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Figure 1: VIME interface showing a “what-if” scenario from a sequential ML model [15] that detects aggressive driving behaviors:
a) a feature selection panel to select and visualize a subset of relevant features, b) a control panel to modify model output
preferences, c) filtered feature values, d) interactive Sankey visualization showing a sequence of selected time-independent and
time-dependent inputs and outputs, e) a range slider to zoom in and out of specific sequence timesteps, and f) sample size
determination panel. The “what-if” scenario shows that the model correctly predicts that drivers who stop in the middle of an
intersection are likely aggressive drivers with past traffic violations, with a 92.68% likelihood. It also shows that the model
wrongly predicts that drivers can decelerate from over 50 mph to a full stop within the short length of an intersection.

ABSTRACT

Ensuring that Machine Learning (ML) models make correct and
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meaningful inferences is necessary for the broader adoption of
such models into high-stakes decision-making scenarios. Thus, ML
model engineers increasingly use eXplainable AI (XAI) tools to
investigate the capabilities and limitations of their ML models be-
fore deployment. However, explaining sequential ML models, which
make a series of decisions at each timestep, remains challenging. We
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present Visual Interactive Model Explorer (VIME), an XAl toolbox
that enables ML model engineers to explain decisions of sequential
models in different “what-if” scenarios. Our evaluation with 14 ML
experts, who investigated two existing sequential ML models using
VIME and a baseline XAI toolbox to explore “what-if” scenarios,
showed that VIME made it easier to identify and explain instances
when the models made wrong decisions compared to the baseline.
Our work informs the design of future interactive XAI mechanisms
for evaluating sequential ML-based decision support systems.
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« Human-centered computing — Interactive systems and
tools; Visual analytics.
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1 INTRODUCTION

Ensuring that Machine Learning (ML) models make correct infer-
ences based on meaningful data relationships is necessary for their
broader adoption into high-stakes decision-making scenarios (e.g.,
in healthcare [97, 134], child welfare [25, 195], environmental anal-
ysis [131], criminal justice [88], and public safety [104]). Model
engineers who train and develop ML models are the first in line to
investigate their models’ limitations. For example, before deploy-
ment, they need to ensure that the models make accurate decisions
and capture relevant knowledge from the data. Such evaluation is
necessary for real-world deployment, where the potential for social
harm is high [10, 85, 89, 107], in part due to the model making
decisions on unseen data with limited human oversight [59].

Existing Explainable AI (XAI) [17] systems offer explanations
in different forms [122, 179] that help ML engineers evaluate their
trained models. They can use such explanations to investigate and
debug model limitations at different levels of granularity (e.g., using
local [146], cohort or subgroup [46, 108], and global [101] explana-
tions). Yet, many XAI systems do not support ML evaluation for
diverse data types, domains, and tasks. For example, most exist-
ing XAI systems [13, 101, 146] can provide a single explanation
for each single-point estimate prediction from a cross-sectional
data classification model. However, the complexity of sequential
decision-making models precludes them from being reduced to any
single explanation. Forcing such reduction may not align with the
model engineers’ mental models [128, 177] of sequential decision-
making, which could lead to misleading evaluation [84].

Thus, to evaluate sequential ML models, model engineers use
model-specific sequential XAl tools [115, 160, 161]. However, model-
[161] and domain-specific [15] visualizations in those tools may
not generalize to support diverse discriminative and generative
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sequential ML algorithms. Although some XAI tools [21, 102, 156]
tried to adapt existing feature attribution methods to time-series
data, it remains challenging for model engineers to understand the
long sequences of model decisions using such explanations [1].

Existing tools and toolboxes do not enable effective decompo-
sition of sequential model decisions. Yet, such decomposition of
model decisions into “what-if” scenarios (i.e., “chunks of problem-
solving know-how” [69]) is essential to allow users to develop
their mental models and effectively make sophisticated high-level
decisions—in our case, decisions about sequential model capabil-
ities and limitations. Although existing sequential XAI tools [21,
115, 160, 161]) can visualize sequences, they lack support for this
kind of “chunking” and comparison between chunks that could
help streamline sequential model evaluation.

Here, we present Visual Interactive Model Explorer (VIME), a
domain-, data-, and model-agnostic XAI toolbox that helps model
engineers to investigate their sequential ML models in different
“what-if” scenarios (Figure 1). The key design insight behind VIME
is that decomposing complex sequences of ML model decisions into
“what-if” scenarios helps users to form explanations about each
scenario. This allows users to focus on specific evaluation tasks at
different levels of granularity (e.g., local explanations for specific in-
puts, cohort explanations for subgroups of inputs). When combined,
such partial explanations can aid in comprehensive evaluation of
complex sequential ML models. The key technical contribution of
VIME is its flexible interactions for grouping, filtering, and zooming
into sequences that we iteratively designed and implemented on
top of Sankey visualization (an existing approach for visualizing
sequential decision-making [136]).

To evaluate VIME, we conducted simplified user evaluation [126]
using think-aloud [78, 79] with 14 ML engineers. To test VIME
across sequential models trained on different datasets from differ-
ent domains, we chose two state-of-the-art sequential ML mod-
els [11, 15] trained on pooled data (i.e., data that combines both
cross-sectional and time-series data) from two domains: 1) pre-
dicting aggressive driving behaviors, and 2) forecasting behaviors
of people with Multiple Sclerosis (MS). To compare and contrast
VIME with different existing “what-if” scenario exploration tools,
we selected the Google “What-If tool” (WIT) [180], a state-of-the-
art baseline toolbox. WIT combines multiple explanation tools for
“what-if” scenario exploration into one system and is agnostic to
both ML algorithms and deployment domains. Also, we modified
and improved WIT to support sequential ML evaluation by adding
functionality that resembles an existing sequential XAI tool [21].

In our study, participants used VIME and WIT to reconstruct
a fixed “what-if” scenario and later chose their preferred tool for
independent model exploration. Our findings showed that com-
pared to WIT, VIME made it easier for participants to create their
own rules for decomposing long sequences of ML model decisions
into “what-if” scenarios that they could then compare. This helped
them identify instances when the model made wrong decisions
(e.g., overgeneralizing to physically impossible situations, missing
input-output relationship, spurious correlations), and to investigate
what caused those wrong decisions (e.g., identify scenarios with
missing or underrepresented data). Moreover, 12 of the 14 partici-
pants selected VIME for the independent exploration task; making
VIME their preferred sequential ML model evaluation toolbox.
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VIME: Visual Interactive Model Explorer

Our work contributes a system design and a high-fidelity func-
tional prototype of VIME. The key design decision that differen-
tiates VIME from existing XAI work are interactions that allow
users to set their own rules for decomposing long sequences of ML
model decisions into “what-if” scenarios that they can then com-
pare. Although our selected baseline, the Google WIT [180], enables
users to define and compare their own chunks it does not neces-
sarily mean that such chunks can support sequence comparison.
Thus, our work highlights the importance of interactions that are
specifically designed for effectively comparing sequences [106] to
support sequential ML model evaluation. The insights gained from
our iterative prototyping and evaluation of VIME will inform the
development of future interactive XAI mechanisms for evaluating
sequential decision support systems.

2 RELATED WORK

Here, we start with a review of tools that support the ML engineer-
ing pipeline and then narrow down to specific design opportuni-
ties for improving existing XAI methods to assist ML engineers
in identifying model capabilities and limitations. We distinguish
methods and tools for data pre-processing, model development, and
evaluation. We focus on eXplainable AI (XAI) systems that aid in
model evaluation by explaining ML decisions at different levels of
granularity, with a specific focus on tools that support cohort (i.e.,
subgroup) analysis using “what-if” scenarios for sequential models.

2.1 Data Exploration and Preprocessing

Data availability and quality significantly impact the performance
of trained ML models [31, 74, 143]. Hence, before model train-
ing, users need to ensure that the data they use are properly sam-
pled [114], correctly labeled [66], not missing relevant informa-
tion [129], and free from harmful historical biases [10]. Data ex-
ploration tools [136, 137] help users analyze their data and gain
insights about features and labeled outcomes [18, 19]. Users can
investigate cross-sectional data [112] at a given time, time-series
data [70, 123, 137, 138] collected over time, or pooled data [61]
combining both. However, such tools do not immediately apply to
ML model evaluation and are, thus, beyond the scope of this paper.

