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Abstract

We construct a somewhat-homomorphic encryption scheme from the sparse learning-parities-
with-noise problem, along with any assumption that implies linearly homomorphic encryption
(e.g., the decisional Diffie-Hellman or decisional composite residuosity assumption). Our result-
ing schemes support an a-priori bounded number of homomorphic operations: O(log λ/ log log λ)
multiplications followed by poly(λ) additions, where λ ∈ N is a security parameter. These
schemes have compact ciphertexts: before and after homomorphic evaluation, the bit length
of each ciphertext is a fixed polynomial in the security parameter λ, independent of the num-
ber of homomorphic operations that the scheme supports. This gives the first constructions of
somewhat homomorphic encryption that can evaluate the class of bounded-degree polynomials
without relying on lattice assumptions or bilinear maps.

Our new encryption schemes are conceptually simple: much as in Gentry, Sahai, and Waters’
fully homomorphic encryption scheme, ciphertexts in our scheme are matrices, homomorphic
addition is matrix addition, and homomorphic multiplication is matrix multiplication. Moreover,
when encrypting many messages at once and performing many homomorphic evaluations at
once, the bit length of the ciphertexts in (some of) our schemes can be made arbitrarily close
to the bit length of the plaintexts. The main limitation of our schemes is that they require a
large evaluation key, whose size scales with the complexity of the homomorphic computation
performed, though this key can be re-used across any polynomial number of encryptions and
evaluations. Our construction builds on recent work of Dao, Ishai, Jain, and Lin, who construct
a homomorphic secret-sharing scheme from the sparse-LPN assumption.

This is the full version of a paper of the same title at Eurocrypt 2025.

1



Contents

1 Introduction 3
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background and Definitions 13
2.1 Definition of Somewhat Homomorphic Encryption . . . . . . . . . . . . . . . . . . . 14
2.2 Definition of Linearly Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . 15
2.3 Definition of Sparse LPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Somewhat Homomorphic Encryption from Sparse LPN and Linearly Homomor-
phic Encryption 17

4 Optimizing the Bit Length of Ciphertexts 21
4.1 Shrinking the Bit Length of Fresh Ciphertexts . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Shrinking the Bit Length of Evaluated Ciphertexts . . . . . . . . . . . . . . . . . . . 22
4.3 Proof Sketch for Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Open Question: Can We Bootstrap? 25

References 26

A Additional Material on Sparse LPN 34

B Additional Material on Somewhat Homomorphic Encryption 35
B.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.2 Proof of Remark 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C Additional Material on Optimizations and Batching 47
C.1 Syntax for Batch Somewhat Homomorphic Encryption . . . . . . . . . . . . . . . . . 47
C.2 Additional Material for Section 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.3 Additional Material for Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
C.4 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2



1 Introduction

An encryption scheme is homomorphic for a class of computations C if, for all functions f ∈ C, it
is possible to map the ciphertexts Enc(x1), . . . ,Enc(xm) to a new ciphertext Enc(f(x1, . . . , xm)),
without any knowledge of the underlying encrypted values [RAD78]. To make the notion of ho-
momorphic encryption both non-trivial and useful, such a scheme must be compact : that is, the
bit length of ciphertexts Enc(x1), . . . ,Enc(xm), and Enc(f(x1, . . . , xm)) should not grow too much
with the complexity of the computation f performed on them [IKR23]. Without this requirement,
any encryption scheme could be made trivially homomorphic by concatenating ciphertexts and
appending a description of the function f to be applied.

The cryptographer’s toolkit today contains many types of homomorphic encryption: linearly ho-
momorphic encryption can perform only additions on encrypted data [GM84]; fully homomorphic
encryption can perform any polynomial-time computation on encrypted data [Gen09]; and some-
what homomorphic encryption falls in between these two notions, in that it can perform a bounded
class of computations on encrypted data. Despite this restricted expressivity, somewhat homo-
morphic encryption has wide-ranging applications to the theory of cryptography [OSI05,DPSZ12,
CLR17, LT22,CGHK22, LMW23] and the design of privacy-preserving systems [WH12,BPTG14,
DGBL+17,ACLS18,HHCP19,JVC18,HLC+22,RCK+21,MW22].

However, constructions of somewhat homomorphic encryption are known from precious few
hardness assumptions. Boneh, Goh, and Nissim showed how to homomorphically evaluate degree-
two polynomials on encrypted data using bilinear maps [BGN05]. Encryption schemes that can ho-
momorphically evaluate polynomials of degree larger than two rely on the learning-with-errors prob-
lem [Reg09,MGH10,BV11,Bra12,BGH13,GSW13,BV14,BGV14], its instantiation over rings [LPR10,
GHS12,GHPS13,BLLN13,ASP14,DM15,CGGI16,CKKS17], the NTRU problem [HPS98,LATV12],
or the approximate integer greatest-common-divisor problem [VDGHV10], all of which are based
on underlying lattice problems (directly or indirectly). Only two alternative approaches to some-
what homomorphic encryption exist. The first is via the route of indistinguishability obfuscation
(iO) [CLTV15]. All known iO schemes with a non-vacuous proof of security build on bilinear maps
(along with other assumptions) and remain tremendously expensive [JLS21, JLS22, RVV24]. The
second is via the route of private information retrieval [CGKS95,KO97], which enables homomor-
phic evaluation of branching programs [IP07,DGI+19]. However, the bit length of ciphertexts in
these schemes grows with the branching program’s length. While complexity-theoretic barriers have
precluded proving strong lower bounds on the length of branching programs, it is not known how
to use these schemes to homomorphically evaluate degree-two polynomials with better than trivial
ciphertext size. After many years of study, the pathways to constructing somewhat homomorphic
encryption thus remain few and far between; to homomorphically evaluate polynomials of degree
two or higher, lattices and bilinear maps are the only known building blocks.

In this paper, we present a new approach for constructing somewhat homomorphic encryption.
Our idea is to take a linearly homomorphic encryption scheme and “lift” it into one that can
perform a bounded amount of non-linear homomorphic computation. We achieve this lifting step
by relying on a coding-theoretic assumption: sparse learning parities with noise [Ale03, AIK06b,
IKOS08,ABW10,DIJL23]. This gives the first constructions of somewhat homomorphic encryption
for the class of polynomials of degree two (or higher) from assumptions not based on lattices or
bilinear maps. A key technical idea for our constructions comes from a recent paper of Dao, Ishai,
Jain and Lin [DIJL23], who show how to construct a homomorphic secret sharing scheme for certain
non-linear functions from sparse LPN.
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Our result places somewhat homomorphic encryption on broader foundations: diversifying the
assumptions from which it can be built, presenting a range of simple constructions with new effi-
ciency trade-offs, and demonstrating that homomorphic evaluation of bounded-degree polynomials
is possible even in a world where lattice problems are easy and iO is impractical.

1.1 Our Results

This paper builds somewhat homomorphic encryption from the sparse learning-parities-with-noise
assumption (“sparse LPN”), a coding-theoretic assumption [Ale03,AIK06b,IKOS08,ABW10,DIJL23,
RVV24] introduced by Alekhnovich in 2003 [Ale03]. While the standard LPN assumption [GKL93,
BFKL93] posits that it is hard to solve a system of random linear equations, over a finite field,
corrupted in some locations with random noise, the sparse-LPN assumption states that this task re-
mains hard even when the linear equations are sparse, i.e., only a few variables appear in each equa-
tion [Ale03,DIJL23]. An alternate view of the sparse-LPN problem is as the task of decoding a noisy
linear code, in which each symbol of the codeword is a random linear combination of a small number
of symbols of the message. The sparse-LPN assumption is closely related to the hardness of random
constraint-satisfaction problems [Gol00,CM01,Fei02,AIK06a,ABW10,AOW15,AL16,KMOW17].

In more detail, the sparse-LPN assumption (defined formally in Section 2) is parameterized
by a secret dimension n, a number of samples m, a sparsity k, a prime modulus q, and an error
parameter δ. The assumption asserts that, for a matrix A ∈ F

m×n
q with k random non-zero entries

in each row, a secret vector s←R F
n
q , and an error vector e ∈ F

m
q in which each entry is a random non-

zero value in Fq with probability n−δ and zero otherwise, it is computationally hard to distinguish
(A,A · s + e) from (A, r), for a uniform random r ←R F

m
q . Given a security parameter λ ∈ N,

our results work in the following setting: the dimensions n,m are polynomials in λ, the sparsity
k is polylogarithmic in λ, and the error parameter δ ∈ (0, 1) is a constant, meaning that each
sparse-LPN sample has inverse-polynomial noise rate n−δ.

Somewhat homomorphic encryption using sparse LPN. From sparse LPN and a secret-
key linearly homomorphic encryption scheme, we show how to construct a secret-key somewhat
homomorphic encryption scheme for the class of polynomials with bounded degree and a bounded
number of monomials. In Section 3, we prove the following result:

Informal Theorem 1.1. On security parameter λ ∈ N and given a prime modulus q ≥ 3 of size
at most exponential in λ, assume that sparse LPN with modulus q, O(

√
log λ)-sparsity, and any

inverse-polynomial noise rate is hard. Assume the existence of a linearly homomorphic encryption
scheme with message space Fq. Then, for every constant c ∈ N, there exists a somewhat homo-
morphic encryption scheme capable of evaluating multivariate polynomials over Fq with total degree
c · log λ/ log log λ and up to λc monomials.

Our somewhat homomorphic encryption scheme is compact: the bit length of all ciphertexts is
a fixed polynomial in λ, independent of the class of homomorphic computations that the scheme
supports. However, to achieve this efficiency, our scheme requires the transmission of a large evalu-
ation key to any party that performs computations on ciphertexts. The size of this evaluation key
scales polynomially with the number of additions and exponentially with the number of multiplica-
tions that can be performed. Concretely, given the above parameter c ∈ N, which determines how
expressive the class of homomorphic computations is that our scheme supports, the bit length of
the evaluation key grows exponentially with c. At the same time, the holder of a secret key needs
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only to publish its evaluation key once; thereafter, anyone can use this evaluation key to evaluate
any polynomial number of functions on any polynomial number of ciphertexts (encrypted under
the corresponding secret key) — regardless of the value of c. In this way, it is possible to amortize
away the cost of communicating the large evaluation key.

Instantiating our construction with concrete linearly homomorphic encryption schemes [ElG85,
Pai99,DJ01], we obtain new somewhat homomorphic encryption schemes from sparse LPN and the
hardness of either the decisional Diffie-Hellman (DDH) [DH76,Bon98] or the decisional composite
residuosity (DCR) [Pai99] problems. (For ways to construct an analogous scheme from quadratic
residuosity [GM84], see Remark 3.7.) Our schemes are the first constructions of homomorphic
encryption for the class of polynomials of degree two or higher that do not require assumptions
based on lattices or pairings.

Finally, we show how to shrink the bit length of the ciphertexts in our somewhat homomorphic
schemes, when they are used to encrypt many messages at once and evaluate many polynomials
at once. In this setting, we show that the sum of the ciphertexts’ bit lengths — before and after
homomorphic evaluation — can be arbitrarily close to the bit lengths of the plaintexts that they
encrypt. In Section 4, we describe a scheme with the following efficiency:

Informal Theorem 1.2. On security parameter λ ∈ N and any prime modulus q ≥ 3 of size
at most polynomial in λ, assume that sparse LPN with modulus q, O(

√
log λ)-sparsity, and any

inverse-polynomial noise rate is hard and that DDH is hard. Then, there exists a somewhat homo-
morphic encryption scheme with message space Fq and the homomorphic capabilities of Informal
Theorem 1.1, such that, when evaluating a batch of t polynomials, each in F

m
q → Fq, on a batch of

tm inputs,

• all tm input ciphertexts together consist of tm · log q + m · poly log(λ) bits, in addition to a
one-time evaluation key of t2 · poly(λ) bits, and

• all t output ciphertexts together consist of t · log q + poly(λ) bits.

Here, when the number of polynomials t evaluated in a batch grows large, each encrypted input
and output is represented using roughly one element in Fq — this matches the bit length of the
plaintext space, up to additive factors. As before, when evaluating sufficiently many batches of
polynomials, we can amortize away the cost of transmitting the evaluation key. We say that such
a scheme has “batch rate” one.

Our constructions draw inspiration from two sources: a recent homomorphic secret-sharing
scheme from sparse LPN [DIJL23] and the Gentry-Sahai-Waters fully homomorphic encryption
scheme [GSW13] based on the learning-with-errors assumption (LWE). In particular, our results
can be viewed in two ways:

In the first view, our schemes modify Dao, Ishai, Jain, and Lin’s homomorphic secret-sharing
scheme from sparse LPN [DIJL23] to work with only a single party, rather than multiple non-
colluding parties. To be more precise, Dao et al. construct a homomorphic secret-sharing scheme
from sparse LPN and an arbitrary linear secret-sharing scheme L. If we instantiate the linear secret-
sharing scheme L in their construction with a linearly homomorphic encryption scheme, we imme-
diately obtain a somewhat homomorphic encryption scheme from sparse LPN. This basic scheme
does not satisfy our ciphertext-compactness notion, so we apply an extra ciphertext-compression
step to arrive at our final construction.

Taking another perspective, our schemes closely resemble Gentry, Sahai, and Waters’ fully ho-
momorphic encryption from LWE [GSW13], ported to the setting of code-based encryption. This
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connection lets us draw upon many optimizations developed in the context of lattice-based en-
cryption [PVW08,BV14,BGV14,CGGI20, dCHI+22] to improve our schemes’ efficiency. Like the
Gentry-Sahai-Waters encryption scheme, our somewhat homomorphic encryption is simple: cipher-
texts are sparse matrices, homomorphic addition is just matrix addition, and homomorphic multipli-
cation is just matrix multiplication, without even the bit-decomposition of the Gentry-Sahai-Waters
scheme. The main limitation of our schemes is that they remain much less homomorphic than their
lattice-based counterparts, which are fully homomorphic.

Can we bootstrap? One question left open by our work is whether it is possible to bootstrap our
schemes to construct fully homomorphic encryption from sparse LPN and linearly homomorphic
encryption (possibly with another mild assumption). We discuss why this appears challenging in
Section 5.

In particular, a natural approach [Gen09] would be to instantiate our constructions with a lin-
early homomorphic encryption scheme whose decryption circuit can be homomorphically evaluated
by our somewhat homomorphic schemes — that is, we need linearly homomorphic encryption whose
decryption algorithm can be written as a multivariate polynomial of total degree O(log λ/ log log λ)
with poly(λ) monomials. However, this route likely runs into trouble: first, we do not know of such
a linearly homomorphic scheme. Second, if there were to be such a linearly homomorphic encryp-
tion scheme, together with our constructions, it appears to imply a gadget that can generate many
sparse-LPN samples from a small number of them. This in turn would render such a bootstrapped
scheme vulnerable to attacks on sparse LPN in the many-sample regime.

1.2 Technical Overview

We begin with an overview of each of the constructions and results in this work.

Sparse learning parity with noise. The sparse learning-parity-with-noise assumption posits
that it is computationally hard to solve a sparse system of linear equations over a finite field,
which has been corrupted with random noise in a fraction of locations. In more detail, given a
prime modulus q ≥ 2, dimensions m,n ∈ N, a sparsity parameter k ≤ n, and a constant error
parameter δ ∈ (0, 1), we write Sk,m,n,q to denote the set of matrices in F

m×n
q whose rows are each

k-sparse (i.e., contain exactly k non-zero entries). We write RandBernn−δ ,q to denote a Bernoulli

random variable that takes on a random value in Fq \ {0} with probability n−δ, and takes on the
value 0 otherwise.

Then, the sparse-LPN assumption with parameters (n,m, q, δ, k), which implicitly grow with
an underlying security parameter, states that the following two distributions are computationally
indistinguishable:







(A,As+ e) :

A←R Sk,m,n,q

s←R F
n
q

e← RandBernmn−δ ,q







c≈
{

(A,u) :
A←R Sk,m,n,q

u←R F
m
q

}

.

At first glance, sparse LPN looks very similar to the LWE assumption: the assumptions differ
only in their choice of the A-matrix (taken to be sparse in sparse LPN) and their error distribution
(LWE uses low-norm errors that perturb every location, while sparse LPN uses high-norm errors
that completely corrupt a small fraction of locations). However, while LWE gives rise to some of
the most powerful cryptographic tools including fully homomorphic encryption, only a handful of
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primitives are known from sparse LPN: among them, public-key encryption [Ale03,ABW10], cryp-
tographic tools with constant overhead [AIK06b, IKOS08,ADI+17], and multi-party computation
with sublinear communication [DIJL23].

Building somewhat homomorphic encryption. In Section 3, we introduce new constructions
of somewhat homomorphic encryption from sparse LPN, along with an assumption that implies
linearly homomorphic encryption (e.g., DDH or DCR). At its core, our construction relies on two
key design steps:

Step 1: Leveraging sparse LPN’s structure to support homomorphic operations. The reason why
sparse LPN implies an encryption scheme that can support both homomorphic additions and mul-
tiplications — unlike many other cryptographic assumptions — is because it is powerful enough
to homomorphically evaluate its own decryption circuit (a bounded number of times)1. Dao, Ishai,
Jain, and Lin implicitly exploited this structural property of sparse LPN to build a homomorphic
secret sharing scheme from sparse LPN [DIJL23].

In particular, we can build a Regev-style [Reg09] encryption scheme from sparse LPN that,
given a secret key s ∈ F

n
q and a message µ ∈ Fq, produces the ciphertext

RegevEncs(µ) = (a,a⊺s+ e+ µ) ∈ F
n
q × Fq,

for a random k-sparse vector a ∈ F
n
q and a Bernoulli error e ← RandBernn−δ ,q. The sparse-LPN

assumption implies that the value a⊺s+e is computationally indistinguishable from random, so the
ciphertext hides the message µ. In addition, this scheme has the following properties:

1. It can homomorphically evaluate linear functions with few (i.e., up to O(nδ)) variables. More
precisely, we can add up c such ciphertexts encrypted with the same secret key s; the result
will be an encryption of the sum of the messages under secret key s, with c times larger error
probability.

2. Its decryption algorithm is a linear function in only a few variables. In particular, given a
ciphertext (a, b) ∈ F

n
q ×Fq encrypted with secret key s ∈ F

n
q , decryption evaluates the function

fa,b(x1, . . . , xn) = b− a⊺x = b−
n∑

i=1

ai · xi

on input s = (s1, . . . , sn) ∈ F
n
q , where the vector a = (a1, . . . , an) ∈ F

n
q is public and has

only a few non-zero entries. Decryption succeeds if the error e in the ciphertext is zero; this
happens with good probability, as long as not too many homomorphic additions have been
performed.

Combining these two properties, we follow the template of Gentry, Sahai, and Waters [GSW13]
and Micciancio’s [Mic19] “linear-decrypt-and-multiply” framework — applied previously in the
context of lattice-based encryption — to support homomorphic multiplications. To do so, for each
message µ and each entry si of the secret key s ∈ F

n
q , we publish the encryption RegevEncs(µ·si).

1Unlike in prior fully homomorphic encryption schemes, the fact that we can homomorphically evaluate the
decryption circuit does not give us a scheme that is “bootstrappable.” This is because the amount of error present
in our ciphertexts is always larger after homomorphically evaluating the decryption circuit than before. So, we can
make use of homomorphic decryption only to support multiplications, not to control error growth.
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(Here, as we will see in Section 2.3, to ensure key-dependent-message security from sparse LPN,
we sample the a-components of such a ciphertext to be k-sparse vectors with a non-zero value in
their ith entry, and we work over a modulus q ≥ 3.) Then, given the encryption of two inputs
RegevEncs(µ) and RegevEncs(µ̂), along with special encryptions of the form RegevEncs(µ̂ · si) for
each i ∈ [n], we compute RegevEncs(µµ̂) by:

• thinking of each component (a, b) of RegevEncs(µ) as a “plaintext” in F
n
q × Fq,

• computing the plaintext multiplication ctµ·µ̂ = b · RegevEncs(µ̂), and

• homomorphically “decrypting” this ciphertext ctµ·µ̂ by subtracting the inner-product of the
plaintext vector a with the ciphertext vector RegevEncs(µ̂ · s).

