

# 10 kV, 250 °C Operational, Enhancement-Mode Ga<sub>2</sub>O<sub>3</sub> JFET with Charge-Balance and Hybrid-Drain Designs

Yuan Qin<sup>1\*</sup>, Zineng Yang<sup>1</sup>, Hehe Gong<sup>1</sup>, Alan G. Jacobs<sup>2</sup>, Joseph Spencer<sup>1,2</sup>, Matthew Porter<sup>1</sup>, Bixuan Wang<sup>1</sup>, Kohei Sasaki<sup>3</sup>, Chia-Hung Lin<sup>3</sup>, Marko Tadjer<sup>2</sup>, Yuhao Zhang<sup>1\*</sup>

<sup>1</sup>Center for Power Electronics Systems, Virginia Tech, Blacksburg, VA; <sup>2</sup>U.S. Naval Research Laboratory, Washington, D.C., USA

<sup>3</sup>Novel Crystal Technology, Sayama, Japan

\*Email: yuanqin@vt.edu, yhzhang@vt.edu

**Abstract**— We report the first 10 kV Enhancement-mode (E-mode) transistor in ultra-wide bandgap (UWBG) materials. This lateral Ga<sub>2</sub>O<sub>3</sub> junction-gate field-effect-transistor (JFET) deploys a highly-doped p-type NiO for E-mode gate, as well as the lowly-doped NiO superjunction and hybrid-drain structures for electric field management. The Ga<sub>2</sub>O<sub>3</sub> channel is optimized with a  $1.5 \times 10^{18} \text{ cm}^{-3}$  doping and two thickness designs of 50 and 160 nm. At 25 °C, both JFETs achieve the E-mode and  $>10$  kV breakdown voltage ( $BV$ ), with the specific on-resistance ( $R_{ON,SP}$ ) being 92 and 703  $\text{m}\Omega \cdot \text{cm}^2$  for the thick- and thin-channel designs, respectively. At 250 °C, the thin-channel JFET remains E-mode with a  $BV$  over 10 kV at zero gate-source bias ( $V_{GS}$ ). In contrast, the thick-channel JFET turns into depletion-mode (D-mode) at high temperatures ( $T$ ) and maintains 10 kV  $BV$  only up to 150 °C, due to the insufficient gate control to counter the drain-induced barrier lowering (DIBL) effect. This implies a trade-off between  $R_{ON,SP}$  and high- $T$  stability. Both devices survive the high- $T$  gate bias (HTGB) and 3 kV high- $T$  reverse bias (HTRB) reliability tests. Overall, our device presents not only the best figure-of-merits (FOMs) in all  $>3$  kV UWBG transistors, but also the first 250 °C operation and 3 kV reliability data in all high-voltage transistors beyond Si and SiC. The unveiled device physics and trade-off can also guide the development of future high-voltage, high- $T$  power transistors.

## I. INTRODUCTION

Medium-voltage (1–35 kV) power electronics is ubiquitous in grid and renewable energy applications. The availability of high-voltage (HV) devices can significantly reduce the device count, simplify the circuit topology, and improve the system form factor and reliability. Today's commercial HV devices are dominated by Si IGBTs up to 6.5 kV; SiC MOSFET are available in engineering samples up to 10 kV [1]. Different from these two vertical devices, lateral GaN HEMTs with  $BV$  of 5–10 kV have also been demonstrated recently [2–5]. While vertical structure has a higher current capacity, lateral structure is attractive for HV, low-current devices as required in many applications, e.g., high voltage DC power supply [6].

UWBG devices are now under extensive research for HV and harsh environment applications, for which the superior properties of UWBG materials can be exploited. Among them, Ga<sub>2</sub>O<sub>3</sub> possesses a 4.8 eV bandgap ( $E_G$ ), high critical electric field ( $E$ -field), large-wafer (6-inch) availability, and it can be grown from the melt. Moreover, in UWBG devices, Ga<sub>2</sub>O<sub>3</sub> is in a leading position for  $BV$  upscaling. Ga<sub>2</sub>O<sub>3</sub> MOSFETs with  $BV$  from 8 kV up to 10 kV has been recently reported [7–9]. However, these devices are all D-mode and has a  $R_{ON,SP}$  30–80000× higher than similarly-rated SiC MOSFETs. On the

other hand, despite the high-temperature ( $T$ ) operation reported in low-voltage devices, there has been no reports of kilovolt blocking capability at high  $T$  in UWBG transistors.

