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Figure 1: VIME interface showing a “what-if” scenario from a sequential ML model [15] that detects aggressive driving behaviors: 
a) a feature selection panel to select and visualize a subset of relevant features, b) a control panel to modify model output 
preferences, c) fltered feature values, d) interactive Sankey visualization showing a sequence of selected time-independent and 
time-dependent inputs and outputs, e) a range slider to zoom in and out of specifc sequence timesteps, and f) sample size 
determination panel. The “what-if” scenario shows that the model correctly predicts that drivers who stop in the middle of an 
intersection are likely aggressive drivers with past trafc violations, with a 92.68% likelihood. It also shows that the model 
wrongly predicts that drivers can decelerate from over 50 mph to a full stop within the short length of an intersection. 
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present Visual Interactive Model Explorer (VIME), an XAI toolbox 
that enables ML model engineers to explain decisions of sequential 
models in diferent “what-if” scenarios. Our evaluation with 14 ML 
experts, who investigated two existing sequential ML models using 
VIME and a baseline XAI toolbox to explore “what-if” scenarios, 
showed that VIME made it easier to identify and explain instances 
when the models made wrong decisions compared to the baseline. 
Our work informs the design of future interactive XAI mechanisms 
for evaluating sequential ML-based decision support systems. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; Visual analytics. 
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1 INTRODUCTION 
Ensuring that Machine Learning (ML) models make correct infer-
ences based on meaningful data relationships is necessary for their 
broader adoption into high-stakes decision-making scenarios (e.g., 
in healthcare [97, 134], child welfare [25, 195], environmental anal-
ysis [131], criminal justice [88], and public safety [104]). Model 
engineers who train and develop ML models are the frst in line to 
investigate their models’ limitations. For example, before deploy-
ment, they need to ensure that the models make accurate decisions 
and capture relevant knowledge from the data. Such evaluation is 
necessary for real-world deployment, where the potential for social 
harm is high [10, 85, 89, 107], in part due to the model making 
decisions on unseen data with limited human oversight [59]. 

Existing Explainable AI (XAI) [17] systems ofer explanations 
in diferent forms [122, 179] that help ML engineers evaluate their 
trained models. They can use such explanations to investigate and 
debug model limitations at diferent levels of granularity (e.g., using 
local [146], cohort or subgroup [46, 108], and global [101] explana-
tions). Yet, many XAI systems do not support ML evaluation for 
diverse data types, domains, and tasks. For example, most exist-
ing XAI systems [13, 101, 146] can provide a single explanation 
for each single-point estimate prediction from a cross-sectional 
data classifcation model. However, the complexity of sequential 
decision-making models precludes them from being reduced to any 
single explanation. Forcing such reduction may not align with the 
model engineers’ mental models [128, 177] of sequential decision-
making, which could lead to misleading evaluation [84]. 

Thus, to evaluate sequential ML models, model engineers use 
model-specifc sequential XAI tools [115, 160, 161]. However, model-
[161] and domain-specifc [15] visualizations in those tools may 
not generalize to support diverse discriminative and generative 

sequential ML algorithms. Although some XAI tools [21, 102, 156] 
tried to adapt existing feature attribution methods to time-series 
data, it remains challenging for model engineers to understand the 
long sequences of model decisions using such explanations [1]. 

Existing tools and toolboxes do not enable efective decompo-
sition of sequential model decisions. Yet, such decomposition of 
model decisions into “what-if” scenarios (i.e., “chunks of problem-
solving know-how” [69]) is essential to allow users to develop 
their mental models and efectively make sophisticated high-level 
decisions—in our case, decisions about sequential model capabil-
ities and limitations. Although existing sequential XAI tools [21, 
115, 160, 161]) can visualize sequences, they lack support for this 
kind of “chunking” and comparison between chunks that could 
help streamline sequential model evaluation. 

Here, we present Visual Interactive Model Explorer (VIME), a 
domain-, data-, and model-agnostic XAI toolbox that helps model 
engineers to investigate their sequential ML models in diferent 
“what-if” scenarios (Figure 1). The key design insight behind VIME 
is that decomposing complex sequences of ML model decisions into 
“what-if” scenarios helps users to form explanations about each 
scenario. This allows users to focus on specifc evaluation tasks at 
diferent levels of granularity (e.g., local explanations for specifc in-
puts, cohort explanations for subgroups of inputs). When combined, 
such partial explanations can aid in comprehensive evaluation of 
complex sequential ML models. The key technical contribution of 
VIME is its fexible interactions for grouping, fltering, and zooming 
into sequences that we iteratively designed and implemented on 
top of Sankey visualization (an existing approach for visualizing 
sequential decision-making [136]). 

To evaluate VIME, we conducted simplifed user evaluation [126] 
using think-aloud [78, 79] with 14 ML engineers. To test VIME 
across sequential models trained on diferent datasets from difer-
ent domains, we chose two state-of-the-art sequential ML mod-
els [11, 15] trained on pooled data (i.e., data that combines both 
cross-sectional and time-series data) from two domains: 1) pre-
dicting aggressive driving behaviors, and 2) forecasting behaviors 
of people with Multiple Sclerosis (MS). To compare and contrast 
VIME with diferent existing “what-if” scenario exploration tools, 
we selected the Google “What-If tool” (WIT) [180], a state-of-the-
art baseline toolbox. WIT combines multiple explanation tools for 
“what-if” scenario exploration into one system and is agnostic to 
both ML algorithms and deployment domains. Also, we modifed 
and improved WIT to support sequential ML evaluation by adding 
functionality that resembles an existing sequential XAI tool [21]. 

In our study, participants used VIME and WIT to reconstruct 
a fxed “what-if” scenario and later chose their preferred tool for 
independent model exploration. Our fndings showed that com-
pared to WIT, VIME made it easier for participants to create their 
own rules for decomposing long sequences of ML model decisions 
into “what-if” scenarios that they could then compare. This helped 
them identify instances when the model made wrong decisions 
(e.g., overgeneralizing to physically impossible situations, missing 
input-output relationship, spurious correlations), and to investigate 
what caused those wrong decisions (e.g., identify scenarios with 
missing or underrepresented data). Moreover, 12 of the 14 partici-
pants selected VIME for the independent exploration task; making 
VIME their preferred sequential ML model evaluation toolbox. 

https://doi.org/10.1145/3654777.3676323
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Our work contributes a system design and a high-fdelity func-
tional prototype of VIME. The key design decision that diferen-
tiates VIME from existing XAI work are interactions that allow 
users to set their own rules for decomposing long sequences of ML 
model decisions into “what-if” scenarios that they can then com-
pare. Although our selected baseline, the Google WIT [180], enables 
users to defne and compare their own chunks it does not neces-
sarily mean that such chunks can support sequence comparison. 
Thus, our work highlights the importance of interactions that are 
specifcally designed for efectively comparing sequences [106] to 
support sequential ML model evaluation. The insights gained from 
our iterative prototyping and evaluation of VIME will inform the 
development of future interactive XAI mechanisms for evaluating 
sequential decision support systems. 

2 RELATED WORK 
Here, we start with a review of tools that support the ML engineer-
ing pipeline and then narrow down to specifc design opportuni-
ties for improving existing XAI methods to assist ML engineers 
in identifying model capabilities and limitations. We distinguish 
methods and tools for data pre-processing, model development, and 
evaluation. We focus on eXplainable AI (XAI) systems that aid in 
model evaluation by explaining ML decisions at diferent levels of 
granularity, with a specifc focus on tools that support cohort (i.e., 
subgroup) analysis using “what-if” scenarios for sequential models. 

2.1 Data Exploration and Preprocessing 
Data availability and quality signifcantly impact the performance 
of trained ML models [31, 74, 143]. Hence, before model train-
ing, users need to ensure that the data they use are properly sam-
pled [114], correctly labeled [66], not missing relevant informa-
tion [129], and free from harmful historical biases [10]. Data ex-
ploration tools [136, 137] help users analyze their data and gain 
insights about features and labeled outcomes [18, 19]. Users can 
investigate cross-sectional data [112] at a given time, time-series 
data [70, 123, 137, 138] collected over time, or pooled data [61] 
combining both. However, such tools do not immediately apply to 
ML model evaluation and are, thus, beyond the scope of this paper. 

