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Abstract

We introduce a non-isothermal phase-field crystal model including heat flux
and thermal expansion of the crystal lattice. The fundamental thermodynamic
relation between internal energy and entropy, as well as entropy production, is
derived analytically and further verified by numerical benchmark simulations.
Furthermore, we examine how the different model parameters control density
and temperature evolution during dendritic solidification through extensive
parameter studies. Finally, we extend our framework to the modeling of open
systems considering external mass and heat fluxes. This work sets the ground
for a comprehensive mesoscale model of non-isothermal solidification includ-
ing thermal expansion within an entropy-producing framework, and provides
a benchmark for further meso- to macroscopic modeling of solidification.
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1. Introduction

Solidification of crystalline materials is a ubiquitous phenomenon with wide-ranging implica-
tions in both nature and technology. It involves the interaction of different instabilities and out-
of-equilibrium growth conditions [1], thus being characterized by competing physical mech-
anisms and complex morphologies. Managing solidification processes is crucial for conven-
tional technological applications [2, 3] as well as self-assembly approaches [4, 5]. At early
stages, crystalline seeds grow either following nucleation or on pre-existing crystal phases/-
seeds, while later stages are affected by capillarity, elasticity, plasticity, as well as various
kinetic effects [6—10]. Throughout the entire solidification process, heat transfer within the
solid and liquid phases significantly impacts the morphology of crystal growth, grain size, and
phase distribution [8§—11]. On a microscopic level, the arrangement of atoms in a periodic lat-
tice usually results in anisotropic behaviors, such as faceting, and affects the nucleation and
movement of defects. These phenomena are closely related to crystallographic directions and
are influenced by thermal gradients within the material.

The modeling of solidification has been addressed by various approaches resolving different
time- and length-scales of interest. At the scale of individual atoms, microscopic approaches
like molecular dynamics techniques [12] describe lattice-dependent features such as aniso-
tropies and defect structures [7]. Due to the limited scaling properties of these models, the
growth of crystals, which involves long timescales, is typically not accessible. Macroscopic
approaches like sharp-interface and phase-field methods [13—19] coping with large systems
and long timescales proved successfully in describing the main features of crystal growth.
However, a direct connection to the lattice symmetry and microscopic features is not inher-
ently and self-consistently captured in general and needs to be included through parameters
and additional functions, e.g. as anisotropic interface energies [20-22].

The so-called phase-field crystal (PFC) model [23-26] emerged as a prominent approach
to describe crystal structures at large (diffusive) timescales through a continuous, periodic
order parameter representing the atomic density. It reproduces the main phenomenology for
crystalline systems, including solidification and crystal growth, capillarity, lattice deforma-
tions as well as nucleation and defect kinematics. The PFC model describes self-consistently
anisotropies resulting from the lattice structure [27-29] and inherently includes elasticity
effects consistent with continuum mechanics with high accuracy reached when considering
dedicated PFC model extensions [30-36]. Therefore, the PFC concept represents a compre-
hensive framework for the description of crystalline materials in two- and three-dimensions
[26, 37, 38].

Only recently, further extensions of the PFC model have been developed to explicitly
describe temperature and heat flux phenomena [39—43]. However, thermal expansion or com-
pression of the equilibrium crystal lattice length due to temperature fluctuations is either not
considered [39, 40, 43] or entropy production cannot be guaranteed [41, 42]. By further extend-
ing the non-isothermal PFC formulations [40, 41], this work presents a non-isothermal PFC
model with thermal expansion of the crystal lattice within an entropy-producing framework.

As analytical benchmark, we derive the fundamental thermodynamic relation, describing
how the internal energy relates to the entropy, in section 2. We present numerical benchmark
simulations in section 3 and examine the role of different model parameters through para-
meter studies focusing on dendritic solidification, as shown in section 3.1. Finally, we extend
our framework to the description of external mass and heat fluxes entering the system via the
domain boundary, mimicking the physics of open systems as illustrated in section 3.2. For clar-
ity, the analytical derivation of the entropy production of our model is provided in appendix A.
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The analytical results, along with the proposed simulation setups, offer valuable benchmarks
for PFC and other solidification modeling approaches that incorporate heat flux in both open
and closed systems.