By the above two properties, this final step produces exactly the output we need:

b · RegevEncs(µ̂)− a⊺ · RegevEncs(µ̂ · s) = b · RegevEncs(µ̂)−
n∑

i=1

ai · RegevEncs(µ̂ · si)

≈ RegevEncs(bµ̂− µ̂ · a⊺s) (property 1.)

= RegevEncs((b− a⊺s) · µ̂)
= RegevEncs(fa,b(s) · µ̂)
≈ RegevEncs(µµ̂). (property 2.)

We can similarly multiply RegevEncs(µ̂) by each RegevEncs(µ ·si) to produce RegevEncs(µµ̂ ·si).
This lets us compute exactly the inputs that we need to perform another multiplication — namely,
the encryptions RegevEncs(w) and RegevEncs(w · s) for every intermediate wire value w ∈ Fq —
allowing us to keep multiplying and adding until the error growth becomes unmanageable.

Our somewhat homomorphic encryption schemes follow exactly this template. More concretely,
given a secret key s = (s1, . . . , sn) ∈ F

n
q and a message µ ∈ Fq, we compute a ciphertext matrix

C ∈ F
(n+1)×(n+1)
q encrypting µ as

C =










RegevEncs(−µ · s1)
RegevEncs(−µ · s2)

...
RegevEncs(−µ · sn)

RegevEncs(µ)










=

[

A || As+ e+ µ ·
[
−s
1

]]

, (1)

where A ∈ F
(n+1)×n
q is a matrix whose rows are each k-sparse and the vector e ∈ F

n+1
q has entries

sampled from the Bernoulli error distribution. To decrypt ciphertext C, we run Regev decryption
(property 2 above) on the last row of the ciphertext matrix. To perform homomorphic additions on
ciphertexts C1 and C2, we add the ciphertext matrices: this operation exactly adds the underlying
Regev encryptions, stored in each row of the matrices. To perform homomorphic multiplications
on ciphertexts C1 and C2, we multiply the ciphertext matrices: this operation exactly implements
the ciphertext tensoring and decryption steps described above to multiply.

We give an alternate view of this scheme, which closely resembles Gentry, Sahai, and Waters’
fully homomorphic encryption from lattices [GSW13] (referred to as the “GSW scheme”), in our
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proof of correctness in Section 3 and Appendix B.1. At a high level, this view focuses on the fact
that our ciphertext C (constructed as in Equation (1)) is a sparse matrix that has the secret key as
an “approximate” eigenvector and the encrypted message as the corresponding eigenvalue: namely,
it holds that

C ·
[
−s
1

]

= µ ·
[
−s
1

]

+ e. (2)

(Here, unlike in GSW, the “approximate” eigenvector is corrupted by sparse-LPN errors e ∈ F
n+1
q ,

which are high-norm but only non-zero in a small fraction of locations.)
As matrix addition/multiplication preserves the eigenvectors of a matrix while adding/multiplying

the eigenvalues, we can perform homomorphic operations. In more detail, for any pair of matri-
ces C1 and C2 that satisfy Equation (2) with respect to messages µ1, µ2 ∈ Fq and error vectors
e1, e2 ∈ F

n+1
q , we observe that:

• Homomorphic addition. Equation (2) holds for the summed matrix C1 +C2, with respect to
new message (µ1 + µ2) ∈ Fq and new error vector (e1 + e2) ∈ F

n+1
q :

(C1 +C2) ·
[
−s
1

]

= C1 ·
[
−s
1

]

+C2 ·
[
−s
1

]

= (µ1 + µ2)
︸ ︷︷ ︸
new message

·
[
−s
1

]

+ (e1 + e2)
︸ ︷︷ ︸
new error

.

Since vectors e1 and e2 are each non-zero in only a few locations, we can conclude that the
new error vector (e1 + e2) is also only non-zero in a few locations. As a result, with each
homomorphic addition, the error-rate grows additively and can be bounded.

• Homomorphic multiplication. Equation (2) holds for the product matrix C1 ·C2, with respect
to new message (µ1 · µ2) ∈ Fq and new error vector (µ2 · e1 +C1 · e2) ∈ F

n+1
q :

(C1C2) ·
[
−s
1

]

= C1·
(

µ2

[
−s
1

]

+ e2

)

= (µ1µ2)
︸ ︷︷ ︸

new message

·
[
−s
1

]

+ (µ2e1 +C1e2)
︸ ︷︷ ︸

new error

.

Here, since vectors e1 and e2 are each non-zero in only a few locations, and since matrix C1

is sparse, we can conclude that the new error vector (µ2 · e1 +C1 · e2) is also only non-zero
in a few locations. As a result, with each homomorphic multiplication, the error-rate grows
multiplicatively (in the ciphertext matrix C1’s sparsity) and can also be bounded.

Crucially, this step only succeeds when the ciphertext matrices are sufficiently sparse — this
is why our construction requires sparse LPN instead of plain LPN.

Unlike in lattice-based cryptography, and in the GSW scheme in particular, we must deal with much
more aggressive error growth since any errors in the ciphertexts corrupt all computations that they
touch (rather than just corrupting the lowest-order bits). This limits the number of homomorphic
operations that the scheme can support.

Step 2: Using hybrid encryption to achieve compactness. While sparse LPN on its own is sufficient
to implement homomorphic additions and multiplications, these operations are not compact. To
ensure that the final output of a computation will not get corrupted by the Bernoulli errors (with
good probability), the more homomorphic operations we want to perform, the larger we need to
set the sparse-LPN dimension n to be, and the bulkier our fresh ciphertexts — which are sparse
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matrices of dimension (n+1)-by-(n+1) — must get. Worse yet, with each operation, the ciphertext
matrices grow less sparse, and thus require more bits to represent. As a result, representing a
ciphertext matrix C always requires more bits than just representing the function f that has been
homomorphically applied to it.

To circumvent this issue, we use homomorphism to translate between different ciphertext rep-
resentations. In doing so, we obtain a somewhat homomorphic encryption scheme that uses the
non-compact “GSW-style” ciphertexts (from step 1 above) to perform homomorphic operations,
but where all input and output ciphertexts are made compact. In particular, we have our encryp-
tion algorithm publish compact, Regev-style encryptions of the input messages (secure under sparse
LPN). Then, we let any party that wishes to compute on these ciphertexts (a) translate these en-
cryptions into much larger, GSW-style ciphertexts (again, secure under sparse LPN), (b) perform
homomorphic operations on these GSW-style ciphertexts, and (c) translate the GSW-style out-
put ciphertext into a single ciphertext from a compact, linearly homomorphic encryption scheme
(e.g., secure under DDH or DCR). Under the hood, each of these translations from one encryption
scheme to the next runs “homomorphic decryption” on the former scheme’s ciphertexts, using an
encryption of the former scheme’s secret key under the next scheme.

In more detail, our final scheme proceeds as follows:

1. We have the encryptor sample two sparse-LPN secrets s, t ∈ F
n
q , and publish a one-time

“evaluation key” which holds the GSW-style encryption of each entry of the vector t, under
the secret key s. In addition, we have the encryptor publish the encryptions of each entry
of the vector s ∈ F

n
q under a second, only linearly homomorphic encryption scheme (with

message space Fq) in the evaluation key.

2. Then, for each input message µ ∈ Fq, the encryptor publishes only a much smaller, Regev-
style encryption of message µ under secret key t — i.e., RegevEnct(µ) — which is a sparse
vector whose bit length scales only logarithmically with the large dimension n.

3. Given the evaluation key, anyone can convert these small, Regev-style encryptions under the
secret key t into a large, GSW-style encryption of the same message under secret key s: it
suffices to homomorphically decrypt the Regev-style ciphertexts, using the GSW-style encryp-
tion of their secret key. This step relies on the homomorphism of our non-compact GSW-style
ciphertexts, which lets us homomorphically evaluate the linear Regev-decryption function.2

4. After performing all desired operations on these (non-compact) GSW-style ciphertexts, any
party that knows the evaluation key can homomorphically decrypt them under the linearly
homomorphic encryption scheme, to obtain (compact) ciphertexts that encrypt the same
underlying message. This step takes advantage of the fact that, in our “GSW-style” sparse-
LPN encryption, decryption is a linear function of the secret key s ∈ F

n
q — and so it can be

evaluated under encryption, using a linearly homomorphic scheme.

This gives our main result: somewhat homomorphic encryption that can homomorphically eval-
uate multivariate polynomials of bounded total degree O(log λ/ log log λ) with an a-priori bounded
poly(λ) number of monomials (Informal Theorem 1.1).

2Though we describe it here in the language of homomorphic decryption, this technique is analogous to the
“external product” operation for switching Regev to GSW ciphertexts in lattice-based encryption [CGGI20,MW22].
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Achieving “batch rate” one. In Section 4, we show how to reduce the bit length of our scheme’s
ciphertexts, when encrypting many values at once and homomorphically evaluating many polyno-
mials at once. That is, when computing over any prime modulus q = poly(λ) and when homomor-
phically evaluating a batch of t polynomials, each mapping F

m
q → Fq, on tm input ciphertexts, the

bit length of all tm input ciphertexts together can be arbitrarily close to tm · log q, as t grows large.
This is the minimum number of bits necessary to represent the input plaintexts. The bit length of
all t output ciphertexts together can be arbitrarily close to t · log q, as t grows large. This is the
minimum number of bits necessary to represent the output plaintexts. Finally, by evaluating suffi-
ciently many batches of polynomials, we can amortize away the cost of transmitting the one-time
evaluation key (Informal Theorem 1.2).

To achieve this efficiency, in Section 4.1, we fix and re-use large portions of the sparse-LPN
ciphertexts at only a polynomial loss in security, following a standard technique in the lattice
literature [PVW08]. At this point, each fresh ciphertext consists of one value in Fq (plus a single,
re-usable preamble of poly(λ) bits) — when encrypting a sufficiently large batch of values, this
essentially matches the plaintext space. In Section 4.2, we shrink the bit length of ciphertexts after
homomorphic evaluation. To this end, we construct a linearly homomorphic encryption scheme from
DDH that can evaluate linear functions over an arbitrarily small modulus q (that is of size at most
poly(λ)) and that achieves high rate in a specific context: namely, when homomorphically applying
a batch of many different linear functions to many ciphertexts, each output ciphertext consists
of roughly one element in Fq. Our linearly homomorphic encryption scheme from DDH combines
ideas from recent “distributed discrete logarithm” protocols [BGI16,DGI+19, BBD+20, BBDP22]
and rate-one encryption schemes from LWE [dCHI+22]. Using this linearly homomorphic scheme,
our somewhat homomorphic encryption can perform “batch compaction” after evaluating multiple
different polynomials on different ciphertexts. When doing so with batch size t, its output is a
“packed” DDH ciphertext that holds all t polynomial evaluations, each encoded as a value in Fq

(plus a single preamble of λ bits) — again, when encrypting a sufficiently large batch of outputs,
this essentially matches the plaintext space.

Discussion: The power of sparse LPN. At first sight, sparse LPN seems like an assumption
with limited utility: in the parameter regime we work in, sparse LPN does not necessarily imply
that a hard problem in the complexity class SZK exists (where SZK denotes the class of languages
with statistical zero-knowledge proofs), a prerequisite for building any form of compact homo-
morphic encryption [BLVW19,DJ24]. Moreover, our schemes also work in sparse-LPN parameter
settings that are not known to imply public-key encryption (which has only been constructed from
LPN with constant sparsity [ABW10,DIJL23,RVV24], sufficiently low noise rate [Ale03], or sub-
exponential hardness [YZ16]). Dao et al. use sparse LPN, in the same parameter regime as we do,
to build homomorphic secret-sharing schemes that are not known to exist under secret-key assump-
tions [DIJL23]. Their results suggest that sparse LPN may be more powerful than it might appear
at first.

Indeed, once paired with other relatively mild cryptographic assumptions — in our case, the
existence of linearly homomorphic encryption — sparse LPN seems to act as a powerful catalyst
towards constructing more advanced cryptography. An analogous, equally intriguing phenomenon
appears in the study of indistinguishability obfuscation [JLS21,JLS22,RVV24], where sparse LPN
together with other standard assumptions (specifically, the DLIN assumption on bilinear maps and
LPN over large fields) gives iO. Our work makes progress on harnessing the power of sparse LPN
in a different, albeit more modest, setting.
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Asymptotic bit length

Assumption(s) Homomorphic encryption for... ciphertexts evaluation key

Linearly homomorphic enc.

DDH, QR, DCR, or LWE degree-1 polynomials 1 none

Somewhat homomorphic enc.

Bilinear maps degree-2 polynomials 1 none

DDH, DCR, QR, or LWE branching programs of length ℓ poly(ℓ) none

polynomials of degree d = O(log λ/ log log λ)
Sparse LPN + DDH/DCR

with M monomials
1 poly(M(log λ)d)

Fully homomorphic enc.

LWE any degree-d polynomial 1 log d

circular-secure LWE any polynomial 1 1

iO + re-randomizable enc. any polynomial 1 1

Table 1: The assumptions that give rise to homomorphic encryption, compared based on (1) the class of
homomorphic computations that they support, (2) the asymptotic bit length of ciphertexts, and (3) the
asymptotic bit length of the one-time evaluation key. All schemes implied by LWE are also implied by the
ring-LWE assumption. For simplicity, we suppress fixed polynomials in the security parameter λ.

Yet a different interpretation of our results is that they “decompose” the properties of the
learning-with-errors (LWE) assumption needed to build somewhat homomorphic encryption. As
described earlier, in our schemes, sparse LPN provides linear decryption, while linearly homomor-
phic encryption provides compression. LWE has both of these properties baked in.

1.3 Related Work

Homomorphic encryption. Rivest, Adleman, and Dertouzos first proposed the notion of homo-
morphic encryption in 1978 [RAD78]. Many early encryption schemes from number-theoretic as-
sumptions support natural but limited types of homomorphism: they can compute only multipli-
cations [ElG85] or only additions [Rab79,GM84, ElG85, Ben87, Pai99,DJ01] on their ciphertexts.
Using bilinear maps [BF01], Boneh, Goh, and Nissim gave an encryption scheme supporting any
number of additions and one multiplication (i.e., degree-two polynomials) [BGN05]. Gentry, Halevi,
and Vaikuntanathan later showed how to evaluate this same class of functions with an encryption
scheme from LWE [GHV10]. However, these works left open the question of how to build homo-
morphic encryption for a larger class of functions, e.g., polynomials of higher degree.

In his 2009 thesis, Gentry gave a fully homomorphic encryption scheme from ideal lattices [Gen09],
kicking off a cascade of works building lattice-based fully homomorphic schemes from standard as-
sumptions [LPR10,VDGHV10,BV11,Bra12,LATV12,BLLN13,BV14] with better efficiency [GHS12,
GHPS13,BGH13,BGV14,ASP14,DM15,CGGI16,CKKS17,GH19,BDGM19,CGGI20] and simpler
constructions [GSW13]. Melchor, Gaborit, and Herranz leveraged a certain flavor of linearly ho-
momorphic encryption to evaluate low-degree polynomials and instantiated their framework from
lattice-based assumptions [MGH10,MBGH11].

Two main lines of work have constructed somewhat/fully homomorphic encryption from stan-
dard assumptions not based on bilinear maps or lattices (Table 1). First, in 2007, Ishai and Paskin
described a generic transformation that uses any linearly homomorphic encryption with sufficiently
short ciphertexts (known today from DCR, QR, DDH, and LWE) to evaluate branching programs
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under encryption [IP07,DGI+19]. Ishai and Paskin’s scheme can homomorphically evaluate any log-
space or NC1 computation. However, unlike the schemes in this paper, Ishai and Paskin’s scheme is
only weakly compact: the size of evaluated ciphertexts scales polynomially with the branching pro-
gram’s length, but is independent of its size. To date, it is not known how to use Ishai and Paskin’s
scheme to homomorphically evaluate the class of polynomials of degree two (or higher) with better
than trivial ciphertext size. Second, recent constructions of indistinguishability obfuscation together
with any re-randomizable encryption scheme (e.g., based on DDH, DCR, or QR) imply fully ho-
momorphic encryption [CLTV15]. However, known iO constructions are tremendously inefficient,
requiring passing through the intermediate notions of functional encryption or iO with exponential
efficiency [AJ15, BV15, LPST16]. Our schemes are vastly simpler than the constructions implied
by iO, under many complexity notions: number of lines of code to implement, number of pages to
describe, etc. Moreover, all known iO schemes [JLS21,JLS22,RVV24] require bilinear maps, while
our schemes do not.

Brakerski gave evidence that known LPN-based encryption schemes cannot be somewhat homo-
morphic [Bra13]: to break a candidate scheme [BL11], he proved that any homomorphic encryption
that is powerful enough to evaluate the majority function cannot have a “weakly learnable” decryp-
tion circuit, as standard LPN-based schemes with linear decryption do. Our schemes get around this
impossibility result by working with a second assumption (DDH or DCR) and thus the decryption
circuit of our schemes is not linear.

Connections to homomorphic secret sharing. Homomorphic secret sharing is the multi-party coun-
terpart of homomorphic encryption: data is shared among multiple parties such that no individual
party can recover the data, but together the parties can perform computations on it without
interacting [BGI16,BGI+18]. Micciancio [Mic19] showed that Gentry, Sahai, and Waters’ fully ho-
momorphic encryption from lattices [GSW13] and recent homomorphic secret sharing schemes from
computational assumptions [BGI16,BKS19,FGJI17,OSY21,RS21,DIJL23] are closely related: both
make use of a “linear-decrypt-and-multiply” operation to implement homomorphic multiplications.
Our new somewhat homomorphic encryption also falls under this same framework. One view of our
schemes is that they make Dao, Ishai, Jain, and Lin’s recent homomorphic secret-sharing scheme
from sparse LPN [DIJL23] work with only a single party — rather than multiple non-colluding
parties — by substituting the use of a linear secret-sharing scheme with linearly homomorphic
encryption.

2 Background and Definitions

We begin by defining the cryptographic primitives and hardness assumptions used in this work.

Notation. Throughout, we assume that sparse vectors and matrices are represented efficiently in
memory, and in particular we define the bit length of a vector in F

n
q with k ≪ n non-zero entries to

be k · log q · log n. Our model of computation is a RAM machine with O(1) cost per memory access
and with word-size linear in the security parameter, λ ∈ N. We measure the cost of algorithms and
computations in terms of the number of RAM operations they require.

We write D c≈ D′ to denote that samples from two distributions D and D′ are computationally
indistinguishable. We use negl(λ) to denote a function that is negligibly small in λ, poly(λ) to denote
one that is polynomial in λ, and exp(λ) to denote one that is exponential in λ. We write the entries
of a vector v ∈ F

n
q as (v1, . . . , vn). We write the set {1, 2, . . . , n} as [n]. For a set of elements S, we
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write v ←R S to denote sampling a uniform random element v from S. For a probability distribution
D, we write v ← D to denote sampling an element v from D. For a randomized algorithm Alg,
we write v ← Alg to denote the output of a run of Alg. We write v := x to assign the value of
x to v. We write ✶cond to denote the indicator variable that is “1” if condition cond is true, and
“0” otherwise. We omit the notation ⌊·⌋ and ⌈·⌉ and treat values like nǫ and n/k as integers. All
logarithms are base two.

Standard primitives. We use the standard definition of pseudorandom functions (PRFs) [Gol01].
On key space K, input space I, and output space O, we denote a PRF as PRF : K × I → O.