2.2 Interactive Machine Learning (IML) 
Interactive Machine Learning (IML) [50] aids users with train-
ing [43, 45, 49, 110, 121], optimizing [9, 52, 68, 94, 135], and se-
lecting [116, 185] their ML models during the model development 
stage. Such tools adopt the Human-in-the-loop (HITL) paradigm [7, 
53, 193] to elicit and incorporate user feedback for iterative model 
adjustments and improvements. Existing IML tools [50, 65] primar-
ily rely on quantitative performance metrics and error analysis to 
help users evaluate their model predictions against ground truth 
labels. However, the efectiveness of such analysis relies heavily 
on the quality of existing training data [41, 141] without providing 
explanations that aid users in understanding ML model decisions. 

2.3 Explainable AI (XAI) Tools and Toolboxes 
Existing explanation tools help users identify ML model capabilities 
and limitations [62]. Although some models are inherently inter-
pretable to ML engineers [29, 54, 145], most “black-box” models 

require post-hoc explanations after it is trained [22, 46, 95, 176]. 
Existing XAI tools ofer explanations in diferent forms (e.g., feature 
attributions [17, 64, 101, 146, 179], counterfactuals [81, 122]) and at 
diferent levels of granularity (e.g., local [146] for individual inputs 
and outputs, cohort or subgroup [30, 34, 46, 105, 106, 108] for sub-
sets of related inputs and corresponding outputs, and global [101] 
across all possible inputs and outputs). To ofer multi-faceted ex-
planations, XAI toolboxes [20, 80, 92, 180, 190] combine multiple 
explanation tools in a single system. Additionally, existing visual an-
alytics systems [6, 63, 189, 192] help identify model limitations [8] 
by enabling interactive visual exploration [119], allowing users to 
intuitively understand and interrogate the models’ decisions. 

2.4 Explaining Sequential ML Models 
Most existing XAI tools [101, 146] and toolboxes [20] focus on eval-
uating discriminative classifcation models for single-point estimate 
predictions on cross-sectional data. However, they may not readily 
support sequential ML evaluation, which requires assessing model 
predictions at each timestep (including at the end of the sequence). 
Furthermore, the complexity of sequential ML decisions makes it 
challenging to reduce them into a single explanation by adapting 
existing feature attribution methods to support time-series data [21, 
102, 156]. Attempts at such forced reduction may not align with the 
users’ mental models [128, 177] of sequential decision-making and 
lead to misleading evaluation [84, 103, 158]. Although data- [191] 
and model-specifc XAI tools [12, 38, 111, 115, 160, 161, 178] help 
evaluate certain sequential models’ internal architectures, they do 
not generalize across diferent complex sequential models. 

2.5 “What-if” Exploration of ML Models 
Existing “what-if” exploration methods (e.g., if-then rules [40, 194], 
interpretable decision trees [77], and various “what-if” visualiza-
tions [32, 130, 180]) support complex ML evaluation by focusing 
on specifc scenarios (e.g., individual inputs [92] or subgroup of 
inputs [181, 196] and their corresponding outputs). However, it 
is challenging for users to efectively decompose and chunk long 
sequences of model decisions with many branches into simple 
and manageable “what-if” scenarios using those tools. Support-
ing scenario-based “chunking” [69] and comparing those chunks 
could help users streamline sequential model evaluation. Also, ex-
isting “what-if” tools that evaluate the quality of time-series data 
samples [39, 58, 190] and predictions from sequential ML mod-
els [5, 38, 173] focus on explaining specifc sequential models, often 
deployed to specifc domains. As such, they may not generalize 
across diferent data types, ML models, and deployment domains. 

3 VISUAL INTERACTIVE MODEL EXPLORER 
Here, we describe the design of the Visual Interactive Model Ex-
plorer (VIME) that enables users to investigate their ML models 
interactively. We conducted a review of existing literature to un-
derstand the current context of the use of XAI tools and toolboxes 
and to distill the needs of our target users—ML model engineers. 
We designed VIME to address ML model engineers’ needs because 
they are the frst in line to develop and evaluate ML models. They 
have task expertise in ML models and are often highly trained com-
puter scientists with graphical user interface (GUI) and command 
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expertise [60] with existing ML and data science tools. We frst 
describe the specifc needs of our target users when investigating 
ML models and ground our design goals (DG) within those user 
needs. We then describe our design process, highlighting specifc 
design choices and trade-ofs that we considered. Our design cen-
ters on “what-if” scenario-based interactive model exploration to 
break down complex explanations into smaller parts and simplify 
the evaluation of complex sequential ML models. 

3.1 Model Engineer Needs & VIME Design Goals 
To understand model engineers’ needs and challenges, we reviewed 
existing literature on interactive ML debugging [35, 43, 49, 124, 
133, 166], visual analytics [6, 63, 189], XAI [3, 36, 51, 73, 148, 172], 
and Interpretability [44]. We also incorporated insights about the 
current context of use from existing work [26, 27, 42, 71, 99, 140, 168, 
180, 187, 188] that included formative studies and semi-structured 
interviews with ML engineers as part of their design. We compiled 
a comprehensive list of user needs and validated them through 
discussions with ML and AI researchers (authors and others). We 
then described our design goals to address each need. 

Although conducting another formative study with model en-
gineers could have confrmed existing fndings about the current 
context of use from prior work, such a formative study was not 
necessary to complement an already comprehensive list of user 
needs that the existing work has identifed. We also note that de-
sign trade-ofs prevent any single design from fully meeting every 
design goal and addressing every user need. 

3.1.1 Supporting Diferent Stages of Model Development and Eval-
uation. Model engineers need to explore their models: 1) during 
model training and development and 2) after the model has been 
trained. Although their objectives may difer at these stages, their 
common goal is identifying ML errors and limitations. During devel-
opment, they use such insights to train [43, 49], optimize [52], and 
select [185] the fnal ML algorithm. After training and before deploy-
ment, they need to understand and explain model decisions [28, 166]. 
Our key design goal is to facilitate post-hoc evaluation of existing 
trained models. Although this goal could be relevant to comparing 
candidate ML models during training, how these insights modify 
the model is beyond the scope of our work. However, users may 
need to compare insights about the trained model against data, 
making access to the training and testing data relevant. 

3.1.2 Supporting Model Evaluation Across Diverse Domains. Model 
engineers often train models for deployment in diverse domains to 
support high-stake decision-making. Each domain possesses dis-
tinct phenomena that they need to ensure that their ML model has 
captured [63, 73, 165]. However, developing separate ML evaluation 
tools for every domain with tailored visualizations and interactions 
is resource-intensive [186]. Furthermore, some domains lack readily 
available tools. Thus, our design goal is to create a domain-agnostic 
tool that supports users in ML model evaluation across multiple 
domains, where the models are or will be deployed. 

3.1.3 Supporting Model Evaluation Across Diverse Data Types. Model 
engineers train their models on diferent data types [61]: 1) cross-
sectional, 2) time-series, or 3) pooled data that combines both. To 
evaluate classifcation models trained on cross-sectional data, they 

need to investigate models’ predictions for each data point or sam-
ple [63, 189]. Evaluation of sequential ML models trained on time-
series data requires them to understand how feature values change 
at each time step and infuence model predictions [148]. Pooled data 
requires both. They also need to distinguish time-independent and 
time-dependent features and outcomes to facilitate efcient analy-
sis of such models. Thus, our design goal is to support evaluations 
of ML models trained on all three data types. 

3.1.4 Supporting Diferent Model Types and Evaluation Tasks. Model 
engineers use diferent ML models (e.g., discriminative [96], gener-
ative [75]) to perform classifcation [117] and forecasting [11, 132] 
tasks. They need to debug why a discriminative model predicts a 
specifc output given the input features [73, 93, 159]. For generative 
models [149, 163], they need to evaluate how and why the model 
generates new data. Also, while evaluating sequential models, they 
need to consider trends and predictions at diferent time steps. Thus, 
our design goal is to support ML model evaluation across model 
types and the outcome estimation tasks those models perform. 

3.1.5 Supporting Model Evaluation at Diferent Levels of Granularity. 
To understand the decision-making process of black-box ML mod-
els [3] (i.e., models that are not inherently interpretable [29]), users 
seek explanations at diferent levels of granularity: 1) global [101], 
2) cohort (i.e., subgroup) [108], and 3) local [146]. Global explana-
tions provide a macroscopic overview of model decisions across all 
possible inputs and outputs. Cohort explanations help evaluate the 
model in specifc subgroups, highlighting limitations that may not 
be apparent globally. Also, local explanations ofer detailed insights 
into individual predictions. Thus, our design goal is to support ML 
model evaluation at all three levels of granularity. 

