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Abstract

Background Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo0), is one of the most devastating diseases of rice
leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B,
mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The
xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the
expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider
use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance
to bacterial blight disease.

Methods and results Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the suscep-
tible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three
recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26
for LOC_0Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and
96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared
to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation.

Conclusions The Indel marker at the locus LOC_0Os08g42410 was found co-segregating with the phenotype, suggesting
its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_
0s08g42410 in the resistance conferred by the bacterial blight gene xa-45(1).

Keywords Bacterial blight - Recombinant inbred lines - Derived cleaved amplified polymorphic sequences - Single
nucleotide polymorphism - qRT-PCR - Oryza glaberrima

Introduction of various biotic and abiotic stresses under changing agro-

climatic conditions poses a significant threat to rice pro-

Rice (Oryza sativa L.) is a crucial staple food, sustaining
half of the world’s population. While its production has
steadily risen over the past decade, meeting the demands
of a growing population necessitates further increases by
2050 (https://www.statista.com/). However, the emergence
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duction worldwide. Out of various rice-infecting diseases,
Bacterial Blight (BB) stands out as an ancient and acute
disease caused by the bacterium, Xanthomonas oryzae pv.
oryzae (Xoo) [1, 2]. This bacterium is responsible for caus-
ing 20-30% yield loss which may reach up to 75% annually
specifically in irrigated and rain-fed lowland rice-growing
areas throughout Asia [1, 3, 4]. BB lesions cover the leaves,
diminishing photosynthesis and consequently leading to
a significant reduction in yield owing to incomplete grain
filling. The initial incidence of this disease was recorded
in 1975 in Bihar, with subsequent spread observed in the
Palakkad district of Kerala, as well as in Andhra Pradesh,
Haryana, Kerala, Orissa, Punjab, and Uttar Pradesh [5, 6].
In order to manage this disease, 47 BB-resistant genes,
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named Xa/xa have been identified from various sources [7],
mostly documented with tightly linked molecular markers.
Among these, 18 genes viz. xa5 on the rice chromosome
5 (C5:437,010-443,270) [8], xa8 on the rice chromosome
7 (C7:3,697,195-3,706,830) [9], xa9 on the rice chromo-
some 11 (C11:27,778,967-27,605,189) [10-12], xal3
on the rice chromosome 8 (C8:26,725,952-2,678,794,
26,816,798-26,813,624) [13-15], xal5 [16], xal9 on the
rice chromosome 7 (C7:RM8262-RM6728) [17], xa20 on the
rice chromosome 3 (C3:KIC-33.88-KIC3-34.06) [18], xa24
(C2:RM14222-RM14224) [19, 20], xa25 on the rice chro-
mosome 12 (C12:17,302,073-17305326) [21, 22], xa26 on
the rice chromosome 11 (C11:27,778,967-27,605,189) [10,
23], xa28 on the rice chromosome 6 [23], xa31 on the rice
chromosome 4 (C4: G235-C600) [24], xa33 on the rice chro-
mosome 6 (C6: RMWR7.1-RMWR7.6) [25], xa34 on the
rice chromosome 1 (C1:11,237,861-11,475,805) [13], xa41
on the rice chromosome 11 (C11:1,874,478-18,171,678)
[26], xa42 on the rice chromosome 3 (C3: KGC3_16.341&
KGC3_16.399) [27], xa44 (C11:11,964,077-11985463) [7]
and xa-45(t) (C8:26,725,954-26,728,807) [28] have been
found recessive and rest 29 genes are of dominant type.
Fine mapping of the identified resistance genes are
required to pinpoint specific gene sequences facilitates the
efficient transfer of desirable genes into elite varieties. Vari-
ous methodologies are employed for fine mapping of genes.
For instance, in the case of Xal, map-based cloning involved
isolating a 340 kb YAC clone spanning the locus, followed
by constructing a cDNA library of IRBB1. The identified
clones were then utilized for high-resolution linkage map-
ping, complemented with testing against various Xoo races
[29]. Among the characterized genes, only Xa21 and Xa3/
Xa26 are implicated in the regulation of gene-for-gene type
disease resistance [30]. Furthermore, positional cloning,
including critical recombinant selection, SNP assay between
recombinant markers followed by RT-PCR, and in-silico
sequence homology analysis, led to the narrowing of the
100 kb xa5 segment to an 8.1 kb region encoding a transcrip-
tion factor TFIIAy [31]. The Xal0 locus was fine-mapped to
the proximal side of marker E1981S with a genetic distance
of 0.93 cM, belonging to a 74 kb region on the Nippon-
bare genome bearing 6 candidate genes [32]. The recessive
resistance gene xal3 was precisely mapped to a 14.8 kb
region with the aid of BAC libraries [13]. Similarly, Xa23
underwent fine mapping to a 0.4-0.6 kb area utilizing TAC
and PAC libraries, employing EST marker PCR products of
0.8 kb and 7 probes for restriction fragment length polymor-
phism (RFLP) survey [32]. Another resistant locus identi-
fied against Korean Xoo races, Xa43(t), was fine-mapped
to a 119 kb interval flanked by marker IBb270s11_14 and
S_BB11.ssr_9 harboring 9 target ORFs [33]. It remains
imperative to identify newer and stronger resistance genes
against BB, especially in the diverse cultivars of rice, and
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transfer them to the elite BPH-susceptible cultivars to gener-
ate durable resistance against bacterial blight disease.

