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1. Abstract

Ensemble models can be used to estimate prediction uncertainties in machine learning models.
However, an ensemble of N models is approximately N times more computationally demanding
compared to a single model when it is used for inference. In this work, we explore fitting a single
model to predicted ensemble error bar data, which allows us to estimate uncertainties without the
need for a full ensemble. Our approach is based on three models: Model A for predictive accuracy,
Model Ak for traditional ensemble-based error bar prediction, and Model B, fit to data from Model
Ag, to be used for predicting the values of Ar but with only one model evaluation. Model B
leverages synthetic data augmentation to estimate error bars efficiently. This approach offers a
highly flexible method of uncertainty quantification that can approximate that of ensemble
methods but only requires a single extra model evaluation over Model A during inference. We
assess this approach on a set of problems in materials science.

2. Introduction

In the last 10 years there has been a remarkable surge in machine learning for predicting the
properties of materials, as which has been explored and documented in several review papers (1—
4). Critical for effective use of these models are some forms of uncertainty quantification, which
enable researchers to measure the certainty of predictions and provide an assessment of prediction
fidelity. In almost all studies aggregate metrics for test prediction errors (e.g., root mean squared
or mean absolute error) for models on validation or test data are provided, typically from some
form of cross validation. However, it is also very useful to understand the confidence of individual
predictions of a target property.

Several uncertainty quantification methods that provide error information for specific predictions
of a target value exist (5). One flexible, accurate, and widely used method for error prediction
involves the use of ensemble models, which introduce a variance by fitting multiple models to the
data, e.g., using bootstrapping dataset (6,7). Building an ensemble of models involves training
several models on different samplings of data (bootstrapping), then aggregating predictions from
individual models to provide a mean prediction along with their spread. The spread of predictions



is a measure of prediction uncertainty. A way to further improve uncertainty estimates involves
calibrating the predicted values to align appropriately with observed residuals (4,6). Calibrated
uncertainty estimates can be made with ensembles in both classification and regression settings
but we focus only on regression applications in this work (6,8—11). Calibrated uncertainties from
ensemble models have demonstrated an impressive ability to predict errors in regression models
of materials properties, as evidenced by recent research conducted by Palmer et al (6).

Despite the success of ensemble neural network models, an ensemble of N models is expected to
be N times slower and require N times more memory compared to the use of a single model for
predictions. This reduced speed can make it less feasible to apply ensemble methods when fast
model evaluation is required. In materials science, examples where a fast evaluation is particularly
beneficial is during molecular dynamics simulations with machine learning potentials (12) or real-
time object detection in images from electron microscopes (13). Issues of speed and memory for
ensembles are most likely to be significant for models that are slow and large, a situation that
occurs most often with neural network models. Therefore, the focus of this work will be on neural
networks, and we will explore relatively small and fast models on modest size data sets to allow
for rapid exploration and testing. However, the approaches readily generalize to other types of data
and models.

Given the potential issues of speed and memory for ensemble models, it is useful to explore
alternative approaches that offer faster model evaluation without compromising predictive
accuracy. This paper addresses these concerns by implementing a methodology that avoids the
most important computational costs associated with neural network ensemble models while still
providing reliable estimates of prediction errors. Specifically, our approach begins with a full
ensemble model fit, but then generates training data from that ensemble model and fits a single
neural network model to the ensemble error bar predictions. This second model allows
uncertainties to be estimated without further using the full ensemble model. Our approach involves
sampling the space around the training data to establish a reliable domain for the model for
predicting error bars. This approach leverages the advantages of single-model predictions and error
bar estimation, which can help add uncertainty quantification to materials property prediction with
very modest additional computational and memory costs.

This paper is organized into three sections. Section 3 presents the detailed methods used to
implement our methodology of obtaining error bars. Section 4 discusses the learning curves and
accuracy of the error bar model observed for different datasets and models. Section 5 summarizes
all the statistics. The findings are then examined and discussed in Section 6, which highlights the
advantages and potential pitfalls of the method. Section 7 has a summary and conclusions. All our

experiments and analyses were conducted in Python using TensorFlow (14), Scikit-Learn (15),
and MAST-ML (16).