2. Model introduction and analysis

The PFC model [23, 24, 26] describes crystal structures at diffusive timescales through a con-
tinuous, periodic order parameter ¢» = v (x,t) representing in its dimensionless formulation the
atomic number difference with respect to the liquid phase. It is based on a Swift—-Hohenberg-
like free energy functional, which can be written

_ A=k 5, P A
Pl = [ (2550 -s L Sucw) an 1)

with d, A, k > 0 parameters characterizing the phase space and material properties together
with the global average density ¥ = ﬁ fQ 1dx, and Q2 € R" the domain of definition of
with n=2 defined here as Q = [—L,/2,L,/2] x [-L,/2,L,/2]. The differential operator £
approximates a two-point correlation function and thus encodes the crystal symmetry. For
instance, 2D triangular symmetry is obtained as the equilibrium state for some free-energy
parameters with £ = (1 + V?2)? [26].

Together with appropriate boundary and initial conditions, the dynamical equation for
can be generally described by a conservative gradient flow of F, that is,

o = V- (Mww‘s?f]) , @)

where M(1) > 0 is a mobility function. Further extensions of (1) and (2) may be readily con-
sidered to account for other lattice symmetries [44—46] (in both 2D and 3D). In the following,
we extend the classical PFC model to a non-isothermal framework that includes thermal lattice
expansion and ensures entropy production. The proposed model builds upon previous formu-
lations reported in [40—42]. Extensions are introduced to describe entropy and internal energy
densities in a thermodynamically consistent fashion. We remark that such a thermodynamic
consistency cannot be guaranteed for the model presented in [41, 42], while no variable lattice
parameter (thermal expansion) is considered in [40].

2.1. Energy and Entropy Densities

Let T be the dimensionless temperature field with 7= 1 representing the melting point. It is
assumed that the free energy F, entropy S, and internal energy E have the generic forms

F:/Qf(zl),V¢,V2t/),T) dx,

$= [ 5(0.90.920.1) ax
Q

E:/e(zp,vw,v%pj) dx.
Q

In [41, 42], we introduced a PFC model with a free energy featuring explicit coupling with the
temperature field under periodic boundary conditions for both v and 7. To derive the entropy

3
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and internal energy densities § and e, we propose the following extension of the free energy
density f:

kT

0,99, 9%0,1) =f(6, 1) + = (0 (1) 0* = 2a(D) [Vel* + (V20)7) )

with

_ 2,3 4
S, 1) = kBT<A2'{1/)2 - 6% - 1f2> ~ C,Tlog (TTO> - By,

where kg is Boltzmann’s constant, hereafter set to kg = 1 for simplicity, C, > 0 is the constant
heat capacity of the material, 5 > 0 is a constant, and «(T) > 0 measures the degree of thermal
expansion and has physical units (before non-dimensionalization) of length 2. Here, we use
the explicit model

1
0= @)

ap > 0 is a reference length (set to ap = 1), and a; > 0 is the thermal expansion coefficient,
describing an expansion or compression of the crystal lattice, depending upon whether the
temperature 7 is larger or smaller than the reference temperature, 7y > 0. However, we point
out that the theoretical findings presented in this manuscript still hold if a different choice
for a(T) is used, since neither the fundamental thermodynamic relation 2.1 nor the entropy
production 2.2 depend on the specific choice of (7). When thermal expansion is neglected
(o = o > 0), the form of the free energy assumed in [40] is recovered. We use the standard
thermodynamic assumptions that

§=—0rf and é= f+Ts. (5)

The second condition of (5) encodes a basic assumption of non-equilibrium thermodynamics,
namely, that the energy, entropy, and free energy are related locally as if the system were near
equilibrium at every point.