2.1 Definition of Somewhat Homomorphic Encryption

An encryption scheme is “somewhat homomorphic” if a bounded class of computations may be
performed on its ciphertexts. Following Halevi’s definition [Hal17], we describe such a scheme in
terms of a security parameter λ ∈ N, which governs how hard it is to break the scheme’s security,
and a functionality parameter τ ∈ N, which governs how many homomorphic operations the scheme
supports. Then, we define a somewhat homomorphic encryption scheme relative to a correctness
failure probability ǫ = ǫ(λ) ∈ [0, 1] and a function class Fτ ⊆ {f :M∗ →M}, which comprises the
computations that can be homomorphically performed on ciphertexts:

Definition 2.1 (Somewhat Homomorphic Encryption). Given a key space K, a message spaceM,
and a ciphertext space C, a somewhat homomorphic encryption (SHE) scheme for the function class
Fτ is a tuple of four polynomial-time algorithms:

• Gen(1λ, 1τ )→ (sk, ek), a randomized algorithm that takes as input a security parameter λ ∈ N

and a functionality parameter τ ∈ N and outputs a secret key sk ∈ K and an evaluation key
ek ∈ K.

• Enc(sk, µ)→ ct, a randomized algorithm that takes as input a secret key sk ∈ K and a message
µ ∈M and outputs a ciphertext ct ∈ C.

• Eval(ek, f, ct1, . . . , ctℓ) → ctout, a deterministic algorithm that takes as input an evaluation
key ek ∈ K, a function f : Mℓ → M, and ℓ ciphertexts ct1, . . . , ctℓ ∈ C and outputs a
ciphertext ctout ∈ C.

• Dec(sk, ct) → µ, a deterministic algorithm that takes as input a secret key sk ∈ K and a
ciphertext ct ∈ C and outputs a message µ ∈M.

Given a failure probability ǫ(λ) and a function class Fτ , we require a somewhat homomorphic
encryption scheme to satisfy three properties: correctness, semantic security, and compactness.

Correctness. For all parameters λ ∈ N and τ ∈ N, for all functions f :Mℓ →M in the class Fτ ,
and for all ℓ messages µ1, . . . , µℓ ∈M, we require that:

Pr



Dec(sk, ctout) 6= f(µ1, . . . , µℓ)

∣
∣
∣
∣
∣
∣

sk, ek ← Gen(1λ, 1τ )
cti ← Enc(sk, µi) for i ∈ [ℓ]

ctout ← Eval(ek, f, ct1, . . . , ctℓ)



 ≤ ǫ(λ).
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Semantic security. For all parameters λ ∈ N and τ ∈ N, for any number of messages m =
poly(λ) ∈ N, and for any two vectors u,v ∈ Mm, their encryptions must be computationally
indistinguishable:

{
ek,Enc(sk, u1), . . . ,Enc(sk, um)

∣
∣ sk, ek← Gen(1λ, 1τ )

}

c≈
{
ek,Enc(sk, v1), . . . ,Enc(sk, vm)

∣
∣ sk, ek← Gen(1λ, 1τ )

}
.

Compactness. There exists a polynomial p(·) such that, for every τ ∈ N, there exists a constant
c ∈ N where, for all parameters λ > c, for all functions f :Mℓ →M in the class Fτ , and for all ℓ
messages µ1, . . . , µℓ ∈M, let:

sk, ek ← Gen(1λ, 1τ )
cti ← Enc(sk, µi) for i ∈ [ℓ]

ctout ← Eval(ek, f, ct1, . . . , ctℓ).

Then, the bit length of each of the ciphertexts cti, for i ∈ [ℓ], and of the ciphertext ctout is at most
p(λ), independent of τ .

2.2 Definition of Linearly Homomorphic Encryption

An encryption scheme is “linearly homomorphic” if it supports additions and scalar multiplications
on its ciphertexts. We formalize this notion as follows:

Definition 2.2 (Linearly Homomorphic Encryption). For any modulus q ≥ 2, a linearly homo-
morphic encryption (LHE) scheme over message space Zq is a SHE scheme whose function class Fτ

contains all affine functions over Zq in up to τ variables.

Linearly homomorphic encryption is implied by the decisional Diffie-Hellman (DDH) assump-
tion [ElG85] and the decisional composite residuosity (DCR) assumption [Pai99], among others.
We say a LHE scheme has “rate one” if the ratio between the bit length of ciphertexts and the
bit length of plaintexts approaches one—that is, each ciphertext requires roughly as many bits to
represent as each plaintext. The Damg̊ard-Jurik cryptosystem from DCR is a LHE scheme with
rate one: as the message space grows large, the bit length of ciphertexts can be arbitrarily close to
the bit length of plaintexts [DJ01].

From DDH, no LHE scheme with rate one is known. However, prior work has constructed LHE
from DDH such that, when evaluating the same affine function many times on many ciphertexts,
the bit length of a batch of ciphertexts after homomorphic evaluation can be made arbitrarily close
to the bit length of plaintexts [DGI+19,BBD+20,BBDP22]. In Section 4.2, we build a new LHE
scheme from DDH such that, when evaluating many different affine functions on many ciphertexts,
the bit length of a batch of ciphertexts after homomorphic evaluation can be made arbitrarily close
to the bit length of plaintexts (Lemma 4.4).

2.3 Definition of Sparse LPN

At a high level, the learning-parity-with-noise (LPN) assumption [BFKL93] states that it is compu-
tationally hard to solve systems of linear equations over a finite field, when a fraction of the equations
have been corrupted with random noise. In the language of codes, this is equivalent to the task of
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decoding a linear code, when the codeword has been randomly corrupted in a fraction of locations.
The sparse learning-parity-with-noise assumption [Ale03,AIK06b,IKOS08,ABW10,DIJL23,RVV24]
posits that this problem remains hard, even when the system of linear equations (or, equivalently,
the generating matrix of the linear code) is sparse. Other research communities have studied the
sparse-LPN problem, which is also referred to as the noisy k-LIN problem or noisy k-XOR in the
case of the binary field. Very recently, Jain, Lin, and Saha [JLS24] and Bangachev, Bresler, Tiegel,
and Vaikuntanathan [BBTV25] demonstrated that, in some parameter regimes (where the noise
rate is larger than required in this work), the hardness of sparse LPN is in fact implied by the
near-exponential hardness of LPN.

On their own, the LPN and sparse-LPN assumptions give rise to a handful of cryptographic
primitives, including public-key encryption [Ale03,ABW10,DMQN12,KMP14,YZ16], pseudoran-
dom generators with linear stretch and constant locality [AIK06b], cryptographic primitives with
constant computational overhead [IKOS08, ADI+17], certain forms of pseudorandom correlation
generators [BCGI18], and sublinear-communication multi-party computation using homomorphic
secret sharing [DIJL23]. However, in combination with other assumptions (in particular, Diffie-
Hellman-like assumptions on groups that admit bilinear maps), LPN and sparse LPN are a crucial
ingredient in constructions of indistinguishability obfuscation [JLS21,JLS22,RVV24], which in turn
imply an extensive array of cryptographic primitives [SW14,CLTV15,AS16,KNY17,WW24]. One
benefit of LPN and sparse LPN is plausible post-quantum security: they appear to resist attacks
even from quantum algorithms [BLVW19,DJ24].

Defining sparse LPN. Our definition uses the following distributions and sets, parameterized by
an error probability ν ∈ (0, 1), an integer modulus q ≥ 2, dimensions m,n ∈ N, and an integer
sparsity k ≤ n:

• Bernoulli errors. We let RandBernν,q be the distribution over Fq that

– with probability ν, takes on a uniform random value in Fq \ {0}, and
– otherwise, takes on the value 0.

• Sparse matrices. We let Sk,m,n,q denote the set of matrices in F
m×n
q whose rows each contain

exactly k non-zero entries. Throughout, we refer to Sk,m,n,q as the set of k-sparse matrices.

• Sparse diagonal matrices. We let Diag(Sk,m,n,q) denote the subset of matrices in Sk,m,n,q for
which, in every chunk of (n + 1) rows, the values along the “diagonal” must be non-zero.
More formally, this corresponds to the matrices in F

m×n
q where (a) each row must contain k

non-zero entries, and (b) for each index i ∈ [m] where i mod (n + 1) 6= 0, the ith row in the
matrix contains a non-zero value in its (i mod (n+ 1))th entry.

Definition 2.3 (Decisional (n,m, q, δ, k)-sparse LPN). On security parameter λ ∈ N, secret di-
mension n = n(λ) ∈ N, number of samples m = m(λ) ∈ N, prime modulus q = q(λ) ≥ 2, constant
error parameter δ ∈ (0, 1), and sparsity k = k(λ) ≤ n, the decision version of (n,m, q, δ, k)-sparse
LPN asserts that the following distributions are computationally indistinguishable:







(A,As+ e) :

A←R Sk,m,n,q

s←R F
n
q

e← RandBernmn−δ ,q







c≈
{

(A,u) :
A←R Sk,m,n,q

u←R F
m
q

}

.
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In this work, we rely on the sparse-LPN assumption with a secret dimension n that is polynomial
in λ, any modulus q that is at most exponential in λ, any constant error parameter δ ∈ (0, 1), and
any sparsity k that is a super-constant function in λ. In this setting, for any number of samples m =
poly(λ), the sparse-LPN assumption plausibly holds against polynomial-time algorithms. We write
“(n, q, δ, k)-sparse LPN” to denote the assumption that decisional (n,m, q, δ, k)-sparse LPN is true
for any m = poly(λ).

Key-dependent-message security. Looking ahead, for a certain flavor of key-dependent-message
(KDM) security [BHHO08] to hold with sparse LPN, we will need the A-matrix to be a sparse di-
agonal matrix. Dao, Ishai, Jain, and Lin show that, if sparse LPN is hard, then LPN with sparse
diagonal matrices is hard and satisfies KDM security for linear functions [DIJL23, Lemma 4.1]. We
recall this statement, which is proved via a reduction that polynomially increases the number of
samples m, roughly doubles the sparsity k, increases the error parameter δ by o(1), and requires
the modulus q to be a prime ≥ 3:

Lemma 2.4 (KDM Security of Sparse Diagonal LPN [DIJL23, Lemma 4.1]). Under (n, q, δ′, (k +
1)/2)-sparse LPN with a prime modulus q ≥ 3, error rate δ′ = δ−1/ log n, and super-constant, odd
sparsity k = o(

√
n), for any m = poly(λ) messages µ1, . . . , µm ∈ Fq, it holds that:







{

Ai,Ais+ ei + µi ·
[
−s
1

]}

i∈[m]

:

Ai ←R Diag(Sk,n+1,n,q) for i ∈ [m]

s←R F
n
q

ei ← RandBernn+1
n−δ ,q

for i ∈ [m]







c≈
{

{Ai,ui}i∈[m] :
Ai ←R Diag(Sk,n+1,n,q) for i ∈ [m]

ui ←R F
n+1
q for i ∈ [m]

}

.

For completeness, we give a proof of Lemma 2.4 in Appendix A.

3 Somewhat Homomorphic Encryption from Sparse LPN and Lin-

early Homomorphic Encryption

We now present a construction of somewhat homomorphic encryption from sparse LPN and a
linearly homomorphic encryption scheme. On security parameter λ ∈ N and functionality parameter
τ = poly(λ) ∈ N, our scheme can homomorphically evaluate multivariate polynomials of total degree
log τ/ log log τ with up to τ monomials. Our scheme has an arbitrarily small, inverse-polynomial
probability of correctness errors, which can be driven down to negligible via parallel repetitions
(Remark 3.4).

Our construction proves the following theorem statement:

Theorem 3.1 (SHE from Sparse LPN and LHE). On security parameter λ ∈ N, functionality
parameter τ = poly(λ) ∈ N, and constant correctness parameter c ∈ N, assume that (n, q, δ′, (k +
1)/2)-sparse LPN holds with a prime modulus q ≥ 3 of size at most exp(λ), error parameter
δ′ = δ− 1/ log n, secret dimension n ≥ τ2/δ · λc/δ, and super-constant, odd sparsity k ≤

√
log τ − 1.

Let Ψ be a semantically-secure LHE scheme with message space Fq and ǫLHE(λ) probability of
correctness failures. Then, Construction 3.2 parameterized by (n, q, δ, k,Ψ) is a semantically-secure
SHE scheme with message space Fq and the following properties:
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Construction 3.2 (SHE from sparse LPN and LHE). Parameterized by LPN parameters (n, q, δ, k),
where n = n(λ), q = q(λ), δ ∈ (0, 1), and k = k(λ), and a linearly homomorphic encryption scheme
(LHE.Gen, LHE.Enc, LHE.Eval, LHE.Dec) with message space Fq, key space K, and ciphertext space C. Let
ℓ := n+ 1. Define sets Sk,1,n,q and Diag(Sk,ℓ,n,q) and distribution RandBernn−δ,q as in Section 2.3.

Gen(1λ, 1τ )→ (sk, ek)

• Let skLHE, ekLHE ← LHE.Gen(1λ, 1ℓ).

• Let s←R F
n
q and s̃ :=

[
−s || 1

]⊺
.

• Let t←R F
n
q and t̃ :=

[
−t || 1

]⊺
.

• ∀ i ∈ [ℓ], Cek,i ← GSWEnc(s, t̃i).

• ∀ i ∈ [ℓ], cti ← LHE.Enc(skLHE, s̃i).

• Output sk := (s, t, skLHE) and
ek := (ekLHE,Cek,1, . . . ,Cek,ℓ, ct1, . . . , ctℓ).

GSWEnc(s ∈ F
n
q , µ ∈ Fq)→ C ∈ F

ℓ×ℓ
q

• Sample A←R Diag(Sk,ℓ,n,q).
• Sample e← RandBernℓn−δ,q.

• Let s̃ :=
[
−s || 1

]⊺ ∈ F
ℓ
q.

• Compute b := As+ e+ µ · s̃.
• Output C :=

[
A || b

]
.

Enc(sk, µ ∈ Fq)→ c ∈ F
ℓ
q

• Parse t ∈ F
n
q from sk.

• Sample a←R Sk,1,n,q and e← RandBernn−δ,q.

• Output c :=
[
a || 〈a, t〉+ e+ µ

]
.

Expand(ek, c ∈ F
ℓ
q)→ C ∈ F

ℓ×ℓ
q

• Parse (Cek,1, . . . ,Cek,n+1) from ek.

• Output C :=
∑

i∈[ℓ] ci ·Cek,i.

Add(C1 ∈ F
ℓ×ℓ
q ,C2 ∈ F

ℓ×ℓ
q )→ C ∈ F

ℓ×ℓ
q

• Output C := C1 +C2.

Mul(C1 ∈ F
ℓ×ℓ
q ,C2 ∈ F

ℓ×ℓ
q )→ C ∈ F

ℓ×ℓ
q

• Output C := C1 ·C2.

Compact(ek,C ∈ F
ℓ×ℓ
q )→ ct ∈ C

• Parse (ekLHE, ct1, . . . , ctℓ) from ek.

• Let c ∈ F
ℓ
q be the last row of C.

• Let f(x1, . . . , xℓ) =
∑

i∈[ℓ] cixi.

• Output ct := LHE.Eval(ekLHE, f, ct1, . . . , ctℓ).

Dec(sk, ct ∈ C)→ µ ∈ Fq

• Parse skLHE ∈ K from sk.

• Output µ := LHE.Dec(skLHE, ct).

Figure 2: Construction of somewhat homomorphic encryption from sparse LPN and LHE.

• Correctness: decryption succeeds with probability 1− λ−c − ǫLHE(λ).

• Homomorphism: the function class Fτ contains all multivariate polynomials over Fq with total
degree up to log τ/ log log τ and up to τ monomials.

Put differently, our new somewhat homomorphic encryption can perform up to log τ/ log log τ
homomorphic multiplications, followed by τ homomorphic additions. By instantiating Theorem 3.1
with a standard LHE scheme (e.g., El Gamal [ElG85], Paillier [Pai99], Damg̊ard-Jurik [DJ01]), we
obtain the first constructions of somewhat homomorphic encryption for the function class Fτ from
sparse LPN and either DDH or DCR. On their own, none of these assumptions are known to imply
somewhat homomorphic encryption for polynomials with bounded degree and a bounded number
of monomials.

As a corollary, if there exists a plausibly post-quantum LHE scheme that is based on non-lattice
assumptions, then Theorem 3.1 gives the first plausibly post-quantum somewhat homomorphic
encryption scheme that is based on non-lattice assumptions. In other words, Theorem 3.1 reduces
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the task of building post-quantum SHE without lattices to the simpler task of building post-
quantum LHE without lattices.

Construction. We present our somewhat homomorphic encryption scheme from sparse LPN and
a LHE scheme in Construction 3.2. To implement the Eval routine (defined in Section 2.1), Con-
struction 3.2 uses four polynomial-time algorithms: Expand, Add, Mul, and Compact. The Expand

algorithm transforms ciphertexts output by Enc into ones that can be passed as inputs to Add

and Mul (arbitrarily many times). The Add and Mul algorithms apply homomorphic addition and
multiplication gates to ciphertexts. We do not require their outputs to be compact — instead, the
bit length of ciphertexts may grow as operations are performed. Later on, after all homomorphic
operations have been completed, each ciphertext is passed to the Compact algorithm, which out-
puts a fixed-length ciphertext encrypting the same message but which no longer has (many of its)
homomorphic capabilities.

We formally analyze Construction 3.2’s correctness, security, and compactness in Appendix B.1.
At a high level, our argument works as follows:

1. Correctness: We demonstrate that the ciphertext matrices output by Enc(sk, ·) and then
passed to Expand(ek, ·) have the following special structure: the “extended” secret key

[
−s 1

]⊺

is an “approximate” eigenvector of the ciphertext matrix, with the encrypted message µ as the
corresponding eigenvalue. Then, as long as each ciphertext matrix remains sufficiently sparse,
we can add and multiply these matrices — which has the effect of adding and multiplying
the underlying messages — without the error rate growing too large. As in GSW [BV14], the
sparsity and error rate of our ciphertexts grow additively with every Add and multiplicatively
with every Mul. As long as the error growth is not too large, the algorithms Compact(ek, ·)
and Dec(sk, ·) will recover the correct output of the computation.

2. Security: The scheme is semantically secure, assuming sparse LPN and the semantic security
of the underlying LHE scheme. This is because all fresh ciphertexts are masked by a sparse-
LPN sample with secret key t ∈ F

n
q , and the evaluation key consists of (a) the entries of secret

key t ∈ F
n
q , masked by sparse-LPN samples with secret key s ∈ F

n
q , and (b) LHE encryptions

of the entries of secret key s. Since the evaluation key uses a “chain” of encryptions of one
key under the next, we do not need a circular security assumption.

3. Compactness: The ciphertexts output by Enc and by Compact have a bit length that is a
fixed polynomial in λ, independent of the number of computations performed on them. This
is because fresh ciphertexts are sparse vectors, which require

O(k · log n · log q) = O(
√

log τ · log(τ2/δ · λc/δ) · log q)
= O((log λ)3 · log q) = poly(λ)

bits to represent, since we know that τ < λlog λ and thus log τ < (log λ)2. Evaluated ci-
phertexts are ciphertexts from the underlying LHE scheme, which, by definition, must be
compact.

In the rest of this section, we discuss the efficiency of Construction 3.2 and variations of it.

Remark 3.3 (Efficiency of Construction 3.2). On parameters (n, q, δ, k) and given a LHE scheme
with ciphertext space C, Construction 3.2 is a SHE scheme with the following efficiency:
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• Each ciphertext output by Enc is a (k + 1)-sparse vector in F
n+1
q . Such a ciphertext can be

represented using (k log n+ 1) · log q bits.

• When evaluating a polynomial of total degree d with M monomials,

– each call to Expand requires (k + 1)2d multiplications and additions in Fq,

– each call to Mul requires (k + 1)2d multiplications and additions in Fq,

– each call to Add requires (k + 1)2d additions in Fq, and

– the final call to Compact requires M · (k + 1)2d homomorphic additions under LHE
encryption.

