP filtered and unfiltered, re-
spectively) and annual mean temperature (BIO1) (n =92
and n=297 for SNP filtered and unfiltered, respectively)
also were associated with relatively large numbers of
differentially methylated CpG's. For B. vosnesenskii, the

largest number of differentially methylated CpG's was
associated with latitude in the unfiltered dataset (n=
30). In the SNP-filtered dataset, the largest number of dif-
ferentially methylated CpG’s was associated with BIO3
(n=15). Few CpG's were associated with BIO1 (n=0 and
n =4 for SNP-filtered and unfiltered, respectively) or annual
precipitation (BIO12) (n=3 and n=6 for SNP-filtered and
unfiltered, respectively).
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Table 3 Summary of the number of individual CpGs identified as differentially methylated with each variable using either the filtered or not filtered dataset

(FDR corrected g < 0.05)

No filter Filter
Variable B. vancouverensis B. vosnesenskii B. vancouverensis B. vosnesenskii
Annual mean temp. (BIO1) 97 4 92 0
Mean diurnal range (BIO2) 20 N/A 21 N/A
Isothermality (BIO3) 33 12 21 15
Annual precipitation (BIO12) 42 6 52 3
Elevation (m) 300 14 280 10
Latitude 124 30 108 9
(a) (b)
Diff. meth Diff. meth

SNP filtered CpG  unfiltered CpG

[N

Genomic outliers
Bombus vancouverensis

Diff. meth Diff. meth
SNP filtered CpG unfiltered CpG dataset

[N

Genomic outliers
Bombus vosnesenskii

Fig. 5. Venn diagrams comparing the number of genes recovered as differentially methylated without or without the SNP filter in a) B. vancouverensis or
b) B. vosnesenskii. All comparisons also include lists of genes with previously identified environmentally associated outlier SNPs (Heraghty et al. 2022, 2023).

When considering the genes containing differentially
methylated CpGs, SNP filtering had a relatively small effect
in B. vancouverensis, with most (n =347 [89.2%]) genes
identified as containing differentially methylated sites
found in both the SNP filtered and unfiltered datasets
(Fig. 5a); 7 and 35 genes with differentially methylated
CpGs were unique to the SNP filtered and unfiltered data-
sets, respectively. SNP filtering had a more substantial ef-
fect in B. vosnesenskii, although this is likely in part due to
the relatively small number of differentially methylated re-
gions detected generally (Fig. 5b); only 3 genes with differ-
entially methylated CpGs were shared by the SNP filtered
and unfiltered data sets, and 14 and 25 genes were unique
to the SNP filtered and unfiltered datasets, respectively
(Fig. 5b).

Gene ontology (GO) analysis for B. vancouverensis re-
tained 296 biological process terms after summarization
with REVIGO (Supek et al. 2011) using the list of genes con-
taining differentially methylated CpG'’s identified in both
the filtered and unfiltered datasets (n =352). Several key
clusters of biological processes appear in the GO results in-
volving terms, such as development (e.g. terms like tissue

development [GO:0009880], and animal organ morpho-
genesis [GO:0009887]), RNA processing (e.g. terms like
RNA splicing [GO0008380], mRNA splicing via spliceosome
[GO:0000398]), and hypoxia (e.g. terms like response to
hypoxia [GO:0001666] and response to oxygen levels
[GO:0070482]). Because there were only four genes
found in both filtered and unfiltered dataset in B. vosne-
senskii, instead of summarizing gene function with a GO
approach we elected to evaluate the function of each of
the 4 genes manually. To do this, we assessed the puta-
tive gene function by first determining if there was a
homologous gene in Drosophila melanogaster using the
blast_rec function in the orthologr v.0.4.2 R package
(Drost et al. 2015) and then searched for available infor-
mation on FlyBase. Two of the four genes had homolo-
gous genes in D. melanogaster with one of the genes
being LOC117239631 which is homologous to Dp7 and
is involved in processes like mRNA translation (Nelson
et al. 2007). LOC117237625 is homologous to s/i which
is involved in several different developmental processes
including neuronal and tracheal development (Rothberg
et al. 1990; Englund et al. 2002).
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Discussion