Wild rice species are rich sources of resistance to vari-
ous disease and insect pests and has tremendous potential
as a source for improving cultivated rice produce. Eleven
BB resistance genes have been identified from eight wild
species viz; Xa2l from O. longistaminata [34], Xa23 and
Xa30(t) from O. rufipogon [35, 36], Xa27 and Xa35(t)
from O. minuta [37, 38], Xa29(t) from O. officinalis [39],
Xa32(t) from O. australiensis [40], Xa33(t) and Xa38(t)
from O. nivara [3, 41], Xa34(t) from O. brachyantha [42]
and xa41(t) from O. barthii [26]. At PAU, a novel recessive
BB-resistance locus designated as xa-45(t) was identified
on rice chromosome 8 from O. glaberrima accession IRGC
102600B. The SNP markers C8.26737175 and C8.26818765
demonstrated a LOD score of 33.22. The peak marker,
C8.26810477, explained 49.8% of the total phenotypic vari-
ance. The identified QTL cover an 80 kb segment on the
Nipponbare reference genome IRGSP-1.0, encompassing
nine candidate genes. Here, we aim to pinpoint a candidate
gene and conduct expression analysis to reveal the probable
gene responsible for the resistance.

Materials and methods
Plant materials

An introgression line IL274 was developed by backcross-
ing of the F,’s generated from a cross between bacterial
blight susceptible parent Pusa 44 and the resistant par-
ent O. glaberrima IRGC 102600B [28, 43]. The mapping
population was developed by crossing this introgression
line, IL274 with Pusa 44. The F,’s were selfed using single
seed descent method till F¢ and F; generation The recom-
binant inbred lines (RILs) were sown in the kharif season
2019 (F¢ generation) and 2020 (F, generation) for screening
against Xoo pathotype 7 (PbXo-7). The experimental design
used for planting RILs was a Randomized Complete Block
Design with standard row to row and plant to plant spacing
of 20X 15 cm for each RIL.

Bacterial blight inoculation with Xoo pathotype
PbXo-7

The Xoo bacterial inoculations were performed following
Kauffman’s leaf-clipping method to evaluate the disease
reaction of population. The Xoo strain PbXo-7 was iso-
lated from the ooze of cut leaves viz. reservoir of specific
bacterial strains [44]. The ooze so obtained was streaked
on Walkimoto media (10 g sucrose, 5 g peptone and 20 g
agar/1000 ml distilled water) plates or slants, and were incu-
bated at 27-30 °C for 72 h and these colonies were further
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stored as stock at 4 °C. Xoo isolates were revived on the
same media at 30 °C and grown colonies were suspended
in sterile distilled water to a concentration of about 108 cell/
ml to prepare the inoculum. This Xoo inoculum was used
to inoculate and assess the disease reaction of plant mate-
rial at maximum tillering stage following the leaf-clipping
method [45].