As a consequence of (5), we can derive the following fundamental thermodynamic relation
describing how the internal energy relates to the entropy:

Proposition 2.1. Let the free energy density f, defined as in (3), be a twice continuously dif-
ferentiable function of temperature, T. Suppose that the entropy and internal energy densities
s and e are computed as in (5). Then,

10e Os
T or ©
Proof. Using (5), we have

Ore = Opf+ 5+ 1075
= —§+5+TOrs
= TOrS,

which easily proves the result. O
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Using the explicit form of ffrom equations (3), the entropy density § and the energy density
e can be written as

s=—onf — 5 (o2 (1) ~20(1) [V + (V)7 ..

2 (2a(n)e’ (1)4? — 20/ (1) V0P,

o= 1orf "~ (20(1)0’ ()4 20" (1) [VP),
leading to

- KT? ’ 2 ’ 2
e:CVT—6¢—7(2a(T)a (T)w? =20’ (1) V9.

In those cases where the thermal expansion may be neglected, that is, «’(7) = 0, as in [40],
the internal energy density e simplifies to

e=C,T—py.
For the general case, we introduce the following definitions:
Y (T) := kT?a(T)a’ (T) and -~ (T):= xT?a’ (T). ™

The internal energy density can then be expressed as

&= C,T— B —~o (1) * + (1) [V

2.2. Mass and internal energy conservation

We assume that the flow of heat is dominated by diffusive flux. The first law of thermodynam-
ics, which states that energy must be conserved, then takes the form

Oe=-V-J, ®)

where J, is the flux of energy, here chosen as

~ 1
J e — M TV (T) ’
where M7y >0 is a thermal energy mobility coefficient so that the energy conservation
equation is

COT = O ==V (Mrv (;)) +0 (MY OT=+{ () |VoP T

+ 27 (T) Y Op =2 (T) V) -Vonp. 9

Based on the general form of the energy equation, it follows directly that the first law of ther-
modynamics holds globally, 0,E = 0.
The generic form of the mass conservation equation is

8t¢ =-V JUJ’

with mass flux J,;, imposing 0, fQ Y(x,)dx = 0. For J,, we assume J, = —My, Vw with mass
mobility coefficient M,, > 0 and generalized chemical potential w:

O =V -(MyVw), (mass conservation) (10)
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w =0y (;) -V- <3vw (;)) +KkV*p, (generalized chemical potential).
(1)
We observe that
Fo~ T

T =Fe)~ c.og (T) 54 5 (2~ 20(1) [V + (V0)7),
where

- \— 3 4

Fwy =22 s

and, therefore, the generalized chemical potential w can be specified as

~ A

oo () (o () o (2)

=f () - g, + ka* (T) 1) + 26V - (a(T)Vh) + KV ).
Proposition 2.2. Assume that §) is a rectangular domain in R? and the fields are Q-periodic.

With the flux choices for J. and ], above, the entropy is increasing in time, with the following
entropy-production rate:

1

T

The explicit demonstration is given in appendix A.

0,8 = / {M¢ |Vw|® + My
Q

2
} dx > 0. (12)

2.3. PFC model recapitulation

As stated earlier, we use periodic boundary conditions for simplicity. We assume a constant
mass mobility coefficient My, > 0, and we suppose that the thermal energy mobility coefficient
satisfies 1\717 = T>My, where My > 0 is a constant. The complete model results in a coupled
system of equations that includes a heat-like equation and a PFC-like equation:

MV T = (€= (1) 4+ (1) V) T = (8 + 290 (T) ¥ =271 (1) VY - V) Ot

2 3
% + % —gmazmw +2KV - (a(T)V¢)+nV41/J> (13)

onp =M, V? ((Aw)zpﬂs
where v (7) and +, (7) defined as in equation (7) and «(7) as in equation (4). In addition to
those parameters that are essential for the standard isothermal PFC model, namely, the para-
meters 6, A, x > 0 and the global average density ¥, our proposed non-isothermal model (13)
includes mobility constants M, M7 > 0, the material constant 3 > 0 controlling the coupling
of the PFC equation with the heat flux, the heat capacity C, > 0 and a thermal expansion coef-
ficient a; > 0 which enters (7)), encoding how the crystal lattice expands due to temperature
fluctuations. We will investigate in the following section 3.1 how the individual model para-
meters affect crystal growth within closed systems and extend our formulations to the modeling