3.1.6 Supporting Explanations to Match User’s Mental Model. Ex-
isting research [27, 83] showed that seeking explanations about 
ML model decisions is a sensemaking process. Model explanations 
that are aligned with the mental models of their users [55, 128, 177] 
enable them to form comprehensive, meaningful, and accurate ex-
planations about their models [118, 139, 174, 175]. Otherwise, model 
explanations can be misleading [84, 86, 113], which could result 
in inaccurate or inconsistent model evaluation. Thus, our design 
goal is to provide model engineers with interactive tools that al-
low them to forage accompanying evidence and justifcations to 
validate model decisions. We also want them to form and leverage 
explanations that enhance their understanding of the model. 

3.1.7 Supporting Multifaceted Explanations. During evaluation, 
model engineers seek answers to various questions about their 
ML models [99] to gain insights that may help manage model 
complexity [153, 187]. This led to the development of XAI tool-
boxes [20, 92, 180] that combine multiple explanation tools in a 
comprehensive system, each addressing a distinct question about 
the model. Thus, our design goal is to interconnect explanation tools 
within a toolbox, allowing users to interactively choose and apply 
the tools for breaking down the evaluation into specifc model-
related queries rather than ofering these tools as independent and 
isolated explanation sessions. Also, our design goal is to provide co-
herent and multifaceted partial explanations that, when collectively 
used, can simplify the evaluation of complex sequential models. 
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3.2 Low-fdelity Prototypes & Design Critiques 
We used an iterative approach to design and evaluate VIME. One of 
our early key design insights was that allowing users to create and 
explore relevant “what-if” scenarios provides solutions to many de-
sign goals outlined in section 3.1. In particular, this approach could 
simplify the evaluation of complex sequential models by allowing 
users to explore their models from diferent perspectives [57], in-
cluding diferent evaluation tasks at diferent levels of granularity. 
This could help users develop and update their mental models by 
synthesizing their scenario-specifc insights and hypothesizing dif-
ferent explanations [4, 69, 106]. Thus, we focused on exploring this 
potentially fruitful design direction from the beginning. 

We explored diferent ways to present the “what-if” scenarios 
through low-fdelity prototypes (see Appendix) of state-of-the-art 
static visualizations: 1) probability plots [183], 2) wafe plots [87], 
3) feature attribution plots [101, 146], and 4) Sankey diagrams [147]. 
We illustrated these initial prototypes on two existing sequential 
models: 1) aggressive driving [15], and 2) Multiple Sclerosis (MS) 
[11]. To investigate these prototypes against our design goals, we 
performed design critiques that included the authors of this paper, 
other Human-Computer Interaction (HCI) and AI researchers, and 
an MS domain expert. The frst author discussed the design goals 
with the team for further validation. Then, the team used these 
four prototypes to explore diferent “what-if scenarios” from the 
MS and driving model and recorded the scores and feedback. Our 
evaluation criteria were usability and how well the design addresses 
the user needs and design goals that we highlighted. 

We selected the interactive Sankey visualization as our fnal 
design since it scored the highest in our design critique and emerged 
as the most promising feature of our designs. The wafe plots got 
the second-highest score. We found Sankey diagrams helpful in 
intuitively visualizing and understanding complex relationships 
and feature dependencies to understand the sequential ML model’s 
behavior over time and in diferent “what-if” scenarios. This aided 
us in identifying trends and patterns that might be missed with 
simpler visualizations. Thus, Sankey diagrams not only fulflled our 
need for clarity and comprehensiveness in feature representation 
but also signifcantly enhanced the interpretability of our time-
series analysis, directly aligning with our design goals. 

Feedback from our design critiques highlighted that static proba-
bilistic visualizations can be challenging to understand [125] when 
assessing a series of decisions from complex sequential ML mod-
els with numerous feature value combinations, potentially leading 
to erroneous decision-making [37, 100, 142]. To address this chal-
lenge, we improved our initial low-fdelity Sankey prototypes with 
interactive controls based on the feedback and developed a high-
fdelity functional prototype. To reinforce our design choice and 
validate our prototype’s usability before the main user evaluation, 
we conducted a pilot study with four ML and HCI researchers. They 
explored the Sankey-based high-fdelity prototype and confrmed 
the efectiveness of Sankey diagrams in revealing complex trends 
in sequential model behavior, particularly in “what-if” scenarios. 
Such a pilot study also helped us refne our fnal designs and solve 
usability issues before our main user evaluation. 

3.3 High-fdelity Functional Prototype 
Here, we provide a detailed system description of our fnal VIME 
design and the specifc design choices we have made to address 
model engineers’ needs. To illustrate VIME, we use a running ex-
ample of a hypothetical ML model engineer, named Samira, who 
wants to explore and evaluate an existing generative sequential ML 
model [14, 15] trained on existing time-series data [72] that can: 1) 
classify (i.e., discriminative predictions) if an instance of driving 
through an intersection is aggressive or not, and 2) generate new 
driving instances (e.g., to show aggressive drivers alternative, non-
aggressive ways of driving). Such exploration involves interactively 
investigating various “what-if” scenarios to provide evidence and 
justifcations (i.e., explanations) for why a model made a particular 
decision. Since that is a large sequential ML model, it would be 
challenging to evaluate it by reducing it to any single explanation. 

Instead, VIME allows Samira to simplify model evaluation by 
breaking it into smaller evaluation tasks and focusing separately 
on each simple and relevant “what-if” scenario. We describe how 
Samira would start her exploration of model decisions by creating 
a simple scenario indicative of aggressive driving behavior that she 
is familiar with (Fig. 1). After completing this task, Samira would 
create and explore other similarly-sized scenarios to make sense of 
the large model by combining insights from each of those scenarios. 
We describe VIME features in order that Samira would use them to 
create her frst “what-if” scenario. 

3.3.1 Internal Data and ML Model Representation. VIME maintains 
an internal representation of model M trained on data D to support 
the evaluation of diferent data and model types. M is a tuple: 

M = (D, S, � (�0), � (� ′ | �)) (1) 
Here, S represents a set of states, where each state � ∈ S uniquely 

identifes possible combinations of time-independent and time-
dependent feature values, represented by the feature vector FS . 
� (�0) represents the probability that a state �0 ∈ S initiates a deci-
sion sequence, and � (� ′ | �) represents the probability of the model 
transitioning from state � into the next state � ′ in the decision se-
quence. VIME can then sample sequences of model decisions using 
the probability functions � (�0) and � (� ′ | �) or display sequences 
from D independent of the model and data types. 

For probabilistic sequential ML models like Markov Decision Pro-
cess (MDP) [144] with time-series data, VIME directly constructs M 
from the model parameters. When data includes time-independent 
features, � (� ′ | �) becomes deterministic. In generative models, 
VIME uses � (�0) and � (� ′ | �) for diferent states in S to generate 
new samples. VIME estimates S from the union of all possible input 
and output states, with each state terminating the quasi-sequence 
for discriminative models with cross-sectional data. VIME then 
estimates � (�0) from the training data and � (� ′ | �) from the quasi-
probabilities of model predictions given inputs. For discriminative 
models with time-series data, the representation remains similar, 
but not every state terminates the sequence. 

VIME primarily samples outputs from live models, with an option 
to load model outputs from a CSV fle when the live model is 
not available. In our illustration, Samira has access to an existing 
live model [15]. She can then categorize features based on time 
dependency and choose the order of feature values for visualization. 
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(a) (b)

Time-independent Time-dependent Outcome
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Figure 2: VIME’s a) feature selection panel to select a subset of relevant model features, and b) interactive Sankey visualization 
showing a sequence of decision steps for the time-independent, time-dependent, and outcome features in order of selection. 

3.3.2 Feature Selection Panel. It is difcult to visualize all possible 
inputs and outputs from a large sequential model together at the 
same time. Therefore, VIME’s “feature selection panel” (Fig. 2a) cate-
gorizes features into three types: 1) Time-independent Features with 
deterministic transitions and consistent values, 2) Time-dependent 
Features with stochastic transitions in values that vary over time, 
and 3) Outcome Feature(s), showing model predicted outcome(s) 
given one or more input features, with “outcome feature time la-
bel(s)” representing timestep(s) of the outcome feature. 

To explore the large driving model, Samira starts exploration 
with a simple scenario. She wants to observe the “Maneuvers” (e.g., 
straight, left turn, and right turn) of how people are driving through 
an intersection with diferent “Trafc Signs” (e.g., stop, stop op-
posite, all stop, and trafc signal). Also, she is interested in how 
fast people are driving (i.e., “Current Speed” at four intersection 
positions) and whether speeding behaviors infuence the model’s 
prediction of aggressive and non-aggressive driving behavior. Thus, 
she selects “Existing Trafc Violations” as the outcome feature. 