• Each ciphertext output by Compact is a value in C, the ciphertext space of the linearly
homomorphic encryption scheme.

These compute costs do not scale with the secret dimension n, even though ciphertexts in the
intermediate phase of the computation are (n + 1)-by-(n + 1) matrices. This is because we can
take advantage of the sparsity in these matrices to prune the computation and perform only those
operations that affect the final output [DIJL23, Remark 5.4]. We describe this optimization in more
detail in Appendix B.2.

Remark 3.4 (SHE with negl(λ) probability of correctness failures). We can boost our SHE scheme
to one that has a negligibly small probability of correctness failures by performing λ instances of
Construction 3.2 (with independent randomness) and outputting the majority of the decryptions,
in addition to using a LHE scheme with perfect correctness. When evaluating the function class Fτ ,
this transformation succeeds as long as the following conditions on the sparsity k and the secret
dimension n hold: k ≤

√
log τ − 1 and n = Ω(τ2/δ). This construction is λ× less efficient.

Remark 3.5 (Performing homomorphic operations in a different order). While Theorem 3.1 de-
scribes the class of computations supported by our SHE scheme as consisting of log τ/ log log τ
multiplications followed by τ additions, the construction supports performing additions and multi-
plications interleaved in any order. Changing the order of operations affects the sparsity growth and
the error growth in the scheme’s ciphertexts, and thus requires a specialized accounting to determine
how many operations can be performed (as per Appendix B.1). As in the GSW scheme [BV14], the
error-rate of our ciphertexts grows asymmetrically with every Mul.

Remark 3.6 (Using LHE with homomorphism over other moduli). Construction 3.2 natively sup-
ports homomorphism over any Fq, where q ≥ 3 is a prime and Fq is the LHE scheme’s message
space. We can decouple the sparse-LPN modulus q from the LHE scheme’s message space Zq′ by
instead running the linear function evaluation within Compact “over the integers,” as long as q′ is
sufficiently large compared to n and q (in particular, q′ > (n+1) · q2). We give one example of this
in Section 4.2.

Remark 3.7 (SHE from sparse LPN and QR?). Standard encryption schemes from the quadratic
residuosity assumption (e.g., Goldwasser-Micali [GM84]) are linearly homomorphic over F2. How-
ever, we cannot directly substitute them into Construction 3.2 because the KDM-security proof of
sparse LPN, on which our security hinges, only works for a prime modulus q ≥ 3 (Lemma 2.4). To
overcome this barrier, Dao, Ishai, Jain, and Lin sketch a variant of the sparse-LPN assumption that
can be proved KDM-secure on modulus q = 2: in this variant, every sparse-LPN sample is equally
likely to be either k or (k + 1)-sparse [DIJL23, Remark 4.2]. Under this modified assumption, we
can construct SHE using QR or, more broadly, any LHE scheme with message space F2.
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Remark 3.8 (Increased homomorphism from constant-sparse LPN). One way to boost the ho-
momorphism of our SHE schemes would be to rely on the stronger assumption that LPN with
constant sparsity is hard, which plausibly holds in certain parameter regimes, when the number
of samples released is small enough and when sampling the A-matrices from carefully crafted
distributions [ADI+17, AK19]. As with Dao, Ishai, Jain, and Lin’s homomorphic secret-sharing
scheme [DIJL23], this stronger assumption could improve our SHE scheme’s homomorphism to
support polynomials of total degree O(log λ) with poly(λ) monomials, but also appears to require
the encryption algorithm to be stateful to sample the A-matrices from a safe distribution. The crit-
ical issue is that the encryptor must not release sparse-LPN samples with too similar A-matrices,
which otherwise might occur with non-negligible probability.

Remark 3.9 (Scalar multiplications are “free”). In our schemes, multiplying a ciphertext by a
scalar does not incur any growth in the error rate or in the sparsity of a ciphertext, which means
that the multiplication-by-scalar operation does not increase the probability of a correctness error.
In contrast, lattice-based somewhat homomorphic encryption schemes generally must bound the
number and magnitude of scalar multiplications performed on a single ciphertext. (This difference
stems from the error distributions used: with LWE, every linear relation has a small amount of
error, which grows out of control if multiplied by a too large scalar. With sparse LPN, errors are
all-or-nothing and random, so their distribution does not change when multiplied by a scalar.)

4 Optimizing the Bit Length of Ciphertexts

In this section, we turn our attention to the efficiency of our new somewhat homomorphic encryp-
tion. We present a sequence of optimizations that gives SHE from sparse LPN and DDH with short
ciphertexts, when encrypting a batch of many messages at once and homomorphically evaluating
a batch of many polynomials at once. We say that this scheme achieves “batch rate” one.

To capture this notion of “batch encryption” and “batch evaluation,” we introduce a slightly
more general syntax for somewhat homomorphic encryption in Appendix C.1. We give an opti-
mization that shrinks the size of ciphertexts before homomorphic evaluation in Section 4.1, and
one that shrinks the size of ciphertexts after homomorphic evaluation in Section 4.2. Together,
these techniques prove the following theorem (Section 4.3):

Theorem 4.1 (SHE with Short Ciphertexts from Sparse LPN and DDH). On security parameter
λ ∈ N, functionality parameter τ = poly(λ) ∈ N, constant correctness parameter c ∈ N, and any
prime modulus q ≥ 3 of size at most poly(λ), assume that (n, q, δ′, (k + 1)/2)-sparse LPN holds
with any error parameter δ′ = δ − 1/ log n, super-constant, odd sparsity k ≤

√
log τ − 1, and secret

dimension n ≥ τ2/δ · λc/δ. Then, assuming DDH, there exists a semantically-secure SHE scheme
with message space Fq and with the following properties:

• Correctness: decryption succeeds with probability 1− 2λ−c.

• Homomorphism: the function class Fτ contains all multivariate polynomials over Fq with total
degree up to log τ/ log log τ , and up to τ monomials.

• Efficiency: when homomorphically evaluating a batch of t = poly(λ) polynomials in F
m
q → Fq,

on a batch of tm inputs,

– The evaluation key consists of t2 · poly(λ) bits.

21



– All tm input ciphertexts together consist of tm log q +m· polylog(λ) bits.
– All t output ciphertexts together consist of t log q + poly(λ) bits.

In this scheme, as the batch size t grows large, the bit length of all tm input ciphertexts together
can be arbitrarily close to tm · log q (i.e., the bit length of all input plaintexts together) and the bit
length of all t output ciphertexts together can be arbitrarily close to t · log q (i.e., the bit length of
all output plaintexts together). Finally, by evaluating sufficiently many batches of polynomials, we
can also amortize away the cost of transmitting the one-time evaluation key.

Remark 4.2 (SHE with Short Ciphertexts from Sparse LPN and DCR). An alternate construction
of SHE, which can have rate-one ciphertexts when evaluating a single polynomial over a sufficiently
large modulus, is possible from sparse LPN and DCR: this requires (a) extending the KDM-security
proof (Lemma 2.4) to allow for sparse LPN over a modulus that is a power of a product of two
λ-bit primes, (b) instantiating Construction 3.2 with the Damg̊ard-Jurik LHE scheme [DJ01] that
has rate one, and (c) applying the technique from Section 4.1.

4.1 Shrinking the Bit Length of Fresh Ciphertexts

First, we shrink the size of fresh ciphertexts in our scheme down to one element in Fq, instead
of a (k + 1)-sparse vector in F

n+1
q — eliminating the dependence on the sparsity k and the secret

dimension n in our ciphertexts’ bit lengths. To do so, we apply a standard insight from the lat-
tice literature [PW08, Lemma 6.2][PVW08, Lemma 7.3] [Pie12]: the a-component in sparse-LPN
ciphertexts is a random sparse vector (or matrix) that does not depend on the message being en-
crypted. As a result, we can take this a-component to be either pseudorandom or fixed across many
encryptions, at only a polynomial loss in security. In more detail:

In the random-oracle model. Given a random oracle, we can specify the a-component of each
ciphertext with a short seed for a pseudorandom generator.

Without a random oracle. We can fix and re-use the a-matrix in sparse LPN to build polynomially
many ciphertexts, as long as each ciphertext uses a random, independently sampled secret key s
and Bernoulli error e. This optimization lets us communicate the a-vector only once, and amortize
this cost over many ciphertexts. We formalize this technique in Lemma C.2, proved via a hybrid
argument in Appendix C.2.

Remark 4.3 (Fixing the A-matrix in GSW-style ciphertexts). By further extending Lemma C.2 to
handle sparse diagonal LPN, we could apply the same technique to shrink each of the (n+1) sparse-

LPN ciphertexts included in the evaluation key from a (k+1)-sparse matrix in F
(n+1)×(n+1)
q down to

a vector in F
n+1
q . Intuitively, this optimization works because our SHE scheme reveals the A-matrix

in the clear as part of each ciphertext. Thus, an adversary can on its own build polynomially many
sparse-LPN samples with the same A-matrix but independent secrets and errors. By the scheme’s
security, it must be that obtaining these sparse-LPN samples with the same A-matrix (but different
secrets and errors) does not noticeably help in breaking the original scheme.

4.2 Shrinking the Bit Length of Evaluated Ciphertexts

Next, we shrink the size of ciphertexts after homomorphic evaluation. To do so, we build a secret-
key linearly homomorphic encryption scheme from DDH that (1) supports an arbitrarily small
message space Zq and (2) has the following efficiency: when homomorphically evaluating a batch
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of many, distinct affine functions on ciphertexts, each output ciphertext consists of roughly log q
bits. Looking ahead, each of these properties of our new LHE scheme is crucial in our construction
of SHE with short ciphertexts (Theorem 4.1): first, to evaluate polynomials over Fq on any prime
modulus q ≥ 3, we need LHE with message space Fq. (Otherwise, we would need to embed the
computation into the larger field over which our LHE scheme is homomorphic, e.g., the El-Gamal
message space, causing big losses in rate.) Second, we need LHE with short output ciphertexts when
homomorphically evaluating a batch of many distinct affine functions, because running Compact on
distinct sparse-LPN ciphertexts requires evaluating distinct affine functions (each determined by
the ciphertexts’ A-component).

Lemma 4.4 (LHE from DDH over Zq). On security parameter λ ∈ N, assume that DDH is hard in
a group with elements of bit length λDDH. Then, given any functionality parameter τ ∈ N, modulus
q ∈ N, and packing parameter t ∈ N that are each at most poly(λ) and given any constant correctness
parameter c ∈ N, there exists a semantically-secure LHE scheme from DDH with message space Zq

and the following properties:

• Correctness: Decryption succeeds with probability 1− λ−c.

• Efficiency: The evaluation key consists of poly(λ) bits. Each fresh ciphertext produced by LHE.Enc
consists of t · (t+ 1) · λDDH bits. When homomorphically evaluating a batch of t affine functions
in Z

τ
q → Zq, the t output ciphertexts together consist of t log q + λDDH bits.

We present our linearly homomorphic encryption scheme in Construction C.3; our scheme is a
variant of standard El-Gamal encryption [ElG85] with two twists. First, since El-Gamal is linearly
homomorphic over an exponentially large message space (i.e., Zp on a λ-bit prime p), whereas we
require homomorphism over the much smaller space Zq, we think of homomorphic operations as
performed “over the integers.” When evaluating any affine function f : Zτ

q → Zq, the maximal
value that f can output over the integers is bounded from above by B = q2 · (τ + 1). So, whenever
p > B (which happens naturally as p is exponential in λ, whereas B is at most polynomial in λ),
lifting f to Zp (i.e., lifting each of its coefficients and inputs from Zq to Zp) and evaluating it within
the El-Gamal scheme’s message space produces the same result as computing f over the integers.
Roughly speaking, our encryption scheme evaluates f over Zp and takes the result mod q, which
recovers the evaluation of f over Zq.

Second, inspired by existing LHE schemes from LWE [dCHI+22] and from DDH [DGI+19,
BBD+20,BBDP22], we design a “distributed discrete logarithm” protocol that lets us shrink each
DDH-ciphertext down to just log q bits, along with a preamble of λDDH bits that can be amortized
over arbitrarily many ciphertexts. To achieve this, we encrypt vectors of t values in Zq at once. Then,
given τ such ciphertexts encrypting the vectors x(1), . . . ,x(τ), each in Z

t
q, and given t affine functions

f1, . . . , ft, each mapping Z
τ
q → Zq, we give a procedure that produces a batch of ciphertexts

encrypting the t evaluations v1 = f1(x
(1)
1 , . . . , x

(τ)
1 ), . . . , vt = ft(x

(1)
t , . . . , x

(τ)
t ), each in Zq.

Our LHE.Eval algorithm works as follows: given an order-p generator g of a DDH-group G and

a secret-key (z1, . . . , zt) ∈ Z
t
p, we encrypt the message vector (x

(i)
1 , . . . , x

(i)
t ) ∈ Z

t
q, for i ∈ [τ ], hidden
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along the diagonal of a ciphertext matrix:

ct(i) =









gr1 gr1z1+x
(i)
1 gr1z2 . . . gr1zt

gr2 gr2z1 gr2z2+x
(i)
2 . . . gr2zt

...
...

...
. . .

...

grt grtz1 grtz2 . . . grtzt+x
(i)
t









.

Now, given τ such ciphertext matrices ct(1), . . . , ct(τ), along with t affine functions f1, . . . , ft : Z
τ
q →

Zq, our LHE.Eval algorithm:

1. Exponentiates the jth row of ct(i) by the coefficient on the variable “xi” in function fj . This
step effectively multiplies the encrypted values along each ciphertext’s diagonal by the match-
ing coefficient in each function, while keeping the “random preambles” (e.g., gr1) identical
across each row.

2. Computes the matrix ct′ ∈ G
t×(t+1) that consists of the element-wise product of all τ cipher-

text matrices, and multiplies gfj(0,...,0) into the jth entry of the diagonal. This step effectively
produces a matrix with the evaluation of the jth function stored in the jth entry of the
diagonal, while keeping the random preambles identical across each row.

3. Computes the vector ct′′ ∈ G
t+1, whose jth entry is the product of all entries in the jth column

of ct′. This step effectively produces a vector with the evaluation of the jth function stored
in the (j + 1)th entry, and where each entry has the same random preamble.

At the end of this procedure, the ciphertext ct′′ has the following form:

ct′′ =
(
gr grz1+qe1+v1 grz2+qe2+v2 . . . grzt+qet+vt

)
,

where v1, . . . , vt ∈ Zq are the outputs of the t affine functions over Zq applied to the encrypted
values, r ∈ Zp is joint randomness, and the terms e1, . . . , et ∈ {0, . . . , B/q} are accumulated by
performing Zq-computations over the integers.

In a final step, we have LHE.Eval compress the ciphertext ct′′ down to just t log q + λDDH bits.
To do so, we use a PRF and a shared random seed seed, that meets the following properties with
high probability:

1. for each ℓ ∈ [t], for any extra term e ∈ {0, . . . , B/q}, and for any output value µ ∈ Zq, it
holds that PRF(seed, grzℓ+qe+µ) 6= 0, and

2. for each ℓ ∈ [t] and for each output value µ ∈ Zq, let padℓ,µ be the smallest integer such that

PRF(seed, grzℓ+qpadℓ,µ+µ) = 0. Then, for each ℓ ∈ [t], each of the values of padℓ,µ are distinct
and do not fall within ±1 of each other.

Now, for each ℓ ∈ [t] and for every output value µ ∈ Zq, the LHE.Eval algorithm can iteratively
evaluate PRF on successive group elements (each offset by gq) starting at the point grzℓ+qeℓ+vℓ+µ,
until it finds a group element where the PRF evaluates to 0. The number of PRF evaluations here
must be

kℓ,µ = padℓ,vℓ+µ mod q − eℓ ± 1.
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Finally, for each ℓ ∈ [t], LHE.Eval sorts the values (kℓ,0, . . . , kℓ,q−1), and computes the rank of kℓ,0
in this list — which is just an integer in Zq. LHE.Eval outputs a compressed ciphertext consisting
of the term gr and each of these t ranks in Zq.

Given such a compressed ciphertext, along with the secret key (z1, . . . , zt) and the seed, the
LHE.Dec algorithm can recover each padℓ,µ for each message µ ∈ Zq and index ℓ ∈ [t]: it suffices
to compute (gr)zℓ · gµ, and to evaluate the PRF on successive group elements (offset by gq) until
hitting one that evaluates to 0. By sorting the values (padℓ,0, . . . , padℓ,q−1) and learning their relative
ranks, LHE.Dec can exactly recover each vℓ. We formally show that this LHE scheme, described in
Construction C.3, is correct, secure, and runs in polynomial time in Appendix C.3.

4.3 Proof Sketch for Theorem 4.1

We describe the somewhat homomorphic encryption scheme that proves Theorem 4.1 in Ap-
pendix C.4. Here, we give a high-level overview of the scheme.

Our scheme is governed by two new parameters: tEnc ∈ N, which determines how many mes-
sages can be “packed” into a single input ciphertext, and tEval ∈ N, which determines how many
messages can be “packed” into a single output ciphertext. Our scheme uses tEnc sparse-LPN secrets
t(1), . . . , t(tEnc) ∈ F

n
q . For each of these tEnc sparse-LPN secrets, we publish an evaluation key (as

described in Section 3) that lets us switch a Regev-style encryption under key t(i) into a GSW-
style encryption under a common sparse-LPN secret s ∈ F

n
q . In addition, we publish a redundant

encryption of each entry of the sparse-LPN secret s using our packed-El-Gamal LHE scheme, with
packing parameter tEval.

Then, to encrypt a batch of tEnc messages at once, our encryption scheme can sample a single a-
vector, and encrypt each message under the same a-vector using a different one of the t(1), . . . , t(tEnc)

secret keys (per the optimization in Section 4.1). This produces a “packed” ciphertext encrypting all
tEnc messages at once, as a (k+ tEnc)-sparse vector in F

n+tEnc
q . Our homomorphic evaluation routine

can unpack these ciphertexts, run the Expand algorithm on each of them to transform them into a
GSW-style encryption under secret key s, and perform homomorphic additions and multiplications
as usual. Finally, our compaction routine uses the packed-El-Gamal LHE scheme (from Section 4.2)
to produce a “packed” output ciphertext that encrypts a batch of tEval polynomial evaluations at
once. Given the parameter t ∈ N in the theorem statement, setting tEnc := t and tEval := t proves
Theorem 4.1.

5 Open Question: Can We Bootstrap?

We leave open the question of whether it is possible to bootstrap our somewhat homomorphic
schemes to build fully homomorphic encryption. Doing so would give the first direct construction
of fully homomorphic encryption without lattice-based assumptions. However, this task appears
challenging.

One natural approach, following Gentry’s technique [Gen09], would be to instantiate our some-
what homomorphic encryption scheme with a LHE scheme whose decryption circuit falls in the
function class Fτ — that is, we need LHE whose decryption can be written as a multivariate poly-
nomial of total degree O(log λ/ log log λ) with poly(λ) monomials. If such a LHE scheme were to
exist, a tempting direction would be to “bootstrap” our SHE schemes in almost the standard way,
using a ladder of encryptions of sparse-LPN secret keys under the LHE scheme and encryptions
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of the LHE secret keys under the sparse-LPN scheme. Then, bootstrapping our schemes could
take the following form: (a) evaluating a polynomial f ∈ Fτ on our sparse-LPN ciphertexts, (b)
performing ciphertext compaction, (c) homomorphically decrypting the resulting LHE ciphertext
under our SHE scheme, using a sparse-LPN encryption of its secret key, and (d) repeating, perhaps
with extra machinery to handle sparse-LPN error growth. The security of such a transformation
would be implied by the hardness of sparse LPN and the semantic security of the LHE scheme.