2.2 Interactive Machine Learning (IML)

Interactive Machine Learning (IML) [50] aids users with train-
ing [43, 45, 49, 110, 121], optimizing [9, 52, 68, 94, 135], and se-
lecting [116, 185] their ML models during the model development
stage. Such tools adopt the Human-in-the-loop (HITL) paradigm [7,
53, 193] to elicit and incorporate user feedback for iterative model
adjustments and improvements. Existing IML tools [50, 65] primar-
ily rely on quantitative performance metrics and error analysis to
help users evaluate their model predictions against ground truth
labels. However, the effectiveness of such analysis relies heavily
on the quality of existing training data [41, 141] without providing
explanations that aid users in understanding ML model decisions.

2.3 Explainable AI (XAI) Tools and Toolboxes

Existing explanation tools help users identify ML model capabilities
and limitations [62]. Although some models are inherently inter-
pretable to ML engineers [29, 54, 145], most “black-box” models
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require post-hoc explanations after it is trained [22, 46, 95, 176].
Existing XAl tools offer explanations in different forms (e.g., feature
attributions [17, 64, 101, 146, 179], counterfactuals [81, 122]) and at
different levels of granularity (e.g., local [146] for individual inputs
and outputs, cohort or subgroup [30, 34, 46, 105, 106, 108] for sub-
sets of related inputs and corresponding outputs, and global [101]
across all possible inputs and outputs). To offer multi-faceted ex-
planations, XAI toolboxes [20, 80, 92, 180, 190] combine multiple
explanation tools in a single system. Additionally, existing visual an-
alytics systems [6, 63, 189, 192] help identify model limitations [8]
by enabling interactive visual exploration [119], allowing users to
intuitively understand and interrogate the models’ decisions.

2.4 Explaining Sequential ML Models

Most existing XAl tools [101, 146] and toolboxes [20] focus on eval-
uating discriminative classification models for single-point estimate
predictions on cross-sectional data. However, they may not readily
support sequential ML evaluation, which requires assessing model
predictions at each timestep (including at the end of the sequence).
Furthermore, the complexity of sequential ML decisions makes it
challenging to reduce them into a single explanation by adapting
existing feature attribution methods to support time-series data [21,
102, 156]. Attempts at such forced reduction may not align with the
users’ mental models [128, 177] of sequential decision-making and
lead to misleading evaluation [84, 103, 158]. Although data- [191]
and model-specific XAl tools [12, 38, 111, 115, 160, 161, 178] help
evaluate certain sequential models’ internal architectures, they do
not generalize across different complex sequential models.

2.5 “What-if” Exploration of ML Models

Existing “what-if” exploration methods (e.g., if-then rules [40, 194],
interpretable decision trees [77], and various “what-if” visualiza-
tions [32, 130, 180]) support complex ML evaluation by focusing
on specific scenarios (e.g., individual inputs [92] or subgroup of
inputs [181, 196] and their corresponding outputs). However, it
is challenging for users to effectively decompose and chunk long
sequences of model decisions with many branches into simple
and manageable “what-if” scenarios using those tools. Support-
ing scenario-based “chunking” [69] and comparing those chunks
could help users streamline sequential model evaluation. Also, ex-
isting “what-if” tools that evaluate the quality of time-series data
samples [39, 58, 190] and predictions from sequential ML mod-
els [5, 38, 173] focus on explaining specific sequential models, often
deployed to specific domains. As such, they may not generalize
across different data types, ML models, and deployment domains.

3 VISUAL INTERACTIVE MODEL EXPLORER

Here, we describe the design of the Visual Interactive Model Ex-
plorer (VIME) that enables users to investigate their ML models
interactively. We conducted a review of existing literature to un-
derstand the current context of the use of XAI tools and toolboxes
and to distill the needs of our target users—ML model engineers.
We designed VIME to address ML model engineers’ needs because
they are the first in line to develop and evaluate ML models. They
have task expertise in ML models and are often highly trained com-
puter scientists with graphical user interface (GUI) and command
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expertise [60] with existing ML and data science tools. We first
describe the specific needs of our target users when investigating
ML models and ground our design goals (DG) within those user
needs. We then describe our design process, highlighting specific
design choices and trade-offs that we considered. Our design cen-
ters on “what-if” scenario-based interactive model exploration to
break down complex explanations into smaller parts and simplify
the evaluation of complex sequential ML models.

3.1 Model Engineer Needs & VIME Design Goals

To understand model engineers’ needs and challenges, we reviewed
existing literature on interactive ML debugging [35, 43, 49, 124,
133, 166], visual analytics [6, 63, 189], XAI [3, 36, 51, 73, 148, 172],
and Interpretability [44]. We also incorporated insights about the
current context of use from existing work [26, 27, 42, 71, 99, 140, 168,
180, 187, 188] that included formative studies and semi-structured
interviews with ML engineers as part of their design. We compiled
a comprehensive list of user needs and validated them through
discussions with ML and Al researchers (authors and others). We
then described our design goals to address each need.

Although conducting another formative study with model en-
gineers could have confirmed existing findings about the current
context of use from prior work, such a formative study was not
necessary to complement an already comprehensive list of user
needs that the existing work has identified. We also note that de-
sign trade-offs prevent any single design from fully meeting every
design goal and addressing every user need.

3.1.1 Supporting Different Stages of Model Development and Eval-
uation. Model engineers need to explore their models: 1) during
model training and development and 2) after the model has been
trained. Although their objectives may differ at these stages, their
common goal is identifying ML errors and limitations. During devel-
opment, they use such insights to train [43, 49], optimize [52], and
select [185] the final ML algorithm. After training and before deploy-
ment, they need to understand and explain model decisions [28, 166].
Our key design goal is to facilitate post-hoc evaluation of existing
trained models. Although this goal could be relevant to comparing
candidate ML models during training, how these insights modify
the model is beyond the scope of our work. However, users may
need to compare insights about the trained model against data,
making access to the training and testing data relevant.

3.1.2  Supporting Model Evaluation Across Diverse Domains. Model
engineers often train models for deployment in diverse domains to
support high-stake decision-making. Each domain possesses dis-
tinct phenomena that they need to ensure that their ML model has
captured [63, 73, 165]. However, developing separate ML evaluation
tools for every domain with tailored visualizations and interactions
is resource-intensive [186]. Furthermore, some domains lack readily
available tools. Thus, our design goal is to create a domain-agnostic
tool that supports users in ML model evaluation across multiple
domains, where the models are or will be deployed.

3.1.3  Supporting Model Evaluation Across Diverse Data Types. Model
engineers train their models on different data types [61]: 1) cross-
sectional, 2) time-series, or 3) pooled data that combines both. To
evaluate classification models trained on cross-sectional data, they
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need to investigate models’ predictions for each data point or sam-
ple [63, 189]. Evaluation of sequential ML models trained on time-
series data requires them to understand how feature values change
at each time step and influence model predictions [148]. Pooled data
requires both. They also need to distinguish time-independent and
time-dependent features and outcomes to facilitate efficient analy-
sis of such models. Thus, our design goal is to support evaluations
of ML models trained on all three data types.

3.1.4  Supporting Different Model Types and Evaluation Tasks. Model
engineers use different ML models (e.g., discriminative [96], gener-
ative [75]) to perform classification [117] and forecasting [11, 132]
tasks. They need to debug why a discriminative model predicts a
specific output given the input features [73, 93, 159]. For generative
models [149, 163], they need to evaluate how and why the model
generates new data. Also, while evaluating sequential models, they
need to consider trends and predictions at different time steps. Thus,
our design goal is to support ML model evaluation across model
types and the outcome estimation tasks those models perform.

3.1.5 Supporting Model Evaluation at Different Levels of Granularity.
To understand the decision-making process of black-box ML mod-
els [3] (i.e., models that are not inherently interpretable [29]), users
seek explanations at different levels of granularity: 1) global [101],
2) cohort (i.e., subgroup) [108], and 3) local [146]. Global explana-
tions provide a macroscopic overview of model decisions across all
possible inputs and outputs. Cohort explanations help evaluate the
model in specific subgroups, highlighting limitations that may not
be apparent globally. Also, local explanations offer detailed insights
into individual predictions. Thus, our design goal is to support ML
model evaluation at all three levels of granularity.