This work fills the gap by demonstrating an E-mode Ga<sub>2</sub>O<sub>3</sub> JFET with  $BV > 10$  kV measured up to 250 °C. Here we use p-type NiO ( $E_G = 3.6\text{--}4$  eV) with tunable acceptor concentration ( $N_A$ ) [10] to overcome the lack of native p-n junctions in Ga<sub>2</sub>O<sub>3</sub>. Distinct from prior Ga<sub>2</sub>O<sub>3</sub> JFETs [11], our device deploys NiO not only for E-mode gate but also to construct a charge-balance reduce-surface-field (RESURF) structure and a hybrid-drain structure for  $E$ -field management. The fabricated Ga<sub>2</sub>O<sub>3</sub> JFETs not only achieve the highest FOM in all UWBG transistors with  $BV > 3$  kV, but also demonstrate the 250 °C operation and the HTRB/HTGB reliability data, for the first time, in all HV power transistors beyond Si IGBT and SiC MOSFET. In addition to performance, the key device design trade-off is also unveiled through the comparison of two devices fabricated in this work.

## II. DEVICE DESIGN AND FABRICATION

As shown in Fig. 1a, the Ga<sub>2</sub>O<sub>3</sub> JFET comprises an n-Ga<sub>2</sub>O<sub>3</sub> channel (donor concentration  $N_D$  and thickness  $t_D$ ), a p<sup>++</sup>-NiO gate, a p-NiO RESURF structure (thickness  $t_A$  and  $N_A = N_A^R$ ), and a p<sup>+</sup>-NiO hybrid drain ( $N_A = N_A^{Dr}$ ). A spacing between two NiO regions avoids the NiO punch-through and allows for distinct  $N_A^R$  and  $N_A^{Dr}$ . The device design mainly considers:

**a) E-mode operation** sets an upper limit of  $t_D$  for a given  $N_D$ :

$$V_{TH} = V_{bi} - qN_D t_D^2 / 2\varepsilon - Q_{it} t_D / \varepsilon > 0 \quad (1)$$

where  $V_{TH}$  is threshold voltage,  $V_{bi}$  is the NiO/Ga<sub>2</sub>O<sub>3</sub> built-in potential,  $\varepsilon$  is Ga<sub>2</sub>O<sub>3</sub> permittivity,  $Q_{it}$  is the NiO/Ga<sub>2</sub>O<sub>3</sub> interface charge density. Fig. 1b shows the calculated  $t_D$  and  $N_D$  ranges.

**b) Charge-balance** between p-NiO RESURF and n-Ga<sub>2</sub>O<sub>3</sub> channel enables a superjunction-effect, i.e., uniform  $E$ -field due to net zero charge. This can be written for a ±15% tolerance:

$$N_A^R t_A - Q_{it} = (0.85 \text{--} 1.15) N_D t_D \quad (2)$$

TCAD simulations calibrated with experimental devices in [12] are used to optimize the  $E$ -field management (Fig. 2). The NiO RESURF is verified to enable a uniform  $E$ -field (Fig. 2c), which is favorable for upscaling  $BV$  with the gate-drain distance ( $L_{GD}$ ). The peak  $E$ -field remained near the drain is suppressed by a hybrid-drain, similar to the design in Infineon's GaN GIT [13], and  $N_A^{Dr}$  is optimized to be  $\sim 1.5 \times 10^{18} \text{ cm}^{-3}$  (Fig. 2d). With these designs,  $N_D$  cannot be too high; otherwise, crowded  $E$ -field will emerge near the NiO spacing and limit the  $BV$  (Fig. 2e).

**c) Ron reduction** requires the maximization of  $N_D \cdot t_D$ . Besides,  $N_D > N_A^R$  is preferable to make the vertical depletion under the RESURF to occur less in n-Ga<sub>2</sub>O<sub>3</sub> (and less impact device  $R_{ON}$ ).

Prior work showed the  $N_A$  of NiO is tunable from  $8 \times 10^{17}$  to  $> 10^{19} \text{ cm}^{-3}$  [10]. Hence,  $N_A^R$  is selected as  $8 \times 10^{17} \text{ cm}^{-3}$ . Then

the  $N_D$  and  $t_D$  design space is traversed for maximizing the FOM ( $BV^2/R_{ON,SP}$ ) while keeping the E-mode, where  $BV$  and  $R_{ON,SP}$  are extracted from simulations (Fig. 3a). This process identifies an optimized  $N_D$  of  $\sim 1.5 \times 10^{18} \text{ cm}^{-3}$  (Fig. 3b). Two  $t_D$  designs of 50 nm and 160 nm are then determined from Eqn. (1). The first design is conservative assuming no  $Q_{it}$ , and the second design is more aggressive considering the reported negative  $Q_{it}$  [14].

Two  $\text{Ga}_2\text{O}_3$  samples are grown by MBE, which consists an n- $\text{Ga}_2\text{O}_3$  layer and a UID  $\text{Ga}_2\text{O}_3$  layer grown on (010) semi-insulating substrate. The  $N_D$  and  $t_D$  of n- $\text{Ga}_2\text{O}_3$  are measured by electrochemical C-V, which are very close to the target designs.