We used enzymatic methylation sequencing to evaluate the
distribution of methylated CpGs across the genome and
variation in methylation across the geographic range of 2
broadly distributed bumble bee species. Consistent with
prior results in bumble bees and many other invertebrates
(Bewick et al. 2017; Rahman and Lozier 2023), methylation
was present at <1% of CpGs in both focal species, with
most of the methylated CpGs being in gene bodies, espe-
cially in exons. Overall spatial or environmentally associated
patterns of differential methylation among populations
within the species were not particularly striking and were
generally less dramatic than previously examined SNP vari-
ation across the landscape in these species, although some
patterns were evident. In particular, differences in methyla-
tion were more pronounced in B. vancouverensis than in
B. vosnesenskii, including many CpGs significantly asso-
ciated with elevation that reemphasizes the potential rele-
vance of this spatial-environmental dimension for this
species observed in earlier studies of genotypic and pheno-
typic variation (Pimsler et al. 2020; Lozier et al. 2021,
Heraghty et al. 2023, 2022).

General patterns of methylome-wide differentiation
across the ranges of both species were generally weak
(Figs. 3 and 4). Previous work using genomic SNPs sug-
gests that population structure in B. vancouverensis is on
a north south gradient that loosely breaks down into a
southern population (California) and a northern popula-
tion (Oregon and Washington) with strong isolation by
distance and environment (Jackson et al. 2018; Heraghty
et al. 2022). The RDA recovered a somewhat similar pat-
tern, with individuals generally clustering into northern
and southern groups, although this clustering is less
than observed in the genomic data (Jackson et al. 2018;
Heraghty et al. 2022). Signatures of isolation by distance
are also smaller than for SNP data in the same B. vancou-
verensis samples (supplementary fig. S1, Supplementary
Material online), suggesting that spatial population struc-
turing is not as prevalent in methylation as in genome
sequence variation. In B. vosnesenskii, a similar set of gen-
omic analyses found little population structure at the
range-wide scale (Jackson et al. 2018; Heraghty et al.
2022), which is consistent with the minimal structure
also found in the methylation data presented here.

In addition to spatial-environmental predictors of
methylation, we also aimed to directly test the hypothesis
that genetic background shapes methylation by examining
differences in methylation in relation to genetic distance
among individuals. Previous work in bumble bees has
found a high level of intercolony variation in methylation,
suggesting that genetic background may play a role in epi-
genetic processes (Marshall et al. 2019). Given population
genetic structuring, especially in B. vancouverensis, such

relatedness effects might be expected to extend to the
population level and potentially result in “epialleles” that
could be targeted by selection, although it remains unclear
if such a phenomenon exists in Bombus (Marshall et al.
2019). Similar to the isolation-by-distance results (Fig. 3),
relatively little variation was explained by the Mantel tests
comparing methylation dissimilarity and genomic distance,
but relationships were all positive and at least some com-
parisons were significant. This suggests that there may be
some impact of genetic background on methylation at
the range-wide scale, but the inherently noisier quantitative
methylation data have a great deal of individual-specific
variation that may require larger sample sizes for robust
conclusions to be drawn. Thus, more work will be necessary
to specifically test the ways in which genetic background
may facilitate variation in methylation among individuals
and populations (Chapelle and Silvestre 2022), as well as
to identify optimal data filtering and CpG inclusion strat-
egies for low-methylation species like bumble bees.