3.1.6  Supporting Explanations to Match User’s Mental Model. Ex-
isting research [27, 83] showed that seeking explanations about
ML model decisions is a sensemaking process. Model explanations
that are aligned with the mental models of their users [55, 128, 177]
enable them to form comprehensive, meaningful, and accurate ex-
planations about their models [118, 139, 174, 175]. Otherwise, model
explanations can be misleading [84, 86, 113], which could result
in inaccurate or inconsistent model evaluation. Thus, our design
goal is to provide model engineers with interactive tools that al-
low them to forage accompanying evidence and justifications to
validate model decisions. We also want them to form and leverage
explanations that enhance their understanding of the model.

3.1.7 Supporting Multifaceted Explanations. During evaluation,
model engineers seek answers to various questions about their
ML models [99] to gain insights that may help manage model
complexity [153, 187]. This led to the development of XAI tool-
boxes [20, 92, 180] that combine multiple explanation tools in a
comprehensive system, each addressing a distinct question about
the model. Thus, our design goal is to interconnect explanation tools
within a toolbox, allowing users to interactively choose and apply
the tools for breaking down the evaluation into specific model-
related queries rather than offering these tools as independent and
isolated explanation sessions. Also, our design goal is to provide co-
herent and multifaceted partial explanations that, when collectively
used, can simplify the evaluation of complex sequential models.
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3.2 Low-fidelity Prototypes & Design Critiques

We used an iterative approach to design and evaluate VIME. One of
our early key design insights was that allowing users to create and
explore relevant “what-if” scenarios provides solutions to many de-
sign goals outlined in section 3.1. In particular, this approach could
simplify the evaluation of complex sequential models by allowing
users to explore their models from different perspectives [57], in-
cluding different evaluation tasks at different levels of granularity.
This could help users develop and update their mental models by
synthesizing their scenario-specific insights and hypothesizing dif-
ferent explanations [4, 69, 106]. Thus, we focused on exploring this
potentially fruitful design direction from the beginning.

We explored different ways to present the “what-if” scenarios
through low-fidelity prototypes (see Appendix) of state-of-the-art
static visualizations: 1) probability plots [183], 2) waffle plots [87],
3) feature attribution plots [101, 146], and 4) Sankey diagrams [147].
We illustrated these initial prototypes on two existing sequential
models: 1) aggressive driving [15], and 2) Multiple Sclerosis (MS)
[11]. To investigate these prototypes against our design goals, we
performed design critiques that included the authors of this paper,
other Human-Computer Interaction (HCI) and Al researchers, and
an MS domain expert. The first author discussed the design goals
with the team for further validation. Then, the team used these
four prototypes to explore different “what-if scenarios” from the
MS and driving model and recorded the scores and feedback. Our
evaluation criteria were usability and how well the design addresses
the user needs and design goals that we highlighted.

We selected the interactive Sankey visualization as our final
design since it scored the highest in our design critique and emerged
as the most promising feature of our designs. The waffle plots got
the second-highest score. We found Sankey diagrams helpful in
intuitively visualizing and understanding complex relationships
and feature dependencies to understand the sequential ML model’s
behavior over time and in different “what-if” scenarios. This aided
us in identifying trends and patterns that might be missed with
simpler visualizations. Thus, Sankey diagrams not only fulfilled our
need for clarity and comprehensiveness in feature representation
but also significantly enhanced the interpretability of our time-
series analysis, directly aligning with our design goals.

Feedback from our design critiques highlighted that static proba-
bilistic visualizations can be challenging to understand [125] when
assessing a series of decisions from complex sequential ML mod-
els with numerous feature value combinations, potentially leading
to erroneous decision-making [37, 100, 142]. To address this chal-
lenge, we improved our initial low-fidelity Sankey prototypes with
interactive controls based on the feedback and developed a high-
fidelity functional prototype. To reinforce our design choice and
validate our prototype’s usability before the main user evaluation,
we conducted a pilot study with four ML and HCI researchers. They
explored the Sankey-based high-fidelity prototype and confirmed
the effectiveness of Sankey diagrams in revealing complex trends
in sequential model behavior, particularly in “what-if” scenarios.
Such a pilot study also helped us refine our final designs and solve
usability issues before our main user evaluation.
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3.3 High-fidelity Functional Prototype

Here, we provide a detailed system description of our final VIME
design and the specific design choices we have made to address
model engineers’ needs. To illustrate VIME, we use a running ex-
ample of a hypothetical ML model engineer, named Samira, who
wants to explore and evaluate an existing generative sequential ML
model [14, 15] trained on existing time-series data [72] that can: 1)
classify (i.e., discriminative predictions) if an instance of driving
through an intersection is aggressive or not, and 2) generate new
driving instances (e.g., to show aggressive drivers alternative, non-
aggressive ways of driving). Such exploration involves interactively
investigating various “what-if” scenarios to provide evidence and
justifications (i.e., explanations) for why a model made a particular
decision. Since that is a large sequential ML model, it would be
challenging to evaluate it by reducing it to any single explanation.

Instead, VIME allows Samira to simplify model evaluation by
breaking it into smaller evaluation tasks and focusing separately
on each simple and relevant “what-if” scenario. We describe how
Samira would start her exploration of model decisions by creating
a simple scenario indicative of aggressive driving behavior that she
is familiar with (Fig. 1). After completing this task, Samira would
create and explore other similarly-sized scenarios to make sense of
the large model by combining insights from each of those scenarios.
We describe VIME features in order that Samira would use them to
create her first “what-if” scenario.

3.3.1 Internal Data and ML Model Representation. VIME maintains
an internal representation of model M trained on data D to support
the evaluation of different data and model types. M is a tuple:

M =(D,S8,P(s), P(s" | 5)) (1)

Here, S represents a set of states, where each state s € S uniquely
identifies possible combinations of time-independent and time-
dependent feature values, represented by the feature vector ¥g.
P(sp) represents the probability that a state sy € S initiates a deci-
sion sequence, and P(s’ | s) represents the probability of the model
transitioning from state s into the next state s” in the decision se-
quence. VIME can then sample sequences of model decisions using
the probability functions P(sy) and P(s’ | s) or display sequences
from O independent of the model and data types.

For probabilistic sequential ML models like Markov Decision Pro-
cess (MDP) [144] with time-series data, VIME directly constructs M
from the model parameters. When data includes time-independent
features, P(s’ | s) becomes deterministic. In generative models,
VIME uses P(sg) and P(s” | s) for different states in S to generate
new samples. VIME estimates S from the union of all possible input
and output states, with each state terminating the quasi-sequence
for discriminative models with cross-sectional data. VIME then
estimates P(sg) from the training data and P(s’ | s) from the quasi-
probabilities of model predictions given inputs. For discriminative
models with time-series data, the representation remains similar,
but not every state terminates the sequence.

VIME primarily samples outputs from live models, with an option
to load model outputs from a CSV file when the live model is
not available. In our illustration, Samira has access to an existing
live model [15]. She can then categorize features based on time
dependency and choose the order of feature values for visualization.
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Figure 2: VIME’s a) feature selection panel to select a subset of relevant model features, and b) interactive Sankey visualization
showing a sequence of decision steps for the time-independent, time-dependent, and outcome features in order of selection.

3.3.2  Feature Selection Panel. 1t is difficult to visualize all possible
inputs and outputs from a large sequential model together at the
same time. Therefore, VIME’s “feature selection panel” (Fig. 2a) cate-
gorizes features into three types: 1) Time-independent Features with
deterministic transitions and consistent values, 2) Time-dependent
Features with stochastic transitions in values that vary over time,
and 3) Outcome Feature(s), showing model predicted outcome(s)
given one or more input features, with “outcome feature time la-
bel(s)” representing timestep(s) of the outcome feature.

To explore the large driving model, Samira starts exploration
with a simple scenario. She wants to observe the “Maneuvers” (e.g.,
straight, left turn, and right turn) of how people are driving through
an intersection with different “Traffic Signs” (e.g., stop, stop op-
posite, all stop, and traffic signal). Also, she is interested in how
fast people are driving (i.e., “Current Speed” at four intersection
positions) and whether speeding behaviors influence the model’s
prediction of aggressive and non-aggressive driving behavior. Thus,
she selects “Existing Traffic Violations” as the outcome feature.