3.3.3 Interactive Sequence Visualizations. VIME leverages Sankey 
diagrams [147, 150] to create two distinct interactive sequence 
visualizations for displaying data and model samples for the selected 
time-independent, time-dependent, and outcome features (Fig. 2b). 
Users can intuitively visualize the transitions over time and complex 
input-output relationships to understand the dynamic nature of 
sequential ML models. This is particularly helpful for analyzing 
the infuence of time-dependent features on model predictions at 
diferent timesteps, facilitating time-series feature evaluation. In 
these diagrams, each rectangular node corresponds to a feature 
value at a specifc timestep, and edges represent the proportion of 
behavior instances between source and target nodes. 

From the model tab visualization (Fig. 2b), Samira observed that 
drivers more frequently continued straight at intersections than 
turning, especially at trafc signals or stop-opposite signs indicating 
right-of-way. She speculated this might be because the training data 
had more examples of such “Maneuver” and “Trafc sign” values. 

3.3.4 Range Slider to Zoom into Specific Timestep of the Sequence. 
It is challenging to evaluate long sequences of model decisions for 
all possible timesteps, which may complicate the visualization. To 
streamline the visualization, VIME ofers a “range slider” to zoom 
in [154] and visualize model decisions at a specifc timestep range. 
Users can drag the range slider in both directions to break down 
the evaluation of a long sequence and simplify their exploration. 

Samira is familiar with a scenario in which aggressive drivers are 
likely to stop in the middle of the intersection and block it before 
exiting it. She wants to check whether the model captured that 
“speeding” while entering the intersection leads drivers to suddenly 
stop before they exit. Thus, she uses the range slider to zoom into 
car speeds from “entering” to “exiting” the intersection (Fig. 3). 

3.3.5 Interactive Filtering of Feature Values. VIME provides “inter-
active fltering” of feature values to query the model with domain-
relevant “what-if” scenarios. This helps users evaluate specifc parts 
of a sequence, such as local and cohort instances, where diferent 
features take on specifc values. Users need to click on a Sankey 
node to highlight the sequences with the chosen feature value, while 
a shift+click discards the value from the visualization. The selected 
feature values for the flter appear in the “flter values” menu, and 
VIME recalculates the probability distributions for the remaining 
feature values to ensure consistent explanations. Model engineers 
can then evaluate model outcomes to ensure correctness and their 
ability to capture meaningful data relations in these scenarios. 
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Figure 3: A range slider for zooming in and out of specifc sequence timesteps showing: a) before and b) after zooming in to 
visualize how fast drivers were driving while entering and exiting the intersection. 
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Figure 4: Interactive fltering of feature values to create a “what-if” scenario when drivers went straight through trafc signals: 
a) before fltering, b) after fltering “Maneuver” is “Straight”, and c) after further fltering “Trafc sign” is “Trafc signals”. 

Samira hypothesizes that aggressive drivers going through an they are turning left or right. Therefore, she flters instances with 
intersection when the trafc signal light turns yellow (i.e., “running straight maneuvers (Fig. 4a). Also, she wants to concentrate on in-
a yellow light”) may be forced to stop in the intersection, blocking tersections with trafc signals, so she flters only such intersections 
it before exiting the intersection. Samira wants to identify specifc (Fig. 4b). The resulting visualization (Fig. 4c) shows only sequences 
instances where drivers go straight through the intersection be- of driving behaviors where the driver is going straight through 
cause it is common for drivers to stop at the intersection when intersections with trafc lights. 
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Figure 5: Grouping feature values to reduce visualization complexity and compare behavior instances (e.g., drivers who “stopped” 
and “did not stop” at the exiting intersection): a) before and b) after clustering current speed values at the exiting intersection. 

3.3.6 Group Feature Values. Model engineers may need to group 
multiple feature values with similar characteristics to reduce visual-
ization complexity or create “what-if” scenarios. VIME enables the 
user to cluster multiple feature values using the “group/ungroup fea-
ture values” (see Appendix). Also, VIME recalculates the probability 
distribution for grouped nodes to ensure explanation consistency. 

Samira wants to compare behavior instances where the cars 
stopped vs. did not stop while exiting the intersection. Thus, she 
uses the “group/ungroup feature value” interaction to create a clus-
ter of all current speed values when the drivers are exiting the 
intersection and names the cluster “Did not stop” (Fig. 5). 

3.3.7 Tracking Feature. Users can select a “tracking feature” to un-
derstand its relations with selected input features and the outcome. 
For time-dependent features, they need to specify the time step 
using the “tracking feature time label”. The tracking feature maps 
its values to the edges of the Sankey diagram based on the joint 
probability distribution of the tracking feature and the outcome 
feature given the time-independent and time-dependent features. 
It then sets the color based on each unique tracking feature value. 
Contrasting color edges represent the fow of how the selected 
tracking feature values change in relation to other feature nodes 
and infuence model decisions at each timestep. 

Samira selects the current speed at exiting the intersection as 
the tracking feature (Fig. 6). VIME then updates the visualization 
by coloring the edges based on selected tracking feature “exiting 
current speed” values (e.g., stopped vs. did not stop) and shows the 
distribution with other features throughout the Sankey graph. 

3.3.8 Selection of Distinguishable Colors. VIME allows users to 
select colors for feature value nodes and edges in the Sankey dia-
gram using the “Recolor” button. Users can assign color palettes 
and schemes from “Color Brewer” [24, 67] based on the nature 
of the feature (e.g., sequential, diverging, or qualitative) and the 
number of feature values to be visually distinguishable [67, 157]. If 
a feature exceeds the palette’s color limit, VIME alerts the user and 
suggests feature value grouping to prevent color reuse and reduce 
visual complexity in distinguishing features [67, 157]. Samira uses 

visually distinguishable colors that are colorblind safe to visualize 
feature value nodes and edges efciently. 

3.3.9 Hover on Nodes and Edges for Details on Demand. Ofering 
details only when necessary [154] prevents overwhelming model 
engineers and helps maintain a clear and uncluttered visual space 
during interactive ML model exploration. The “hover on nodes 
and edges” functionality enables access to details during model 
evaluation as required. Hovering over nodes reveals the probability 
distribution for that feature value, while hovering over edges dis-
plays the distribution between adjacent feature values (i.e., source 
and target nodes), allowing users to examine their relationships. 

To investigate the likelihood of drivers stopping before exiting 
the intersection, Samira hovers over “stopped” node (Fig. 7a), which 
shows a 5.1% chance that drivers will stop at “exiting intersection” 
according to the model. However, hovering over the edge (Fig. 7b), 
she observes that there is a 92.68% chance that such instances are 
coming from aggressive drivers with past trafc violations. 

3.3.10 Comparison Between Data and Model. VIME displays Sankey 
visualizations for the data and the trained model in separate tabs. 
Any user action, such as zooming into a timestep or fltering feature 
values in one tab automatically refects in the other. This synchro-
nization ensures consistent explanations and lets users compare 
model-driven behaviors with real-world data scenarios seamlessly. 

While evaluating the model, Samira spots an anomaly: the se-
quential model predicts a 2.9% likelihood that cars decelerate from 
over 50 mph to a full stop within 2 seconds, which is physically im-
possible (Fig. 8b). She then flters sequences where cars stopped at 
the exiting intersection and switches to the data tab, which displays 
that this scenario is underrepresented in the data (Fig. 8a). 

3.3.11 Live Sampling and Sample Size Determination. Limited sam-
ple sizes in the visualization can restrict the model engineers from 
drawing meaningful conclusions about model predictions. VIME 
provides a “sample size determination panel”, displaying quanti-
tative summary statistics, such as the total sample size, fltered 
sample size, confdence interval (1 − �), and absolute error (�) for 
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Figure 6: Tracking feature sets the edge colors and displays the probability distributions in relation to other feature values: 
a) before and b) after applying the “Current speed” before exiting the intersection as a tracking feature. 
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Figure 7: Hovering on nodes and edges displays detailed information; in this scenario, the likelihood of: a) drivers stopping at 
the exiting intersection, and b) aggressive driving instances (i.e., drivers had trafc violations) when they stop at exiting. 

data and model samples (Fig. 8c). We estimated � under fxed con-
fdence 1 − � = 80% per. This method considers the total feature 
value combinations and available fltered samples to estimate the 
absolute error. If the error exceeds the default acceptable threshold 
(� < 0.05 under 1 −� = 80%) [91], VIME alerts users with a “caution 
message”, guiding them to interpret model outcomes carefully. 