At least some methylation variation was associated
with environmental variables in each species, however,
both methylome-wide (e.g. Fig. 4, Table 2) and at individ-
ual CpGs. The CpG-level differential methylation was once
again much clearer in B. vancouverensis than in B. vosne-
senskii. Of particular interest was that the largest number
of significant CpGs was associated with elevation in
B. vancouverensis, which is intriguing given prior studies
indicating elevation as an important driver of multiple
evolutionary processes in this species. For example, high
elevation regions are associated with gene flow reductions
(Jackson et al. 2018) as well as shifts in body size and wing
loading that may benefit flight in challenging high-altitude
conditions (Lozier et al. 2021). In addition, genome-wide
outlier analysis in B. vancouverensis identified genes con-
taining multiple SNPs associated with elevation and may
indicate local adaptation, in particular the gene Mrp4
that is involved in resistance to hypoxia (Heraghty et al.
2023), a key stressor at altitude (Dillon 2006). GO results
for differentially methylated CpGs in B. vancouverensis
also indicate several terms related to hypoxia (e.g. re-
sponse to hypoxia [GO:0001666] and response to oxygen
levels [GO:0070482]). One possible role for the large num-
ber of CpGs associated with elevation may thus be a
mechanism for regulating gene expression to counteract
hypoxic conditions (Harrison et al. 2018). The lack of envir-
onmentally associated differential methylation in B. vos-
nesenskii is similar to genomic studies which found few
environmentally associated SNPs (Jackson et al 2020,
Heraghty et al 2023), which creates an interesting ques-
tion for B. vosnesenskii. Recent models suggest an in-
crease in range and abundance as climate change
continues to progress (Soroye et al. 2020; Jackson et al.
2022) and have also suggested that increases in tempera-
ture may be the key mechanism underlying these
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increases. Although there is variation in CT,,, across the
range of this species (Pimsler et al. 2020), there is little evi-
dence suggesting that temperature is strongly shaping
molecular variation (Heraghty et al. 2023). Given that
CTmin May be important in understanding range expan-
sions (e.g. increased temperatures means populations
can move further north before experiencing limiting tem-
peratures), more work will be needed to understand the
molecular mechanisms may drive variation in this trait.
One of the major objectives of this study was to compare
2 bumble bees species provide insights into how differ-
ences in environmental niche (greater specialization to
higher elevations in B. vancouverensis vs. greater habitat
generalism in B. vosnesenskii) may influence evolution of
DNA methylation variation. The greater level of environ-
mental association observed at CpGs for B. vancouverensis
relative to B. vosnesenskii has also been observed in gen-
omic SNP data (Heraghty et al. 2023, 2022) and morpho-
logical data (Lozier et al. 2021), suggesting that to some
extent different processes act in parallel, although the
strength of such associations clearly varies. It is possible
that DNA sequence and methylation may act in concert
to achieve adaptive physiologies across the landscape how-
ever, the small overlap in genes with differential methyla-
tion and environmentally associated SNPs suggests that
any possible parallels that emerge across a species range
are likely involving different mechanisms. Further, even in
B. vancouverensis, the spatial and environmental asso-
ciated population structure in the methylome is weaker
than other data types, which together with other studies
finding similar relationships between genomic and epigen-
etic data (e.g. Richards et al. 2012, Sheldon et al. 2018 sug-
gest the ultimate drivers of methylation variation across
species ranges may be complex and not easily predicted
solely from patterns of genomic variation). However, other
studies have identified stronger correlations between gen-
omic background and variation in methylation, including
data in bumble bees that found high methylation variation
between colonies with colony of origin better explaining in-
dividual CpG methylation patterns than caste differences
between individuals (Marshall et al. 2019). It may be the
case that study design, particularly using wild or laboratory
animals and the number of samples representing distinct
colonies or populations, may influence the power to detect
some methylation patterns compared to other types of vari-
ation, and it may be that taxonomic groups with more
widespread methylation have greater genetic control over
the distribution of this methylation (Chapelle and Silvestre
2022). Understanding the relative contributions of the gen-
etic background and DNA methylation patterns to environ-
mental adaptation in wild populations will likely continue to
be an important area of research (Husby 2022).
Regardless of the causes of inter-individual and inter-
population variation in DNA methylation, there is not yet