3.3.3 Interactive Sequence Visualizations. VIME leverages Sankey
diagrams [147, 150] to create two distinct interactive sequence
visualizations for displaying data and model samples for the selected
time-independent, time-dependent, and outcome features (Fig. 2b).
Users can intuitively visualize the transitions over time and complex
input-output relationships to understand the dynamic nature of
sequential ML models. This is particularly helpful for analyzing
the influence of time-dependent features on model predictions at
different timesteps, facilitating time-series feature evaluation. In
these diagrams, each rectangular node corresponds to a feature
value at a specific timestep, and edges represent the proportion of
behavior instances between source and target nodes.

From the model tab visualization (Fig. 2b), Samira observed that
drivers more frequently continued straight at intersections than
turning, especially at traffic signals or stop-opposite signs indicating
right-of-way. She speculated this might be because the training data
had more examples of such “Maneuver” and “Traffic sign” values.

3.3.4 Range Slider to Zoom into Specific Timestep of the Sequence.
It is challenging to evaluate long sequences of model decisions for
all possible timesteps, which may complicate the visualization. To
streamline the visualization, VIME offers a “range slider” to zoom
in [154] and visualize model decisions at a specific timestep range.
Users can drag the range slider in both directions to break down
the evaluation of a long sequence and simplify their exploration.
Samira is familiar with a scenario in which aggressive drivers are
likely to stop in the middle of the intersection and block it before
exiting it. She wants to check whether the model captured that
“speeding” while entering the intersection leads drivers to suddenly
stop before they exit. Thus, she uses the range slider to zoom into
car speeds from “entering” to “exiting” the intersection (Fig. 3).

3.3.5 Interactive Filtering of Feature Values. VIME provides “inter-
active filtering” of feature values to query the model with domain-
relevant “what-if” scenarios. This helps users evaluate specific parts
of a sequence, such as local and cohort instances, where different
features take on specific values. Users need to click on a Sankey
node to highlight the sequences with the chosen feature value, while
a shift+click discards the value from the visualization. The selected
feature values for the filter appear in the “filter values” menu, and
VIME recalculates the probability distributions for the remaining
feature values to ensure consistent explanations. Model engineers
can then evaluate model outcomes to ensure correctness and their
ability to capture meaningful data relations in these scenarios.
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Figure 3: A range slider for zooming in and out of specific sequence timesteps showing: a) before and b) after zooming in to

visualize how fast drivers were driving while entering and exiting the intersection.
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Figure 4: Interactive filtering of feature values to create a “what-if” scenario when drivers went straight through traffic signals:
a) before filtering, b) after filtering “Maneuver” is “Straight”, and c) after further filtering “Traffic sign” is “Traffic signals”.

they are turning left or right. Therefore, she filters instances with
straight maneuvers (Fig. 4a). Also, she wants to concentrate on in-
tersections with traffic signals, so she filters only such intersections
(Fig. 4b). The resulting visualization (Fig. 4c) shows only sequences
of driving behaviors where the driver is going straight through
intersections with traffic lights.

Samira hypothesizes that aggressive drivers going through an
intersection when the traffic signal light turns yellow (i.e., “running
a yellow light”) may be forced to stop in the intersection, blocking
it before exiting the intersection. Samira wants to identify specific
instances where drivers go straight through the intersection be-
cause it is common for drivers to stop at the intersection when
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Figure 5: Grouping feature values to reduce visualization complexity and compare behavior instances (e.g., drivers who “stopped”
and “did not stop” at the exiting intersection): a) before and b) after clustering current speed values at the exiting intersection.

3.3.6 Group Feature Values. Model engineers may need to group
multiple feature values with similar characteristics to reduce visual-
ization complexity or create “what-if” scenarios. VIME enables the
user to cluster multiple feature values using the “group/ungroup fea-
ture values” (see Appendix). Also, VIME recalculates the probability
distribution for grouped nodes to ensure explanation consistency.
Samira wants to compare behavior instances where the cars
stopped vs. did not stop while exiting the intersection. Thus, she
uses the “group/ungroup feature value” interaction to create a clus-
ter of all current speed values when the drivers are exiting the
intersection and names the cluster “Did not stop” (Fig. 5).

3.3.7 Tracking Feature. Users can select a “tracking feature” to un-
derstand its relations with selected input features and the outcome.
For time-dependent features, they need to specify the time step
using the “tracking feature time label”. The tracking feature maps
its values to the edges of the Sankey diagram based on the joint
probability distribution of the tracking feature and the outcome
feature given the time-independent and time-dependent features.
It then sets the color based on each unique tracking feature value.
Contrasting color edges represent the flow of how the selected
tracking feature values change in relation to other feature nodes
and influence model decisions at each timestep.

Samira selects the current speed at exiting the intersection as
the tracking feature (Fig. 6). VIME then updates the visualization
by coloring the edges based on selected tracking feature “exiting
current speed” values (e.g., stopped vs. did not stop) and shows the
distribution with other features throughout the Sankey graph.

3.3.8 Selection of Distinguishable Colors. VIME allows users to
select colors for feature value nodes and edges in the Sankey dia-
gram using the “Recolor” button. Users can assign color palettes
and schemes from “Color Brewer” [24, 67] based on the nature
of the feature (e.g., sequential, diverging, or qualitative) and the
number of feature values to be visually distinguishable [67, 157]. If
a feature exceeds the palette’s color limit, VIME alerts the user and
suggests feature value grouping to prevent color reuse and reduce
visual complexity in distinguishing features [67, 157]. Samira uses

visually distinguishable colors that are colorblind safe to visualize
feature value nodes and edges efficiently.

3.3.9 Hover on Nodes and Edges for Details on Demand. Offering
details only when necessary [154] prevents overwhelming model
engineers and helps maintain a clear and uncluttered visual space
during interactive ML model exploration. The “hover on nodes
and edges” functionality enables access to details during model
evaluation as required. Hovering over nodes reveals the probability
distribution for that feature value, while hovering over edges dis-
plays the distribution between adjacent feature values (i.e., source
and target nodes), allowing users to examine their relationships.
To investigate the likelihood of drivers stopping before exiting
the intersection, Samira hovers over “stopped” node (Fig. 7a), which
shows a 5.1% chance that drivers will stop at “exiting intersection”
according to the model. However, hovering over the edge (Fig. 7b),
she observes that there is a 92.68% chance that such instances are
coming from aggressive drivers with past traffic violations.

3.3.10 Comparison Between Data and Model. VIME displays Sankey
visualizations for the data and the trained model in separate tabs.
Any user action, such as zooming into a timestep or filtering feature
values in one tab automatically reflects in the other. This synchro-
nization ensures consistent explanations and lets users compare
model-driven behaviors with real-world data scenarios seamlessly.

While evaluating the model, Samira spots an anomaly: the se-
quential model predicts a 2.9% likelihood that cars decelerate from
over 50 mph to a full stop within 2 seconds, which is physically im-
possible (Fig. 8b). She then filters sequences where cars stopped at
the exiting intersection and switches to the data tab, which displays
that this scenario is underrepresented in the data (Fig. 8a).

3.3.11 Live Sampling and Sample Size Determination. Limited sam-
ple sizes in the visualization can restrict the model engineers from
drawing meaningful conclusions about model predictions. VIME
provides a “sample size determination panel”, displaying quanti-
tative summary statistics, such as the total sample size, filtered
sample size, confidence interval (1 — §), and absolute error () for
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Figure 7: Hovering on nodes and edges displays detailed information; in this scenario, the likelihood of: a) drivers stopping at
the exiting intersection, and b) aggressive driving instances (i.e., drivers had traffic violations) when they stop at exiting.

data and model samples (Fig. 8c). We estimated € under fixed con-
fidence 1 — § = 80% per. This method considers the total feature
value combinations and available filtered samples to estimate the
absolute error. If the error exceeds the default acceptable threshold
(e < 0.05under 1—5 = 80%) [91], VIME alerts users with a “caution
message”, guiding them to interpret model outcomes carefully.
The “add model samples” button (Fig. 8c) enables live sampling
from the model M using the probability distributions in Equation 1.
For each sequence, our algorithm first samples an initial state sp
from the distribution P(sp). We then sample the next state s; in the
sequence using the transition probabilities P(s;|s;—1). This contin-
ues until we encounter an end state that terminates the sequence.
If only CSV files are included, this button remains disabled.
Samira notices a “caution message” (Fig. 8a), indicating that in-
stances of stopping at intersections are underrepresented in the
data with just 15 samples (Fig. 8c), where the € exceeds the accept-
able threshold of 0.05. She concludes that the model (Fig. 8b) may
overgeneralize to unrealistic speed transitions due to missing data.
Samira concludes that the model could benefit from introducing
knowledge about the physics of the vehicle movement.