However, this approach runs into trouble: first, we do not know of such a linearly homomorphic
scheme. A symmetric encryption scheme of the type described above — i.e., with a decryption
algorithm that can be written as a multivariate polynomial with total degree O(log λ/ log log λ) with
poly(λ) monomials — exists assuming the pseudorandomness of Goldreich’s function [Gol00] (or,
more generally, the existence of local pseudorandom generators), but these schemes are not linearly
homomorphic. One may be able to rule out the existence of linearly homomorphic encryption
schemes with such a decryption procedure, which we leave as an open problem.

Second, even a bounded-depth version of the bootstrapping procedure described above would
essentially give us a gadget that generates many sparse-LPN samples from few of them, without
increasing the sparsity by much. This would render such a scheme vulnerable to known attacks on
sparse LPN when the number of released samples is large (e.g., super-polynomial). The take-away
is that our scheme does not appear “bootstrappable” in this natural way. While this rules out one
approach to drawing more homomorphism from our schemes, a compelling open question remains
whether other approaches exist.
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Supplementary Material

A Additional Material on Sparse LPN

We give a proof of Lemma 2.4, which was first proved by Dao, Ishai, Jain, and Lin [DIJL23]. We
repeat the proof here since our KDM distribution is slightly (but not meaningfully) different. (In

particular, we have the set Diag(Sk,n+1,n,q) correspond to matrices in F
(n+1)×n
q that have k non-zero

entries in every row, rather than having k non-zero entries in every row but the last one, which has
(k + 1)/2 non-zero entries.)

Proof. Let δ′ = δ−1/ log n, which gives that nδ′ = nδ/2. Pick any odd k ≥ 3, and let k′ = (k+1)/2 ∈
Z. Take any m = poly(λ) and consider any m messages µ1, . . . , µm ∈ Fq. Let m

′ = m · (n+1) · 2n3.
Assume for the sake of contradiction that, for these messages, the lemma statement is false — that
is, there exists a polynomial-time algorithm A that distinguishes between the two distributions in
Lemma 2.4. We use algorithm A to break the (n, q, δ′, k′)-sparse LPN assumption.

To prove the reduction, we build an algorithm B that is given as input (A,b) , where A ∈ F
m′×n
q

and b ∈ F
m′

q . The algorithm B proceeds as follows:

1. For i ∈ [m], for j ∈ [n+ 1]:

• Let ℓ = i · (n+ 1) + j ∈ Z.

• If j ≤ n,

– Find a pair of distinct indices k1, k2 ∈ [2n3] such that, if v1 ∈ F
n
q denotes the

(
ℓ · 2n3 + k1

)th
row of A and v2 ∈ F

n
q denotes the (ℓ · 2n3 + k2)

th
row of A, then

the only entry in which the vectors v1 and v2 are both non-zero is the jth one. If no
such indices exist, fail.

– Let e1, e2 ∈ Fq be the entries in the jth position in vectors v1,v2.

– Sample r ←R Fq such that r 6= 0. Then, sample random, non-zero c1, c2 ∈ Fq such
that c1 · e1+ c2 · e2 = r+µi. (This is possible because Fq is a finite field, and q ≥ 3.)

– Define the vector āi,j := c1 ·v1+ c2 ·v2−µi ·ej (where ej denotes the jth unit vector
in F

n
q , which is “0” everywhere except for “1” at the jth entry).

– Let u1, u2 ∈ Fq denote the (ℓ · 2n3 + k1)
th

and (ℓ · 2n3 + k2)
th

entries of vector b
respectively. Define the scalar b̄i,j := c1 · u1 + c2 · u2 ∈ Fq.

• If j = n+ 1,

– Sample x ←R [n]. Find a pair of distinct indices k1, k2 ∈ [2n3] such that, if v1 ∈ F
n
q

denotes the (ℓ · 2n3 + k1)
th

row of A and v2 ∈ F
n
q denotes the (ℓ · 2n3 + k2)

th
row

of A, then the only entry in which the vectors v1 and v2 are both non-zero is the
xth one. If no such indices exist, fail.

– Let e1, e2 ∈ Fq be the entries in the xth position in vectors v1,v2.

– Sample r ←R Fq such that r 6= 0. Then, sample random, non-zero c1, c2 ∈ Fq such
that c1 · e1 + c2 · e2 = r. (This is possible because Fq is a finite field, and q ≥ 3.)

– Then, define the vector āi,j := c1 · v1 + c2 · v2.
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– Also, let u1, u2 ∈ Fq denote the (ℓ · 2n3 + k1)
th

and (ℓ · 2n3 + k2)
th

entries of vector
b respectively. Define the scalar b̄i,j := c1 · u1 + c2 · u2 + µi ∈ Fq.

2. Output the result from calling algorithm A on the list of matrices
(
Ā1, b̄1, . . . , Ām, b̄m

)
,

where for i ∈ [m] we define:

Āi :=






āi,1
...

āi,n+1




 ∈ F

(n+1)×n
q and b̄i :=






b̄i,1
...

b̄i,n+1




 ∈ F

n+1
q

By construction, we see that the algorithm B runs in polynomial time. Next, we analyze the
probability that the algorithm B fails, when the input matrix A ∈ F

m′×n
q is a random k′-sparse

matrix. By [DIJL23, Claim 4.1], the probability that any one iteration of the loop fails is negl(n).
So, by a union bound, the probability that algorithm B fails, when the input matrix A ∈ F

m′×n
q is

a random k′-sparse matrix, is also negl(n).
Finally, conditioned on the event that B does not fail, we see that for each i ∈ [m]:

• if (A,b) is a sparse-LPN sample with dimension n, modulus q, sparsity k′, and error parameter
δ′, then (Āi, b̄i) is distributed exactly like a sample in our KDM distribution with sparsity k
and noise parameter ≤ δ (i.e., the left-hand side in the equation of Lemma 2.4).

• if (A,b) is distributed such that (1) A is a random k′-sparse matrix in Sk′,m′,n,q and (2)
b is a uniformly random vector in F

m′

q , then (Āi, b̄i) is distributed such that (1) Āi is a
random matrix in Diag(Sk,n+1,n,q) and (2) b̄i is a uniformly random vector in F

n+1
q (i.e., like

the right-hand side in the equation of Lemma 2.4).

So, by our assumption that algorithm A can break KDM security with non-negligible probabil-
ity, it must be that B can distinguish sparse-LPN samples from random ones with non-negligible
probability. This contradicts the (n, q, δ′, k′)-sparse LPN distribution.

B Additional Material on Somewhat Homomorphic Encryption

B.1 Proof of Theorem 3.1

On security parameter λ ∈ N, functionality parameter τ = poly(λ) ∈ N, and constant correctness
parameter c ∈ N, let (n, q, δ, k,Ψ) be the parameters of Construction 3.2 defined in the theorem
statement. In this section, we prove that Construction 3.2 is a somewhat homomorphic encryption
scheme for the function class Fτ that satisfies correctness with probability 1 − λ−c − ǫLHE(λ),
semantic security, and compactness.

Proof. We prove correctness, security, and compactness separately.

Correctness. Let (sk, ek) be a key pair output by running Gen(1λ, 1τ ). We parse secret key sk as
(s ∈ F

n
q , t ∈ F

n
q , skLHE) and evaluation key ek as (ekLHE,Cek,1, . . . ,Cek,n+1, ct1, . . . , ctn+1). For the

remainder of this argument, we will reason about Construction 3.2 using this key pair.
To analyze the scheme, we examine the distribution of ciphertexts output by Expand, Add,

and Mul, taken over the encryption algorithm’s randomness. We say that a distribution D over
ciphertexts is (t, ǫ)-good with respect to a message µ ∈ Fq and the fixed key

[
−s 1

]⊺
, if it meets

the following properties:
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1. Sparsity t: every ciphertext in the support of D is a matrix in F
(n+1)×(n+1)
q that has at most

t non-zero entries in each of its rows.

2. Error-rate ǫ: the following equation holds:

∀i ∈ [n+ 1], Pr
C←D







ei 6= 0

∣
∣
∣
∣
∣
∣
∣
∣
∣








e1
e2
...

en+1







:= C ·

[
−s
1

]

− µ ·
[
−s
1

]







≤ ǫ. (∗)

The (∗)-equation here implies that a ciphertext matrix C sampled from the distribution
D will have the “extended” secret-key vector

[
−s 1

]⊺
as an approximate eigenvector, with

approximate eigenvalue µ — exactly as with GSW encryption [GSW13]. However, unlike with
GSW, the eigenvector here is corrupted with sparse (rather than low-norm) noise.

We will show that, given any message µ ∈ Fq, the composition of algorithms Expand(ek,Enc(sk, ·))
outputs a matrix sampled from a distribution that is ((k + 1)2, (k + 2) · n−δ)-good with respect to
message µ and secret-key

[
−s 1

]⊺
. Moreover, for any two distributions Dleft and Dright that are

each (t, ǫ)-good with respect to messages µleft and µright, the distribution

DAdd = {Add(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (tAdd, ǫAdd)-good with respect to µleft + µright. Similarly, the distribution

DMul = {Mul(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (tMul, ǫMul)-good with respect to µleft ·µright. Here, tAdd and tMul are somewhat bigger than t, and
ǫAdd and ǫMul are somewhat bigger than ǫ, but they all remain bounded. In other words, the (∗)-
invariant holds after expanding ciphertexts output by the encryption algorithm, after homomorphic
additions, and after homomorphic multiplications.

We perform this analysis in a sequence of claims:

Claim B.1 (GSW Encryption). For any µ ∈ Fq, the algorithm GSWEnc(s, µ) produces a ciphertext
sampled from a (k + 1, n−δ)-good distribution with respect to µ.

Proof. Sparsity analysis. The GSWEnc algorithm samples a matrix A from the set Diag(Sk,n+1,n,q).
By definition, the A-matrix here contains exactly k non-zero entries in each of its rows. Then,
GSWEnc outputs a ciphertext matrix C that is the concatenation of A with a column vector. So,
the sparsity of C is at most k + 1.

Error-rate analysis. To show that the (∗)-invariant holds after GSW encryption, we observe that
the ciphertext matrix C output by GSWEnc(s, µ) is constructed as

C =










a1 a1
⊺s+ e1 − s1 · µ

a2 a2
⊺s+ e2 − s2 · µ

...
...

an an
⊺s+ en − sn · µ

an+1 an+1
⊺s+ en+1 + µ










,
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where vectors a1, . . . ,an+1 are the rows of the A-matrix, scalars s1, . . . , sn are the entries of the
secret vector s, and each scalar e1, . . . , en+1 is sampled from the error distribution RandBernn−δ ,q.
Here, we see that:

C ·
[
−s
1

]

=










a1 a1
⊺s+ e1 − s1 · µ

a2 a2
⊺s+ e2 − s2 · µ

...
...

an an
⊺s+ en − sn · µ

an+1 an+1
⊺s+ en+1 + µ










·
[
−s
1

]

= µ ·
[
−s
1

]

+










e1
e2
...
en
en+1










This implies that, for all i ∈ [n+ 1]:

Pr







ẽi 6= 0

∣
∣
∣
∣
∣
∣
∣
∣
∣








ẽ1
ẽ2
...

ẽn+1







:= C ·

[
−s
1

]

− µ ·
[
−s
1

]







= Pr [ei 6= 0] = n−δ.

That is, the algorithm GSWEnc(s, µ) outputs a ciphertext sampled from a distribution that is
(k + 1, n−δ)-good with respect to µ.

Claim B.2 (Regev Encryption and Ciphertext Expansion). For any µ ∈ Fq, the composition of
algorithms Expand(ek,Enc(sk, µ)) produces a ciphertext sampled from a ((k+1)2, (k+2) ·n−δ)-good
distribution with respect to µ.

Proof. Sparsity analysis. Consider any ciphertext C output by the following process:

c← Enc(sk, µ),

C← Expand(ek, c).

By construction, the vector c has at most (k + 1) non-zero entries. Per Claim B.1, each row of the
matrices Cek,1, . . . ,Cek,n+1 given as part of the evaluation key ek contains at most (k+1) non-zero
entries. As a result, since the matrix C is constructed as

∑

i∈[n+1] ci · Cek,i, it must be that the

matrix C has sparsity at most (k + 1)2.

Error-rate analysis. Let t̃ :=
[
−t || 1

]⊺
. Per Claim B.1, for each i ∈ [n+ 1], the ciphertext Cek,i

is sampled from a distribution that is ((k + 1), n−δ)-good with respect to the message t̃i and the
secret-key

[
−s 1

]⊺
. Now, we observe that, by construction:

C ·
[
−s
1

]

=




∑

i∈[n+1]

ci ·Cek,i



 ·
[
−s
1

]

=
∑

i∈[n+1]

ci ·
(

Cek,i ·
[
−s
1

])

=
∑

i∈[n+1]

ci ·
(

t̃i ·
[
−s
1

]

+ e(i)
)

,
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where we know that each entry of vector e(i) is non-zero with probability at most n−δ (by Claim B.1).
We also know that c =

[
a || b

]
, where vector a is k-sparse, scalar b is equal to 〈a, t〉+ e+µ, and

error e is sampled from RandBernn−δ ,q. Then, we can re-write the above equation:

C ·
[
−s
1

]

=
∑

i∈[n+1]

ci ·
(

t̃i ·
[
−s
1

]

+ e(i)
)

=




∑

i∈[n]

ai ·
(

−ti ·
[
−s
1

]

+ e(i)
)


+ b ·
([
−s
1

]

+ e(n+1)

)

=



−〈a, t〉 ·
[
−s
1

]

+
∑

i∈[n]

ai · e(i)


+ (〈a, t〉+ e+ µ) ·
([
−s
1

]

+ e(n+1)

)

=
∑

i∈[n]

ai · e(i) + µ ·
[
−s
1

]

+ e ·
([
−s
1

]

+ e(n+1)

)

+ (〈a, t〉+ µ) · e(n+1)

= µ ·
[
−s
1

]

+
∑

i∈[n]

ai · e(i) + e ·
([
−s
1

]

+ e(n+1)

)

+ (〈a, t〉+ µ) · e(n+1)

︸ ︷︷ ︸
error enew

.

By a union bound, each entry of error vector enew is non-zero with probability at most (k+2)·n−δ.
Equivalently, we can write that, for all i ∈ [n+ 1],

Pr

[

(enew)i 6= 0

∣
∣
∣
∣
enew := Expand(ek,Enc(sk, µ)) ·

[
−s
1

]

− µ ·
[
−s
1

]]

≤ (k + 2) · n−δ.

That is, the output distribution is ((k+ 1)2, (k+ 2) · n−δ)-good with respect to the message µ.

Claim B.3 (Homomorphic addition). Given any distribution Dleft that is (kleft, ǫleft)-good with
respect to message µleft and any distribution Dright that is (kright, ǫright)-good with respect to message
µright, the distribution

DAdd = {Add(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (knew, ǫnew)-good with respect to message (µleft + µright) ∈ Fq, with sparsity knew ≤ kleft + kright
and error-rate ǫnew ≤ ǫleft + ǫright.

Proof. Sparsity analysis. Let Cleft be any matrix in the support of Dleft, let Cright be any matrix in
the support of Dright, and let Cnew := Add(Cleft,Cright). Then, each row in Cleft contains at most
kleft non-zero entries, and each row in Cright contains at most kright non-zero entries. So, each row
of Cnew contains at most kleft + kright non-zero entries.

Error-rate analysis. Consider matricesCleft andCright sampled from Dleft and Dright, and letCnew :=
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Add(Cleft,Cright). We observe that:

Cnew ·
[
−s
1

]

= (Cleft +Cright) ·
[
−s
1

]

(3)

= Cleft ·
[
−s
1

]

+Cright ·
[
−s
1

]

(4)

= µleft ·
[
−s
1

]

+ eleft + µright ·
[
−s
1

]

+ eright (5)

= (µleft + µright)
︸ ︷︷ ︸
message µnew

·
[
−s
1

]

+ (eleft + eright)
︸ ︷︷ ︸

invariant error enew

. (6)

Here, Equation (5) follows by the (∗)-invariant, which tells us that the probability that each entry in
error vectors eleft and eright is non-zero is at most ǫleft and ǫright, respectively. Since enew = eleft+eright,
by a union bound, the probability of any one entry in the new invariant error, enew, being non-zero
is at most ǫleft + ǫright.

Equivalently, we can write that, for all i ∈ [n+ 1],

Pr
Cleft ← Dleft

Cright ← Dright







ẽi 6= 0

∣
∣
∣
∣
∣
∣
∣
∣
∣








ẽ1
ẽ2
...

ẽn+1







:= Add(Cleft,Cright) ·

[
−s
1

]

− µnew ·
[
−s
1

]








≤ ǫleft + ǫright.

That is, the distribution DAdd is (knew, ǫnew)-good with respect to the new message µnew = µleft +
µright ∈ Fq, for knew ≤ kleft + kright and ǫnew ≤ ǫleft + ǫright.

Claim B.4 (Homomorphic multiplication). Given any distribution Dleft that is (kleft, ǫleft)-good
with respect to message µleft and any distribution Dright that is (kright, ǫright)-good with respect to
message µright, the distribution

DMul = {Mul(Cleft,Cright) : Cleft ← Dleft,Cright ← Dright}

is (knew, ǫnew)-good with respect to message (µleft · µright) ∈ Fq, with sparsity knew ≤ kleft · kright and
error-rate ǫnew ≤ kleft · ǫright + ǫleft.

Proof. Sparsity analysis. Let Cleft be any matrix in the support of Dleft, let Cright be any matrix
in the support of Dright, and let Cnew := Mul(Cleft,Cright) = Cleft ·Cright. For any j ∈ [n + 1], let
vector u ∈ F

n+1
q denote the jth row in matrix Cleft. Additionally, for any i ∈ [n + 1], let vector

v(i) ∈ F
n+1
q denote the ith row in matrix Cright. Finally, let vector w ∈ F

n+1
q denote the jth row in

matrix Cnew. Then, by construction, the row vector w is computed as follows:

w =
n+1∑

ℓ=1

uℓ · v(ℓ) (7)
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We know that the vector u contains at most kleft non-zero entries, and that each vector v(ℓ) for
ℓ ∈ [n + 1] contains at most kright non-zero entries. So, by Equation (7), the row vector w can
contain at most kleft ·kright non-zero entries. Thus, the resulting ciphertext Cnew must have sparsity
at most knew ≤ kleft · kright.
Error-rate analysis. Consider matricesCleft andCright sampled from Dleft and Dright, and letCnew :=
Mul(Cleft,Cright). We observe that:

Cnew ·
[
−s
1

]

= Cleft ·Cright ·
[
−s
1

]

(8)

= Cleft ·
([
−s
1

]

· µright + eright

)

(9)

= Cleft ·
[
−s
1

]

· µright +Cleft · eright (10)

=

([
−s
1

]

· µleft + eleft

)

· µright +Cleft · eright (11)

= µleftµright
︸ ︷︷ ︸
message µnew

·
[
−s
1

]

+ (eleft · µright +Cleft · eright)
︸ ︷︷ ︸

invariant error enew

. (12)

Here, Equations (9) and (11) each follow by the (∗)-invariant, which tells us that the probability of
any one entry in vectors eleft and eright being non-zero is at most ǫleft and ǫright, respectively. Since
enew = µright · eleft +Cleft · eright, where each row of Cleft contains at most kleft non-zero entries, by
a union bound, the probability of any one entry in enew being non-zero is at most ǫleft + kleft · ǫright.

Equivalently, we can write that, for all i ∈ [n+ 1],

Pr
Cleft ← Dleft

Cright ← Dright







ẽi 6= 0

∣
∣
∣
∣
∣
∣
∣
∣
∣








ẽ1
ẽ2
...

ẽn+1







:= Mul(Cleft,Cright) ·

[
−s
1

]

− µnew ·
[
−s
1

]








≤ ǫleft + kleft · ǫright.

That is, the distribution DMul is (knew, ǫnew)-good with respect to the message µnew = µleft ·µright ∈
Fq, for knew ≤ kleft · kright and ǫnew ≤ ǫleft + kleft · ǫright.