The device fabrication (Fig. 4) starts with Si implantation, activation, and Ohmic contact formation for source and drain. N implantation is used for device isolation. The  $N_A$  of NiO is tuned by  $\text{O}_2$  partial pressure in sputtering [10]. The hybrid-drain, p<sup>++</sup>-gate, and RESURF are made sequentially with the NiO sputtered under an Ar/O<sub>2</sub> flow rate of 58/3 sccm, 40/20 sccm, and 60/0 sccm, respectively, resulting in a  $N_A$  of  $1.5 \times 10^{18}, > 10^{19}$ , and  $\sim 8 \times 10^{17} \text{ cm}^{-3}$ , respectively. Devices fabricated on the  $t_D=50\text{nm}$  sample and  $t_D=160\text{nm}$  sample are denoted as #A and #B, respectively. On each sample, devices have varying  $t_A$  and  $L_{GD}$  with an identical gate length ( $L_G$ ) of 2  $\mu\text{m}$ . The top-view SEM image of the fabricated device is shown in Fig. 4b.

### III. DEVICE CHARACTERISTICS

Fig. 5 shows the output and transfer I-V characteristics of devices #A and #B at 25 °C with  $L_{GD}$  of 47  $\mu\text{m}$  and an optimal  $t_A$  for respective device to reach  $BV > 10 \text{ kV}$  (to be detailed later). Both devices are E-mode with  $V_{TH}$  of 1.9 V and 1.5 V for #A and #B, respectively. The E-mode in device #B suggests the existence of negative  $Q_{it}$ . The  $R_{ON,SP}$  is 703 and 92  $\text{m}\Omega\cdot\text{cm}^2$  in devices #A and #B, respectively. The 7× higher  $R_{ON}$  in device #A, despite a 3.2× thinner  $t_D$ , implies a significant contribution of  $R_{ON}$  from the gated channel, where the non-depleted  $\text{Ga}_2\text{O}_3$  channel for current conduction under the gate is much narrower in device #A. For both devices, the  $V_G$  operation range is up to 3.5~4 V as limited by the gate leakage current, which is similar to that of the GaN GIT [13], suggesting good compatibility of this  $\text{Ga}_2\text{O}_3$  JFET with the RC-interface gate driver.

Fig. 6 show the output and transfer characteristics of devices #A and #B at high  $T$ . At 250 °C, device #A remains the E-mode with  $V_{TH}$  of 0.7 V; the  $R_{ON}$  is 1.6 times higher than that at 25 °C. The  $T$ -coefficient of  $R_{ON}$  is smaller than that reported in 10 kV SiC MOSFET [15], suggesting a lower conduction loss at high  $T$ . In contrast, device #B exhibits the inferior thermal stability. Its  $V_{TH}$  turns negative at 100 °C and drops to -3.3 V at 150 °C. At  $T > 175 \text{ }^\circ\text{C}$ , the gate control becomes insufficient.

Figs. 7a and b show the  $BV$  characteristics of devices #A and #B with 47- $\mu\text{m}$   $L_{GD}$  and varying NiO thickness  $t_A$ , all tested at  $V_G=0 \text{ V}$  and 25 °C. For each device,  $BV$  increases with the increasing  $t_A$ , reaching  $> 10 \text{ kV}$  at an optimal  $t_A$ , and starts to decrease at larger  $t_A$ . This behavior shows the  $BV$  modulation by charge balance. This is further illustrated by the inverted U-shape in the box plot of  $BV$  versus the charge imbalance percentage calculated from the adapted Eqn. (2).  $BV > 10 \text{ kV}$  is achieved near the charge balance condition in both samples.

Fig. 8a and b show the  $BV$  versus  $L_{GD}$  in both devices, revealing a good  $BV$  scalability of 4346/3516 V, 8560/7275 V, and  $> 10 \text{ kV}$  in the device #A/#B with  $L_{GD}$  of 20, 35, and 47  $\mu\text{m}$ ,

respectively. The average lateral  $E$ -field at  $BV$  is 1.75~2.45  $\text{MV}/\text{cm}$ . Fig. 8c shows the  $BV$  of both devices with 47  $\mu\text{m}$   $L_{GD}$  at high  $T$ . The  $BV$  of device #A maintains  $> 10 \text{ kV}$  at  $T$  up to 250 °C and  $V_{GS} = 0 \text{ V}$ . The  $BV$  of device #B can maintain  $> 10 \text{ kV}$  only up to  $T$  of 150 °C, and a negative  $V_{GS}$  of -10 V is required.