The “add model samples” button (Fig. 8c) enables live sampling 
from the model M using the probability distributions in Equation 1. 
For each sequence, our algorithm frst samples an initial state �0 
from the distribution � (�0). We then sample the next state �� in the 
sequence using the transition probabilities � (�� |�� −1). This contin-
ues until we encounter an end state that terminates the sequence. 
If only CSV fles are included, this button remains disabled. 

Samira notices a “caution message” (Fig. 8a), indicating that in-
stances of stopping at intersections are underrepresented in the 
data with just 15 samples (Fig. 8c), where the � exceeds the accept-
able threshold of 0.05. She concludes that the model (Fig. 8b) may 
overgeneralize to unrealistic speed transitions due to missing data. 
Samira concludes that the model could beneft from introducing 
knowledge about the physics of the vehicle movement. 

After completing this task, Samira can now explore other rel-
evant intersection features (e.g., intersection layout, speed limit) 
related to the current “what-if” scenario or explore new similarly-
sized scenarios of her interest (e.g., accelerating or decelerating 
rapidly at stop signs). She can then combine insights from each of 
these scenarios to make sense of the large model across scenarios. 

3.3.12 Domain-agnostic Visualizations and Interactions. Model en-
gineers create ML models trained using various algorithms with 
data from diverse domains. VIME visualizations and interactions 
are model- and domain-agnostic. For example, just as Samira used 
VIME to explore the driving model for classifying aggressive driv-
ing, she can use it to investigate another sequential ML model [11] 
that forecasts the physical functioning of people with MS. 

To evaluate theMS model, Samira uses VIME to create a “what-if” 
scenario where people with MS start their day with high fatigue, 
suspecting it correlates with low functioning. She selects age as 
time-independent, fatigue as time-dependent, and end-of-day (EOD) 
lower extremity functioning (LEF) as the outcome. She then zooms 
into the wake and morning time intervals on the range slider and 
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Figure 8: What-if scenario from the driving model [15], where drivers stopped just before exiting the intersection: a) data 
visualization tab, b) model visualization tab, and c) sample size determination panel. This scenario is under-represented in the 
data, causing the model to over-generalize to physically impossible situations (e.g., entering the intersection at 50 mph and 
decelerating to a full stop before exiting the intersection). 
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Figure 9: What-if scenario from the MS model [11], where people with MS start their day with high fatigue. a) Feature selection 
panel, b) data visualization tab, c) model visualization tab, and d) sample size determination panel. The model has generalized 
to situations that are missing in the data (e.g., recovery towards high end-of-day (EOD) Lower Extremity Functioning (LEF)). 

flters for high fatigue instances. Samira notices that this “what-if” 
scenario is underrepresented in the data, with just 15 records, and 
shows only “medium” or “low” EOD LEF (Fig. 9a). However, the 
model correctly generalized to unseen data to forecast “high” EOD 
LEF for people who are less fatigable [155]—people with MS that 
can continue to perform physical activity despite feeling physical 
fatigue (Fig. 9b). Thus, Samira concludes that although overgen-
eralization can lead to incorrect outputs from the model, correct 
generalization can also yield accurate predictions from the model. 

4 USER EVALUATION 
We conducted a simplifed user evaluation [126] with 14 ML en-
gineers using the think-aloud method [78, 79] to assess VIME. 
To scope our evaluation, we focused on investigating trained ML 
models before their deployment for real-world sequential decision-
making. Thus, we selected two of-the-shelf sequential ML mod-
els [11, 15] trained on existing datasets [72, 90] containing pooled 
data from two domains. Our main goal was to compare VIME with 

diferent existing tools for “what-if” scenario exploration. Thus, we 
used Google What-If Tool (WIT) [180], which combines state-of-
the-art “what-if” scenario exploration tools into one system. To 
facilitate sequential ML evaluation, we modifed WIT by loading 
it with data and predictions for each timestep and adding features 
like timestep-specifc Shapley values (similar to TimeSHAP [21]). 

4.1 Datasets and Models 
We chose two existing sequential ML models (Table 1) from two 
domains to: 1) classify aggressive driving behaviors [15], and 2) 
forecast end-of-day physical functioning of people with Multiple 
Sclerosis (MS) [11]. Both models use a Markov Decision Process 
(MDP) for sequential decision making, along with diferent ML 
algorithms to estimate initial state probabilities � (�0) and transi-
tion probabilities � (� ′ |�, �), and an Inverse Reinforcement Learning 
(IRL) algorithm to estimate action probabilities � (� |�). Those un-
derlying probability distributions map onto VIME’s internal model 
representation, but without loss of generality (Section 3.3.1). 
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Table 1: Comparison between MS and Driving sequential ML models and datasets. 

Comparison factors MS dataset [90] and model [11] Driving dataset [72] and model [15] 
693 behavior sequences of 107 people with 23,988 behavior sequences of 26 licensed drivers as they daily drove Total sequences in dataset clinically-identifed Multiple Sclerosis (MS) through intersections of a mid-sized city in North America 

Type of data Pooled data (both cross-sectional and time-series) Pooled data (both cross-sectional and time-series) 
Type of model Generative sequential model Generative sequential model 
Type of evaluation task Forecasting end-of-day (EOD) functioning of people with MS Classify aggressive driving instances 
Type of ML algorithm Bayesian Network with Inverse Reinforcement Learning Bayesian Network with Inverse Reinforcement Learning 
Each sequence length Five daytime intervals Four positions in the intersection 
and timestep (wake, morning, afternoon, evening, and bed) (2s before entering, entering, exiting, and 2s after exiting) 

Self-reported levels of (low, medium, high) EOD: Ground truth(s) and Drivers had past records of existing trafc violation 1. Lower extremity functioning (LEF) model outcome (Yes, No) 2. Upper extremity functioning (UEF) 

1. Timestep: daytime intervals 1. Timestep: car position in the intersection 
2. Time-independent features: 2. Time-independent features: 

2.1. Demographics: Gender, Age 2.1. Environment: Intersection layout, Trafc signs, Maximum speed limit, Rush hour 
State features 2.2. Health condition: MS subtype, Mobility aids 2.2. Destination goal: Maneuver 

3. Time-dependent features: 2.3. Driving record: Existing trafc violations 
3.1. Symptoms (self-reported): Pain, Fatigue 3. Time-dependent feature: 
3.2. End-of-day functioning (survey): EOD LEF, UEF 3.1. Vehicle current state: Current speed 

Time-dependent features: Time-dependent feature: Action features 1. Activity bouts (activity intensity), Pedal (order of pressing gas or/and break, such as, breaking soft, throttle soft, braking hard) 2. Activity pace (slowing down in between activities) 

Model’s outcome 1. ROC AUC for LEF forecast: 0.78 ≈ 85% accuracy in classifying aggressive driving instances estimation performance 2. ROC AUC for UEF forecast: 0.85 

Table 2: User study participants’ demographics and expertise who evaluated MS or driving data and model. 

Race/ Research Domain Taken ML Implemented/used Used XAI 
Gender Age Occupation Research area Ethnicity experience knowledge class before ML models systems 

Computer science, 
PA01 Woman 22-25 PhD student Asian 3+ years No Yes Yes YesML/AI     

Computer science, 
PA02 Man 26-30 PhD student Asian Data science, 4+ years No Yes Yes Yes 

ML/AI 
Computer science, 

PA03 Man 31-35 PhD student Asian 5 years No Y YesData science    es  Yes   
Computer science, 

PA04 Woman 22-25 Masters student Asian 2+ years Yes YesHCI  No  No  
PA05 Woman 22-25 Masters student Asian ML, HCI 2+ years No Yes Yes Yes 

Computer science, 
PA06 Man 26-30 PhD student White 6 years No Yes Yes YesHCI, ML/AI      

Computer science, 
PA07 Woman 22-25 PhD student White 2+ years No Yes Yes YML/AI  es  

Computer science, 
PA08 Man 22-25 Masters student Asian 1+ years No Yes Yes YesML/AI   
PA09 Woman 22-25 PhD student Asian Data science 3+ years No Yes Yes Yes 

PA10 Woman 26-30 Masters student Asian ML, HCI 2 years No Yes Yes Yes 
Computer science, PA11 Man 22-25 Masters student White 2+ years No Yes Yes YesML/AI   
Computer science, 

PA12 Woman 22-25 Masters student Asian 2 years No Yes Yes NoML/AI 
Computer science, 

PA13 Man 22-25 Masters student White 2 years No Yes Yes YesData   science 
Data science, PA14 Man 18-21 Masters student White 3 years No Yes Yes NoML/AI 

4.2 Choice of Baseline Toolbox for Evaluation 
Existing interactive visualizations (e.g., wafe [87], Sankey [147], 
probability plots [183]) and explanation tools (e.g., partial depen-
dence plots (PDP) [23], counterfactuals [171], Shapley values [21]) 
support “what-if” exploration in diferent forms. We selected the 
Google What-If Tool (WIT) [180] because this toolbox combines 
most of those explanation tools for “what-if” exploration at diferent 
levels of granularity. For example, WIT includes Facet Dive [130] 
tool, which displays model inputs and outputs in wafe charts 
for exploring local and subgroup-level “what-if” scenarios, similar 
to visualizations that we explored in Section 3.2. WIT users can 
hypothesize and validate various explanations for the efects of fea-
tures on model outcomes by consulting various summary statistics, 
identifying counterfactuals [171], and visualizing PDP [23]. 