Finally, we observe that the (∗)-invariant is exactly used by the Compact and Dec algorithms
to squash and decrypt ciphertexts. Here, we must now consider the randomness over both the Gen

and Enc algorithms (that is, we no longer work with a fixed key pair (sk, ek)).

Claim B.5 (Compaction and Decryption). Sample a key pair (sk, ek) ← Gen(1λ, 1τ ). Given any
distribution D that is (t, ǫ)-good with respect to a message µ ∈ Fq and the secret key s (given in
sk), it holds that

Pr [Dec(sk,Compact(ek,C)) 6= µ | C← D] ≤ ǫ+ ǫLHE(λ).

Proof. Consider a ciphertext C← D, and let c ∈ F
n+1
q denote the last row of ciphertext matrix C.

Looking at just the last row of C, because D is (t, ǫ)-good, we know that Pr
[[
−s 1

]⊺ · c 6= µ
]
≤ ǫ.
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Then, the algorithm Compact(ek,C) outputs the result of the affine function

fc(x1, . . . , xn+1) =
∑

i∈[n+1]

ci · xi = x⊺ · c

applied to the LHE-encryption of the secret-key vector s̃ =
[
−s 1

]⊺
. Then, the Dec(sk, ·) algorithm

decrypts this LHE ciphertext. So, because our LHE scheme has ǫLHE(λ) probability of correctness
failures, taking the probability over the randomness of Gen and Enc, by a union bound we see that:

Pr [Dec (sk,Compact(ek,C)) 6= µ] ≤ Pr [fc(s̃1, . . . , s̃n+1) 6= µ] + ǫLHE(λ)

= Pr
[[
−s 1

]⊺ · c 6= µ
]
+ ǫLHE(λ)

≤ ǫ+ ǫLHE(λ).

An inductive argument on Claims B.2 to B.5 shows that we can chain homomorphic opera-
tions computed with Add and Mul on ciphertexts encrypted with Enc(sk, ·) and expanded with
Expand(ek, ·). As long as the error growth is not too large, the algorithms Compact(ek, ·) and
Dec(sk, ·) will recover the correct output of the computation. For every Add, the sparsity and the
error-rate of the resulting ciphertexts grow additively (Claim B.3). For every Mul, the sparsity grows
multiplicatively and — exactly as with GSW encryption [BV14] — the error-rate grows asymmet-
rically: it scales linearly with the sparsity of the left operand (Claim B.4).

To evaluate degree-d products, we perform multiplications in a “straight line,” such that each
call toMul takes as input a fresh ciphertext with low sparsity as its left operand. With this evaluation
strategy, computing a degree-d product on “fresh” ciphertexts (with sparsity (k+1)2 and error-rate
(k + 2) · n−δ, per Claim B.2) produces an encryption of their product with sparsity (k + 1)2d and
error rate

(k + 2) · n−δ ·





d−1∑

j=0

(k + 1)2j



 = n−δ · (k + 1)2d − 1

k
≤ n−δ · (k + 1)2d.

Then, performing M additions after this degree-d product gives an encryption of the result with
sparsity M · (k + 1)2d and error rate at most M · (k + 1)2d · n−δ.

To homomorphically evaluate polynomials in Fτ with correctness error (λ−c+ ǫLHE(λ)), it then
suffices to set the secret dimension n to be sufficiently large. To achieve this, when computing
products of total degree d and then adding up M such terms, we set the parameters so that

M · (k + 1)2d · n−δ ≤ λ−c. (∗∗)

Taking M = τ and d = log τ/ log log τ , we get that τ ·(k+1)
2 log τ
log log τ ≤ nδ ·λ−c. When k ≤

√
log τ−1,

this equation is satisfied whenever n ≥ τ2/δ · λc/δ, as required by the theorem statement. Applying
Claim B.5 proves the final result.

Security. We now show that Construction 3.2 satisfies semantic security. Consider any number of
messages m = poly(λ). Let δ′ := δ − 1/ log n, as in the theorem statement. We need to show that,
given the evaluation key ek, any m ciphertexts output by Enc look computationally indistinguish-
able, regardless of the underlying messages being encrypted. The evaluation key output by Gen

consists of:

1. an evaluation key ekLHE for the underlying LHE scheme,
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2. (n+ 1) LHE encryptions of the entries of s̃ =
[
−s 1

]⊺ ∈ F
n+1
q , and

3. (n+1) GSW-style sparse-LPN encryptions of the entries of t̃ =
[
−t 1

]
∈ F

n+1
q , under secret

key s.

To prove security, we will show that, assuming (n, q, δ′, (k + 1)/2)-sparse LPN and under the LHE
scheme’s semantic security, the encryption of any m messages looks computationally indistinguish-
able from the encryption of m zeros.

We show this via a hybrid argument with five steps:

1. First, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the entries of secret vector s̃ with LHE encryptions of the all-zeros vector.

2. Second, by the semantic security of ciphertexts produced by GSWEnc (which in turn follows
from the KDM-security of sparse LPN), we can swap the sparse-LPN encryptions of the
entries of t̃, under secret key s, with sparse-LPN encryptions of the all-zeros vector under s.

3. Third, by the sparse-LPN assumption, we can swap the m ciphertexts output by Enc, en-
crypting µ1, . . . , µm under secret-key t, with m encryptions of zero under secret-key t.

4. Fourth, by the semantic security of ciphertexts produced by GSWEnc (which follows from
the KDM-security of sparse LPN), we can swap the sparse-LPN encryptions of the all-zeros
vector under secret key s back to the sparse-LPN encryptions of the entries of t̃, under s.

5. Fifth, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the all-zeros vector back to LHE encryptions of the entries of secret key s̃.

We formalize this argument with the following five claims.

Claim B.6. D0
c≈ D1, where we define:

D0 =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, s̃i) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ [n+ 1]
cj ← Enc(t, µj) , ∀ j ∈ [m]







D1 =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ [n+ 1]
cj ← Enc(t, µj) , ∀ j ∈ [m]







.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ǫadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D0, A outputs “1” with probability pleft; when given a sample from distribution D1, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ǫadv.
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Consider the sequence of n+2 distributions D0,0, . . . ,D0,n+1 defined as, ∀ k ∈ {0, 1, . . . , n+1}:

D0,k =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [k]
cti ← LHE.Enc(skLHE, s̃i) , ∀ i ∈ {k + 1, . . . , n+ 1}

Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ [n+ 1]
cj ← Enc(t, µj) , ∀ j ∈ [m]







.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D0,k.
Since distribution D0,0 is equal to D0, we have pleft = p0. Similarly, since distribution D0,n+1 is
equal to D1, we have pright = pn+1. As a result, |p0 − pn+1| ≥ ǫadv, so there must exist some index
i ∈ [n + 1] such that |pi − pi−1| ≥ ǫadv/(n + 1). That is, the algorithm A can distinguish between
distributions D0,i and D0,i−1 with non-negligible advantage.

Since distributions D0,i and D0,i−1 differ only in the ith LHE encryption in the evaluation key
being an encryption of either 0 or s̃i, this means that algorithm A can break the semantic security
of the LHE scheme. This is a contradiction.

Claim B.7. D1
c≈ D2, where we define:

D2 =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, 0) , ∀ i ∈ [n+ 1]
cj ← Enc(t, µj) , ∀ j ∈ [m]







.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ǫadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D1, A outputs “1” with probability pleft; when given a sample from distribution D2, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ǫadv.

Now, consider the n+ 2 distributions D1,0, . . . ,D1,n+1 defined as, ∀ k ∈ {0, 1, . . . , n+ 1}:

D1,k =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, 0) , ∀ i ∈ [k]
Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ {k + 1, . . . , n+ 1}

cj ← Enc(t, µj) , ∀ j ∈ [m]







.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D1,k.
Since distribution D1,0 is equal to D1, we have pleft = p0. Similarly, since distribution D1,n+1 is
equal to D2, we have pright = pn+1. As a result, |p0 − pn+1| ≥ ǫadv, so there must exist some index
i ∈ [n + 1] such that |pi − pi−1| ≥ ǫadv/(n + 1). That is, the algorithm A can distinguish between
distributions D1,i and D1,i−1 with non-negligible advantage.
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The distributions D1,i and D1,i−1 differ only in the ith sparse-LPN encryption in the evaluation
key being an encryption of either 0 or t̃i. By Lemma 2.4, assuming (n, q, δ′, (k+1)/2)-sparse LPN,
these two sparse-LPN encryptions (of either 0 or t̃i) are both computationally indistinguishable
from the distribution

{
(A,u) : A←R Diag(Sk,n+1,n,q), u←R F

n+1
q

}
.

This is a contradiction.

Claim B.8. D2
c≈ D3, where we define:

D3 =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, 0) , ∀ i ∈ [n+ 1]
cj ← Enc(t, 0) , ∀ j ∈ [m]







.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ǫadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D2, A outputs “1” with probability pleft; when given a sample from distribution D3, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ǫadv.

Now, consider the sequence of m+1 distributions D2,0, . . . ,D2,m defined as, ∀ k ∈ {0, 1, . . . ,m}:

D2,k =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, 0) , ∀ i ∈ [n+ 1]
cj ← Enc(t, 0) , ∀ j ∈ [k]
cj ← Enc(t, µj) , ∀ j ∈ {k + 1, . . . ,m}







.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D2,k.
Since distribution D2,0 is equal to D2, we have pleft = p0. Similarly, since distribution D2,m is equal
to D3, we have pright = pm. As a result, |p0 − pm| ≥ ǫadv, so there must exist some index i ∈ [m]
such that |pi − pi−1| ≥ ǫadv/m. That is, the algorithm A can distinguish between distributions D2,i

and D2,i−1 with non-negligible advantage.
The distributionsD2,i andD2,i−1 differ only in the ith sparse-LPN ciphertext being an encryption

of either 0 or µi. Assuming (n, q, δ′, (k + 1)/2)-sparse LPN, these two sparse-LPN encryptions (of
either 0 or µi) are both computationally indistinguishable from the distribution

{(a, u) : a←R Sk,1,n,q, u←R Fq} .

(This is because (n, q, δ′, (k + 1)/2)-sparse LPN directly implies (n, q, δ, k)-sparse LPN3, for prime
modulus q ≥ 3.) This is a contradiction.

3The case of j = n+ 1 in the reduction in Appendix A gives a proof of this statement.
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Claim B.9. D3
c≈ D4, where we define:

D4 =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ [n+ 1]
cj ← Enc(t, 0) , ∀ j ∈ [m]







.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ǫadv ≥ 1/ poly(λ). That is, when given a sample from
distribution D3, A outputs “1” with probability pleft; when given a sample from distribution D4, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ǫadv.

Now, consider the n+ 2 distributions D3,0, . . . ,D3,n+1 defined as, ∀ k ∈ {0, 1, . . . , n+ 1}:

D3,k =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ [k]
Cek,i ← GSWEnc(s, 0) , ∀ i ∈ {k + 1, . . . , n+ 1}

cj ← Enc(t, 0) , ∀ j ∈ [m]







.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D3,k.
Since distribution D3,0 is equal to D3, we have pleft = p0. Similarly, since distribution D3,n+1 is
equal to D4, we have pright = pn+1. As a result, |p0 − pn+1| ≥ ǫadv, so there must exist some index
i ∈ [n + 1] such that |pi − pi−1| ≥ ǫadv/(n + 1). That is, the algorithm A can distinguish between
distributions D3,i and D3,i−1 with non-negligible advantage.

The distributions D3,i and D3,i−1 differ only in the ith sparse-LPN encryption in the evaluation
key being an encryption of either 0 or t̃i. By Lemma 2.4, assuming (n, q, δ′, (k+1)/2)-sparse LPN,
these two sparse-LPN encryptions (of either 0 or t̃i) are both computationally indistinguishable
from the distribution

{
(A,u) : A←R Diag(Sk,n+1,n,q), u←R F

n+1
q

}
.

This is a contradiction.

Claim B.10. D4
c≈ D5, where we define:

D5 =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, s̃i) , ∀ i ∈ [n+ 1]

Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ [n+ 1]
cj ← Enc(t, 0) , ∀ j ∈ [m]







.

Proof. For the sake of contradiction, let there be a polynomial-time algorithm A that distinguishes
between the two distributions with advantage ǫadv ≥ 1/ poly(λ). That is, when given a sample from
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distribution D4, A outputs “1” with probability pleft; when given a sample from distribution D5, A
outputs “1” with probability pright; and it must be that |pleft − pright| ≥ ǫadv.

Now, consider the n+ 2 distributions D4,0, . . . ,D4,n+1 defined as, ∀ k ∈ {0, 1, . . . , n+ 1}:

D4,k =







ekLHE,
ct1, . . . , ctn+1,

Cek,1, . . . ,Cek,n+1,
c1, . . . , cm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s ←R F
n
q and s̃ :=

[
−s || 1

]⊺ ∈ F
n+1
q

t ←R F
n
q and t̃ :=

[
−t || 1

]⊺ ∈ F
n+1
q

skLHE, ekLHE ← LHE.Gen(1λ, 1n+1)
cti ← LHE.Enc(skLHE, s̃i) , ∀ i ∈ [k]
cti ← LHE.Enc(skLHE, 0) , ∀ i ∈ {k + 1, . . . , n+ 1}

Cek,i ← GSWEnc(s, t̃i) , ∀ i ∈ [n+ 1]
cj ← Enc(t, 0) , ∀ j ∈ [m]







.

Let pk denote the probability of algorithm A outputting “1” given an input from distribution D4,k.
Since distribution D4,0 is equal to D4, we have pleft = p0. Similarly, since distribution D4,n+1 is
equal to D5, we have pright = pn+1. As a result, |p0 − pn+1| ≥ ǫadv, so there must exist some index
i ∈ [n + 1] such that |pi − pi−1| ≥ ǫadv/(n + 1). That is, the algorithm A can distinguish between
distributions D4,i and D4,i−1 with non-negligible advantage.

Since distributions D4,i and D4,i−1 differ only in the ith LHE encryption in the evaluation key
being an encryption of either 0 or s̃i, this means that algorithm A can break the semantic security
of the LHE scheme. This is a contradiction.

Compactness. Finally, we examine the size of ciphertexts in Construction 3.2.

Size of fresh ciphertexts. Each ciphertext output by Enc is a (k + 1)-sparse vector in F
n+1
q . So, it

can be represented in ≤ (k + 1) · log n · log q = poly(λ) bits.

Size of evaluated ciphertexts. Each ciphertext output by Compact is a ciphertext of the underlying
LHE scheme, produced by LHE.Eval. Here, LHE.Eval is given:

• an evaluation key ekLHE, output by LHE.Gen(1λ, 1n+1),

• an affine function f : Fn+1
q → Fq, and

• n+ 1 LHE ciphertexts ct1, . . . , ctn+1, encrypted by calling LHE.Enc(skLHE, ·).

By definition, the (n + 1)-variate affine function f is in the function class supported by the LHE
scheme with the given parameters (see Section 2.2). Then, since the LHE scheme must satisfy
compactness, evaluated ciphertexts in Construction 3.2 must also be compact.

B.2 Proof of Remark 3.3

Remark 3.3 describes the efficiency of the SHE scheme in Construction 3.2.

Proof. In Construction 3.2, we can take advantage of the sparsity in our ciphertexts by pruning the
computation required by each Add and Mul so as to perform only those operations that affect the
final output of a computation. Pruning the computation in this way does not affect the scheme’s
correctness, error growth, or security, but improves the cost of operating on (and storing) interme-
diate ciphertexts. An analogous observation was previously applied in the context of homomorphic
secret sharing by Dao et al. [DIJL23, Remark 5.4].
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In more detail, each ciphertext before compaction is a matrix in F
(n+1)×(n+1)
q . However, the

Compact algorithm only inspects the last row of the ciphertext matrix C it is given. So, we can
materialize only those rows of the intermediate ciphertexts that affect the last row of matrix C.

Consider a degree-d multiplication circuit computing

Cnew ← Cd ·Cd−1 · . . . ·C2 ·C1,

where each input ciphertext has sparsity kinit ∈ N. Per Appendix B.1, we perform this computation
as Cnew ← Cd ·(Cd−1 ·(. . . ·(C2 ·C1))), in a straight line from right to left to minimize error growth.

In the last call to Mul, we can materialize only the last row of the output ciphertext Cnew. This
lets us compute over only the last row of ciphertext Cd, given as the left operand to Mul. Since the
ciphertext (Cd−1 · (. . . · (C2 · C1))) has sparsity kright = kd−1init , the cost of this multiplication of a
row vector with a ciphertext matrix, exactly as in Equation (7), is kinit · kright = kdinit operations in
Fq.

In the second-to-last call to Mul, operating on Cd−1 and Cd−2 · (. . . · (C2 · C1)), we similarly
compute only the kinit rows of the output that are needed by the final call to Mul—namely, those
corresponding to non-zero entries in the last row of Cd. Given that the ciphertext Cd−2 · (. . . · (C2 ·
C1)) has sparsity k′right = kd−2init , this multiplication of a kinit-by-(n + 1) dimensional matrix with

another ciphertext matrix incurs kinit · kinit · k′right = kdinit operations in Fq.

We push this optimization further, all the way to inspecting only the kd−1init rows of C1 needed to
compute the final output. For any i ∈ [d], the intermediate ciphertext output by the ith call to Mul

will be a kd−i−1init -by-(n + 1) dimensional matrix with sparsity ki+1
init , which we can compute in kdinit

operations. Taken together, all d− 1 calls to Mul require (d− 1) ·kdinit operations in Fq, independent
of the secret dimension n.

Incorporating homomorphic additions into this framework is seamless: to perform any number
of Adds between the ith and the (i+ 1)th level of multiplications, it suffices to add those rows of
the ciphertext matrices that the subsequent operations will touch. Since, after i of the d total calls
to Mul, each ciphertext is a kd−i−1init -by-(n+ 1) dimensional matrix with sparsity ki+1

init , calls to Add

each require kd−i−1init ·ki+1
init = kdinit operations in Fq—again, independent of n. These additions worsen

ciphertext sparsity, which affects the cost of future operations. If all calls to Mul are completed and
only Adds remain, we can immediately run the Compact algorithm and perform these additions on
the LHE ciphertexts.

Finally, the number of LHE operations required by Compact is linear in the sparsity of the
ciphertext it is given as input. That is, performing degree-d multiplications, followed by M total
additions, on ciphertexts with initial sparsity kinit requires (d−1) ·M ·kdinit operations in Fq, followed
by M ·kdinit LHE additions. By Claim B.2, on LPN sparsity parameter k, we have kinit = (k+1)2. In
the initial call to Expand, we can materialize only the needed rows of each matrix Ci (for i ∈ [d]),
of which there are at most kd−1init (for the case of i = 1). So, on LPN sparsity parameter k, each call
to Expand requires at most (k + 1)2 · (k + 1)2(d−1) = (k + 1)2d operations.

C Additional Material on Optimizations and Batching

C.1 Syntax for Batch Somewhat Homomorphic Encryption

To allow for batch encryption and batch evaluation in our SHE schemes, we extend their syntax
to include two “packing parameters” tEnc, tEval ∈ N. Then, the encryption algorithm can produce
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“packed” ciphertexts encrypting any number t0 ≤ tEnc of values, and the evaluation algorithm
can evaluate any number t1 ≤ tEval of functions on such packed ciphertexts, producing a packed
encryption of their outputs.

Definition C.1 (Somewhat Homomorphic Encryption with “Batch Encryption” and “Batch Eval-
uation”). Given a key space K, a message spaceM, and a ciphertext space C, a somewhat homo-
morphic encryption scheme with batch encryption and batch evaluation (batch-SHE) is a tuple of
four polynomial-time algorithms:

• BatchGen(1λ, 1τ , 1tEnc , 1tEval)→ (sk, ek), a randomized algorithm that takes as input a security
parameter λ ∈ N, a functionality parameter τ ∈ N, and two packing parameters tEnc, tEval ∈ N,
and outputs a secret key sk ∈ K and an evaluation key ek ∈ K.