### IV. DEVICE RELIABILITY AND PHYSICS

Fig. 9 shows the Stress-Measurement-Stress scheme for the reliability tests at 150 °C with two stressors, i.e.,  $V_{GS} = 4 \text{ V}$  and  $V_{DS} = 3 \text{ kV}$ . Output & transfer characteristics are intermittently swept in the stress test to monitor the parametric shifts, with the stress time exponentially grown from 1s to 1000s. The device #A and #B both survive the overvoltage HTGB test and show similar behaviors. The  $V_{TH}$  and  $R_{ON}$  shifts are within 0.32 V and 35 % (Fig. 10a-c), respectively, and they are fully recoverable.

Both devices also survive the 3-kV HTRB test. Device #A shows a  $V_{TH}$  and  $R_{ON}$  shifts within 0.2 V and 34%, respectively, while device #B shows a relatively large  $V_{TH}$  shift of near -3 V (Fig. 10f). These parametric shifts are fully and mostly recoverable in devices #A and #B, respectively.

For device #B, its negative  $V_{TH}$  shift and  $BV$  degradation at high  $T$  can be explained by the DIBL effect. Fig. 11 shows the simulated potential barrier under the gate at  $V_D$  up to 3 kV in devices #A and #B. The thick channel in device #B leads to a lower barrier and punch-through at high  $V_D$ . This DIBL can be deteriorated by the  $Q_{it}$  and its accelerated de-trapping at high  $T$ . This is supported by the negative  $V_{TH}$  shift in device #B during the HTRB test. These results suggest a tight gate electrostatic control is essential for HV devices to operate at high  $T$ , which may require trading off the  $R_{ON,SP}$  like in device #A.

### V. BENCHMARK AND SUMMARY

Fig. 12 benchmarks  $R_{ON,SP}$  vs.  $BV$  of our  $\text{Ga}_2\text{O}_3$  JFETs with other UWBG transistors with  $BV > 2 \text{ kV}$ . The FOM of devices #A and #B with  $BV > 10 \text{ kV}$  is at least 142 and 1086  $\text{MW}/\text{cm}^2$ , respectively, setting a new record in all UWBG transistors with  $BV > 3 \text{ kV}$ . Device #A is also the first E-mode device reported in all  $> 3 \text{kV}$  UWBG transistors. Table I lists the key metrics of 5-10 kV transistors reported in SiC [1], GaN [2-5],  $\text{Ga}_2\text{O}_3$  [7-9], and AlN [16]. Our device demonstrates the highest average E-field, as well as the first report of 250 °C operation and 3 kV reliability data in a HV transistor beyond SiC.

In summary, we demonstrate a 10 kV E-mode  $\text{Ga}_2\text{O}_3$  JFET with NiO RESURF and hybrid-drain, which can operate up to 250 °C. In addition to performance advance, the comparison between devices #A and #B illustrates the importance of DIBL suppression at high  $T$  and kilovolt blocking, which can guide the development of future HV, high- $T$  power transistors.

**Acknowledgement:** The authors thank the support from ONR (N000142412227) monitored by Lynn Petersen, NSF (ECCS-2230412), and CPES Industry Consortium.

**Reference:**

- [1] J. B. Casady *et al.*, in *PCIM Europe*, pp. 96-103, 2015.
- [2] M. Xiao *et al.*, in *2021 IEEE Int. Electron Devices Meet.*, pp. 5.5, 2021.
- [3] X. Li *et al.*, *IEEE Trans. Electron Devices*, vol. 71, pp. 3989, 2024.
- [4] J. Cui *et al.*, in *2023 IEEE Int. Electron Devices Meet.*, pp. 26.1, 2023.
- [5] J. H. Ng *et al.*, in *2016 CS ManTech Conf.*, pp. 215, 2016.
- [6] J. A. Martin-Ramos *et al.*, *IEEE Trans. Power Electron.*, vol. 23, pp. 1608, 2008.
- [7] H. Liu *et al.*, *IEEE Electron Device Lett.*, vol. 44, pp. 1048, 2023.
- [8] S. Sharma *et al.*, *IEEE Electron Device Lett.*, vol. 43, pp. 2029, 2022.
- [9] S. Sharma *et al.*, *IEEE Electron Device Lett.*, vol. 41, pp. 836, 2020.
- [10] Y. Ma *et al.*, *Adv. Electron. Mater.*, no. 2300662, 2023.
- [11] C. Wang *et al.*, *IEEE Electron Device Lett.*, vol. 44, pp. 380, 2023.
- [12] Y. Qin *et al.*, *IEEE Electron Device Lett.*, vol. 44, pp. 1268, 2023.
- [13] E. Persson, Infineon, CoolGaN™ Application Note, 2018.
- [14] H. Gong *et al.*, *IEEE Trans. Electron Devices*, vol. 67, pp. 3341, 2020.
- [15] J. Wang *et al.*, *IEEE Trans. Electron Devices*, vol. 55, no. 8, 2008.
- [16] I. Abid *et al.*, *2020 Int. Symp. Power Semicond. Devices ICs*, pp. 310.