3. Methods

3.1 Summary of Approach

This research study utilizes three distinct models for each dataset: Model A, Model Ak, and
Model B. Model A is a single neural network, developed for predictive accuracy, and trained on
the original dataset of features X, and target Y. Model Ak is an ensemble of neural networks
that are trained and calibrated on the same features X and targets Y. The primary objective of
Model Ak is to provide insightful estimations of error bars (ca). Note that by error bars here we
mean one standard deviation of the residual distribution, where the residual is the predicted value
minus true value. Model B is another single neural network which we train on augmented data
Xp and targets Yp. Yp represents error bar predictions made by Model Ak for the initial and the
augmented data. The data augmentation technique involves generating synthetic data points
around the original training data point features X, and Model Ak is leveraged to provide
predictions for the newly augmented dataset. By replacing Model Ar with Model B, the
complexity of the prediction process is reduced and therefore takes less time and memory. Once
the fitting is complete, the combination of Model A and Model B can be used to efficiently
provide accurate predictions and error bars. This approach is shown schematically in Figure 1.
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Figure 1: Flow chart of machine learning system which includes dataset generation, model
training, and model prediction. See text for definitions of all the terms.

3.2 Databases and Preprocessing

The proposed methodology was tested on three materials sciences datasets from the literature
which we refer to as Diffusion, Perovskite, and Superconductivity. Each makes use of a
featurization based on elemental properties and in each case some feature selection was done to
keep a manageable number of features. The Diffusion dataset targets are activation energies for
impurity diffusion with features generated from elemental data (17,18). The top 20 features for
the dataset were identified by a previously conducted study on the dataset (19). The Perovskite



dataset targets are perovskite work function values (20) and the top 70 features for the dataset
were identified by selecting those with the highest importance from a Random Forest fit to the
full dataset. The Superconductivity dataset targets are transition temperatures between the
superconducting and normal state, and the features were generated from elemental data. The top
25 features for the dataset were identified by a previously conducted study (21) and used here.

After optimizing the feature set for datasets, we applied MinMaxScaler standardization from the
Scikit-Learn library(15) in Python, which rescales values within each column to a range of 0 to
1. These preprocessing steps were consistently implemented across all stages of the model
development processes, including both Model Ak and Model B. Feature selection is particularly
important for the approach taken in this work as Model B is trained on augmented data in a
volume of feature space whose size scales with the number of features. Therefore, fewer features
are likely to yield a more accurate Model B. Feature standardization is also important as the
volume in feature space used for data augmentation is controlled by a unitless length scale that
start small (10%) and grows to a significant value (0.5) relative to the value one. Therefore, this
approach can only be expected to yield results like those shown here for scaled features.

3.3 Single Neural Network for High Predictive Accuracy (Model
A)

Model A in our study is a single neural network which has been trained on the initial dataset
{a}=(Xo,Y«) to provide high accuracy for Y. The model has an architecture of two linear layers
with 2048 neurons and Rectified Linear Unit (ReLU) activation function. The loss function of
this neural network uses mean squared error and uses the Adam optimizer. The network was
trained for 100 epochs. Despite observations indicating the convergence is typically achieved by
the 50 epoch, the decision to extend the training to 100 epochs was made to ensure the
robustness of the model.

3.4 Ensemble Models for Error Bars (Model Ag)

Model Ak in our study is an ensemble of 20 Fully Connected Neural Network models
constructed on bootstrapped subsets of data set {a}=(X,Y«). Each network has the same
architecture and training approach as that for Model A in section 3.3. The calibrated spread in
values from this ensemble are used to predict error bars (6a). These error bars were calibrated for
better accuracy using the method mentioned in Palmer, et al (6).



3.5 Data Generation for Model B fitting

Model B is fit to data set {B}= (X3, Yp), which consists of feature values and their associated
error bars as predicted by model Ak. Since the training data for Model B are error bars that can
be generated easily from model Ak it is straightforward to set the data for fitting model B to give
it desired accuracy and domain, at least within practical computational limitations. There is no
forced restriction on what data should be generated and used for fitting model B so a choice must
be made. A natural set of feature points to use are the original set of feature points in the
database {a}, X«, which were used to fit the model A and Ak (although with different targets
than will be used for model B). These points are likely to be near points of interest for future
predictions. So, we will consider this our initial database and denote it {3o}. Then we augment
this database with datapoint that are nearby in feature space to this starting database.
Specifically, we generate data by randomly sampling in feature space near the values in {o}
using the following approach. First, assumed we have scaled the features, so each component for
the features in {Bo} ranges from 0 to 1. If the scaled features of a datapoint in {Bo} is denoted as
x then we sample randomly from the hypercube of x + 5, where s is a scale factor. In other
words, the sampled points in feature space can range from x; — s to x; + s for each component of
the feature vector. The scale factor s is allowed to vary from 0.001 to 0.5, where larger values
sample a larger volume of feature space. All these sampled feature spaces include the original set
{Bo} and will have increased sample sizes for all the different augmented datasets. In cases when
the sampling leads to values of components outside of the interval [0,1] the value is taken as the
maximum or the minimum value of the interval [0,1], ensuring it does not exceed observed
maximum or minimum values in the original dataset. By employing this randomization
technique, possibly truncated hypercubes are generated around each data point in the original
database, providing a relevant volume in feature space for sampling to achieve a useful domain
over which we will train model B to learn accurate error bars.