After completing this task, Samira can now explore other rel-
evant intersection features (e.g., intersection layout, speed limit)
related to the current “what-if” scenario or explore new similarly-
sized scenarios of her interest (e.g., accelerating or decelerating
rapidly at stop signs). She can then combine insights from each of
these scenarios to make sense of the large model across scenarios.

3.3.12  Domain-agnostic Visualizations and Interactions. Model en-
gineers create ML models trained using various algorithms with
data from diverse domains. VIME visualizations and interactions
are model- and domain-agnostic. For example, just as Samira used
VIME to explore the driving model for classifying aggressive driv-
ing, she can use it to investigate another sequential ML model [11]
that forecasts the physical functioning of people with MS.

To evaluate the MS model, Samira uses VIME to create a “what-if”
scenario where people with MS start their day with high fatigue,
suspecting it correlates with low functioning. She selects age as
time-independent, fatigue as time-dependent, and end-of-day (EOD)
lower extremity functioning (LEF) as the outcome. She then zooms
into the wake and morning time intervals on the range slider and
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Figure 8: What-if scenario from the driving model [15], where drivers stopped just before exiting the intersection: a) data
visualization tab, b) model visualization tab, and c) sample size determination panel. This scenario is under-represented in the
data, causing the model to over-generalize to physically impossible situations (e.g., entering the intersection at 50 mph and

decelerating to a full stop before exiting the intersection).
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Figure 9: What-if scenario from the MS model [11], where people with MS start their day with high fatigue. a) Feature selection
panel, b) data visualization tab, c) model visualization tab, and d) sample size determination panel. The model has generalized
to situations that are missing in the data (e.g., recovery towards high end-of-day (EOD) Lower Extremity Functioning (LEF)).

filters for high fatigue instances. Samira notices that this “what-if”
scenario is underrepresented in the data, with just 15 records, and
shows only “medium” or “low” EOD LEF (Fig. 9a). However, the
model correctly generalized to unseen data to forecast “high” EOD
LEF for people who are less fatigable [155]—people with MS that
can continue to perform physical activity despite feeling physical
fatigue (Fig. 9b). Thus, Samira concludes that although overgen-
eralization can lead to incorrect outputs from the model, correct
generalization can also yield accurate predictions from the model.

4 USER EVALUATION

We conducted a simplified user evaluation [126] with 14 ML en-
gineers using the think-aloud method [78, 79] to assess VIME.
To scope our evaluation, we focused on investigating trained ML
models before their deployment for real-world sequential decision-
making. Thus, we selected two off-the-shelf sequential ML mod-
els [11, 15] trained on existing datasets [72, 90] containing pooled
data from two domains. Our main goal was to compare VIME with

different existing tools for “what-if” scenario exploration. Thus, we
used Google What-If Tool (WIT) [180], which combines state-of-
the-art “what-if” scenario exploration tools into one system. To
facilitate sequential ML evaluation, we modified WIT by loading
it with data and predictions for each timestep and adding features
like timestep-specific Shapley values (similar to TimeSHAP [21]).

4.1 Datasets and Models

We chose two existing sequential ML models (Table 1) from two
domains to: 1) classify aggressive driving behaviors [15], and 2)
forecast end-of-day physical functioning of people with Multiple
Sclerosis (MS) [11]. Both models use a Markov Decision Process
(MDP) for sequential decision making, along with different ML
algorithms to estimate initial state probabilities P(sp) and transi-
tion probabilities P(s’[s, @), and an Inverse Reinforcement Learning
(IRL) algorithm to estimate action probabilities P(als). Those un-
derlying probability distributions map onto VIME'’s internal model
representation, but without loss of generality (Section 3.3.1).
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Table 1: Comparison between MS and Driving sequential ML models and datasets.

Comparison factors

MS dataset [90] and model [11]

Driving dataset [72] and model [15]

Total sequences in dataset

693 behavior sequences of 107 people with
clinically-identified Multiple Sclerosis (MS)

23,988 behavior sequences of 26 licensed drivers as they daily drove
through intersections of a mid-sized city in North America

Type of data

Pooled data (both cross-sectional and time-series)

Pooled data (both cross-sectional and time-series)

Type of model

Generative sequential model

Generative sequential model

Type of evaluation task

Forecasting end-of-day (EOD) functioning of people with MS

Classify aggressive driving instances

Type of ML algorithm

Bayesian Network with Inverse Reinforcement Learning

Bayesian Network with Inverse Reinforcement Learning

Each sequence length
and timestep

Five daytime intervals
(wake, morning, afternoon, evening, and bed)

Four positions in the intersection
(2s before entering, entering, exiting, and 2s after exiting)

Self-reported levels of (low, medium, high) EOD:
1. Lower extremity functioning (LEF)
2. Upper extremity functioning (UEF)

Ground truth(s) and
model outcome

Drivers had past records of existing traffic violation
(Yes, No)

1. Timestep: daytime intervals
2. Time-independent features:
2.1. Demographics: Gender, Age
2.2. Health condition: MS subtype, Mobility aids
3. Time-dependent features:
3.1. Symptoms (self-reported): Pain, Fatigue
3.2. End-of-day functioning (survey): EOD LEF, UEF

State features

1. Timestep: car position in the intersection
2. Time-independent features:
2.1. Environment: Intersection layout, Traffic signs, Maximum speed limit, Rush hour
2.2. Destination goal: Maneuver
2.3. Driving record: Existing traffic violations
3. Time-dependent feature:
3.1. Vehicle current state: Current speed

Time-dependent features:
1. Activity bouts (activity intensity),
2. Activity pace (slowing down in between activities)

Action features

Time-dependent feature:
Pedal (order of pressing gas or/and break, such as, breaking soft, throttle soft, braking hard)

1. ROC AUC for LEF forecast: 0.78
2.ROC AUC for UEF forecast: 0.85

Model’s outcome
estimation performance

~ 85% accuracy in classifying aggressive driving instances

Table 2: User study participants’ demographics and expertise who evaluated MS or driving data and model.

Gend A o t Race/ R h Research Domain Taken ML Implemented/used  Used XAI
ender 8¢ ccupation Ethnicity esearch area experience  knowledge class before ML models systems

PAO1 Woman  22-25  PhD student Asian E&T&mer selence, 3+ years No Yes Yes Yes
Computer science,

PA02 Man 26-30  PhD student Asian Data science, 4+ years No Yes Yes Yes
ML/AI

PA03 Man 31-35  PhD student Asian Compu‘ter science, 5 years No Yes Yes Yes
Data science

PAO4 Woman 22-25  Masters student  Asian l(?{(ét;’lputer selence, 2+ years No Yes Yes No

PAO5 Woman 22-25 Masters student Asian ML, HCI 2+ years No Yes Yes Yes

. Computer science,

PA06 Man 26-30  PhD student White HCL ML/AI 6 years No Yes Yes Yes
C ter science,

PAO7 Woman  22-25  PhD student White M‘:?}\’Iu erscience 2+ years No Yes Yes Yes
C t i

PA08 Man 22-25  Masters student  Asian M?TXIU er science, 1+ years No Yes Yes Yes

PA09 ‘Woman 22-25  PhD student Asian Data science 3+ years No Yes Yes Yes

PA10 ‘Woman 26-30  Masters student  Asian ML, HCI 2 years No Yes Yes Yes
C t i

PA11 Man 22-25  Masters student ~ White M?TXIU er seience, 2+ years No Yes Yes Yes
Ci ter sci

PA12 Woman 22-25 Masters student  Asian A{&TEIU er seience, 2 years No Yes Yes No

PA13 Man 22-25  Masters student ~ White Compu‘ter selence, 2 years No Yes Yes Yes
Data science

PA14 Man 18-21  Masters student ~ White Data science, 3 years No Yes Yes No

ML/AT

4.2 Choice of Baseline Toolbox for Evaluation

Existing interactive visualizations (e.g., waffle [87], Sankey [147],
probability plots [183]) and explanation tools (e.g., partial depen-
dence plots (PDP) [23], counterfactuals [171], Shapley values [21])
support “what-if” exploration in different forms. We selected the
Google What-If Tool (WIT) [180] because this toolbox combines
most of those explanation tools for “what-if” exploration at different
levels of granularity. For example, WIT includes Facet Dive [130]
tool, which displays model inputs and outputs in waffle charts
for exploring local and subgroup-level “what-if” scenarios, similar
to visualizations that we explored in Section 3.2. WIT users can
hypothesize and validate various explanations for the effects of fea-
tures on model outcomes by consulting various summary statistics,
identifying counterfactuals [171], and visualizing PDP [23].

