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It is essential to measure and compensate the aberrations of the objective lens to achieve high spatial 

resolution in scanning transmission electron microscopy (STEM). Precise and efficient measurement of 

probe aberrations facilitates live aberration correction when a crystal specimen of interest is inserted and 

provides better initial guess of the probe function for phase retrieval techniques like ptychography. 

While diagnostic methods using Ronchigrams have been proposed for crystalline specimens [1], their 

widespread implementation is hindered by the complexity and long acquisition time required for a focal 

series of Ronchigrams and adaptation to various crystal lattices. We have developed AberrationNet, a 

deep neural network based on a residual neural network and attention mechanism [2], which provides 

rapid first and second-order aberration coefficient estimation from two Ronchigrams of a zone-axis 

crystalline specimen at different defocus. 

Figure 1a compares the Ronchigrams of the SrTiO3 [001] lattice at large defocus from a perfect probe 

and a probe with significant aberration. Considering a three-beam condition, the Ronchigram of a thin 

crystal can be approximated as [1] 

𝐼(𝒌) =  4𝑎 cos (𝜋𝜆−1(𝜒(𝒌 − 𝒉) − 𝜒(𝒌 − 𝒈))) × 

𝑐𝑜𝑠 (𝜋𝜆−1(2𝜒(𝒌) − 𝜒(𝒌 − 𝒈) − 𝜒(𝒌 − 𝒉))).                                     (1) 

The resulting sinusoidal fringes depend on the aberration function χ as well as the two diffraction spots 

at angles g and h, and the fringe spacing changes across the Ronchigram at different k. If we consider a 

small patch at angle T, the Fourier transform of equation (1) can measure the spacing and give the 

coordinate of the resulting delta functions as [1]  

𝑆(𝑻) = ±𝛻(𝜒(𝑻 − 𝒉) − 𝜒(𝑻 − 𝒈)).                                                 (2) 

Thus the delta function coordinates correspond to the divergence of the aberration function and the 

diffraction vectors. This equation also allows determination of the diffraction vector from two 

Ronchigrams with known focus step [1]: 𝒈 = (𝑆(𝑻)2 − 𝑆(𝑻)1
)/ 𝑑𝐶1. Figure 1b shows the difference images 

between the Fourier power spectra from large underfocus Ronchigram patches (Δf = C1-400nm) and 

large overfocus (Δf = C1+400nm) Ronchigram patches. The displacements of the delta function spots 

show different magnitudes and directions due to the probe aberration.   

However, real-world data with multiple beam interference modulates the fringe pattern and poses 

challenges for interpreting the Ronchigram. Previous studies have leveraged convolutional neural 

networks (CNN) to predict aberrations from amorphous Ronchigrams [3], demonstrating the potential to 

discern feature-aberration relationships with CNNs. We developed a deep neural network with physics-

informed design to approximate the decomposition of aberration function from the Fourier transform (FT) 
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difference patches, ensuring robustness against variations in real experimental data through 

comprehensive training.  The AberrationNet model is built based on the Resnet architecture and 

incorporates the idea of equation (2) into coordinate attention layers [4] and channel attention layers [5]. 

Coordinate attention highlights the position of features in the FT patches. Channel attention enhances the 

learning of the relationship between channels, which are the FT patches from the entire Ronchigram. Each 

channel serves as a sampling point of the divergence of the aberration function over the diffraction plane. 

AberrationNet combines two similar architectures: the first one predicts the first order aberration 

coefficients (C10, C12a, C12b), and the second one, using the first model prediction as additional input, 

predicts the second order coefficients (C21a, C21b, C23a, C23b). The two parts were trained alternatively 

to optimize the model performance. We utilized Cartesian coefficients as the target instead of polar 

coefficients to avoid incorporating periodic functions (e.g., sin and cos) in the function being 

approximated by the neural network. 

We validated the AberrationNet with multislice simulated Ronchigrams. Figure 2(a-c) illustrates 

residual distributions for the model trained and tested on the same lattice SrTiO3 [001], with accuracy 

metrics summarized in Figure 2d. AberrationNet exhibits robustness against variations in thickness, 

mistilt, and convergence angle within experimentally likely ranges for high-resolution zone-axis STEM 

imaging. The overall accuracy of the model is sufficient for diagnosis of aberration for post-processing 

techniques like ptychography reconstruction and potential integration into a STEM probe correction 

workflow.  

The current AberrationNet works only for SrTiO3 [001]. One path to generalizing it is automated 

training of a new AberrationNet on simulated Ronchigrams for other crystals. It may also be possible to 

develop a more advanced model which includes the lattice diffraction vectors of the zone axis as an 

additional model input.  

This research was supported by NSF Cyberinfrastructure for Sustained Scientific Innovation (CSSI) 

award No. 1931298.  

 

 

 

 



 

Figure 1. Effect of aberration in defocused crystalline Ronchigram and example input data for the 

AberrationNet model. (a) simulated Ronchigram of SrTiO3 [001] with defocus ~ 400 nm, the green half 

is simulated using a probe of zero C12, C21, C23, etc., and the purple half is from a probe with significant 

aberrations. (b) difference images between Fourier power spectra from the underfocus segmented 

Ronchigram patches and the overfocus segmented Ronchigram patches. The green and purple outlines 

identify corresponding data in (a) and (b).  

 

Figure 2. AberrationNet accuracy measurement.  (a) Violin plot of the residual of first order aberration 

coefficients (b) the residual of C21(B2) aberration (c) the residual of C23(A2) aberration (d) summarizing 

the mean absolute error, root mean square error, and R2 score of the model prediction of all seven 

aberration coefficients.  
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