a clear consensus on the role of this epigenetic mechanism
in the evolution of arthropods, and we still cannot explain
how differences in DNA methylation may be ultimately im-
pacting the biology of the focal bumble bee species. Our re-
sults did find most of the DNA methylation to be occurring
in gene bodies, which is consistent with other arthropods
(Bewick et al. 2017; Rahman and Lozier 2023). There are
some theories regarding the role of gene body methylation
including potential interactions with other epigenetic
factors (Glastad et al. 2014, 2015), alternative splicing
(Li-Byarlay et al. 2013; Marshall et al. 2019; Lewis et al.
2020), and the seesaw hypothesis (increases/decreases in
methylation to drive decreases/increases in gene expres-
sion) (Dixon et al. 2018; Dixon and Matz 2022). However,
more work will need to be done to understand the evolu-
tionary role of DNA methylation in this lineage, such as
the importance of environmental pressures as causal
forces in driving flexible methylation variation at the individ-
ual level and whether selection can act on “epialleles” to
produce more stably inherited and locally adapted methyla-
tion patterns (Burggren 2016; Bewick et al. 2017) that in-
fluence some other downstream molecular process.
Finally, there are several important caveats to our results.
First, methylation patterns are tissue specific with different
tissues having different methylation profiles. Given the
role of thoracic muscle in flight and thermal regulation
(Heinrich 1977), we considered this tissue to be a useful
starting point for beginning to assess variation in methyla-
tion since these 2 processes are likely linked to the environ-
ment (Pimsler et al. 2020; Rahman and Lozier 2023).
However, a comprehensive understanding of how methyla-
tion varies with the environment will require studying
other tissue types. For instance, differential methylation in
the fat body might be more likely to be found in genes
linked to metabolic functions (Arrese and Soulages 2010).
Incorporating data on queens and males in wild populations
may also be important, since these may also impact methy-
lation profiles (Yan et al. 2015; Harrison et al. 2022) and
these life stages are active at unique times during the season
and experience distinct environmental pressures from work-
ers (Woodard 2017). Second, research into methylation pat-
terns of nonmodel organisms in natural settings poses
unigue challenges compared to controlled experiments,
such as noise due to unaccounted for differences in individ-
ual environmental exposure and life history, such as age
(Yan et al. 2015; Harrison et al. 2022; Renard et al. 2023).
Controlling for these differences may require specific experi-
mental design choices, like employing sampling strategies
to minimize differences between samples or simply increas-
ing sample size. Alternatively, as done in this study as well as
others (Liew et al. 2020; Rahman and Lozier 2023), applying
minimum methylation thresholds may help reduce such
noise, but sensitivity of results to the method of filtering sug-
gests multiple criteria should be evaluated. Finally, another
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concern is overall sampling design of methylation studies,
including sequencing depth. A recent bisulfite sequencing
study between 2 populations from extreme ends of the
range in B. vosnesenskii found over 2,000 differentially
methylated genes (Rahman and Lozier 2023) compared to
the <100 found here. However, that study (Rahman and
Lozier 2023) followed a case—control design compared to
our continuous predictor design and had many times great-
er sequencing depth (~76x) than in this study (~14x for
B. vancouverensis and ~22x B. vosnesenskii) which to-
gether may enhance power to identify subtle differential
methylation that might be common in bumble bees (Pozo
et al. 2021). For example, Rahman and Lozier (2023) were
able to detect many differentially methylated CpGs using
a threshold of 10%, which would have been difficult here
due to our lower sequencing depth and minimum depth
threshold. Thus, although we gain several insights with
our current data, higher sequencing effort than might
typically be applied to genomic data will be needed to de-
tect many methylation differences, even for methods like
Enzymatic Methyl Seq that are less damaging to DNA than
methods like bisulfite sequencing.