Phenotypic assessment

The mean lesion length or SES qualitative score using 0-9
scale was used for phenotyping of the population. For this
study, average lesion length of five leaves from each indi-
vidual plant was inoculated with pathotype PbXo-7 in trip-
licates and its lesion length was recorded after 14 days of
inoculation. The lesion length up to 5.0 cm (disease score
1-3) was classified as resistant, between 5 and 10 cm (dis-
ease score 3—5) as moderately resistant, 11-15 cm (disease
score 5—7) as moderately susceptible and greater than 15 cm
(disease score 7-9) as susceptible [46] (Fig. S1). The Chi-
square test was used to test the goodness of fit for ascertain-
ing the number of genes governing the BB resistance.

DNA extraction of RIL population

The large-scale DNA extraction protocol was followed to
isolate DNA of Pusa 44 (susceptible parent), IL274 (resist-
ant parent), along with the RIL population following stand-
ard CTAB (Cetyl Trimethyl Ammonium Bromide) method
[47]. The high molecular weight genomic DNA was evalu-
ated for its quality and integrity on 0.8% agarose gel electro-
phoresis. Further, DNA quantity and purity were determined
using spectrophotometer at 260/280 nm absorbance ratio.

Sequence analysis of candidate genes in Pusa 44
and IL274

For the 9 candidate genes, locus-specific primers were
designed using Perl primer offline tool, keeping the param-
eters to default. The genomic sequences of candidate genes
were downloaded from the Nipponbare reference genome
IRGSP 1.0 available at the Rice Genome Annotation Project
database for designing overlapping primers for full-length
gene amplification (http://rice.plantbiology.msu.edu/). A
PCR reaction of 20-50 ul volume was carried out using
hi-fidelity Tag polymerase Extaq (Takara) for the purpose
of sequencing, which was preceded in triplicates to attain
stringent data. The sequencing data involved AB1 files, that
were first used to align each overlapping primer of a single
gene to fetch a continuous stretch of sequence using DNA
Baser Assembler. Following this, the individual forward
and reverse sequences were aligned to generate full contig
of genes so as to find the variations among Pusa 44 and

IL274 with respect to all candidate genes using CLUSTAL X
offline tool. The tools aided the identification of the putative
SNPs and Indels for the described locus.

Identification of SNPs and indels for marker
development

For analysing and verifying the putative SNPs, dCAPS
markers were designed using an online tool dCAPS finder
2.0. The genomic sequence of two haplotypes which was
identical except for the putative SNP was used for designing
these primers. The input included 25 nucleotide sequence
with the SNP in between for wild and mutant alleles, where
Pusa 44 was considered as wild while IL274 as mutant hap-
lotype. Initially, the output from zero mismatches shows
whether a CAPS marker is present or not. Further, the
number of mismatches was increased in each run until a
potential dCAPS marker was obtained. The genotyping of
population was conducted through dCAPS analysis, which
included PCR amplification, amplicon confirmation through
agarose gel electrophoresis followed by its restriction diges-
tion using a suitable enzyme. The reaction involved 5 pl of
PCR product, optimal units of restriction enzyme, buffer
owing to 100% activity of enzyme and nuclease-free water,
which was then incubated at optimal temperature and time.
These enzymatic digestions were visualized by agarose gel
electrophoresis for genetic profiling. Apart from SNPs, the
sequential variations included Indels and thus, Indel-based
markers were developed using Perl primer tool, in such a
way that the insertion-deletion region was included within
the amplicon.