6
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Table 1. Model parameters for all the simulations reported in this paper. We set A = 0.6, x = 0.46, and
& = 1. For the setup according to figures 1-3 the domain is set to {2 = 220 x 256UC, while for the setup
according to figure 4, we choose 2 = 441 x 128UC with 1 unit cell (UC) representing the smallest repeat
unit of ¢: 1UC = [0, p,] x [0,py] and p. = 2/+/3py = 47/+/3. Uniform spatial and temporal grids are
chosen to guarantee numerical convergence and entropy production. Consistent with the established PFC
literature utilizing the Fourier pseudo-spectral method, see e.g. [24, 47, 48], we choose for all simulations
Ax ~ Ay =~ 1 with At = 0.01 for the setup according to figures 1-3 and Ar = 0.1 for the setup according
to figure 4. Empty table entries read as the row above.

Figure s CV MT M¢ ﬂ a) To
1 0.849,0.151 0.06 0.06 1 0.06 0.1 0.6
2 0.05...2
0.06 2-1073...0.3
0.06 0.01...100
3 1 6-107%...0.3
0.06 0.01...0.3
0.1 0.1...1.8
4 — 0.01 0.6

of open systems in section 3.2. Table 1 summarizes all model parameters for the simulations
reported in this paper. Here, we consider growth regimes where the solid phase is favored
close to solid-liquid coexistence. Similar to classical PFC approaches, other regimes, such as
the stripe phase with its associated coexistence with the triangular phase, are accessible in the
corresponding phase diagram, although their extensive discussion is beyond the scope of the
present work.

3. Numerical benchmark simulations

Numerical solutions of the proposed model can be obtained efficiently by using a Fourier
pseudo-spectral method, enforcing periodic boundary conditions in combination with a linear
first-order semi-implicit (IMEX) time-stepping scheme. The numerical algorithm is imple-
mented on graphics process units (GPUs), and we perform the (inverse-) Fourier transforms
using a cuFFT library.

3.1. Model features and parameter studies

We focus on a benchmark setup of a growing crystal in a supersaturated melt with initially
constant temperature T to investigate the density and temperature evolution in a closed sys-
tem for different model parameter values, similar to [41]. We choose our model- and material
parameters as reported in table 1 and compare the resulting density and temperature evolu-
tion for the global average densities ¥ = Wy(=0.849) and ¥ =1 — ¥(=0.151) in figure 1,
representing crystals with underlying honeycomb and triangular symmetry, respectively. For
the chosen values of ¥, the melt is mass-supersaturated, enabling solidification of the grow-
ing crystal within a closed system. Representative steps of the dendritic solidification process
are shown in figure 1(a) with snapshots of the density and temperature fields. Relative to the
commonly observed enlarged lattice spacing produced by PFC models during growth [41,
49], further compression of the crystal lattice is obtained for heat reduction inside the solid

7
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(a) density and temperature evolution

t=15-10* t=25-10*
¥(Wo) T(Vo) (Vo)
128 r
y/py
0F
28l i
¥(1 = Wy) T(1—Wo) P(1—W) T(1-%o) P(1—W) T(1- )
-11 0 110 -110 0 110 -110 0 110
/pa /pa z/Px
average density ¥ - -
— U =Y —V¥=1-Y 0 0.5 1
(b) area of the solid phase (c) temperature difference (d) entropy-production rate
A, AT in 1073 0,5 in 1073
0.5 28
14
0.4 24
10
0.3 20
0.2 6 16
0.1 2 12
0 2., 8 | S I T S
0 1 2 3 0 1 2 3 0 1 2 3
tin 10* tin 10* tin 10*