• BatchEnc(sk,v)→ ct, a randomized algorithm that takes as input a secret key sk ∈ K and a
message vector v ∈Mt for any 1 ≤ t ≤ tEnc, and outputs a “packed” ciphertext ct ∈ C.

• BatchEval(ek, f1, . . . , ft, ct1, . . . , ctm) → ctout, a deterministic algorithm that takes as input
an evaluation key ek ∈ K, t functions f1, . . . , ft : Mℓ → M for any 1 ≤ t ≤ tEval, and any
m ∈ N “packed” ciphertexts ct1, . . . , ctm ∈ C and outputs a “packed” ciphertext ctout ∈ C.

• BatchDec(sk, ct) → v, a deterministic algorithm that takes as input a secret key sk ∈ K and
a ciphertext ct ∈ C and outputs a message vector v ∈M∗.

We define a batch-SHE scheme relative to a correctness failure probability ǫ = ǫ(λ) ∈ [0, 1] and
a function class Fτ ⊆ {f :M∗ →M}, which comprises the computations that can be homomor-
phically performed on ciphertexts. Given such a failure probability ǫ and a function class Fτ , we
require a batch-SHE scheme to satisfy correctness, semantic security, and compactness.

Correctness. For all parameters λ ∈ N, τ ∈ N, tEnc ∈ N, and tEval ∈ N, for any t0 ∈ [tEnc] and
t1 ∈ [tEval] and m = poly(λ), for all t1 functions f1, . . . , ft1 :Mm·t0 →M in the class Fτ , and for
all t1 ·m vectors v(1), . . . ,v(t1·m) ∈ Mt0 , let ǫ = ǫ(λ) ∈ [0, 1] be the correctness failure probability.
For each i ∈ [t1], we require that the following quantity is at most ǫ:

Pr



 BatchDec(sk, ct)i 6= yi

∣
∣
∣
∣
∣
∣

sk, ek ← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

cti ← BatchEnc(sk, v
(i)
1 , . . . , v

(i)
t0
) for i ∈ [t1m]

ct ← BatchEval(ek, f1, . . . , ft1 , ct1, . . . , ctt1m)



 ,

where we write yi = fi(v
((i−1)m+1)
1 , . . . , v

((i−1)m+1)
t0

, . . . , v
(im)
1 , . . . , v

(im)
t0

).

Semantic security. For all parameters λ ∈ N, τ ∈ N, tEnc = poly(λ) ∈ N, and tEval = poly(λ) ∈ N,
for any t0 ∈ [tEnc] and any number of messages m = poly(λ) ∈ N, and for any sets of 2m vectors
u(1), . . . ,u(m),v(1), . . . ,v(m) ∈Mt0 , their encryptions are computationally indistinguishable:

{

ek,BatchEnc(sk, u
(1)
1 , . . . , u

(1)
t0

),

. . . ,BatchEnc(sk, u
(m)
1 , . . . , u

(m)
t0

)

∣
∣
∣
∣
∣

sk, ek← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

}

c≈
{

ek,BatchEnc(sk, v
(1)
1 , . . . , v

(1)
t0

),

. . . ,BatchEnc(sk, v
(m)
1 , . . . , v

(m)
t0

)

∣
∣
∣
∣
∣

sk, ek← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

}

.
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Compactness. There exists a polynomial p(·) such that, for every τ ∈ N, there exists a constant
c ∈ N where, for all parameters λ > c, tEnc ∈ N, and tEval ∈ N, for any t0 ∈ [tEnc], t1 ∈ [tEval], and
m = poly(λ), for all t1 functions f1, . . . , ft1 :Mm·t0 →M in the class Fτ , and for all t1 ·m vectors
v(1), . . . ,v(t1·m) ∈Mt0 , let:

sk, ek ← BatchGen(1λ, 1τ , 1tEnc , 1tEval)

cti ← BatchEnc(sk, v
(i)
1 , . . . , v

(i)
t0
) for i ∈ [t1 ·m]

ctout ← BatchEval(ek, f1, . . . , ft1 , ct1, . . . , ctt1·m).

Then, the bit length of each of the ciphertexts cti for i ∈ [t1 ·m] is at most t0 · p(λ), independent
of τ . The bit length of the ciphertext ctout is at most t1 · p(λ), independent of τ .

C.2 Additional Material for Section 4.1

We state and prove Lemma C.2.

Lemma C.2 (Sparse LPN with a reusedA-matrix). On security parameter λ ∈ N, under (n, q, δ, k)-
sparse LPN, for any m = poly(λ) and ℓ = poly(λ) ∈ N, the following distributions are computa-
tionally indistinguishable:







(A,AS+E) :

A←R Sk,m,n,q

S←R F
n×ℓ
q

E← RandBernm×ℓ
n−δ ,q







c≈
{

(A,U) :
A←R Sk,m,n,q

U←R F
m×ℓ
q

}

.

Proof. Fix any m, ℓ = poly(λ). For the sake of contradiction, let there be a polynomial-time algo-
rithm A that distinguishes between the two distributions with advantage ǫadv ≥ 1/ poly(λ). That
is, when given a sample from the left distribution, A outputs “1” with probability pleft; when given
a sample from the right distribution, A outputs “1” with probability pright; and it must be that
|pleft − pright| ≥ ǫadv.

Now, consider the sequence of ℓ+ 1 distributions D0, . . . ,Dℓ defined as:

∀i ∈ {0, 1, . . . , ℓ}, Di =







(
A,

[
AS+E ||U

])
:

A←R Sk,m,n,q

S←R F
n×(ℓ−i)
q

E← RandBern
m×(ℓ−i)

n−δ ,q

U←R F
m×i
q







.

Let pi denote the probability of algorithm A outputting “1” given an input from distribution
Di. Since distribution D0 is equal to the left distribution above, we have pleft = p0. Similarly,
since distribution Dℓ is equal to the right distribution above, we have pright = pℓ. As a result,
|p0 − pℓ| ≥ ǫadv, so there must exist some index i ∈ [ℓ] such that |pi − pi−1| ≥ ǫadv/ℓ.

Since distributions Di and Di−1 differ only in the ith column of the second component being
either a sparse-LPN sample or truly random, this means that algorithm A can break the (n, q, δ, k)-
sparse LPN assumption with probability ǫadv/ℓ = O(1/ poly(λ)). This is a contradiction.
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Construction C.3 (Packed El-Gamal over Zq with ciphertext compression). Parameterized by plaintext
modulus q ∈ N, packing parameter t ∈ N, and correctness parameter c ∈ N. Let the algorithm Sort :
Z
q → Z

q output a sorted copy of the list of values it is given. Instantiate PRF using a pseudorandom
function from DDH.

LHE.Gen(1λ, 1τ )→ (skLHE, ekLHE)

• Let B := q2 · (τ + 1) and T := 6λc · q2 · t · (B + 1). Let g be a generator of a group G in which DDH is
hard, and where order(g) > B + (q + 1)λT . Let p := order(g).

• Pick any PRF : K ×G→ {0, 1}log(T ). Sample seed←R K. Sample z1, . . . , zt ←R Zp.

• Output skLHE := (PRF, seed, g, p, z1, . . . , zt) and ekLHE := (PRF, seed, B, T, g).

LHE.Enc(skLHE, (µ1, . . . , µt) ∈ Z
t
q)→ ct

• Parse skLHE as (PRF, seed, g, p, z1, . . . , zt). Sample r1, . . . , rt ←R Zp.

• Output ct :=








gr1 gr1z1+µ1 gr1z2 . . . gr1zt

gr2 gr2z1 gr2z2+µ2 . . . gr2zt

...
...

...
. . .

...
grt grtz1 grtz2 . . . grtzt+µt







.

LHE.Eval(ekLHE, f1 : Zτ
q → Zq, . . . , ft : Z

τ
q → Zq, ct1, . . . , ctτ )→ ct′

• For j ∈ [t], parse the affine function fj as fj(x1, . . . , xτ ) = cj,0 +
∑τ

k=1 cj,k · xk.

• For k ∈ [τ ], parse ctk as the matrix of group elements {gk,ℓ,j}ℓ∈{0,...,t},j∈[t].

• For ℓ ∈ {0, . . . , t}, let hℓ := gcℓ,0 ·
∏τ

k=1

∏t
j=1 g

cj,k
k,ℓ,j , where we take c0,0 := 0.

• Output ct′ := Shrink(ekLHE, h0, . . . , ht).

LHE.Dec(skLHE, ct)→ (µ1, . . . , µt) ∈ Z
t
q

• Parse skLHE as (PRF, seed, g, p, z1, . . . , zt) and parse ct as (h, u1, . . . , ut).

• Output (w1, . . . , wt), where wℓ := Unshrink(PRF, seed, g, hzℓ , uℓ) for ℓ ∈ [t].

Shrink(ekLHE, h0 ∈ G, . . . , ht ∈ G)→ ct

• Parse ekLHE as (PRF, seed, B, T, g).

• If there exists ℓ ∈ [t] such that any of the following 3 conditions hold, output ⊥:

1. there exists b ∈ {0, . . . , B} such that PRF(seed, hℓ · g−b) = 0.

2. there exists µ ∈ Zq such that, for all b ∈ [λ · T ], PRF(seed, hℓ · gq·b+µ) 6= 0.

3. there exist distinct µ, µ′ ∈ Zq such that
∣
∣padℓ,µ − padℓ,µ′

∣
∣ ≤ 1, where, for all m ∈ Zq, we define

padℓ,m to be the smallest non-negative integer for which PRF(seed, hℓ · gq·padℓ,m+m) = 0.

• Let uℓ ∈ Zq be the index of padℓ,0 in Sort(padℓ,0, . . . , padℓ,q−1). Output (h0, u1, . . . , ut).

Unshrink(PRF : K ×G→ {0, 1}log(T ), seed ∈ K, g ∈ G, h′ ∈ G, u ∈ Zq)→ Zq

• For µ ∈ Zq, let padµ be the smallest non-negative integer for which PRF(seed, h′ · gq·padµ+µ) = 0.

• Output i ∈ Zq so that padi is the uth element in Sort(pad0, . . . , padq−1).

Figure 3: Construction of linearly homomorphic encryption over Zq from DDH.
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C.3 Additional Material for Section 4.2

We give the construction described informally in Section 4.2 in Construction C.3.
Let (c, q, t) be the parameters of Lemma 4.4. We prove that Construction C.3, instantiated

with these parameters, gives a correct and semantically secure LHE scheme with message space Zq

and correctness failure probability λ−c. The claimed efficiency follows by construction, and directly
implies that Construction C.3 is compact.

Proof. We prove correctness and security separately.

Correctness. To prove correctness, we first show that the probability that LHE.Eval outputs ⊥ is
at most λ−c (Claim C.4). Then, we show that decryption in Construction C.3 always recovers the
correct output of the t affine functions f1, . . . , ft evaluated on the encrypted values, conditioned on
the event that LHE.Eval did not output ⊥ (Claim C.5).

Claim C.4. For all λ ∈ N, τ = poly(λ) ∈ N, q = poly(λ) ∈ N, constant c ∈ N, and t = poly(λ) ∈ N,
for all τ messages v(1), . . . ,v(τ) ∈ Z

t
q, and for all t affine functions f1, . . . , ft : Z

τ
q → Zq, it holds

that:

Pr







ctout = ⊥

∣
∣
∣
∣
∣
∣
∣
∣

skLHE, ekLHE ← LHE.Gen (1λ, 1τ )

cti ← LHE.Enc (skLHE,v
(i)), ∀ i ∈ [τ ]

ctout ← LHE.Eval (ekLHE, f1, . . . , ft,
ct1, . . . , ctτ )






≤ λ−c.

Proof. Let the evaluation key ekLHE, the affine functions f1, . . . , ft, and the ciphertexts ct1, . . . , ctτ
be as defined in the claim statement. Let h0, . . . , ht ∈ G be the inputs passed to Shrink by
LHE.Eval(ekLHE, f1, . . . , ft, ct1, . . . , ctτ ). Let T := 6λc · q2 · t · (B + 1). The Shrink(ekLHE, h0, . . . , ht)
algorithm outputs ⊥ if and only if one of 3 events occur:

1. Event E1: there exists some ℓ ∈ [t] and some b ∈ {0, . . . , B} such that PRF(seed, hℓ ·g−b) = 0.

2. Event E2: there exists some ℓ ∈ [t] and some µ ∈ Zq such that, for all b ∈ [λ · T ], it holds
that PRF(seed, hℓ · gq·b+µ) 6= 0.

3. Event E3: there exists some ℓ ∈ [t] and two distinct µ, µ′ ∈ Zq such that
∣
∣padℓ,µ − padℓ,µ′

∣
∣ ≤ 1,

where padℓ,µ is the smallest non-negative integer such that PRF(seed, hℓ · gq·padℓ,µ+µ) = 0 and

padℓ,µ′ is the smallest non-negative integer such that PRF(seed, hℓ · gq·padℓ,µ′+µ′

) = 0.

Checking whether these events occur can be done in polynomial time. Since the group order
is larger than B + (q + 1)λT , the events E1 and E2 are non-overlapping. We analyze each event’s
probability.

Analyzing E1. Since PRF is a pseudorandom function with output bitlength log(T ), for each ℓ ∈ [t]
and b ∈ {0, . . . , B}, we have that

Pr
[

PRF(seed, hℓ · g−b) = 0
]

≤ 1

T
+ negl(λ).

We know that t = poly(λ) and B = poly(λ). So, by a union bound over all ℓ ∈ [t], b ∈ {0, . . . , B},
it holds that

Pr [E1] ≤
t · (B + 1)

T
+ negl(λ) =

1

6λc · q2 + negl(λ).
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Analyzing E2. Assume for the sake of contradiction that, with non-negligible probability, there
exists some ℓ ∈ [t] and some µ ∈ Zq such that PRF(seed, hℓ · gq·b+µ) 6= 0 for all b ∈ [λ · T ]. We will
construct an efficient distinguisher that wins with non-negligible advantage in the PRF security
game. Given a generator g for the group G, our distinguisher works as follows:

1. it samples r1, . . . , rt ←R Zorder(g).

2. for ℓ ∈ [t], µ ∈ Zq, it asks for the evaluation of the PRF at point grℓ+q·b+µ, for all b ∈ [λT ]. If
there exists some ℓ and µ such that all λT evaluations are non-zero, it outputs “1”. Else, it
outputs “0”.

Here, we observe that each of the inputs that the distinguisher passes to the PRF are distributed
identically to hℓ · gq·b+µ, for ℓ ∈ [t], µ ∈ Zq, and b ∈ [λT ]. So, when the distinguisher is interacting
with the PRF, by our assumption it must be that the distinguisher outputs “1” with non-negligible
probability. However, when the distinguisher is interacting with a truly random function frand from
the space F : G → {0, 1}log(T ), it outputs “1” only with neligible probability: namely, for each
ℓ ∈ [t], µ ∈ Zq,

Pr
frand←R F

[

∀ b ∈ [λT ], frand(g
rℓ+q·b+µ) 6= 0

]

≤
∏

b∈[λ·T ]

Pr
[

frand(g
rℓ+q·b+µ) 6= 0

]

≤
(

1− 1

T

)λ·T

≤ e−λ = negl(λ).

We can then take a union bound over all choices of ℓ and µ (of which there are poly(λ)). So, we
have reached a contradiction with the PRF’s computational security. As a result, it must be that
Pr [E2] ≤ negl(λ).

Analyzing E3|¬E2. For each ℓ ∈ [t] and each pair of distinct µ, µ′ ∈ Zq, we know that if event
E2 did not occur, it must be that padℓ,µ ≤ λT and padℓ,µ′ ≤ λT . Then, as the order of the group

generated by g is bigger than (q + 1)λT , each of the group elements in the sets {hℓ · gq·b+µ}b∈[λT ]

and {hℓ · gq·b+µ′}b∈[λT ] must be distinct. Since PRF is a PRF with output bitlength log(T ), we then
have that

Pr
[

PRF(seed, hℓ · gq·padℓ,µ+µ′

) = 0|¬E2

]

≤ 1

T
+ negl(λ)

Pr
[

PRF(seed, hℓ · gq·(padℓ,µ−1)+µ′

) = 0|¬E2

]

≤ 1

T
+ negl(λ)

Pr
[

PRF(seed, hℓ · gq·(padℓ,µ+1)+µ′

) = 0|¬E2

]

≤ 1

T
+ negl(λ).

As a result,

Pr
[∣
∣padℓ,µ − padℓ,µ′

∣
∣ ≤ 1|¬E2

]
≤ 3

T
+ negl(λ).

We know that t = poly(λ) and that q = poly(λ). So, by a union bound over all ℓ ∈ [t] and all
(
q
2

)

pairs of µ, µ′ ∈ Zq, it holds that

Pr [E3|¬E2] ≤
3t · q2
T

+ negl(λ) ≤ 1

2λc · (B + 1)
+ negl(λ).
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By a final union bound and the law of total probability, it must then be that the probability
that LHE.Eval outputs ⊥ is at most:

Pr[E1 ∪ E2 ∪ E3] ≤ Pr[E1] + Pr[E2 ∪ E3]

= Pr[E1] + Pr[E2 ∪ E3|E2]·Pr[E2]+Pr[E2 ∪ E3|¬E2]·Pr[¬E2]

≤ Pr[E1] + Pr[E2] + Pr[E3|¬E2]

≤ 1

6λc · q2 +
1

2λc · (B + 1)
+ negl(λ)

≤ 1

λc
.

Claim C.5. For all λ ∈ N, τ = poly(λ) ∈ N, q = poly(λ) ∈ N, constant c ∈ N, and t = poly(λ) ∈ N,
for all τ messages v(1), . . . ,v(τ) ∈ Z

t
q, and for all t affine functions f1, . . . , ft : Z

τ
q → Zq, define

w :=
(

f1(v
(1)
1 , . . . , v

(τ)
1 ), . . . , ft(v

(1)
t , . . . , v

(τ)
t )

)

.

Then, it holds that:

Pr









LHE.Dec(skLHE, ctout)
6= w

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

skLHE, ekLHE ← LHE.Gen (1λ, 1τ )

cti ← LHE.Enc (skLHE,v
(i)), ∀ i ∈ [τ ]

ctout ← LHE.Eval (ekLHE, f1, . . . , ft,
ct1, . . . , ctτ )

ctout 6= ⊥









= 0.

Proof. Let (skLHE, ekLHE)← LHE.Gen(1λ, 1τ ), then parse skLHE as the terms (PRF, seed, g, p, z1, . . . , zt),
and parse ekLHE as (PRF, seed, B, T, g). For the rest of the correctness argument, we will reason
about Construction C.3 using this key pair.

For j ∈ [t], parse the jth affine function as

fj(x1, . . . , xτ ) = cj,0 +
τ∑

k=1

cj,k·xk ∈ Zq,

and write the corresponding affine function “lifted” to the integers as

f̂j(x1, . . . , xτ ) = cj,0 +

τ∑

k=1

cj,k · xk ∈ Z.

Here, for ℓ ∈ [t], we observe that

f̂ℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ ) = cℓ,0 +

τ∑

k=1

cℓ,k · v(k)ℓ and (13)

fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ ) = f̂ℓ(v

(1)
ℓ , . . . , v

(τ)
ℓ ) mod q. (14)

Moreover, for all ℓ ∈ [t], it must hold that

0 ≤ f̂ℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ ) < B. (15)
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This is because f̂ℓ is the lifted version of fℓ, which is an affine function with τ inputs and all
coefficients in {0, . . . , q − 1}. In addition, all of the inputs must be in {0, . . . , q − 1}. For ease of
notation, define z0 := 1 and c0,0 := 0. Throughout this proof, we describe the functionality of

Construction C.3, along with a line-by-line analysis highlighted in yellow .