RNA extraction and cDNA preparation

To conduct quantitative expression analysis of candidate
genes, leaf samples of susceptible parent (Pusa 44) and
resistant parent (IL274) were collected in the time span on
8, 24, 48, 72 and 96 h post Xoo inoculation and its total
RNA was isolated along with the control leaf samples col-
lected before Xoo inoculation. Prior to extraction, all the
plasticware, glassware and pestle-mortars were treated with
1X DEPC (Diethyl pyrocarbonate) followed by its autoclav-
ing to attain complete sterilization. Total RNA was isolated
from leaf samples using TRIzol reagent (Takara), follow-
ing manufacturer’s instruction. The quality of isolated RNA
was confirmed with denaturing agarose gel prepared in 1X
MOPS [3-(N-Morpholino) propane sulfonic Acid] buffer.
The total RNA, appropriately denatured was visualized as
ribosomal RNA with 28S, 18S and 5S subunits and qual-
ity was evaluated based on three distinct bands on gel. The
concentration of RNA sample was measure using Thermo
scientific NanoDrop™ 1000 spectrophotometer. The sam-
ples having 260/280 absorbance ratio between 1.9 and 2.1,

@ Springer


http://rice.plantbiology.msu.edu/

626 Page4of11

Molecular Biology Reports (2024) 51:626

were characterized as adequately good quality and pure
RNA. From the normalised RNA samples, First-strand of
cDNA was synthesised by reverse transcribing total RNA
using PrimeScript 1st strand cDNA synthesis kit (Takara).
Subsequently the intactness of cDNA was assessed by a PCR
amplification of template cDNA with house-keeping Actin
gene-specific primer, followed by agarose gel electrophore-
sis for visualising an amplicon of 67 bp.

Quantitative real-time PCR assay

To facilitate Quantitative Real-time PCR analysis (qQRT-
PCR) gene specific primers of the candidate genes were
designed using Perl primer tool under default parameters.
The primers designed for QRT-PCR comprises of an ampli-
con size within the range of 80-220 bp (Table S1). Relative
expression of all the candidate gene at O, 8, 24, 48, 72 and
96 h post inoculation with Xoo pathotype-7 was analysed
keeping Actin as an internal control. This qRT-PCR assay
was performed using 96-well StepOnePlus Applied Biosys-
tem RT-PCR. The PCRs conditions for the all the primers
were set up as: 94 °C for 3 min, followed by 45 cycles for
30 s at 94 °C, 42 s at T,(°C), 30 s at 72 °C. Expression
dynamics were analysed subsequently by 2=AACY method
given by Livak and Schmittgen in 2001 [48]. The relative
expression of target genes was normalized to reference gene
expression for each sample where 2“2V value represents
fold change in gene expression in stress conditions relative
to the control conditions.

Results
Inheritance pattern of BB resistance gene xa-45 (t)

To evaluate the inheritance pattern, we recorded the disease
reaction of Fy and F, population against Xoo pathotype 7
(Fig. 1). The populations were consecutively screened for
two years against PbXo-7. The phenotypic evaluation of the
mean data of F, and F, disease reaction against PbXo-7,
showed 1:1 segregation ratio for recessive gene xa-45(t).
Among the 290 individuals, 152 were resistant while 141
were displaying susceptible disease reaction fitting to 1:1
segregation ratio. The Chi-square value was found non-sig-
nificant at 5% level of significance (0.2, 2.33 <3.8 x* 0.05.1)
(Table 1). Thus, the inheritance and segregation pattern from
these results implies that a single gene is responsible for
conferring resistance governed by xa-45(t).

Parental sequential variations

The recessive xa-45(t) gene, confining to an 80 kb region
harbours 9 candidate genes. The sequencing results obtained
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Fig. 1 Bacterial blight disease reaction of F; RILs against PbXo-7
according to standard evaluation system; P1: Pusa 44, P2: IL274, R:
Resistant (Score 1-3), S: Susceptible (Score 7-9)

Table 1 Chi square analysis of Fg and F,; Recombinant Inbred Lines
(RILs) developed from the cross Pusa 44 x1L274 indicating single
recessive gene inheritance of xa-45(t)