The data generation scheme chosen here is certainly not unique and other approaches could be
used. A particular limitation of the present approach is that no effort is made to assure that the
data points are chemically feasible in the context of material science. It is likely that during the
augmentation process data points are created that do not conform to the constraints and
properties of real-world materials. Physically constrained data generation could provide
sampling in a much more constrained region of feature space, potentially leading to more
accurate model B’s with less training data.



3.6 Single Neural Network Error Bar Generation (Model B)

After data augmentation, the augmented dataset Xp is created, and Model Ak is used to obtain the
error bars for these augmented datapoints. These error bars become the target variable Yp for
Model B. Model B is trained using the augmented dataset {}= (Xp, Yp) to learn from the
augmented data and generate accurate error bars in subsequent predictions. To ensure
standardized input values, the augmented dataset X undergoes MinMaxScaler standardization as
neural networks require standardized features. The predictions generated by Model B, Y, serve
as the estimated error bars. In using our approach one can replace Model Ar with Model B for
error bar predictions, reducing time and memory requirements.

3.7 Use Case of the Workflow

To effectively utilize our technique in practical applications one would take the following steps.
First, Model A is fit, which can then be employed in future predictions. Then model Ak is fit,
synthetic data Xp is generated, and model Ak is used to predict error bars (ca). Then model B is
fit to the data X and error bars (Yp=ca) so the model B can predict approximate error bars for
model A (173) in the future. In applications to predict a materials property with error bars, Model

A is used to predict values ¥, and Model B is used to predict approximate model A errors bars
(173), eliminating the need for Model Ak in evaluation.

4 Results

The critical question for the approached outlined in Section 3 (Methods) is whether model B can
represent the error bars accurately. If this representation can be done accurately then the
proposed approach can be a practical and general method to avoid slowing down model
prediction when using ensemble methods for error bar prediction. Therefore, in this section our
focus is on the analysis of the accuracy of Model B. We focus on learning curves that evaluate
the 5-fold cross validation (CV) results of Model B on each augmented dataset. The graphs show
the normalized CV root-mean-squared-error (RMSE), which is the RMSE obtained for out of
bag data during CV, scaled using standard deviation of the target variable (Yp), which we denote
by “Sigma”. We consider training datasets augmented up to 10° data points. We used normalized
CV-RMSE as this is easy to interpret, since a value of one is equivalent to that one would obtain
by simply guessing the mean of the target data. These learning curves provide insights into the
impact of the amount of training data and the varying scale factor. The results demonstrate that
the proposed methodology for estimating error bars provides accurate models when applied to
small to modest scale factors for manageable database sizes, However, larger scale factors lead
to reduced accuracy, likely above what would be considered useful. We also evaluate the
performance of this method across three distinct datasets to demonstrate the generality of the



results. Further analysis, with multiple statistics for a wider set of models, is provided in the
Supplemental Information (see section 12 for details).
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Figure 2(a): Relationship between the increasing the number of points present in the augmented
dataset (Diffusion) and the decreasing normalized CV-RMSE of predicted 17[; (RMSE/Sigma) for

Diffusion dataset trained on Neural Networks. The legends show the varying scale factors for the
different data augmentations. (See Data Generation section 3.5 for more information)
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Figure 2(b): Relationship between the increasing the number of points present in the augmented
dataset (Perovskite) and the decreasing normalized CV-RMSE of predicted Vﬁ (RMSE/Sigma) for

Perovskite dataset trained on Neural Networks. The legends show the varying scale factors for
the different data augmentations. (See Data Augmentation section for more information)
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Figure 2(c): Relationship between the increasing the number of points present in the augmented
dataset (Superconductivity) and the decreasing normalized CV-RMSE of predicted ?ﬁ
(RMSE/Sigma) for Superconductivity dataset trained on Neural Networks. The legends show the
varying scale factors for the different data augmentations. (See Data Augmentation section for
more information)

As expected, when the number of points in the dataset increases, the normalized CV-RMSE of
Model B decreases, with a decreasing rate of reduction as the more points are added. Also as
expected, the normalized CV-RMSE values are smaller and converge to faster for smaller scale
factors, consistent with their being associated with a smaller feature space volume that must be
modeled.