Existing surveys [82, 98] and user studies demonstrated the
applicability of WIT in evaluating ML models trained on cross-
sectional [109, 181] and time-series [2, 56, 152] data. Following
those studies, we loaded the WIT tool with data and predictions (us-
ing the WIT “custom prediction function” API) for each timestep of
the sequence to support both time-independent and time-dependent
inputs and outputs. Also, we further modified and improved WIT
(using the WIT “feature attribution” API) by adding support for
timestep-specific Shapley values, similar to TimeSHAP [21].

Although other XAI tools [21, 102, 156] may support some as-
pects of sequential model exploration, they lack many of WIT’s
features or its broad applicability across different domains, data
types, and models. For example, Patient2vec [191] is a domain- and
data-agnostic tool tailored to evaluate sequential models trained
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Table 3: Closed coding scheme based on the user needs and
design goals that we have identified in Section 3.1.

Closed coding categories Codes

Supporting diverse « Domain-specific lived experience

deployment domains « Data and ML-centric expertise

Supporting diverse « Influence of time-independent features

data features « Influence of time-dependent features

Supporting different models | « Evaluate discriminative properties (e.g., classify, forecast)
and evaluation tasks « Evaluate generative properties (e.g., generate a sequence)
« Broad overview through global exploration

« Subgroup-level insight through cohort exploration

« Validate individual decisions through local exploration

« Ability to forage comprehensive evidence

« Meaningfulness and understandability of explanations

« Validate accuracy of explanations and justifications

« Effectiveness of explanations to highlight ML limitations
« Continuity between explanation tools

- Synthesize insights across diverse “what-if” scenarios

Supporting different
levels of granularity

Supporting user’s
mental model

Supporting multi-faceted
explanations

on Electronic Health Record (EHR) data. LSTMVis [161], Seq2Seq-
Vis [160], and ProtoSteer [115] focus on internal architecture evalu-
ation of specific sequential models (e.g., RNN-LSTM). Even though
the standalone TimeSHAP [21] tool visualizes time-series Shapley
values, it cannot create “what-if” scenarios.

4.3 Participants

We recruited participants from a Computer Science and Engineering
graduate student mailing list who were 18 years or older and who
had prior experience in implementing or using ML models (Table 2).
To ensure their ML expertise, participants completed a screening
survey, which asked them if they had taken ML courses and if they
had practical experience in developing, using, and evaluating ML
models. Note that although it may be convenient to recruit this
sample, our participants were graduate students with expertise
comparable to current ML engineers in the industry. We collected
simplified user testing data until we observed data saturation [127],
stopping at 14 participants. The participants were between 18 and
35 years old (7 men and 7 women). We compensated participants
by mailing checks ($15 per hour for up to 2 hours).

4.4 Study Design

We conducted in-person simplified user testing [126] with think-
aloud [78, 79]. Since no participant had specific domain knowledge,
we randomly assigned each new participant to evaluate either the
MS or the driving model until data saturation, stopping at eight
participants for the MS model and six for the driving model. We
compared VIME and WIT under identical conditions and tasks to
assess their strengths and weaknesses for addressing participants’
needs and challenges during sequential model evaluation.

4.5 Tasks and Procedures

After arriving at our lab, participants gave verbal consent after
reading the consent form to proceed. We explained the study tasks
and objectives for evaluating sequential ML models using XAI tools
and showed brief video tutorials on VIME and the baseline WIT
without disclosing their names. Participants then performed two
tasks to evaluate either the driving or the MS model. Each session
lasted approximately 2 hours. The study was reviewed and approved
as exempt from ongoing oversight by our university’s Institutional
Review Board (IRB).

Das Antar et al.

4.5.1 Task 1: Evaluating a Prescribed “What-if” Scenario. Task 1
asked participants to recreate a prescribed “what-if” scenario using
VIME and WIT in counterbalanced order to evaluate if it is possible
to create and interpret the resulting visualizations to draw insights
about model decisions. For the driving model, the scenario reflected
aggressive driving behaviors identified by driving instructors [15]:
“what if drivers stop while exiting an intersection with traffic signals
when going straight” (Fig. 8). For the MS model, we consulted with
a domain expert to select a relevant scenario that adversely impacts
people’s end-of-day functioning: “what if people with MS begin their
day feeling highly fatigued”.

4.5.2  Task 2: Evaluating Custom “What-if” Scenarios. In Task 2, par-
ticipants had to select their preferred tool to come up with, create,
and interpret their own “what-if” scenarios. They investigated the
correctness of sequential ML decisions and the ability to capture
meaningful input-output relationships in those scenarios. This task
also tested each system’s ability to provide explanations at different
levels of granularity. We also asked them to explain the reasons
behind their selected tool for Task 2.

4.6 Analysis Method

Our qualitative analysis evaluated how well VIME and WIT meet
the user needs and design goals outlined in Section 3.1. We tran-
scribed think-aloud audio sessions using online tools and imported
the transcripts, audio, and screen recordings into NVivo software.
To perform closed coding [182] on the user evaluation data, we
developed a codebook with initial codes falling into categories cor-
responding to the user need that we derived in Section 3.1.1. These
categories excluded the need to support various evaluation stages,
focusing instead on evaluating existing trained ML models.
Initially, we tested our codes on a subset of data to assess their
applicability and made necessary refinements. The first and sec-
ond authors independently conducted pilot coding in four study
sessions. They discussed the pilot sessions’ findings to calibrate,
reach a consensus, and refine the codebook until all authors agreed.
We listed the final, refined codes under each category in Table 3.
The two authors then applied the codes across all 14 study ses-
sions, periodically reviewing the data to ensure alignment with the
codebook. We kept detailed memos with examples and quotes, and
observations on how tool features aided participants’ explorations.

4.7 Limitations

Performing quantitative user evaluation could have provided in-
sights into the magnitude of the tool’s usability and effectiveness
(e.g., measuring task completion times, counting errors, and col-
lecting self-reported usability ratings). However, our qualitative
analysis still provided nuanced data necessary to identify and de-
scribe such usability issues. Also, closed coding enabled us to report
relevant user interactions, insights, breakdowns, and quotes to ob-
jectively evaluate participants’ preferences for WIT and VIME.

We compared VIME with only one baseline toolbox, instead
of comparing it with other XAI tools, too. However, comparing
standalone tools with VIME would be unfair due to their limited
features compared to VIME and WIT. Also, we focused on post-hoc
evaluation of trained ML models, making tools that support changes
in the model during development beyond this paper’s scope.
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5 RESULTS

Here, we present findings from our qualitative user evaluation
grounded in closed coding (Table 3). Since participants evaluated
pre-trained sequential models, our findings relate to post-hoc ML
evaluation after training and before deployment. We highlight key
findings from the user study tasks and the consistency of participant
outcomes. In Task 1, all participants identified similar types of model
limitations because they had to recreate the same scenario but came
up with a variety of scenarios with a diverse set of explanations
in Task 2, thus showing the versatility of VIME. Our results show
to what extent specific functionalities of VIME and WIT (Table 4)
accomplish our design goals and meet user needs.