In conclusion, we provide more evidence that patterns in
DNA methylation are relatively conserved across insects
based on the overall low number of methylated CpGs iden-
tified here and that methylation occurs primarily in exons.
Our results also provide some of the first insights into
how methylation varies across the landscape in wild popu-
lations of bumble bees. We do find some clear patterns, like
the association between methylation and elevation in
B. vancouverensis. This will be a useful starting point for
future studies that can more rigorously identify the specific
effects different stimuli might have on DNA methylation as
well as how these sorts of effects might differ depending on
the genomic background. Given the relative lack of popula-
tion structure in the methylation data, it may be that methy-
lation does not play a major role in local adaptation,
although our results do not exclude the possibility that
methylation may be in involved in complementary pro-
cesses like plasticity that could serve to help individuals
cope with environmental stresses. We also provide some
methodical considerations for future studies that may also
be using field caught samples as well as provide some pos-
sible solutions. Overall, the results suggest there is indeed
variation in methylation across the landscape that has pos-
sible biological implications and consequently merits fur-
ther study.

Materials and Methods

Sample Collection and DNA Extraction

Sampling sites were located on a latitudinal range of
37.217° to 48.651°N for B. vancouverensis and 36.619°

to 45.627°N for B. vosnesenskii and covered a wide eleva-
tional breadth of 447 to 2,678 m for B. vancouverensis and
68 to0 2497 m for B. vosnesenskii (supplementary table S1,
Supplementary Material online). Female workers were col-
lected by net and transferred to vials of 100% ethanol kept
onicein the field, and ultimately stored at —80 °C until DNA
extraction. Qiagen DNeasy blood and tissue kits (Hilden,
N.R.W., Germany) were used to extract DNA from thoracic
muscle tissue. DNA methylation libraries were prepared
using the NEB Enzymatic Methyl Seq kit (Ipswich, MA,
USA). All samples were spiked with 1 plL of methylated
pUC19 control DNA and 1 uL of unmethylated lambda
DNA to assess the success of methylation conversion.
Samples were sequenced across 2 lanes on an lllumina
NovaSeq 600 sequencer (Psomagen, Rockville, MD, USA).

Bioinformatic Processing

Trim Galore! v0.6.6 (Krueger 2015) was used to trim and
remove low quality reads using conservative hard trim-
ming flags due to possible issues with the conversion
process that can reduce quality at ends of reads: —q 20 —
clip_R1 10 —clip_R2 15 —three_prime_clip_R2 10 —length
50. Trimmed reads were aligned to against the B. vancou-
verensis (NCBI RefSeq ID: GCF_011952275.1) and B. vos-
nesenskii (NCBI RefSeq ID: GCF_011952255.1) genomes
(Heraghty et al. 2020) using bwa-meth v0.2.2 (Pedersen
et al. 2014). The alignment files were then converted into
binary format (BAM) and sorted using SAMtools v1.10 (Li
et al. 2009). PCR and optical duplicates were removed
using the markduplicates command in Picard Tools
v2.20.4 (Broad Institute 2019). Methylation was detected
using MethyDackel v0.6.1 (https:/github.com/dpryan79/
MethylDackel) with the —minDepth 6 flag to only consider
bases with a sequencing depth of at least 6 reads. We
also generated a filtered dataset where putative SNP variant
sites were removed bioinformatically within MethylDackel
using the —maxVariantFrac 0.50 —minOppositeDepth 3
flags. This filtered dataset was then further filtered by re-
moving SNPs previously detected in recent range-wide
whole genome resequencing for both species (Heraghty
et al. 2022, 2023) (supplementary data, Supplementary
Material). To ensure the possible impact of SNPs on CpG
motifs was fully removed, we also removed sites from the
MethylDackel output files that were adjacent to each SNP
(+1bp) using the GenomicRanges v1.48.0 R package
(Lawrence et al. 2013) in R v4.2.0 (R Core Team 2002).
All subsequent analyses were done on both the unfiltered
and SNP-filtered datasets.