Figure 1. Dendritic solidification by the proposed PFC model. The symmetry break for
average densities W = Wy and W = 1 — W during dendritic solidification is also illus-
trated. (a) Density (¢) and temperature (7') evolution for ¥ = ¥, (top) and ¥ = 1 — ¥,
(bottom) during growth at different time steps. (b) Relative area of the solid phase As
vs. time (c) signed temperature difference AT vs. time. (d) Entropy-production rate
9;S vs. time. For illustration purposes, we normalized the plotted quantities (%),
(1 —Wy) and T(1 — ¥y) from O to 1 and normalized the plotted quantity 7(¥¢) from
0 to 0.9 in order to ensure a consistent color representation for 7 = Ty across all plots.
Values of (W), (1 — Uy), T(¥p) and T(1 — W) vary within the following ranges:
—0.03 < p(Wp) < 1.21, —0.02 < (1 — W) < 0.97,0.6 —6- 10+ < T(¥y) < 0.6+
6-10"*and 0.6 — 1.0- 1072 < T(1 — Uy) < 0.6+ 3.6- 1073, Lengths are scaled with
the atomic spacings along the x- and y-axis, py and p,.
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phase (I = ¥y) and a further expansion of the crystal lattice is obtained for heat production
inside the solid phase (U = 1 — W), as described by equation (4). Next to a qualitatively
different temperature evolution inside the solid phase for ¥ = ¥y and ¥ =1 — WUy, an addi-
tional (small) symmetry break in the dendritic morphologies is observed (slightly faster solid-
ification dynamics corresponding to smaller temperature gradients for U = W, further ana-
lysis below). As first described in [41], only in case a; =0, identical energetics for ¥ = ¥
and U =1 — ¥, lead to identical density and temperature morphologies. To further inspect
this symmetry break, we quantify the dendritic growth process by calculating the relative
area of the solid phase Ag (area of the solid phase divided by the domain size) and show
its time evolution in figure 1(b), illustrating a slightly faster growth of the solid phase for
U = ¥,. Additionally, we calculate the signed temperature difference within the system as
AT(t) = Imaxyeq T(x,t) — mingcq T(x, )| sign (T(x = 0,1) — Ty), leading to positive values
for a solidification process with heat development inside the solid phase (e.g. for ¥ =1 — ¥y)
and to negative values for a solidification process with heat reduction inside the solid phase
(e.g. for ¥ = Wy). In figure 1(c), we show the time evolution of AT and observe a larger
temperature difference within the system for ¥ = 1 — W, corresponding to slower solidifica-
tion dynamics. The different energetics for ¥ = ¥y and ¥ = 1 — W lead to different entropy-
production rates 9,5 (2.2), which we show in figure 1(d). We note that after the initial transient
behavior for ¢ <2-10%, the entropy-production rates for ¥ = W, and ¥ = 1 — ¥, remain
unchanged until they increase for ¢ > 1 - 10* due to the developing dendritic arms. The inter-
action of the density and temperature fields with their periodic images leads to a decrease in
0,8 fort > 3.1-10%, see figure 1(d).

We further investigate the role of different parameters entering the proposed PFC model,
equation (13), during the dendritic solidification process for U = ¥y and ¥ = 1 — ¥, through
numerical parameter studies. We vary one of the following parameters while letting the others
unchanged: My, Mr, C,, a;, B and Ty, see table 1. We keep the setup from figure 1, calculate
A, AT at t =3.5-10* for both ¥ = ¥, and ¥ = 1 — ¥, and show their dependence on the
different model parameters in figures 2 and 3.

For larger parameter values of M., Mt and lower parameter values of C,, anincrease in A is
obtained, corresponding to a faster solidification of the growing dendrites, see figure 2(a). The
temperature field inside the growing solid phase can be controlled quantitatively by varying
M.y, Mr, and C,, but does not change its qualitative behavior (heat production inside the solid
phase for U = 1 — ¥, and heat reduction inside the solid phase for ¥ = W), see figure 2(b).
We conclude that M, Mr, and C, mainly control the time scales of our model.

By varying the parameter values of aj, (3, and T, the relative area of the growing solid
phase Ag shows a maximum for ¥ = ¥, and ¥ =1 — U, respectively, see figure 3(a). The
maximal values of Ag correspond to parameter values a;, 8 and Ty which lead to vanishing
temperature differences (AT ~ 0), see figure 3(b). Furthermore, a changed qualitative beha-
vior of the temperature field inside the growing solid phase is obtained for large parameter
values of aj, Ty, and small parameter values of 3 (heat reduction inside the solid phase for
¥ =1 — U, and heat production inside the solid phase for ¥ = W), see figure 3(b). This
qualitative change in the temperature fields corresponds to a flipped sign of the prefactor for
O within the heat-like equation (13) for large parameter values of a;, Ty and small parameter
values of 3.