Existing surveys [82, 98] and user studies demonstrated the 
applicability of WIT in evaluating ML models trained on cross-
sectional [109, 181] and time-series [2, 56, 152] data. Following 
those studies, we loaded the WIT tool with data and predictions (us-
ing the WIT “custom prediction function” API) for each timestep of 
the sequence to support both time-independent and time-dependent 
inputs and outputs. Also, we further modifed and improved WIT 
(using the WIT “feature attribution” API) by adding support for 
timestep-specifc Shapley values, similar to TimeSHAP [21]. 

Although other XAI tools [21, 102, 156] may support some as-
pects of sequential model exploration, they lack many of WIT’s 
features or its broad applicability across diferent domains, data 
types, and models. For example, Patient2vec [191] is a domain- and 
data-agnostic tool tailored to evaluate sequential models trained 
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Table 3: Closed coding scheme based on the user needs and 
design goals that we have identifed in Section 3.1. 

Closed coding categories Codes 
Supporting diverse 
deployment domains 

• Domain-specifc lived experience 
• Data and ML-centric expertise 

Supporting diverse 
data features 

• Infuence of time-independent features 
• Infuence of time-dependent features 

Supporting diferent models 
and evaluation tasks 

• Evaluate discriminative properties (e.g., classify, forecast) 
• Evaluate generative properties (e.g., generate a sequence) 

Supporting diferent 
levels of granularity 

• Broad overview through global exploration 
• Subgroup-level insight through cohort exploration 
• Validate individual decisions through local exploration 

Supporting user’s 
mental model 

• Ability to forage comprehensive evidence 
• Meaningfulness and understandability of explanations 
• Validate accuracy of explanations and justifcations 
• Efectiveness of explanations to highlight ML limitations 

Supporting multi-faceted 
explanations 

• Continuity between explanation tools 
• Synthesize insights across diverse “what-if” scenarios 

on Electronic Health Record (EHR) data. LSTMVis [161], Seq2Seq-
Vis [160], and ProtoSteer [115] focus on internal architecture evalu-
ation of specifc sequential models (e.g., RNN-LSTM). Even though 
the standalone TimeSHAP [21] tool visualizes time-series Shapley 
values, it cannot create “what-if” scenarios. 

4.3 Participants 
We recruited participants from a Computer Science and Engineering 
graduate student mailing list who were 18 years or older and who 
had prior experience in implementing or using ML models (Table 2). 
To ensure their ML expertise, participants completed a screening 
survey, which asked them if they had taken ML courses and if they 
had practical experience in developing, using, and evaluating ML 
models. Note that although it may be convenient to recruit this 
sample, our participants were graduate students with expertise 
comparable to current ML engineers in the industry. We collected 
simplifed user testing data until we observed data saturation [127], 
stopping at 14 participants. The participants were between 18 and 
35 years old (7 men and 7 women). We compensated participants 
by mailing checks ($15 per hour for up to 2 hours). 

4.4 Study Design 
We conducted in-person simplifed user testing [126] with think-
aloud [78, 79]. Since no participant had specifc domain knowledge, 
we randomly assigned each new participant to evaluate either the 
MS or the driving model until data saturation, stopping at eight 
participants for the MS model and six for the driving model. We 
compared VIME and WIT under identical conditions and tasks to 
assess their strengths and weaknesses for addressing participants’ 
needs and challenges during sequential model evaluation. 

4.5 Tasks and Procedures 
After arriving at our lab, participants gave verbal consent after 
reading the consent form to proceed. We explained the study tasks 
and objectives for evaluating sequential ML models using XAI tools 
and showed brief video tutorials on VIME and the baseline WIT 
without disclosing their names. Participants then performed two 
tasks to evaluate either the driving or the MS model. Each session 
lasted approximately 2 hours. The study was reviewed and approved 
as exempt from ongoing oversight by our university’s Institutional 
Review Board (IRB). 

4.5.1 Task 1: Evaluating a Prescribed “What-if” Scenario. Task 1 
asked participants to recreate a prescribed “what-if” scenario using 
VIME and WIT in counterbalanced order to evaluate if it is possible 
to create and interpret the resulting visualizations to draw insights 
about model decisions. For the driving model, the scenario refected 
aggressive driving behaviors identifed by driving instructors [15]: 
“what if drivers stop while exiting an intersection with trafc signals 
when going straight” (Fig. 8). For the MS model, we consulted with 
a domain expert to select a relevant scenario that adversely impacts 
people’s end-of-day functioning: “what if people with MS begin their 
day feeling highly fatigued”. 

4.5.2 Task 2: Evaluating Custom “What-if” Scenarios. In Task 2, par-
ticipants had to select their preferred tool to come up with, create, 
and interpret their own “what-if” scenarios. They investigated the 
correctness of sequential ML decisions and the ability to capture 
meaningful input-output relationships in those scenarios. This task 
also tested each system’s ability to provide explanations at diferent 
levels of granularity. We also asked them to explain the reasons 
behind their selected tool for Task 2. 

4.6 Analysis Method 
Our qualitative analysis evaluated how well VIME and WIT meet 
the user needs and design goals outlined in Section 3.1. We tran-
scribed think-aloud audio sessions using online tools and imported 
the transcripts, audio, and screen recordings into NVivo software. 
To perform closed coding [182] on the user evaluation data, we 
developed a codebook with initial codes falling into categories cor-
responding to the user need that we derived in Section 3.1.1. These 
categories excluded the need to support various evaluation stages, 
focusing instead on evaluating existing trained ML models. 

Initially, we tested our codes on a subset of data to assess their 
applicability and made necessary refnements. The frst and sec-
ond authors independently conducted pilot coding in four study 
sessions. They discussed the pilot sessions’ fndings to calibrate, 
reach a consensus, and refne the codebook until all authors agreed. 
We listed the fnal, refned codes under each category in Table 3. 
The two authors then applied the codes across all 14 study ses-
sions, periodically reviewing the data to ensure alignment with the 
codebook. We kept detailed memos with examples and quotes, and 
observations on how tool features aided participants’ explorations. 

4.7 Limitations 
Performing quantitative user evaluation could have provided in-
sights into the magnitude of the tool’s usability and efectiveness 
(e.g., measuring task completion times, counting errors, and col-
lecting self-reported usability ratings). However, our qualitative 
analysis still provided nuanced data necessary to identify and de-
scribe such usability issues. Also, closed coding enabled us to report 
relevant user interactions, insights, breakdowns, and quotes to ob-
jectively evaluate participants’ preferences for WIT and VIME. 

We compared VIME with only one baseline toolbox, instead 
of comparing it with other XAI tools, too. However, comparing 
standalone tools with VIME would be unfair due to their limited 
features compared to VIME and WIT. Also, we focused on post-hoc 
evaluation of trained ML models, making tools that support changes 
in the model during development beyond this paper’s scope. 



VIME: Visual Interactive Model Explorer UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

5 RESULTS 
Here, we present fndings from our qualitative user evaluation 
grounded in closed coding (Table 3). Since participants evaluated 
pre-trained sequential models, our fndings relate to post-hoc ML 
evaluation after training and before deployment. We highlight key 
fndings from the user study tasks and the consistency of participant 
outcomes. In Task 1, all participants identifed similar types of model 
limitations because they had to recreate the same scenario but came 
up with a variety of scenarios with a diverse set of explanations 
in Task 2, thus showing the versatility of VIME. Our results show 
to what extent specifc functionalities of VIME and WIT (Table 4) 
accomplish our design goals and meet user needs. 