RIL popula- No. of plants

X2 catcutated (1:1) X2 Table (0.05,1)

tion R S
Fy 161132 2.8 3.84
F, 152 141 0.41 3.84

R: Resistant (0-3), S: Susceptible (5-9)

from overlapping primers for the candidate genes revealed
13 SNPs and 5 Indels among the two parents. To put in
view, 4 SNPs were found for LOC_Os08g42370, a SNP
and an Indel corresponding to LOC_0Os08g42390, LOC_
0s08g42400 having 2 SNPs and Indels, 3 SNPs and 10 bp
deletion in LOC_Os08g42410, 1 SNP pertaining to LOC_
0s08g42420 while LOC_Os08g42440 comprised of 2 SNPs
and an Indel. The LOC_0Os08g42360, LOC_0Os08g42380
and LOC_0Os08g42430 were not considered for the can-
didacy due to the absence of variation in the nucleotide
sequence of resistant v/s susceptible parents. From the
whole, 7 putative SNPs and Indels belonging to 6 candidate
genes were selected in correspondence to IL274 (Table 2)
for the marker development.

Genotyping of the mapping population using SNP
and Indel-based marker

We conducted fine mapping of xa-45(t) gene using
dCAPS markers designed for LOC_0Os08g42370, LOC_
0508242390, LOC_0s08g42400, LOC_0Os08g42420, and
LOC_0s08g42440 (Table 2). These polymorphic markers
were employed for genotyping of F, population (Fig. 2,
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Table 2 List of SNPs and Indels identified in the candidate genes and their corresponding Derived Cleaved Amplified Polymorphic Sequences

(dCAPS) primer sequences

Gene_ID Alleles Position® Primer sequence Enzyme used
F (5'-3") for confirma-
R (3-5) tion
LOC_0s08g42360° - - -
LOC_0s08g42370 T/GP 723
A/T® 927 F-AGTTTAATGATCATGTTCAGTATCC Nlalll
R-GGCAGAACCAAATGTATCAC
T/C?* 999 F-GACTTTAGCTAAATTTAGAAGTTCA Nlalll
R-ATTTAGCATGAAGACCAGCG
T/C? 1087
LOC_0s08g42380° - - -
LOC_0s08g42390 C/A® 1485 F-TCTTCTATGAAAGGAGTCAACTGGA Acul
R-ATGCTGAGGAAACATTTGAC
Al- 1838
LOC_0s08g42400 T/GP 2157 F-TGCTCGTTTTGATTGAGAGAATATT Swal
R-TTCATGTAACAAGTTCAGATGGTTT
A/G* 2374
Al- 2681
AT/ 2783
LOC_0s08g42410 A/CP 1068
A/T® 1220
T/G® 1313
TCTCTCTCTC/ 4458 F-GTTGGCGCTGAAATATGGTC Indel Marker
R-ACAAAGCAGCAGCCGTAAGT
LOC_0s508g42420 C/G® 2526 F-GCCCTAAATTTATGAACAGAACTGA Hgal
R-CCCAGATTTGATATCTTCTGCA
LOC_0s08g42430° - - -
LOC_0s08g42440 A/- 3311
T/C?* 3455 F-AAGCACCGGGAGCAACAAACGGAACG HpyCHIV
R-CTTCTTCTCCCTGTACCGCT
T/C? 3563
ATransitions

Transversions observed

“The SNP position with respect to the reference sequences of candidate gene from http://rice.plantbiology.msu.edu/
INo sequence variations observed for LOC_0s08g42360, LOC_0s08g42380 and LOC_0Os08g42430

Fig.2 Genotyping of F; popula-
tion with dCAPS markers a
LOC_0s08g42440 digested
using HpyCHIV, b LOC_
0508242420 digested using
Hgal, ¢ LOC_0s08g42370
digestion using Nlalll
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Table S2). Among the 190 individuals, three recombinant
inbred lines (11, 124, and 125) exhibited breakpoints with
respect to LOC_0Os08g42370 and LOC_0Os08g42400.
Intriguingly, these individuals displayed a resistant disease
reaction to PbXo-7, contrary to their genotypic data, which
indicated susceptibility. For the markers LOC_Os08g42420
and LOC_0s08g423440, we identified 15 and 26 recom-
binants between genotype and phenotype, respectively,
suggesting that these loci were not associated with xa-45(t)
(Fig. 3a). An Indel marker of the locus LOC_0Os08g42410
exhibited clear size differentiation between the parental lines
and were used for genotyping of F, population (Fig. S2). A
refined genetic map of xa-45(¢) is provided in Fig. 3b.