MethylDackel output files were read into R using the
methylKit R package v1.20.0 (Akalin et al. 2012) for further
filtering. MethylIKit requires samples be assigned to a treat-
ment group, so for the purposes of importing, uniting, and
downstream data processing to filter methylations calls for
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other analyses, B. vancouverensis samples were assigned
to either a northern or southern group which corre-
sponded to previously identified patterns in population
structure using genomic data (Heraghty et al. 2022).
Bombus vosnesenskii does not have such significant popu-
lation structure but does exhibit weak isolation by distance
that is most evident with latitudinal separation at large
scales (Heraghty et al. 2023); we thus elected to split sam-
ples into northern and southern groups based on the
mean latitude of sampling localities (40.2°N, with samples
above this latitude being classified as “northern” and
samples below that latitude being classified as “south-
ern”) to account for the minimal population structure
when classifying the imported datasets into methylKit.
Note that these sample groups are only used for import-
ing, joining, and filtering MethylDackel sample outputs
in methylKit, not for any statistical analysis, so these as-
signed groups should not impact downstream analyses.
For each species, methylKit was utilized to remove any
sites with unusually high coverage (>99% percentile of
coverage) by using the filterByCoverage command and
to normalize read counts using the normalizeCoverage
function (median method). Finally, the data for each sam-
ple were combined into a single methylBase object using
the unite command, which only retained CpG sites found
in 70% of samples in a given group to ensure that in-
cluded sites were represented across the spatial range of
the species (e.g. a CpG position had to be sequenced in
at least 70% of individuals in northern and southern
B. vancouverensis groups). This produced a file for all
sequenced CpGs (methylated and unmethylated).

Characterizing the Distribution of Methylated CpGs in
the Genome

The united methylKit output file for each dataset for each
species was transformed into a percent methylation matrix
using the percMethylation command in methylKit and used
to calculate overall percent methylation for each species. In
addition to evaluating the all CpG data set, to assess the dis-
tribution of methylated CpGs in the genome of each spe-
cies, the percent methylation matrix was also filtered to
include only CpGs with >30% methylation on average
across all samples (hereafter referred to as the “Meth30 da-
taset”). This procedure thus focused on moderately to
highly methylated sites in the genome and reduced noise
in differential methylation analyses from CpG sites harbor-
ing low levels of methylation, which represent most
CpGs across bumble bee genomes (Marshall et al. 2019;
Rahman and Lozier 2023). Analysis of the Meth30 dataset
provides insight into general patterns of methylation across
the range of both species. The threshold of 30% was
selected after manual inspection of the data, which sug-
gested this value was useful in reducing statistical noise

from low methylation sites that may reflect sequencing er-
ror or occasional poor enzymatic conversion.

We also compared results to a dataset of “highly variable
sites” generated using a threshold of two standard devia-
tions (SD > 2) of percent methylation (hereafter referred
to as the "HVar dataset”). The HVar dataset represents
CpGs that have relatively higher variation in percent methy-
lation across all samples and may be more likely to reveal
differential responses to environmental or spatial variables
(e.g. similar to a minor allele frequency in SNP-based outlier
analyses; Rahman and Lozier 2023). Although this removed
most low-variability CpGs, due to the low overall methyla-
tion proportion across the genome, even after the SD filter
we noted some methylated sites were still only observed in
1 or 2 samples with low percent methylation values. We
thus enforced a secondary requirement for the HVar data-
set that all CpGs had to be methylated in >4 individuals.
This eliminated low-frequency methylated sites or those
that might be erroneously identified as variable based on
a single low methylation site in a single individual which
could arise from an error in enzymatic conversion or se-
guencing, with this threshold selected to strike a balance
between removal of too many CpG sites and retention of
sites consistently methylated in multiple samples. At the
end of these processing steps, we had 6 data sets for
each species: SNP-filtered/All-CpGs, unfiltered/All-CpGs,
SNP-filtered/Meth30, unfiltered/Meth30, SNP-filtered/
HVar, and unfiltered/HVar.