5.1 Supporting Diverse Domains

Both VIME and WIT were designed to generalize to data from any
domain. Although neither VIME nor WIT prevented participants
from investigating models from different domains, neither offered
specific domain support. Thus, lacking formal expertise in the two
domains, participants had to leverage their lived experiences to
create different “what-if” scenarios and validate their hypothe-
ses about the models. For example, participants who drove came
up with scenarios they thought could be indicative of aggressive
driving, such as “overshooting stop signs ... while entering the intersec-
tion” (PA06), “[accelerating] to beat a [changing] traffic signal [yellow
or red]” (PA07), “speeding well above the [posted] limits” (PA03), and
“rapid acceleration followed by harsh braking” (PA14).

Participants further interpreted the data used to train the mod-
els as the ground truth (often blindly assuming the quality and
provenance of the data) and used it to justify model decisions:

“Model shows ... people [with MS] ... aged over 56 and
using mobility aids ... likelier to have low functioning
... such reasoning makes sense ... you should ask an MS
clinician to verify such outcomes further.” ~PA08

Still, recognizing their lack of domain knowledge, some partic-
ipants recommended cautious re-evaluation of their conclusions
before deploying the models for real-world decision-making.

5.2 Supporting Different Data & Feature Types

VIME was more helpful to participants than WIT when evaluating
the two models trained on pooled data. Both tools helped simplify
“what-if” scenarios by selecting and filtering subsets of relevant
features. However, the 2D waffle chart (WIT’s primary way of
visualizing relationships between features) did not allow partic-
ipants to visualize the influence of more than two features at a
time. Thus, participants struggled to expand long sequences and
visualize branching in time-dependent feature values when using
WIT. When creating the prescribed scenario in which a car stops at
a traffic signal intersection proceeding straight, PA07 mentioned:

“While evaluating a scenario with maneuvers & traffic
signs [time-independent], exiting speed [time-dependent],
and traffic violations [outcome] ... comparing only two
features at a time [in WIT] is burdensome.” -PA14

Adding Shapley value visualization for time-dependent features
to WIT helped participants visualize those features’ importance
when predicting outcomes across different timesteps. For example,
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PA11 observed that “Pain” and “Fatigue” at bedtime have the highest
Shapley values when forecasting physical functioning, but could
not determine “if morning pain and fatigue [Shapley] values have
any residual impact on their high [Shapley] values at bedtime” (PA11).
Thus, helping participants interpret individual feature contributions
at each timestep does not necessarily help them understand the
relationship between different time-dependent features.

In contrast, VIME gave participants control over the number
of features they wished to visualize and evaluate. Using VIME’s
interactive Sankey diagrams, they could visually track the flow
and relationships of different features and their influence on the
outcome, regardless of the feature type. They also used the range
slider to zoom in and view those feature values within a particular
range of timesteps while keeping track of the outcome features.

5.3 Supporting Different Model Types

VIME outperformed WIT for evaluating models’ discriminative abil-
ities (e.g., classifying sequences of driving behaviors as aggressive
or non-aggressive), primarily due to better support for time-series
data and time-dependent features, as described in Section 5.2.

VIME was also more effective in helping participants investigate
the two models’ generative properties. This is because WIT was
primarily designed to evaluate discriminative ML models. WIT does
not have a feature to automatically generate more data from the
models; instead, it focuses on visualizing existing data used to train
and test the models. With WIT, participants manually created new
data points by editing existing individual sequences already present
in the data (similar to the Prospector tool [92]):

“T can edit a [waffle] cell to generate a missing sample
and see how it affects model predictions ... [WIT] doesn’t
let me generate multiple samples.” —PA02

In contrast, VIME has built-in features that support generative
model evaluation. For example, PA04 used those features to generate
scenarios not present in the data to explore the differences between
aggressive and non-aggressive driving behaviors:

“The model associates sudden stops at high speeds with
past traffic violations ... [VIME] lets me filter and create
model samples with no violations, where cars approach
intersections at the speed limit and stop gradually with-
out hard braking” —PA04

This example highlights VIME’s utility in evaluating generated
sequences and later using those sequences to classify outcomes.

5.4 Supporting Different Levels of Granularity

It was easier for participants to create global and cohort (subgroup)
level “what-if” scenarios with VIME than WIT. To create global
scenarios with VIME, participants simply selected relevant features
without applying any filters. They then applied filters to create
cohorts. They often used time-independent features to “anchor”
their cohorts to model features that do not change within a sequence
(e.g., specific intersection layout, specific MS subtype).

However, participants struggled to create local explanation sce-
narios in VIME (i.e., scenarios showing a single sequence). They
could not select a specific sequence from the Sankey visualization;
they had to repeatedly apply filters until they reached a single
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Table 4: Functionalities of VIME and WIT influencing participants’ experiences during sequential ML evaluation.

Functionality criteria Visual Interactive Model Explorer (VIME)

Google What-If Tool (WIT)

Domain-agnostic visualization Interactive Sankey visualization

Interactive waffle chart

Evaluating cross-sectional and

time-series data features and time-dependent inputs and outputs

Separate representations to visualize time-independent

We separately load the time-independent and
time-dependent features and their Shapley values

Evaluating sequential models

Internal data and model representation to support sequential ML

‘We modified and improved WIT to support sequential ML

Creating “what-if” scenarios at
different levels of granularity

Filter, zoom-in/out, and feature value grouping
to create local, sub-group, and global “what-if” scenarios

Facet dive tool to bin and edit data points
to create local, sub-group, and global “what-if” scenarios

Details on demand about feature distributions
and relationships in relevant scenarios

Understanding feature value
distributions and relations

Time-dependent Shapley values, counterfactuals, and Partial
dependence plots (PDP) to identify key feature contribution

Explanation sessions with
each tool in the toolbox

Multifaceted “what-if” scenarios help combine insights from
partial explanations to simplify complex ML evaluation

Each explanation tool offers independent
explanation sessions to evaluate the model outcome

sequence. With WIT, participants could quickly drill down to in-
dividual sequences by selecting them in waffle plots or using the
counterfactual tool to identify the “closest” counterfactual example.
Thus, VIME requires support for quickly selecting and viewing local
individual instances as the smallest unit of sequence comparison.
Using WIT, participants easily viewed the built-in global Shapley
value plots and Partial Dependence Plots (PDP) to assess feature
importance. However, they struggled to make sense if feature im-
portance in those plots holds across different levels of granularity:

“.. high positive Shapley values for Traffic Sign and
Maneuver ... seems very important to [predict] aggres-
sive driving ... I can’t understand why they stand out ...
whether the influence is scenario-specific.” —-PA11

In the example above, PA11 struggled to understand if “Traffic
Sign” and “Maneuver” features are also important for specific sce-
narios (e.g., for different intersection types or at different driving
speeds). Participants could easily address such confusion in VIME:

“T exactly know which [what-if] scenario I am evaluat-
ing ... I can control the [level of | granularity I want for
the [Sankey] visualization using filters” -PA13

This is because they could easily select features they wanted
to visualize using VIME, and modify which features (and their
corresponding values) they wanted filtered in the filter menu.

5.5 Supporting User Decision Making

VIME’s approach to scenario-based interactive model exploration
helped participants derive more meaningful and accurate explana-
tions compared to WIT. We attribute this to the match between
VIME scenario-based sequence visualization and the participants’
mental model of sequential decision-making. Also, in WIT, partici-
pants had to work to reconcile the inconsistencies across different
explanation tools and their contradictory outputs even for the same
“what-if” scenarios:

“Shapley values show high influence of MS subtype and
age for forecasting functioning in females with MS ...
the Partial Dependence Plot contradicts.” —PA01

After creating “what-if” scenarios, VIME interactions enabled
participants to seek and obtain evidence for sequential model deci-
sion explanations they derived. They validated outcomes against
the “ground truth” using the data tab, where scenarios are mirrored:

“The model shows cars stopping [at intersections] from
over 50mph ... seems impossible ... such transition doesn’t
exist in [VIME’s] data tab ... model overgeneralized to
missing data scenarios.” —~PA03

PAO03 observed the driving model’s tendency to overgeneralize in
missing data scenarios, applying uniform probability to outcomes.
Participants also identified limitations due to missing features:

“Stopping at a green light intersection having the right
of way could be less aggressive compared to red light
or all stop intersections ... without [traffic] light color
feature in the model, I can’t confirm.” -PA07

Thus, participants were able to identify not only missing features
but also latent domain knowledge that could have helped improve
the model and their ability to evaluate model correctness.