5.1 Supporting Diverse Domains 
Both VIME and WIT were designed to generalize to data from any 
domain. Although neither VIME nor WIT prevented participants 
from investigating models from diferent domains, neither ofered 
specifc domain support. Thus, lacking formal expertise in the two 
domains, participants had to leverage their lived experiences to 
create diferent “what-if” scenarios and validate their hypothe-
ses about the models. For example, participants who drove came 
up with scenarios they thought could be indicative of aggressive 
driving, such as “overshooting stop signs ... while entering the intersec-
tion” (PA06), “[accelerating] to beat a [changing] trafc signal [yellow 
or red]” (PA07), “speeding well above the [posted] limits” (PA03), and 
“rapid acceleration followed by harsh braking” (PA14). 

Participants further interpreted the data used to train the mod-
els as the ground truth (often blindly assuming the quality and 
provenance of the data) and used it to justify model decisions: 

“Model shows ... people [with MS] ... aged over 56 and 
using mobility aids ... likelier to have low functioning 
... such reasoning makes sense ... you should ask an MS 
clinician to verify such outcomes further.” –PA08 

Still, recognizing their lack of domain knowledge, some partic-
ipants recommended cautious re-evaluation of their conclusions 
before deploying the models for real-world decision-making. 

5.2 Supporting Diferent Data & Feature Types 
VIME was more helpful to participants than WIT when evaluating 
the two models trained on pooled data. Both tools helped simplify 
“what-if” scenarios by selecting and fltering subsets of relevant 
features. However, the 2D wafe chart (WIT’s primary way of 
visualizing relationships between features) did not allow partic-
ipants to visualize the infuence of more than two features at a 
time. Thus, participants struggled to expand long sequences and 
visualize branching in time-dependent feature values when using 
WIT. When creating the prescribed scenario in which a car stops at 
a trafc signal intersection proceeding straight, PA07 mentioned: 

“While evaluating a scenario with maneuvers & trafc 
signs [time-independent], exiting speed [time-dependent], 
and trafc violations [outcome] ... comparing only two 
features at a time [in WIT] is burdensome.” –PA14 

Adding Shapley value visualization for time-dependent features 
to WIT helped participants visualize those features’ importance 
when predicting outcomes across diferent timesteps. For example, 

PA11 observed that “Pain” and “Fatigue” at bedtime have the highest 
Shapley values when forecasting physical functioning, but could 
not determine “if morning pain and fatigue [Shapley] values have 
any residual impact on their high [Shapley] values at bedtime” (PA11). 
Thus, helping participants interpret individual feature contributions 
at each timestep does not necessarily help them understand the 
relationship between diferent time-dependent features. 

In contrast, VIME gave participants control over the number 
of features they wished to visualize and evaluate. Using VIME’s 
interactive Sankey diagrams, they could visually track the fow 
and relationships of diferent features and their infuence on the 
outcome, regardless of the feature type. They also used the range 
slider to zoom in and view those feature values within a particular 
range of timesteps while keeping track of the outcome features. 

5.3 Supporting Diferent Model Types 
VIME outperformed WIT for evaluating models’ discriminative abil-
ities (e.g., classifying sequences of driving behaviors as aggressive 
or non-aggressive), primarily due to better support for time-series 
data and time-dependent features, as described in Section 5.2. 

VIME was also more efective in helping participants investigate 
the two models’ generative properties. This is because WIT was 
primarily designed to evaluate discriminative ML models. WIT does 
not have a feature to automatically generate more data from the 
models; instead, it focuses on visualizing existing data used to train 
and test the models. With WIT, participants manually created new 
data points by editing existing individual sequences already present 
in the data (similar to the Prospector tool [92]): 

“I can edit a [wafe] cell to generate a missing sample 
and see how it afects model predictions ... [WIT] doesn’t 
let me generate multiple samples.” –PA02 

In contrast, VIME has built-in features that support generative 
model evaluation. For example, PA04 used those features to generate 
scenarios not present in the data to explore the diferences between 
aggressive and non-aggressive driving behaviors: 

“The model associates sudden stops at high speeds with 
past trafc violations ... [VIME] lets me flter and create 
model samples with no violations, where cars approach 
intersections at the speed limit and stop gradually with-
out hard braking” –PA04 

This example highlights VIME’s utility in evaluating generated 
sequences and later using those sequences to classify outcomes. 

5.4 Supporting Diferent Levels of Granularity 
It was easier for participants to create global and cohort (subgroup) 
level “what-if” scenarios with VIME than WIT. To create global 
scenarios with VIME, participants simply selected relevant features 
without applying any flters. They then applied flters to create 
cohorts. They often used time-independent features to “anchor” 
their cohorts to model features that do not change within a sequence 
(e.g., specifc intersection layout, specifc MS subtype). 

However, participants struggled to create local explanation sce-
narios in VIME (i.e., scenarios showing a single sequence). They 
could not select a specifc sequence from the Sankey visualization; 
they had to repeatedly apply flters until they reached a single 
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Table 4: Functionalities of VIME and WIT infuencing participants’ experiences during sequential ML evaluation. 

Functionality criteria Visual Interactive Model Explorer (VIME) Google What-If Tool (WIT) 
Domain-agnostic visualization Interactive Sankey visualization Interactive wafe chart 
Evaluating cross-sectional and 
time-series data features 

Separate representations to visualize time-independent 
and time-dependent inputs and outputs 

We separately load the time-independent and 
time-dependent features and their Shapley values 

Evaluating sequential models Internal data and model representation to support sequential ML We modifed and improved WIT to support sequential ML 
Creating “what-if” scenarios at 
diferent levels of granularity 

Filter, zoom-in/out, and feature value grouping 
to create local, sub-group, and global “what-if” scenarios 

Facet dive tool to bin and edit data points 
to create local, sub-group, and global “what-if” scenarios 

Understanding feature value 
distributions and relations 

Details on demand about feature distributions 
and relationships in relevant scenarios 

Time-dependent Shapley values, counterfactuals, and Partial 
dependence plots (PDP) to identify key feature contribution 

Explanation sessions with 
each tool in the toolbox 

Multifaceted “what-if” scenarios help combine insights from 
partial explanations to simplify complex ML evaluation 

Each explanation tool ofers independent 
explanation sessions to evaluate the model outcome 

sequence. With WIT, participants could quickly drill down to in-
dividual sequences by selecting them in wafe plots or using the 
counterfactual tool to identify the “closest” counterfactual example. 
Thus, VIME requires support for quickly selecting and viewing local 
individual instances as the smallest unit of sequence comparison. 

Using WIT, participants easily viewed the built-in global Shapley 
value plots and Partial Dependence Plots (PDP) to assess feature 
importance. However, they struggled to make sense if feature im-
portance in those plots holds across diferent levels of granularity: 

“... high positive Shapley values for Trafc Sign and 
Maneuver ... seems very important to [predict] aggres-
sive driving ... I can’t understand why they stand out ... 
whether the infuence is scenario-specifc.” –PA11 

In the example above, PA11 struggled to understand if “Trafc 
Sign” and “Maneuver” features are also important for specifc sce-
narios (e.g., for diferent intersection types or at diferent driving 
speeds). Participants could easily address such confusion in VIME: 

“I exactly know which [what-if] scenario I am evaluat-
ing ... I can control the [level of] granularity I want for 
the [Sankey] visualization using flters” –PA13 

This is because they could easily select features they wanted 
to visualize using VIME, and modify which features (and their 
corresponding values) they wanted fltered in the flter menu. 

5.5 Supporting User Decision Making 
VIME’s approach to scenario-based interactive model exploration 
helped participants derive more meaningful and accurate explana-
tions compared to WIT. We attribute this to the match between 
VIME scenario-based sequence visualization and the participants’ 
mental model of sequential decision-making. Also, in WIT, partici-
pants had to work to reconcile the inconsistencies across diferent 
explanation tools and their contradictory outputs even for the same 
“what-if” scenarios: 

“Shapley values show high infuence of MS subtype and 
age for forecasting functioning in females with MS ... 
the Partial Dependence Plot contradicts.” –PA01 

After creating “what-if” scenarios, VIME interactions enabled 
participants to seek and obtain evidence for sequential model deci-
sion explanations they derived. They validated outcomes against 
the “ground truth” using the data tab, where scenarios are mirrored: 

“The model shows cars stopping [at intersections] from 
over 50mph ... seems impossible ... such transition doesn’t 
exist in [VIME’s] data tab ... model overgeneralized to 
missing data scenarios.” –PA03 

PA03 observed the driving model’s tendency to overgeneralize in 
missing data scenarios, applying uniform probability to outcomes. 