## Epi and Device Design and Device Fabrication

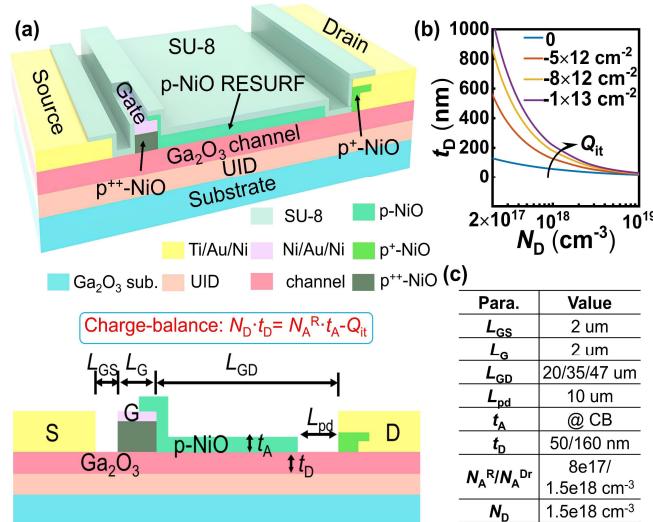



Fig. 1. (a) 3-D schematic of the  $\text{Ga}_2\text{O}_3$  JFET with the p-NiO RESURF and hybrid drain designs. The SU-8 passivation layer is partially removed to show the internal structure. Cross-section view is shown below to illustrate the key geometric parameters and charge-balance (CB) condition. (b) The max channel thickness ( $t_D$ ) as a function of  $N_D$  to achieve the E-mode, for  $Q_{it}$  from 0 to  $-10^{13} \text{ cm}^{-2}$ . (c) The list of key device parameters and values.

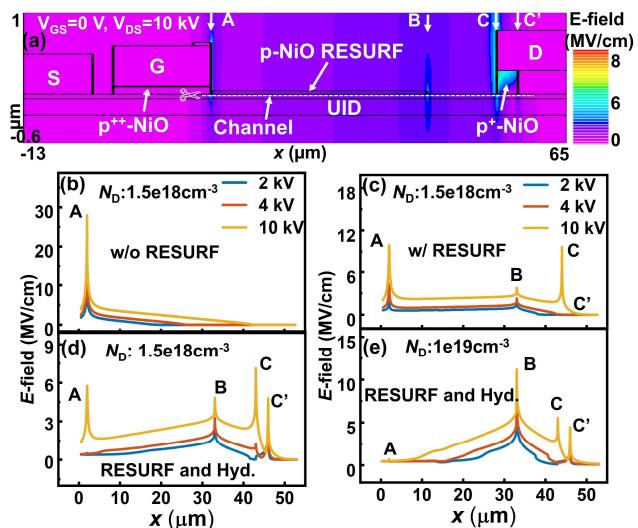
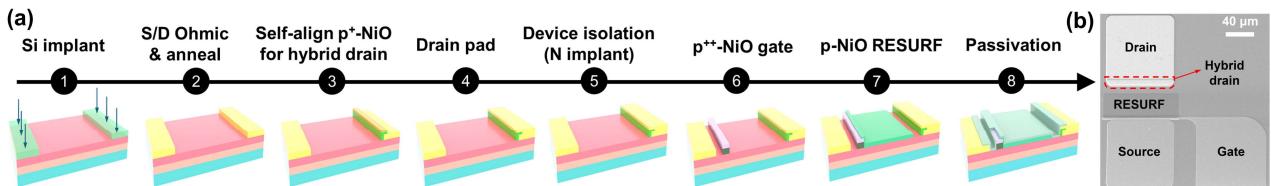





Fig. 2. (a) Simulated E-field contour of the  $\text{Ga}_2\text{O}_3$  JFET with charge-balance (CB) RESURF and hybrid drain at blocking voltage of 10 kV at  $V_{GS}=0$  V. E-field distributions along cutline of 10 nm below channel surface at different blocking voltages are shown for  $\text{Ga}_2\text{O}_3$  JFETs (b) without RESURF design, (c) with CB RESURF design, (d) with both CB RESURF and hybrid drain design, all with  $N_D$  of  $1.5 \times 10^{18} \text{ cm}^{-3}$ . The result for a device with the same structure as (d) but with a higher  $N_D$  of  $10^{19} \text{ cm}^{-3}$  is shown in (e). The peak E-fields have the lowest magnitude and are best balanced in structure (d).