To evaluate how CpGs were distributed across the gen-
ome, general feature format (.gff) files were generated
from the gene transfer format (.gtf) files on NCBI RefSeq
(Heraghty et al. 2020) for each genomic feature of interest
(exon, intron, start codon, stop codon, 3’ untranslated re-
gion [UTR], and 5’ UTR). We used AGAT v.0.7.0 to retain
features for only the longest transcript (Dainat 2023). The
intersect command from BEDTools v.2.30.0 (Quinlan and
Hall 2010) was used to produce feature-specific annotation
for individual CpGs in each dataset. CpG sites that did not
intersect any genomic features were classified as intergenic.
Chi-square tests were performed using the chisq.test func-
tion in R to compare the distributions all CpGs between dif-
ferent feature categories.

Spatially and Environmentally Associated Differential
Methylation

Differential Methylation

In previous genome-wide SNP studies in B. vancouverensis
and B. vosnesenskii, we identified significant effects of spa-
tial and environmental variation in both species (Jackson
et al. 2020; Heraghty et al. 2023, 2022). To assess
the role of geography and environmental variation in shap-
ing methylation patterns, we first tested for differential
methylation —associated with several spatial and
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environmental variables using the MethylSig v.1.6.0 R pack-
age (Park et al. 2014). The raw BedGraph output files gen-
erated by MethylDackel were read into a BS-seq object and
filtered to retain only CpG sites found in the HVar dataset
described above. Predictor variables were then selected to
represent spatial and bioclimatic variation across the
sampled range for both species. We used latitude to re-
present spatial variation, which represents the major geo-
graphic axis of sampling in this study and is a major
spatial predictor of SNP variation (Jackson et al. 2018).
For environmental variables, we used the same variables se-
lected in prior studies of SNP variation (Heraghty et al.
2022, 2023), in which bioclimatic environmental variables
(BioClim variables) were selected from the WorldClim2 da-
taset (0.5 arc-minute resolution) (Fick and Hijmans 2017)
using a variable reduction strategy to minimize correlations.
For B. vancouverensis, these included BIO1, Mean Diurnal
Range (BIO2), BIO3, and BIO12. For B. vosnesenskii, BIO1,
BIO3, and BIO12 were selected. For both species, elevation
was also included in the analysis. Although elevation is of-
ten correlated with other bioclimatic variables, it can cap-
ture some unique environmental variation of interest
(such as reduced air pressure and lower oxygen levels
(Dillon 2006)) and prior research in bumble bees indicates
elevation may produce unique genomic signatures not ob-
served in other variables (Sun et al. 2020; Liu et al. 2020b;
Heraghty et al. 2022).

We ran differential methylation tests specifying each
spatial and environmental variable as a numerical covariate
using the diff_dss_fit and diff_dss_test functions in
MethylISig. The resultant P-values were transformed into
g-values to account for multiple testing using the qvalue
v2.26.0 R package (Storey et al. 2022). A given CpG site
was considered to be significantly differentially methylated
at a false discovery rate corrected threshold of g <0.05.
Individual CpGs with statistically significant differential
methylation were intersected with the previously gener-
ated genomic feature files to identify genes harboring dif-
ferentially methylated sites. To identify general trends in
function of differentially methylated genes, we conducted
a GO enrichment analysis via the go_enrich function in the
GOfuncR v.1.16.0 R package. Species-specific GO terms
were obtained from the Hymenoptera genome database
(Walsh et al. 2021), with differentially methylated genes
being considered as candidate genes and all other genes
specified as the background set. GO terms with P-value
< 0.01 were retained and subsequently summarized with
REVIGO web server (Supek et al. 201 1) using the “medium
(0.7)" stringency filter. Differentially methylated genes
were also compared against a list of genes (n=45 for
B. vancouverensis and n =51 for B. vosnesenskii) previous-
ly identified as being associated with environmental vari-
ables based on whole genome SNP data (Heraghty et al.
2022, 2023).