We numerically verified that entropy production is obtained for all simulations in
figures 1-3.
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(a) area of the solid phase

A, A, A,
T.LTTTTETLELT AT TTTd
- 0.45
0.6 0.4 i
0.4 0.3 0.43
0.2 0.2 0.41
0 4= 0.1 0.39
102 102 103 100 1071 100
Mw MT CU

average density ¥

U =9, U =1-17,
(b) temperature difference
AT in 1072 AT in 1072 AT in 1072
9 3 14
15 2 10
1
1 6
0.5
0. 0 2 |
05 i W I RS SAAARA
102 102 1073 100 107! 100
M, My Cy

Figure 2. Dependence on model parameters—I. The mobility parameters My,, Mt and
C, mainly control the dynamics of the solidification process for the setup in figure 1:
(a) area of the solid phase As and (b) temperature difference AT, by varying M.,, Mt
and C,.

3.2. Open systems

To properly describe solidification in open systems, we need to modify our model to mimic
external mass and heat fluxes entering the system via the domain boundary. We will show that
the modified model (described below) recovers qualitative behavior typical of the directionality
of mass fluxes as well as (de-)stabilization effects of the growth front induced by heat fluxes
during solidification, thus describing more realistic solidification conditions than the supersat-
uration condition typically used for closed systems, see section 3.1.

We initialize a perturbed crystal front surrounded by liquid with ) = 0.87 for |x| < 33p,,
see figure 4(a), and material parameters from table 1. The specific choice of the mater-
ial parameters guarantees a local equilibrium of the solid and liquid crystal phase for |x| <
33p,. For |x| > 193p, we initialize a liquid crystal phase with lower density 1) = 0.86. For
33p, < |x| < 193p, the density of the liquid crystal phase decreases linearly from ¢ || _55, =

10



Modelling Simul. Mater. Sci. Eng. 33 (2025) 025007 M Punke et al

(a) area of the solid phase

Ay A A
0.46 : 1 0.45 i
- 04

| 0.35

0.427 A
0.3 0.25

0.38 0.2 0.15
0.34 0.1 0.05

10-2 10~ 10-3 100 10~ 100

ay 6 TO

average density ¥

AT =Y, ST =1-1,
(b) temperature difference
AT in 1072 AT in 1072 AT in 1072
- 2 [
15 \ 4
1 3
0.5 )
0 E
05 ) L
. 0]
-1.54 -2 -1
1072 1071 1073 10° 107! 10°
aq B TO

Figure 3. Dependence on model parameters—II. The material parameters a;, 8 and T
control the dynamics of the solidification process and the qualitative behavior of the
associated temperature field for the setup in figure 1: (a) area of the solid phase As and
(b) temperature difference AT, by varying a;, 3 and T.

0.87 to w||x|=193p_\— = 0.86. At every time step, we adjust the density for |x| > 193p, setting
7,D|‘X‘2193pr = (.86, thus effectively introducing a net mass flux into the system. This adjust-
ment directs mass towards the central crystal front, analogous to liquid diffusion observed in
experimental setups [3, 11, 50]. Since the solid and liquid crystal phases in the central region
are initialized in equilibrium, the additional mass flux leads to an incipient solidification at the
central crystal front.