## Forward Characteristics at Room and High Temperatures

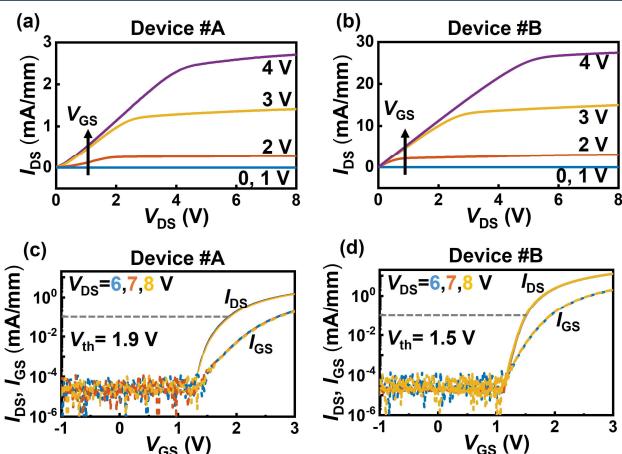



Fig. 5. Output I-V characteristics of devices (a) #A and (b) #B at  $V_{GS}$  of 0-4 V at 25 °C. The  $R_{on}$  is extracted to be 1302 and 170  $\Omega \cdot \text{mm}$ , respectively. Transfer I-V characteristics of devices (c) #A and (d) #B at  $V_{DS}$  of 6-8 V at 25 °C.  $V_{th}$  is extracted at  $I_{DS} = 0.1 \text{ mA/mm}$ .  $L_{GD}$  is 47  $\mu\text{m}$  for both devices.

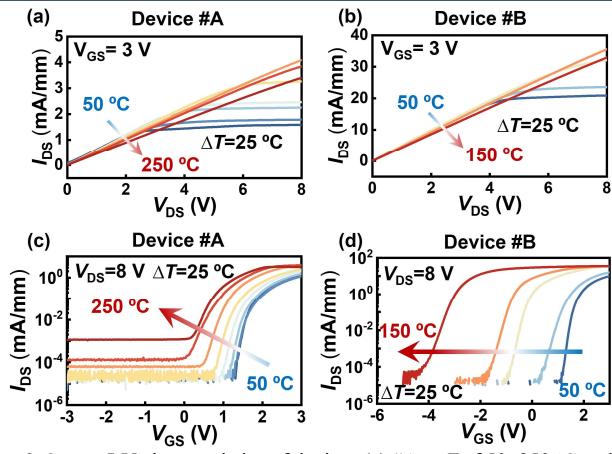



Fig. 6. Output I-V characteristics of devices (a) #A at  $T$  of 50-250 °C and (b) #B at  $T$  of 50-150 °C at  $V_{GS} = 3$  V. Transfer I-V characteristics of (c) device #A at  $T$  of 50-250 °C and (d) device #B at  $T$  of 50-150 °C, all measured at  $V_{DS} = 8$  V. Device #A remains the E-mode at 250 °C.  $L_{GD}$  is 47  $\mu\text{m}$  for both devices.

## Blocking Characteristics at Room and High Temperatures

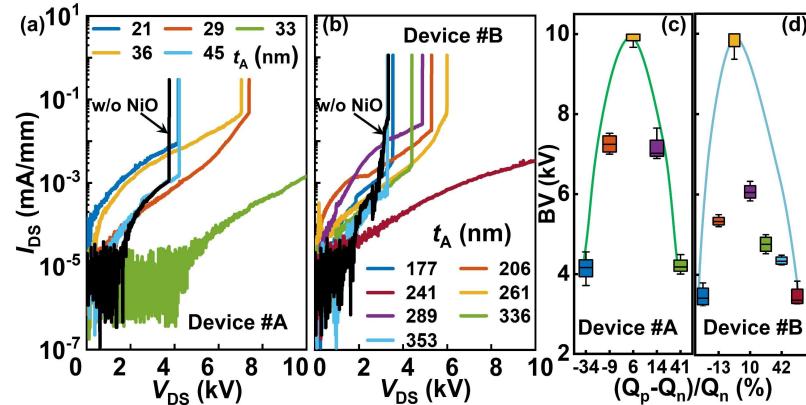



Fig. 7. Off-state  $I_{DS}$ - $V_{DS}$  characteristics of devices (a) #A and (b) #B without NiO RESURF and with various NiO RESURF thickness at  $L_{GD}=47 \mu\text{m}$  and  $V_{GS}=0 \text{ V}$ . The box plot of  $BV$  versus the charge imbalance percentage for devices (c) #A and (d) #B. The measurement limit is 10 kV.