Methylome-wide Associations with Space, Environment,
and Genetic Variation

As a second approach to detect general differentiation in
methylation with spatial separation or environment (as op-
posed to differential methylation at individual CpG sites),
we conducted methylome-wide analyses of isolation by dis-
tance and environment. We generated methylation dis-
tances among samples for each species by first imputing
missing data in both the Meth30 and HVar datasets to fa-
cilitate downstream analyses that required datasets with
no missing data. Imputation was conducted using the
imputePCA function of the R package missMDA v.1.19
(Josse and Husson 2016), which uses an iterative PCA algo-
rithm and has been shown to perform well on methylation
datasets (Lena et al. 2020). We then used the imputed data
to generate a pairwise matrix of Gower's dissimilarity
among individuals using the daisy function in the R package
cluster v.2.1.4 (Maechler et al. 2022). Gower’s dissimilarity
is a flexible metric for assessing sample differences, with 0
being identical and 1 being completely different (Gower
1987; Linetal. 2015; Koch et al. 2016). Pairwise geograph-
ic distances were calculated between each individual and
each sampling site using the distm function in the geo-
sphere v.1.5-18 R package (Hijmans 2022). Mantel tests
were used to test for significant correlations between geo-
graphic distance and methylation dissimilarity using the
mantel function with 1,000 permutations from the vegan
v.2.6-4 R package (Oksanen et al. 2022).

Given previously noted connections between an
individual’s genetic background and CpG methylation
(Marshall et al. 2019; Chapelle and Silvestre 2022), we
also identified SNPs from the methyl-seq data to directly
compare genetic and methylation differences among indi-
viduals. SNPs were called from the trimmed sequencing
reads using BISCUIT v.1.2.0 (Zhou 2024), following
the author’'s suggested workflow (https:/huishenlab.
github.io/biscuit/). First, trimmed reads were aligned to
the reference genome via the BISCUIT align command,
SAMBLASTER v.0.1.26 was used to sort and mark duplica-
tions, and then the SAMtools view command was used to
create final alignment files in BAM. Second, SNPs were
called using the pileup command in BISCUIT and filtered
using BCFtools v.1.17 (Li et al. 2009) to retain biallelic sites
with less than 25% missing data and a base quality score Q
>30. The gl.dist.ind function from the dartR v.2.7.2 R
package (Gruber et al. 2018) was used to generate genetic
distances between individuals. As a method of quality con-
trol we also performed a PCA on a subset of SNPs with no
missing data (2,969 SNPs for B. vancouverensis and 3,200
SNPs for B. vosnesenskii) using the gl.pcoa command in the
dartR package. We used Mantel tests to test the signifi-
cance of the association between the individual-level
genomic distance and Gower’s dissimilarity matrices as
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described above. We also conducted a Mantel test using
the individual genomic distance and geographic distance
matrices to confirm prior results regarding genetic isolation
by distance for each species (Heraghty et al. 2022, 2023).

Finally, we conducted partial redundancy analysis (obRDA)
to identify patterns of methylome-wide variation that could
be explained by environmental variables, geographic vari-
ables, and population structure. This approach is useful in
obtaining both the total amount of variation accounted for
by all explanatory variables as well as each for different sub-
sets of environmental (BioClim variables and elevation, re-
ferred to as env) or geographic (latitude and longitude,
referred to as geo) variables (Capblancg and Forester
2021). To account for population structure, we included
the first principal component (PC) axis from the PCA analysis
of the BISCUIT SNP data (referred to as pop). The model run
using all explanatory variables is referred to as the full model
(F ~ env + geo + pop) and accounts for the total amount of
variation that can be explained by all variables. We then
ran three partial models to account for the individual effects
of environment (F ~ env | [geo + pop]), geography (F ~ geo |
[env + pop]), and population structure (F ~ pop | [env + geo])
respectively while factoring in the effect of the other condi-
tioned variables (e.g. the geography models asses the
amount of variation only explained by geographic variables).

Supplementary Material

Supplementary material is available at Genome Biology and
Evolution online.
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