Participants also identifed limitations due to missing features: 

“Stopping at a green light intersection having the right 
of way could be less aggressive compared to red light 
or all stop intersections ... without [trafc] light color 
feature in the model, I can’t confrm.” –PA07 

Thus, participants were able to identify not only missing features 
but also latent domain knowledge that could have helped improve 
the model and their ability to evaluate model correctness. 

5.6 Supporting Multi-faceted Explanations 
VIME and WIT both ofered a toolbox integrating various expla-
nation tools to ofer diferent perspectives on the data and model 
outputs. VIME’s centralized tools and visualizations allowed for con-
tinuity between diferent questions participants wanted answered. 
However, participants noted that the tools in WIT were isolated, 
each providing separate explanation sessions: 

“... challenging to re-create the same scenario when 
switching from Shapley values to Partial Dependence 
Plots. I wish the system [WIT] restored the evaluation 
scenario across diferent explanation tools.” –PA09 

Thus, having to recreate the same scenario in each of WIT’s 
diverse tools broke the sensemaking fow for the participants. 

In contrast, VIME’s interface maintained continuity across in-
teractive tools to control the Sankey visualizations. This allowed 
participants to simplify evaluating long sequences by breaking 
them, step-by-step, into smaller, manageable “what-if” scenarios. 

5.7 User Preferences for VIME and WIT 
Out of 14 participants, 12 (85%) chose VIME for the fnal task, show-
ing their preference towards VIME for evaluating sequential ML 
models. When asked, they attributed this choice to their initial 
experiences of creating a fxed “what-if” scenario with both tools in 
Task 1, the learning curve of each explanation tool, the usability of 
visualizations and interactions, the simplicity of identifying errors, 
and the ability to evaluate time-dependent features at diferent 
granularity. Also, among PA06 and PA07, who initially chose WIT 
for Task 2, PA06 switched to VIME and mentioned: 

“I wanna compare T-type and four-way intersections ... 
no way I can visualize 24 possible [intersection] layouts 
in the wafe [chart] ... at least in the 1st tool I could 
group ... can I change [to VIME]?” –PA06 
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Table 5: Summary of design implications for interactive explanation tools for sequential ML evaluation. 

Discussion points Breakdowns Design implications 

“What-if” exploration 
simplifes evaluation 

“What-if” scenarios with time-dependent features 
over many timesteps complicates visualization 

• Sliding and shifting controls in range sliders for adaptable timestep adjustments 
• Grouping time-dependent features across timesteps 

Challenging to recall and apply insights from 
previously explored “what-if” scenarios • Interactive cards for recalling past explorations with “what-if” scenarios 

Supporting foraging 
and sensemaking 

Inadequate evidence foraging and misunderstanding 
explanations may lead to misleading evaluations 

• Highlight parts of Sankey visualization to trace model decision pathways 
• Provide summary-based explanations and gather user feedback 

Without clear warning, users can develop 
over- or under-reliance on model decisions • Caution message to communicate model limitations and uncertainties 

Designing for 
broader stakeholders 

Explanations tailored for computer 
science-savvy experts may not aid end-users 

• Explanation systems catering to broader end-users (domain experts, 
policymakers, and consumers) needs and expertise during evaluation 

The built-in features of VIME, specially designed for large se-
quential ML model exploration, ofered a more usable alternative 
to the current state-of-the-art WIT for this evaluation task. Here, 
we credit VIME’s close integration between tools that supported 
continuity in model exploration and aided participants in their 
decision-making and evaluation. This is something that other exist-
ing toolboxes do not currently include but should. 

We observed no notable diferences in task completion times, 
with each participant allocated a fxed time for Tasks 1 and 2 to 
identify model errors and limitations in given or chosen scenarios. 

6 DISCUSSION 
We contextualize fndings and takeaways from our user evalua-
tion to further improve sequential model evaluation systems. We 
highlight design implications [167] for user-centered interactive 
explanations that may simplify “what-if” scenario creation and 
evaluation, improve foraging and sensemaking, and cater to the 
diverse needs and expertise of a broad group of end-users (Table 5). 

6.1 “What-if” Exploration Simplifes Evaluation 
VIME’s multifaceted interactions allowed users to derive “what-if” 
scenario-based explanations and combine them to holistically eval-
uate large sequential models. Instead of visualizing every feature all 
at once, users could simplify their analysis into familiar and man-
ageable “what-if” scenarios. Similar to existing rule-based [69] and 
hypothesis-testing [106] methods, interactive visual model explo-
ration may help users synthesize scenario-specifc prior knowledge 
and intuition [33] during model evaluation. 

Future interactions could ofer users even more control to cus-
tomize and simplify “what-if” scenarios. For sequences with many 
timesteps, sliding and shifting windows in the range slider may 
allow quick selections of specifc timestep ranges for visualization. 
Grouping time-dependent features across timesteps could further 
simplify analysis. Also, users may struggle to recall and apply in-
sights from previously explored scenarios to new ones. Therefore, 
it is important that future model exploration interfaces facilitate 
tracking explanations across scenarios (e.g., using interactive cards 
for scenario-specifc explanations) and provide real-time feedback 
to help recall and synthesize insights. 

6.2 Supporting Foraging and Sensemaking 
We approached users seeking and deriving explanations through 
interactive model exploration as engaging in a cognitive process of 
foraging and sensemaking [27, 83, 162]. Our focus was on helping 
users update their mental models about how sequential ML models 

function and what decisions they make. Our fndings showed the 
value of interactions that provide users with a path to fnd mean-
ingful explanations that match their mental models, expertise, and 
specifc queries. Thus, toolboxes like VIME need to simplify the 
evidence-gathering process to help users develop and amplify their 
information-foraging competencies and skills. This will, in turn, 
allow them to interactively seek evidence and justify relationships 
between diferent model inputs and outputs. 

Future interactions could allow users to trace decision path-
ways in the evidence foraging stage by highlighting parts of the 
Sankey visualization and gathering user feedback to ensure expla-
nations align with model decisions. This could lead to alternative 
explanation tools, such as summary-based explanations with natu-
ral language processing (NLP) for translating model-specifc user 
queries into “what-if” questions. Additionally, caution messages 
could communicate the model’s knowledge limits, clarifying that 
explanations are reliable only under specifc conditions and with 
adequate output confdence. This could further support users in 
assigning meaning to the evidence collected through foraging. 

6.3 Designing for Broader Stakeholders 
Our fndings showed that VIME can help computer science-savvy 
model engineers in their evaluations. Yet, their lack of domain 
knowledge hindered their ability to suggest solutions for domain-
specifc model limitations they identifed. Such lack of domain and 
task expertise [120, 151, 169, 174] could further impact the ability of 
the user to identify strengths and limitations (i.e., trustworthiness) 
of the models they are exploring [16]. 

Also, we can not expect model engineers always to be present to 
debug and monitor their models after deployment. Other stakehold-
ers with diverse domain and task expertise [47, 76, 95, 164, 170] 
seek to independently explore the models they interact with. Those 
end-users include domain experts knowledgeable about the model’s 
application area, policymakers regulating those models, and con-
sumers who interact with interfaces supported by those ML models. 

Therefore, it is important to evaluate the efectiveness of tool-
boxes like VIME to support a broader set of stakeholders in ML 
model evaluation. Formative studies with those end-users can help 
identify their needs, challenges, and context of use during ML eval-
uation. Such insights could inform the design of future explanation 
tools tailored to their needs and expertise. 

7 CONCLUSION AND FUTURE WORK 
We presented Visual Interactive Model Explorer (VIME), a data-, 
domain-, and model-agnostic toolbox allowing model engineers 
to holistically investigate their trained sequential ML models. As 
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a system design contribution [184] towards human-centered eX-
plainable AI (HCXAI) [48], VIME facilitates interactive exploration, 
debugging, and monitoring of ML model errors and limitations. 
Visualizations and interactions in VIME help users efectively ex-
plore sequential data and models by decomposing long sequences 
of model decisions into simple “what-if” scenarios for comparison. 

Our fndings showed that VIME makes it easier for model engi-
neers to investigate how (e.g., how their ML model makes a partic-
ular decision?) and what-if (e.g., if the input was diferent, would 
their ML model make a diferent decision?). A series of interactions 
in VIME helped users identify and debug sequential ML model 
limitations, including over-generalization, spurious correlations, 
missing feature values, and missing input-output relationships. 

Future work should explore the design of explanation tools and 
toolboxes that target other end-users who may not have computer 
science-savvy expertise but seek explanations about ML models 
they interact with. Insights from our iterative design and evaluation 
of VIME will inform the design of interactive XAI tools that as-
sist diverse stakeholders in evaluating sequential decision-support 
systems for their broader adoption in real-world domains. 
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