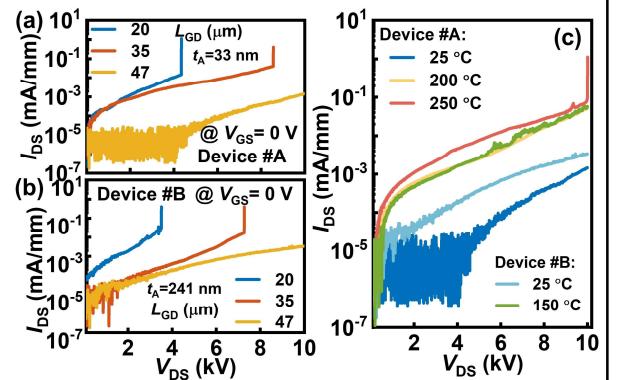



Fig. 8. (a) Off-state  $I_{DS}$ - $V_{DS}$  characteristics of devices (a) #A and (b) #B for various  $L_{GD}$  under charge-balance and (c) at high temperatures ( $T$ ). Device #A shows  $BV > 10 \text{ kV}$  up to  $T=250 \text{ }^{\circ}\text{C}$  at  $V_{GS}=0 \text{ V}$ . Device #B shows  $BV > 10 \text{ kV}$  up to  $T=150 \text{ }^{\circ}\text{C}$  at  $V_{GS}=-10 \text{ V}$ .

## Device Reliability and Physical Mechanism

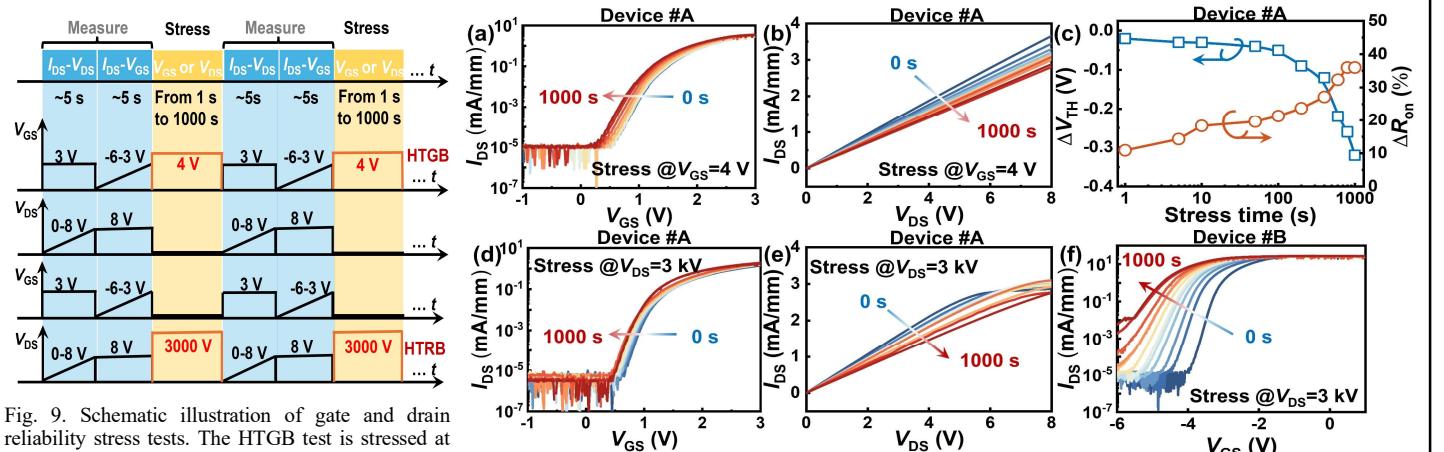



Fig. 9. Schematic illustration of gate and drain reliability stress tests. The HTGB test is stressed at  $V_{GS}=4 \text{ V}$ , and the HTRB test is stressed at  $V_{DS}=3 \text{ kV}$ , both at  $T=150 \text{ }^{\circ}\text{C}$ .  $V_{GS}$  for  $I_{DS}$ - $V_{DS}$  sweep is 3 V, and  $V_{DS}$  for  $I_{DS}$ - $V_{GS}$  sweep is 8 V.

Fig. 10. Evolution of (a) transfer and (b) output I-V characteristics of device # A under HTGB test. (c) Evolution of  $\Delta V_{TH}$  and  $\Delta R_{on}$  versus stress time under HTGB test. Evolution of (d) transfer and (e) output I-V characteristics of device # A and (f) transfer I-V characteristics of device # B under the 3 kV HTRB test.