Expression dynamics of candidate genes

The expression study of putative candidate genes was
conducted with three biological replicates of the parental
lines at the specific time points including 0, 8, 24, 48, 72,
and 96 h after PbXo-7 inoculations. The transcript abun-
dance assay for LOC_Os08g42370, LOC_0Os08g42390 and
LOC_0s08g42420 unveiled higher number of transcripts
in Pusa 44 at 8, 24, 48, 72 and 96 h post inoculation experi-
ments with maximum fold change of 3.47 at 24 h, 9.68 at
96 h and 5.45 at 24 h respectively. This enumeration indi-
cated for Pusa 44; serve to eliminate LOC_Os08g42370,
LOC_0s08g42390 and LOC_Os08g42420 as potential
candidates. The two candidate genes LOC_Os08g42380,
LOC_0s08g42430 could not be validated due to difficulties
encountered in obtaining amplification with their respec-
tive primers. Differential expression among the resistant and
susceptible reaction against PbXo-7 was not observed for
LOC_0s08g42400, LOC_0Os08g42440. A significant dif-
ferential expression was recorded for LOC_0Os08g42410 in
IL274 contrary to Pusa 44. The transcription of this gene
exhibited a gradual upregulation ranging from 1.88- fold to
4.46-fold, during the time span of 8 to 72 h post Xoo inocula-
tion (Fig. 4). The sequential variation confirms presumptive
gene LOC_0Os08g42410 as the putative gene for xa-45(¢),
validated by expression studies. All these experiments offer
compelling evidence that LOC_QOs08g42410 is the putative
gene among all the genes located within the 80 kb region.

Discussion

The current study enhances our comprehension of the
molecular mechanisms underlying disease resistance pro-
vided by the bacterial blight resistance gene xa-45(¢) from
0. glaberrima IRGC102600B. The O. glaberrima species is
recognized as a valuable donor for essential traits including
weed competitiveness, drought tolerance, resilience under
low-input conditions, tolerance to other abiotic stresses, and
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resistance to pests and diseases in various studies. Bimpong
et al. [49] evaluated alien introgression lines derived from
0. sativa x O. glaberrima accessions RAM 54 and PAM
90, for tolerance to drought conditions. The study identified
key QTLs for various traits and concluded that O. glaber-
rima accessions exhibit early stomatal closures and early
maturity, enhancing drought tolerance [50]. In 2018, Shaibu
et al. [51] screened 2106 accessions of O. glaberrima for
over 3 years and identified 4 accessions namely, TOG 7400,
TOG 6520, TOG 6519-A and TOG 7442-B exhibiting higher
grain yield under drought stress conditions as compared to
other accessions. Pariasca-Tanaka et al. [52] identified allelic
variant for PSTOLI locus in upland NERICAs, inherited
from O. glaberrima parent CG14. The overexpression of this
gene was observed to have significantly higher grain yield in
phosphorous-deficient soil [52]. The RYMV2 RYMV3 gene
for Rice Yellow Mottle Virus resistance have been identified
from O. glaberrima accessions TOG 5681 and TOG 5672
respectively [53, 54]. Petitot et al. [55], studied molecular
responses for Meloidogyne graminicola in O. glaberrima
accessions TOG5681. The responses were assessed using
histological assay and root transcriptome profiling. Vari-
ous QTLs were observed for chalcone synthase, isoflavone
reductase, phenylalanine ammonia lyase, WRKY62 transcrip-
tion factor, thionine, thaumatin, ATPase3 and stripe rust
resistance that ultimately provides resistance against nema-
todes. In summary, the rich genetic diversity within O. gla-
berrima represents a promising resource for the development
of robust rice cultivars with improved disease resistance and
adaptability to harsh environmental conditions.