5.6 Supporting Multi-faceted Explanations

VIME and WIT both offered a toolbox integrating various expla-
nation tools to offer different perspectives on the data and model
outputs. VIME’s centralized tools and visualizations allowed for con-
tinuity between different questions participants wanted answered.
However, participants noted that the tools in WIT were isolated,
each providing separate explanation sessions:

‘.. challenging to re-create the same scenario when
switching from Shapley values to Partial Dependence
Plots. I wish the system [WIT] restored the evaluation
scenario across different explanation tools.” —~PA09

Thus, having to recreate the same scenario in each of WIT’s
diverse tools broke the sensemaking flow for the participants.

In contrast, VIME’s interface maintained continuity across in-
teractive tools to control the Sankey visualizations. This allowed
participants to simplify evaluating long sequences by breaking
them, step-by-step, into smaller, manageable “what-if” scenarios.

5.7 User Preferences for VIME and WIT

Out of 14 participants, 12 (85%) chose VIME for the final task, show-
ing their preference towards VIME for evaluating sequential ML
models. When asked, they attributed this choice to their initial
experiences of creating a fixed “what-if” scenario with both tools in
Task 1, the learning curve of each explanation tool, the usability of
visualizations and interactions, the simplicity of identifying errors,
and the ability to evaluate time-dependent features at different
granularity. Also, among PA06 and PA07, who initially chose WIT
for Task 2, PA06 switched to VIME and mentioned:

‘T wanna compare T-type and four-way intersections ...
no way I can visualize 24 possible [intersection] layouts
in the waffle [chart] ... at least in the 1st tool I could
group ... can I change [to VIME]?” —~PA06
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Table 5: Summary of design implications for interactive explanation tools for sequential ML evaluation.

Discussion points Breakdowns

Design implications

“What-if” scenarios with time-dependent features

“What-if” exploration . . PR
over many timesteps complicates visualization

simplifies evaluation

« Sliding and shifting controls in range sliders for adaptable timestep adjustments
« Grouping time-dependent features across timesteps

Challenging to recall and apply insights from
previously explored “what-if” scenarios

« Interactive cards for recalling past explorations with “what-if” scenarios

Inadequate evidence foraging and misunderstanding

Supporting foraging explanations may lead to misleading evaluations

« Highlight parts of Sankey visualization to trace model decision pathways
« Provide summary-based explanations and gather user feedback

and sensemakin, : -
g Without clear warning, users can develop

over- or under-reliance on model decisions

« Caution message to communicate model limitations and uncertainties

Designing for Explanations tailored for computer
broader stakeholders science-savvy experts may not aid end-users

« Explanation systems catering to broader end-users (domain experts,
policymakers, and consumers) needs and expertise during evaluation

The built-in features of VIME, specially designed for large se-
quential ML model exploration, offered a more usable alternative
to the current state-of-the-art WIT for this evaluation task. Here,
we credit VIME’s close integration between tools that supported
continuity in model exploration and aided participants in their
decision-making and evaluation. This is something that other exist-
ing toolboxes do not currently include but should.

We observed no notable differences in task completion times,
with each participant allocated a fixed time for Tasks 1 and 2 to
identify model errors and limitations in given or chosen scenarios.

6 DISCUSSION

We contextualize findings and takeaways from our user evalua-
tion to further improve sequential model evaluation systems. We
highlight design implications [167] for user-centered interactive
explanations that may simplify “what-if” scenario creation and
evaluation, improve foraging and sensemaking, and cater to the
diverse needs and expertise of a broad group of end-users (Table 5).

6.1 “What-if” Exploration Simplifies Evaluation

VIME’s multifaceted interactions allowed users to derive “what-if”
scenario-based explanations and combine them to holistically eval-
uate large sequential models. Instead of visualizing every feature all
at once, users could simplify their analysis into familiar and man-
ageable “what-if” scenarios. Similar to existing rule-based [69] and
hypothesis-testing [106] methods, interactive visual model explo-
ration may help users synthesize scenario-specific prior knowledge
and intuition [33] during model evaluation.

Future interactions could offer users even more control to cus-
tomize and simplify “what-if” scenarios. For sequences with many
timesteps, sliding and shifting windows in the range slider may
allow quick selections of specific timestep ranges for visualization.
Grouping time-dependent features across timesteps could further
simplify analysis. Also, users may struggle to recall and apply in-
sights from previously explored scenarios to new ones. Therefore,
it is important that future model exploration interfaces facilitate
tracking explanations across scenarios (e.g., using interactive cards
for scenario-specific explanations) and provide real-time feedback
to help recall and synthesize insights.

6.2 Supporting Foraging and Sensemaking

We approached users seeking and deriving explanations through
interactive model exploration as engaging in a cognitive process of
foraging and sensemaking [27, 83, 162]. Our focus was on helping
users update their mental models about how sequential ML models

function and what decisions they make. Our findings showed the
value of interactions that provide users with a path to find mean-
ingful explanations that match their mental models, expertise, and
specific queries. Thus, toolboxes like VIME need to simplify the
evidence-gathering process to help users develop and amplify their
information-foraging competencies and skills. This will, in turn,
allow them to interactively seek evidence and justify relationships
between different model inputs and outputs.

Future interactions could allow users to trace decision path-
ways in the evidence foraging stage by highlighting parts of the
Sankey visualization and gathering user feedback to ensure expla-
nations align with model decisions. This could lead to alternative
explanation tools, such as summary-based explanations with natu-
ral language processing (NLP) for translating model-specific user
queries into “what-if” questions. Additionally, caution messages
could communicate the model’s knowledge limits, clarifying that
explanations are reliable only under specific conditions and with
adequate output confidence. This could further support users in
assigning meaning to the evidence collected through foraging.

6.3 Designing for Broader Stakeholders

Our findings showed that VIME can help computer science-savvy
model engineers in their evaluations. Yet, their lack of domain
knowledge hindered their ability to suggest solutions for domain-
specific model limitations they identified. Such lack of domain and
task expertise [120, 151, 169, 174] could further impact the ability of
the user to identify strengths and limitations (i.e., trustworthiness)
of the models they are exploring [16].

Also, we can not expect model engineers always to be present to
debug and monitor their models after deployment. Other stakehold-
ers with diverse domain and task expertise [47, 76, 95, 164, 170]
seek to independently explore the models they interact with. Those
end-users include domain experts knowledgeable about the model’s
application area, policymakers regulating those models, and con-
sumers who interact with interfaces supported by those ML models.

Therefore, it is important to evaluate the effectiveness of tool-
boxes like VIME to support a broader set of stakeholders in ML
model evaluation. Formative studies with those end-users can help
identify their needs, challenges, and context of use during ML eval-
uation. Such insights could inform the design of future explanation
tools tailored to their needs and expertise.

7 CONCLUSION AND FUTURE WORK

We presented Visual Interactive Model Explorer (VIME), a data-,
domain-, and model-agnostic toolbox allowing model engineers
to holistically investigate their trained sequential ML models. As
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a system design contribution [184] towards human-centered eX-
plainable AI (HCXAI) [48], VIME facilitates interactive exploration,
debugging, and monitoring of ML model errors and limitations.
Visualizations and interactions in VIME help users effectively ex-
plore sequential data and models by decomposing long sequences
of model decisions into simple “what-if” scenarios for comparison.
Our findings showed that VIME makes it easier for model engi-
neers to investigate how (e.g., how their ML model makes a partic-
ular decision?) and what-if (e.g., if the input was different, would
their ML model make a different decision?). A series of interactions
in VIME helped users identify and debug sequential ML model
limitations, including over-generalization, spurious correlations,
missing feature values, and missing input-output relationships.
Future work should explore the design of explanation tools and
toolboxes that target other end-users who may not have computer
science-savvy expertise but seek explanations about ML models
they interact with. Insights from our iterative design and evaluation
of VIME will inform the design of interactive XAI tools that as-
sist diverse stakeholders in evaluating sequential decision-support
systems for their broader adoption in real-world domains.
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