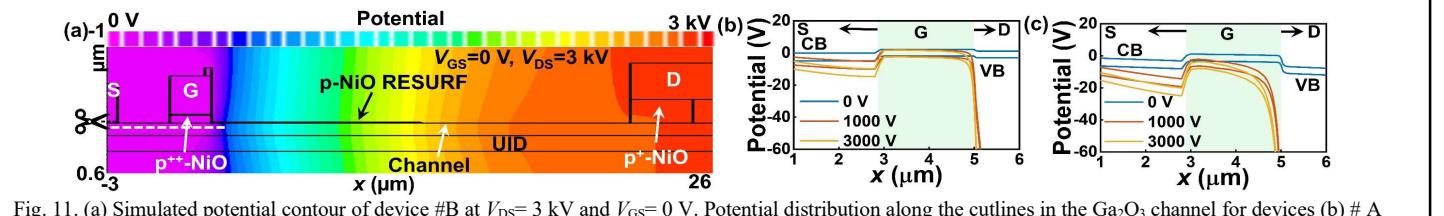



Fig. 11. (a) Simulated potential contour of device #B at  $V_{DS}=3 \text{ kV}$  and  $V_{GS}=0 \text{ V}$ . Potential distribution along the cutlines in the  $\text{Ga}_2\text{O}_3$  channel for devices (b) # A and (c) # B, respectively, at the  $V_{DS}$  of 0, 1 kV, and 3 kV. The  $Q_{it}$  is also considered in the simulation. Device #B is shown to suffer from the DIBL at high  $V_{DS}$ .

## Benchmark

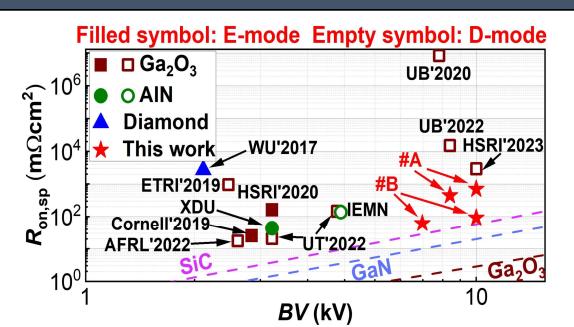



Fig. 12.  $R_{ON,SP}$  vs.  $BV$  benchmark of our Ga<sub>2</sub>O<sub>3</sub> JFET and state-of-the-art UWBG power transistors with  $BV > 2 \text{ kV}$ .

TABLE I. Comparison of the state-of-the-art WBG and UWBG power transistors with  $BV > 5 \text{ kV}$ .

| Device                                | Ref.      | Key Device                       | $BV$ (kV) | $BV/L_{GD}$ (MV/cm) | $R_{ON,SP}$ (mΩ·cm <sup>2</sup> ) | D/E-mode, $V_{TH}$ | High-temp.                                    | FOM (MW/cm <sup>2</sup> )        | Reliability             |
|---------------------------------------|-----------|----------------------------------|-----------|---------------------|-----------------------------------|--------------------|-----------------------------------------------|----------------------------------|-------------------------|
| Ga <sub>2</sub> O <sub>3</sub> JFET   | This work | charge-balance (CB) hybrid drain | >10       | 1.75~2.45           | 703 (#A), 92 (#B)                 | E, 1.9 V (#A)      | 250°C: $R_{ON,SP}$ 1.6× [142 (#A), 1086 (#B)] | 142 (#A), 1086 (#B) (1ks, 150°C) | HTGB, HTRB              |
| Ga <sub>2</sub> O <sub>3</sub> MOSFET | [7]       | field plate                      | >10       | 1.75~2.45           | 703 (#A), 92 (#B)                 | D, -8V             | -                                             | 34.2                             | -                       |
| MOSFET                                | [8]       | field plate                      | 8.56      | 1.43                | 14954                             | D, -23V            | -                                             | 4.9                              | -                       |
|                                       | [9]       | field plate                      | 8.03      | 1.15                | $8.4 \times 10^6$                 | D, -10V            | -                                             | 0.0077                           | -                       |
| AIN HEMT                              | [16]      | field plate                      | 4.5       | 1.13                | ~150                              | D, -20V            | -                                             | ~135                             | -                       |
| SiC MOSFET                            | [1]       | vertical                         | >10       | -                   | ~100                              | E, 2.2V            | 200°C: $R_{ON,SP}$ 2.8× [15]                  | 1200                             | HTGB, HTR (1khr, 150°C) |
| GaN HEMT                              | [2]       | multi-channel, CB                | >10       | 1.24                | 40                                | E, 1.5V            | -                                             | 2840                             | -                       |
|                                       | [3]       | field plate                      | 8         | 0.8                 | 58                                | D, -20V            | -                                             | 1100                             | -                       |
|                                       | [4]       | RESURF                           | 6.5       | 0.85                | 33.6                              | D, 0.8             | -                                             | 1290                             | -                       |
|                                       | [5]       | GaN sub                          | 5         | 1                   | 18                                | D, -3V             | -                                             | 1380                             | -                       |