Encryption. The LHE.Enc algorithm generates encryptions ct1, . . . , ctτ of the messages v(1), . . . ,v(τ).
By construction, for k ∈ [τ ], ℓ ∈ {0, . . . , t}, and j ∈ [t], we denote the entry in the ℓth column and

jth row of ciphertext matrix ctk as grk,j ·zℓ+v
(k)
ℓ
·✶ℓ=j .

Homomorphic evaluation. For ℓ ∈ {0, . . . , t}, the LHE.Eval algorithm computes hℓ = gcℓ,0 ·
∏τ

k=1

∏t
j=1

(

grk,j ·zℓ+v
(k)
ℓ
·✶ℓ=j

)cj,k
.

Re-writing the above expression, we see that, for ℓ ∈ {0, . . . , t},

hℓ = gcℓ,0 · g
∑τ

k=1

∑t
j=1

(

cj,k·rk,j ·zℓ+cj,k·v
(k)
ℓ
·✶ℓ=j

)

= g
(
∑τ

k=1

∑t
j=1 cj,k·rk,j)·zℓ+✶ℓ>0·

(

∑τ
k=1 cℓ,k·v

(k)
ℓ

)

+cℓ,0 .

Here, writing r :=
∑τ

k=1

∑t
j=1 cj,k · rk,j and by Equation (13), we get that

h0 = gr·z0 = gr (16)

for ℓ ∈ [t], hℓ = gr·zℓ+f̂ℓ(v
(1)
ℓ

,...,v
(τ)
ℓ

). (17)

Then, LHE.Eval outputs ct′ := Shrink(ekLHE, h0, . . . , ht). Here, conditioned on the fact that
Shrink does not output ⊥, it must be that:

(1) for ℓ ∈ [t], b ∈ {0, . . . , B}, it holds that PRF(seed, hℓ · g−b) 6= 0.

By Equations (15) and (17), this implies that, for ℓ ∈ [t],

PRF(seed, gr·zℓ) 6= 0 and (18)

PRF(seed, gr·zℓ+k) 6= 0 for k ∈ {0, . . . , f̂ℓ(v(1)ℓ , . . . , v
(τ)
ℓ )} (19)

(2) for ℓ ∈ [t], µ ∈ Zq, let padℓ,µ be the smallest non-negative integer such that PRF(seed, hℓ ·
gq·padℓ,µ+µ) = 0. We know that padℓ,µ ≤ λ · T . In addition, we know that there exist no distinct
µ, µ′ ∈ Zq with

∣
∣padℓ,µ − padℓ,µ′

∣
∣ ≤ 1.

Then, for ℓ ∈ [t], Shrink sets uℓ ∈ Zq to be the position of padℓ,0 in the sorted list Sort(padℓ,0, . . . , padℓ,q−1).
Finally, Shrink outputs (h0, u1, . . . , ut).
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For ℓ ∈ [t] and µ ∈ Zq, let offsetℓ :=
⌊

f̂ℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ )/q

⌋

. Then, by Equations (14) and (17),

hℓ · gq·padℓ,µ+µ = gr·zℓ+f̂ℓ(v
(1)
ℓ

,...,v
(τ)
ℓ

)+q·padℓ,µ+µ

= gr·zℓ+fℓ(v
(1)
ℓ

,...,v
(τ)
ℓ

)+q·(padℓ,µ+offsetℓ)+µ

= gr·zℓ+q·(padℓ,µ+offsetℓ)+(fℓ(v
(1)
ℓ

,...,v
(τ)
ℓ

)+µ).

So, by construction, padℓ,µ is the smallest non-negative integer such that

PRF(seed, gr·zℓ+q·(padℓ,µ+offsetℓ)+(fℓ(v
(1)
ℓ

,...,v
(τ)
ℓ

)+µ)) = 0.

Now, define pad′ℓ,µ to be the smallest non-negative integer such that PRF(seed, gr·zℓ+q·pad′ℓ,µ+µ) =

0. Let µ′ = fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ ) + µ, computed over the integers. Here, it must be that µ′ < 2q.

Define eℓ,µ to be 0 if µ′ < q, and to be 1 otherwise. That is, µ′ = (µ′ mod q) + eℓ,µ · q.
Then, by Equation (19), because padℓ,µ ≤ λT , and because order(g) > B + (q + 1)λT , it must
be that

r · zℓ + q · (padℓ,µ + offsetℓ) + (fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ ) + µ) = c

r · zℓ + q · pad′ℓ,µ′ mod q + (µ′ mod q) = c

for the same value c ∈ Z such that PRF(seed, gc) = 0. As a result, it must be that

r · zℓ + q · (padℓ,µ + offsetℓ) + (fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ ) + µ) = r · zℓ + q · pad′ℓ,µ′ mod q + (µ′ mod q),

which implies that

pad′
ℓ,fℓ(v

(1)
ℓ

,...,v
(τ)
ℓ

)+µ mod q
= padℓ,µ + offsetℓ + eℓ,µ, (20)

where eℓ,µ ∈ {0, 1}. By Equation (20) and since there exist no distinct µ, µ′ ∈ Zq

with
∣
∣padℓ,µ − padℓ,µ′

∣
∣ ≤ 1, it must be that uℓ is also the position of pad′

ℓ,fℓ(v
(1)
ℓ

,...,v
(τ)
ℓ

)
in

Sort(pad′ℓ,0, . . . , pad
′
ℓ,q−1).

Decryption. LHE.Dec outputs t values in Zq. For ℓ ∈ [t], the ℓth value output by LHE.Dec corre-
sponds to the output of Unshrink(PRF, seed, g, hzℓ0 , uℓ). Here, for µ ∈ Zq, Unshrink computes pad′′ℓ,µ

to be the smallest non-negative integer such that PRF(seed, hzℓ0 · gq·pad
′′

ℓ,µ+µ) = 0. Then, Unshrink
outputs the value µ′ ∈ Zq such that pad′′ℓ,µ′ is the uℓ

th element in Sort(pad′′ℓ,0, . . . , pad
′′
ℓ,q−1).

For each ℓ ∈ [t], hzℓ0 = gr·zℓ by Equation (16). So, for each ℓ ∈ [t] and µ ∈ Zq, pad
′′
ℓ,µ is exactly

equal to pad′ℓ,µ. Then, since uℓ is the position of pad′
ℓ,fℓ(v

(1)
ℓ

,...,v
(τ)
ℓ

)
in Sort(pad′ℓ,0, . . . , pad

′
ℓ,q−1),

LHE.Dec outputs fℓ(v
(1)
ℓ , . . . , v

(τ)
ℓ ), as desired.

Semantic security. The semantic security of Construction C.3 follows directly from DDH. Let u ∈
Z
t
q be the all-zeros vector. In more detail, for any m = poly(λ), for any m messages v(1), . . . ,v(m) ∈
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Z
t
q, we will show that D c≈ D′, where:

D =

{
ekLHE,

ct1, . . . , ctm

∣
∣
∣
∣

skLHE, ekLHE ← LHE.Gen(1λ, 1τ )

ctj ← LHE.Enc(skLHE,v
(j)) , ∀ j ∈ [m]

}

and

D′ =
{

ekLHE,
ct1, . . . , ctm

∣
∣
∣
∣

skLHE, ekLHE ← LHE.Gen(1λ, 1τ )
ctj ← LHE.Enc(skLHE,u) , ∀ j ∈ [m]

}

.

To do so, we use a series of m hybrid arguments. In the ith of these m hybrid arguments, we
replace ciphertext cti from an encryption of v(j) to an encryption of u. That is, we define:

Di =







ekLHE,
ct1, . . . , ctm

∣
∣
∣
∣
∣
∣

skLHE, ekLHE ← LHE.Gen(1λ, 1τ )

ctj ← LHE.Enc(skLHE,v
(j)) , ∀ j ∈ {1, . . . , i}

ctj ← LHE.Enc(skLHE,u) , ∀ j ∈ {i+ 1, . . . ,m}







By construction, we have that D = Dm and D′ = D0. Now, for any i ∈ {0, . . . ,m − 1}, the
distributions Di and Di+1 differ only in the ith ciphertext. Since ekLHE consists of only a public
description of a PRF (computable from the public parameters, λ, and τ), a randomly sampled
PRF seed seed (that is independent of ct1, . . . , ctm), public bounds B and T (computable from the
public parameters, λ, and τ), and the group generator g, these two ciphertexts are computationally
indistinguishable under DDH, by the same argument as for the semantic security of El-Gamal

encryption [Bon98,DGI+19,BBDP22]. So we get that Di
c≈ Di+1, implying that D c≈ D′.

C.4 Proof of Theorem 4.1

We describe the batch-SHE scheme (defined in Appendix C.1) from sparse LPN and DDH that
proves Theorem 4.1. This scheme works by applying the optimizations from Sections 4.1 and 4.2 to
the original SHE scheme in Construction 3.2. Let (n, q, δ, k) be the sparse-LPN parameters defined
in the theorem statement and let c ∈ N be the correctness parameter. In addition to the usual
parameters (λ, τ), the scheme is parameterized by “packing parameters” tEnc = poly(λ) ∈ N and
tEval = poly(λ) ∈ N, as per the syntax in Appendix C.1.

Then, for any tA ∈ [tEnc], our scheme can produce a “packed” ciphertext that encrypts tA
values at once. Moreover, for any tB ∈ [tEval], when homomorphically evaluating tB multivariate
polynomials p1, . . . , ptB ∈ Fτ , the scheme can produce “packed” output ciphertexts encrypting all
tB polynomial evaluations at once.

The scheme proceeds as follows:

1. Key generation. Using LHE.Gen, LHE.Enc from the packed-El-Gamal encryption scheme
in Construction C.3 (with plaintext modulus q, packing parameter tEval, and correctness
parameter c) and instantiating GSWEnc as in Construction 3.2 (with parameters n, q, δ, k,
and correctness parameter c), we compute:

BatchGen(1λ, 1τ , 1tEnc , 1tEval)→ (sk, ek)

• Let skLHE, ekLHE ← LHE.Gen(1λ, 1n).

• Let s←R F
n
q . For ℓ ∈ [tEnc], let t

(ℓ) ←R F
n
q .

• For i ∈ [n], let cti,ek ← LHE.Enc(skLHE, (si, . . . , si)). (Here, per the syntax of Construc-
tion C.3, (si, . . . , si) is a vector with repeated entries of dimension tEval, the packing
parameter.)
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• For i ∈ [n], for ℓ ∈ [tEnc], let Cℓ,i,ek ← GSWEnc(s,−t(ℓ)i ).

• For ℓ ∈ [tEnc], let Cℓ,n+1,ek ← GSWEnc(s, 1).

• Output

sk := (skLHE, t
(1), . . . , t(tEnc))

ek :=
(
ekLHE, (ct1,ek, . . . , ctn,ek), {Cℓ,1,ek, . . . ,Cℓ,n+1,ek}ℓ∈[tEnc]

)

2. Encryption. Our encryption algorithm takes as input any tA ≤ tEnc values in Fq at once.

BatchEnc(sk, (µ1, . . . , µtA) ∈ F
tA
q )→ ct ∈ F

n+tA
q

• Parse t(1), . . . , t(tA) from sk.

• Sample a←R Sk,1,n,q. (That is, a is a random k-sparse vector in F
n
q .)

• For ℓ ∈ [tA], sample eℓ ← RandBernn−δ ,q.

• Compute the vector

b := a⊺ ·



t(1) t(2) · · · t(tA)



+
[
e1 e2 · · · etA

]
+
[
µ1 µ2 · · · µtA

]
∈ F

tA
q .

• Output ct :=
[
a || b

]
∈ F

n+tA
q .

3. Homomorphic evaluation. Let tB ≤ tEval be the number of polynomials to evaluate.

For each of the input ciphertexts, we proceed as follows: we decompose an input ciphertext

ct =
[
a || b1 b2 · · · bt

]
∈ F

n+t
q

into the t smaller ciphertexts ct1, . . . , ctt as follows:

for ℓ ∈ [t], ctℓ :=
[
a || bℓ

]
∈ F

n+1
q .

Then, for ℓ ∈ [t], we run the Expand algorithm from Construction 3.2 on ciphertext ctℓ, using
the key-switching key (Cℓ,1,ek, . . . ,Cℓ,n+1,ek) from ek. The output of Expand is a ciphertext

matrix in F
(n+1)×(n+1)
q that holds the value encrypted in the ℓth slot of ct.

At this point, we can use the Add and Mul algorithms from Construction 3.2 to evaluate each
polynomial p1, . . . , ptB on encrypted inputs.

At the end of this step, we hold one sparse-LPN ciphertext matrix for each of the tB
polynomials p1, . . . , ptB . For ℓ ∈ [tB], denote the last row of the ℓth ciphertext matrix as
[
u(ℓ) || v(ℓ)

]
∈ F

n
q × Fq. To compact these ciphertexts, define the following tB affine func-

tions:

for ℓ ∈ [tB], fℓ(x1, . . . , xn) := v(ℓ) −
n∑

i=1

u
(ℓ)
i · xi.

For ℓ ∈ {tB + 1, . . . , tEval}, define fℓ(x1, . . . , xn) := 0.

Finally, we call LHE.Eval(ekLHE, f1, . . . , ftEval , ct1,ek, . . . , ctn,ek) from Construction C.3. We parse
its result as (h, u1, . . . , utEval) ∈ G× F

tEval
q and output (h, u1, . . . , utB ).
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4. Decryption. Parse the ciphertext as (h, u1, . . . , utB ). Run LHE.Dec(skLHE, ·) from Construc-
tion C.3 on the given ciphertext (skipping the call to Unshrink for all but the first tB entries
of the message) and output its result in F

tB
q .

Analysis. We discuss the scheme’s security, correctness, and compactness.

Security. Security follows from the semantic security of the LHE scheme in Construction C.3
(Lemma 4.4, proved in Appendix C.3), the semantic security of the SHE scheme in Construction 3.2
(Theorem 3.1, proved in Appendix B.1), and the hardness of sparse LPN with a re-used A-matrix
(Lemma C.2, proved in Appendix C.2).

More formally, the evaluation key output by BatchGen consists of:

1. an evaluation key ekLHE for the underlying LHE scheme,

2. n “redundant” LHE encryptions of the entries of secret key vector s, and

3. for each ℓ ∈ [tEnc], (n + 1) sparse-LPN encryptions of the entries of
[
−t(ℓ) || 1

]
∈ F

n+1
q ,

under secret key s.

To prove security, we must show that, under (n, q, δ′, (k + 1)/2)-sparse LPN, for any t ∈ [tEnc]
and any m = poly(λ), the evaluation key together with m ciphertexts output by BatchEnc, on
any m messages v(1), . . . ,v(m) ∈ F

t
q, are computationally indistinguishable from the evaluation key

together with m encryptions of the all-zeros vector.
Again, security follows by a hybrid argument:

• First, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the entries of the secret-key vector s with LHE encryptions of the all-zeros vector.

• Second, by the semantic security of ciphertexts produced by GSWEnc (which in turn follows
from the KDM-security of sparse LPN, as proved in Theorem 3.1), for each ℓ ∈ [tEnc], we can
swap the sparse-LPN encryptions of the entries of

[
−t(ℓ) || 1

]
∈ F

n+1
q , under secret key s,

with sparse-LPN encryptions of the all-zeros vector under s.

• Third, by the sparse-LPN assumption with a re-used A-matrix (Lemma C.2), we can swap the
m ciphertexts output by BatchEnc, encrypting v(1), . . . ,v(m) under secret keys t(1), . . . , t(t),
with m encryptions of zero under secret keys t(1), . . . , t(t).

• Fourth, by the semantic security of ciphertexts produced by GSWEnc (which in turn follows
from the KDM-security of sparse LPN, as proved in Theorem 3.1), for each ℓ ∈ [tEnc], we
can swap the sparse-LPN encryptions of the all-zeros vector under secret key s back to the
sparse-LPN encryptions of the entries of

[
−t(ℓ) || 1

]
∈ F

n+1
q , under s.

• Fifth, by the semantic security of the underlying LHE scheme, we can swap the LHE encryp-
tions of the all-zeros vector back to LHE encryptions of the entries of secret key vector s.

Correctness. Correctness follows from the correctness of the SHE scheme in Section 3 (Theo-
rem 3.1, proved in Appendix B.1) and the correctness of the LHE scheme in Section 4.2 (Lemma 4.4,
proved in Appendix C.3).

More formally, consider any key pair (sk, ek)← BatchGen(1λ, 1τ , 1tEnc , 1tEval). Then, on any input
vector v ∈ F

t
q for any t ≤ tEnc, running BatchEnc(sk,v) and “decomposing” the resulting ciphertext
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in F
n+t
q into t ciphertexts in F

n+1
q (as described above) produces t ciphertexts that respectively

encrypt each of the scalars v1, . . . , vt ∈ Fq and that are of the same form as those in Construction 3.2.
That is, for each ℓ ∈ [t], the message vℓ is Regev-encrypted under the secret key t(ℓ), with a k-sparse
a-component and error-rate n−δ.

Then, by the proof of Construction 3.2 (given in Appendix B), passing this ciphertext to Expand

with the ℓth key-switching key produces a ciphertext matrix, as in the original SHE scheme from
Construction 3.2, encrypting the message vℓ under secret key s. This ciphertext is sampled from
a distribution that is ((k + 1)2, (k + 2) · n−δ)-good with respect to the message vℓ (Claim B.2).
At this point, as in Construction 3.2, we can perform homomorphic operations using Add and Mul

(Claims B.3 and B.4). At the end, we perform “batch compaction” on the tB resulting cipher-
texts (one for each of the tB polynomials), exactly as in Construction 3.2 instantiated with our
Construction C.3 as the underlying LHE scheme.

Again as in the proof of Construction 3.2, if k ≤
√
log τ − 1 and n ≥ τ2/δ · λc/δ, then this

encryption scheme can homomorphically evaluate functions in the class Fτ , where each of the tB
evaluations incurs a correctness error with probability λ−c. Then, the compaction step fails with
probability ǫLHE(λ), where ǫLHE(λ) is the decryption failure probability of the underlying LHE
scheme. Here, by construction, we have that ǫLHE(λ) = λ−c, which by a union bound gives the final
correctness bound.

Efficiency. When our LHE scheme is instantiated with a group with elements of bitlength λDDH,
the evaluation key consists of:

• poly(λ) bits to specify ekLHE,

• n · tEval · (tEval + 1) · λDDH bits to specify the packed-El-Gamal encryptions of each of the n
entries of the sparse-LPN secret s, and

• tEnc · (n + 1)2 · (k + 1) · log n log q bits to specify the tEnc key-switching keys, each of which

consists of (n+ 1) matrices in F
(n+1)×(n+1)
q that are (k + 1)-sparse.

In total, as the sparsity k = O(
√
log λ), q = poly(λ), n = poly(λ), and λDDH = poly(λ), this comes

out to (t2Eval + tEnc) · poly(λ) bits.
Then, each ciphertext output by BatchEnc (which encrypts a vector of plaintexts in F

tA
q for

tA ≤ tEnc) consists of a vector in F
n+tA
q , whose first n entries contain exactly k non-zero values.

Each such ciphertext can be represented in tEnc log q + k log n log q bits. So, encrypting tEnc values
in Fq requires tEnc log q + polylog(λ) bits. Finally, when homomorphically evaluating tB ∈ [tEval]
polynomials, per the analysis of our LHE scheme (Section 4.2), each ciphertext after homomorphic
evaluation consists of tB log q + λDDH bits. As a result, each such ciphertext can be represented in
tEval log q + λDDH bits.

We finally describe how to recover the statement of Theorem 4.1: when homomorphically eval-
uating t polynomials that are each m variate, on a set of tm inputs, we set the parameters tEnc := t
and tEval := t. When this is the case:

• The evaluation key has size t2 · poly(λ) bits,

• Each of m “packed” ciphertexts encrypting t inputs has size t log q + polylog(λ) bits. So,
together, all ciphertexts consist of tm log q +m · polylog(λ) bits.

• The “packed” ciphertext encrypting all t outputs has size t log q + λDDH bits.
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