The analysis of transcript abundance highlights LOC_
0s08g42410 as the potential gene responsible for the region
exhibiting peak expression at 72 h after Xoo infestation.
Other bacterial blight studies also involved differential
expression as a tool to decipher the mechanism behind the
disease resistance. The first BB resistant gene Xal confer-
ring resistance to Japanese race 1 of Xoo, been isolated by
map-based cloning, belonging to NBS-LRR family of R pro-
teins. Mishra et al. [56] reported relative expression assay for
Xa21 gene for PB-1 and IPB-1. In considerate with the tiller-
ing stage of IPB-1, significantly higher fold-change (6.453)
was observed at 72 h after inoculation. While higher expres-
sion was observed at 60 h of inoculation in adult plant, indi-
cating the resistance mediated by Xa2! is developmentally
controlled in rice. Likewise, we observed similar pattern
of transcript abundance for LOC_Os08g42410 exhibiting
highest fold-change of 4.46 at 72 h post Xoo inoculation.
In 2018, xa44(t) was recognized as a 120 kb segment har-
bouring 9 candidate genes. Quantitative expression analysis
when compared in parental lines P6 and Ilpum, indicated
up-regulation of Os11g0690066 and Os11g0690466 genes
in P6, at 2 and 4 h respectively, following Xoo inoculations
[7]. These studies collectively demonstrate the crucial role
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- 0.3 0s08g42370 (0.0 cM)
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Os08g42440 1.5 0s08g42410 (0.4 cM)
(26) 1.0 0s08g42420 (2.0 cM)
0s08g42440 (2.9 cM)

Fig.3 a Recombination events in RIL population at five locus viz.
LOC_0s08g42370, LOC_0s08g42400, LOC_0s08g42410, LOC_
Os08g42420, LOC_0Os08g42440 indicating breakpoints with the
phenotype. A indicates homozygous allele for Pusa 44 (susceptible

parent) whereas B indicates homozygous allele for IL 274 (resist-
ant parent). b An integrated map of xa-45(¢) within 80 kb interval on
the long arm of rice chromosome 8. The numbers in bracket depict
recombination events between genotype and phenotype
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Fig.4 Transcript abundance assay of candidate genes on parental
lines Pusa 44 and IL274 at different time intervals after Xoo inocu-
lation. The expression analysis of genes was considered at a time

of expression analysis in unravelling the genetic basis of
disease resistance in the context of bacterial blight.

The putative function of LOC_0Os08g42410 belongs to
transketolase activity. Its role has been verified under vari-
ous biotic stress, abiotic stress, plant growth, development,
and diverse physiological processes. Many studies reveal the

@ Springer

course 0, 8, 24, 48, 72 and 96 h of Xoo infestation. For qRT-PCR, the
average values were obtained for 3 technical replicates, and the error
bar shows standard deviation

role of transketolase especially in photosynthetic activities
of plants. Previously, Henkes et al. [57] reported the down-
regulation of transketolase enzyme in tobacco transformants
which further inhibits ribulose-1,5-bisphosphate, confirming
its role in photosynthesis. Similarly, in rice plants decreased
amount of transketolase was observed under salt stress that
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ultimately hampers photosynthetic activity of seedlings [58].
Transketolase enzymatic activity was found highly profound
in signalling cascades and reactive oxygen species (ROS)
production on the onset of disease reaction. Tunc-Ozdemir
et al. [59] verdicts the role of transketolase in production
of cytosolic NADPH that further promotes ROS produc-
tion during stress conditions. Fernandez et al. [60] reported
role of transketolase in providing resistance in rice against
rice blast disease. Various reports suggest the protective
role of transketolase for other crops like Zea mays [61] and
Solanaceum oleracea [62, 63]. These findings collectively
underscore the significance of transketolase in diverse physi-
ological processes and its potential importance in enhancing
plant resilience towards various diseases.

Conclusion

In summary, the locus LOC_0Os08g42410 has been recog-
nized as the primary candidate for the bacterial blight reces-
sive gene xa-45(t). This gene exhibits transketolase activity
in plants, which plays a crucial role in various important pro-
cesses such as biotic stress response, abiotic stress response,
plant growth, development, and physiological processes.
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