We have also tried replacing Model Bs with a random forest regression model and we obtain
similar results (See Supplementary Information (Model B)). We also tested different Models A’s,
including random forest regression, K-nearest neighbors, and neural networks with Model B’s
being a random forest model, and generally found very similar trends to those shown here. These
results are also shown in the Supplement Information. Overall, the similarity of the results across
data sets and different Model A’s and B’s suggests that our approach and qualitative results are
general.



5 Statistics Table

Table 1: Test Statistics for Diffusion, Perovskite, and Superconductivity datasets. All errors on
out of bag data from 5-fold CV. The three values shown in each table cell represent fit with
original number of points / fit with max number of points (100,000) / Best possible fit out of all
the different number of points. The cells marked with “*” represent the ones where the max
number of points fit is not the best fit.

Dataset Scale Factor | standard Deviation (O) MAE R2 Normalized CV-RMSE RMSE
0.001 0.03/0.03/0.03 0.01/0.0/0.0 0.5/1.0/1.0 0.71/0.01/0.01 0.02/0.0/0.0
0.01 0.03/0.03/0.03 0.01/0.0/0.0 0.49/1.0/1.0 0.71/0.03/0.03 0.02/0.0/0.0
0.1 0.03/0.03/0.03 0.02/0.01/0.01 0.48/0.92/0.92 |0.72/0.29/0.29 0.02/0.01/0.01
Diffusion 0.2 0.03/0.03/0.03 0.01/0.01/0.01 0.5/0.75/0.75 | 0.71/0.5/0.5 0.02/0.01/0.01
0.3 0.03/0.03/0.03 0.01/0.01/0.01 0.47/0.64/0.64 |0.73/0.6/0.6 0.02/0.02/0.02
0.4 0.03/0.04/0.04 0.02/0.02/0.02 0.47/0.61/0.61 |0.73/0.63/0.63 0.02/0.02/0.02
0.5 0.03/0.04/0.04 0.01/0.02/0.02 0.49/0.6/0.6 0.71/0.64/0.64 0.02/0.03/0.03
0.001 20.11/19.92/19.92 4.62/0.06/0.06 0.53/1.0/1.0 0.68/0.01/0.01 13.77/0.24/0.24
0.01 20.11/19.82/19.82 4.52/0.48/0.48 0.7/1.0/1.0 0.55/0.05/0.05 11.08/1.0/1.0
0.1 20.11/20.18/20.18 4.47/4.18/4.18 0.68/0.91/0.91 ]0.56/0.3/0.3 11.31/6.08/6.08
Perovskite 0.2 20.11/21.66/22.2 4.53/7.99/8.07 0.66/0.73/0.73 | 0.59/0.52/0.52* 11.79/11.31/11.5
0.3 20.11/25.08/20.11* 4.52/11.5/4.52* 0.64/0.61/0.64 |0.6/0.63/0.6* 12.08/15.76/12.08*
0.4 20.11/29.2/20.11* 4.46/14.77/4.46* ]0.69/0.54/0.69 ]0.56/0.68/0.56* 11.23/19.89/11.23*
0.5 20.11/33.66/20.11* 4.38/17.74/4.38* ]0.71/0.5/0.71 0.54/0.71/0.54* 10.84/23.8/10.84*
0.001 10.87/10.8/10.8 0.93/0.08/0.08 0.84/1.0/1.0 0.4/0.02/0.02 4.3/0.19/0.19
0.01 10.87/10.78/10.78 0.9/0.55/0.55 0.86/0.99/0.99 ]0.37/0.09/0.09 4.01/0.94/0.94
0.1 10.87/12.62/10.87* 0.92/3.67/0.92* 0.86/0.81/0.86 | 0.37/0.44/0.37* 4.01/5.5/4.01*
Superconductivity 0.2 10.87/17.51/10.87* 0.91/6.41/0.91* 0.86/0.72/0.86 | 0.38/0.53/0.38* 4.09/9.31/4.09*
0.3 10.87/22.23/10.87* 0.92/8.61/0.92* 0.85/0.69/0.85 |0.38/0.56/0.38* 4.18/12.4/4.18*
0.4 10.87/26.35/10.87* 0.89/10.61/0.89* ]0.87/0.66/0.87 ]0.37/0.58/0.37* 3.98/15.28/3.98*
0.5 10.87/30.1/10.87* 0.93/12.29/0.93* | 0.85/0.65/0.85 |0.39/0.59/0.39* 4.27/17.84/4.27*

6 Discussion

It is somewhat unclear for what values one would say we have a successful model B. In
particularly, different users might need different scale values for their domain or different levels
of accuracy, as captured by the normalized CV-RMSE. In addition, users may have different

maximal values of number of points they are willing to use in training Model B. Barring
numerical issues, the RMSE will go to zero with enough points, as the sampling will eventually

cover the entire feature space with a very fine mesh requiring only limited interpolation.




However, users will typically have a finite computational budget for training Model B, so there
will be some maximum number of points that can be practically treated. To have some practical
guidance in this work we will consider a scale factor of 0.1 usefully large, and normalized CV-
RMSE < 0.2 usefully small, and 10° points as a practical maximum for training data size for
model B. Figure 2 shows that across all three datasets model B can reproduce the error bars with
a normalized CV-RMSE of < 0.1 (0.2) for a scale factor below 102 (10-") within 10 training
points. We believe that this demonstrates that a practically accurate model B for error bars of
model A can be achieved for a reasonable volume of feature space with a practical number of
training points.

However, Figure 2 also shows that there are limitations when the scale factor is as high as even
0.2. Despite increasing the number of data points, Model B struggles to fit the data effectively,
resulting in a normalized CV-RMSE ranging from 0.18 to 0.25 even at 10 training points.
Larger scale factors generally have even larger normalized CV-RMSE. The elevated normalized
CV-RMSE with scale factor is a consequence of the enlarged feature space volume being
explored, which results in much more limited sampling and possibly much greater variation of
the target, thereby challenging Model B's ability to achieve accurate prediction.

In Figure 2 we can observe that for certain scale factors there is a significant increase in the
normalized CV-RMSE after the sampling of the first point, which represents the original set of
points. This increase can be attributed to the training data changing dramatically in going from
the original data to a database primarily sampled from a high-dimensional feature space. This
change in the nature of the data can be seen in the CV-RMSE and Sigma learning curves present
in the Supplemental Information. Once the database becomes dominated by the number of
sampled points the normalized CV-RMSE trend is always decreasing, except due to small
fluctuations from the stochastic nature of the neural networks.

7/ Summary and Conclusions

In this research, a novel approach is introduced to efficiently estimate error bars (6a) in machine
learning models. Our method combines three models: Model A for predictive accuracy, Model
Ak for ensemble-based error bar prediction, and Model B, which efficiently estimates error bars
by fitting to Model Ae. Model B, a single model trained on augmented data, replaces the
ensemble Model Ag, reducing computational demands during inference while maintaining
predictive accuracy. This approach offers a flexible and efficient means of uncertainty
quantification. We demonstrate that this approach is practical on examples from the domain of
materials science.

The Model B approach circumvents the use of ensembles for uncertainty quantification with
single, less computationally intensive models. The approach was shown to be effective with



three datasets (denoted Diffusion, Perovskite, Superconductivity) and with the use of a simple
neural network as Model B (additional machine learning approaches were also shown to work
well in the Supplement Information). Accurate and reliable error bar predictions were observed
for cases with small to modest sampling areas around the training data, but the technique's
effectiveness diminishes as the sampled area exceeds hypercubes of sides more than +/- 0.2
around the original scaled data points.

This work demonstrates a practical approach to achieve error bar estimation with accuracy
approaching that of ensemble methods using just a single model for the error predictions. Such a
method can enhance the speed and reduce the memory required by ensemble methods and
thereby support greater use of uncertainty quantification in machine learning.

8 Data and Code Availability

We have made all the original databases used in this work available in the GitHub repository.
We have made the python code used to perform all the calculations and generate all figures
publicly available on GitHub in the same repository as the data described above
(https://github.com/uw-cmg/material_error bar predictions). We also have published all the

model splits; pickled model files and data of the runs can be found in Zenodo
(10.5281/zenodo.10934013).
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