Furthermore, the stability of the growing crystal front is expected to depend on the pres-
ence (and sign) of temperature gradients, see e.g. [51]. To test the capabilities of the approach,
we therefore consider nonuniform temperatures and explore regimes featuring opposite tem-
perature gradients. Like the density initialization described above, we set 7| x| <33p, = Ty and

1
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(a) initial density field

64 T
u/py [
F mass mass
0o F = L
-64 L
-220 0 220
z/Ps
(b1) initial temperature field (b2) initial temperature field
heat reduction applied heat increase applied
64 heat heat heat heat
Y/py Lo — — L
-64
-220 0 220 -220 0 220
z/ps /P
(c1) density field at t = 1.5 - 10° (c2) density field at t = 2 - 106
heat reduction applied heat increase applied
64 mass =B mass mass mass
ulm | = i ' &= = i o
-64 =
-220 0 220 -220 0 220
/s /e

Figure 4. Example of growth in an open system and interplay with the heat flux. (a)
Initial condition corresponding to a perturbed crystal morphology. Mass flux entering the
system, inducing crystallization, is considered. (b1) Initial temperature field enforcing
heat reduction, leading to a dendritic-like solid-liquid interface evolution shown in (c1)
by the microscopic density at £ = 1.5 - 10°. (b2) Initial temperature field enforcing heat
increase, leading to a smooth growing front shown in (c2) by the microscopic density
at = 2- 10°. For illustration purposes, we normalized all plotted quantities from 0 to 1
using the color-scale from figure 1, values of i) and T vary within the following ranges:
(a) 0.41 <9 < 1.09, (b1) 0.25 < T<0.6,(c1)0.02< ¥ < 1.21, (b2) 0.6 < T < 0.95,
(c2) 0.03 < ¥ < 1.21. Lengths are scaled with the atomic spacings along the x- and
y-axis, py and py.

adjust the temperature for [x| > 193p, setting 7|93, =75 at every time step. In case
the applied temperature gradient is set opposite to the growth direction of the solid phase
(To > T, = 0.25), a destabilization of the evolving solid-liquid interface leading to dendritic
solidification is observed, see figures 4(b1) and (c1). When enforcing a temperature gradient
along the growth direction (7p < 7;, = 0.95), a stabilization of the initially perturbed solid-
liquid interface is obtained, leading to a smoother growth front and slower solidification
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dynamics, see figures 4(b2) and (c2). This result is consistent with theoretical [52-55] and,
importantly, experimental observations [51, 56-59].

4. Conclusion

We introduced a non-isothermal PFC model that accounts for lattice expansion ensuring
entropy production for time evolutions. Thermodynamic consistency is shown to follow by
construction from the chosen formulation of the free energy as well as heat and mass fluxes.
Through numerical benchmark simulations, we showcase how the parameters entering the
model control temperature and density evolution during dendritic solidification processes and
further verify entropy production numerically. Finally, we extend our model formulation to
include the description of external mass and heat fluxes that enter the system, thus mimicking
the physics of open systems. This work not only extends the existing non-isothermal PFC for-
mulations [40, 41] but also allows for thermodynamic consistent PFC simulations of realistic
solidification conditions incorporating thermal expansion of the crystal lattice and including
heat fluxes.

Our model phenomenologically introduces the simplest free-energy formulation that
ensures entropy production, making it a valuable benchmark for future non-isothermal frame-
works. For instance, an alternative approach, building on the classical density functional theory
of freezing, could involve incorporating a temperature-dependent lattice parameter within the
energy formulations of [39, 43] and deriving the resulting governing equations under the con-
dition of entropy production.

The proposed numerical simulations offer accessible benchmarks for PFC and other solid-
ification modeling and simulation approaches. The extension to three-dimensional systems
can be envisaged with the aid of efficient numerical methods [38, 60] or coarse-grained for-
mulations of the PFC, like the so-called amplitude expansion of the PFC model [61-63].
Additionally, explicitly modeling elastic relaxation can provide a better description of com-
petitive time scales, particularly regarding elastic relaxation and diffusive dynamics [30, 32,
33], along with the presence of heat flux.
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Appendix A. Entropy production

We explicitly demonstrate that in the proposed model, the entropy is increasing in time. By
taking the time derivative of the total entropy and using equations (6) and (8), we have

0,5 = / [0,300) + 080T+ Ogys - OV + 09230, (V24) } dx
Q
:/ {6¢ SO + %8Té8,T+ 8V1/}3‘ Vo + 8vz¢§V28,1/) } dx
Q
Z/ {({91/) SO + (r“)Vd,S‘ Vo + 8V:¢§ VZ&zp } dx...
Q

1
+/ {T (—V -Jo— 81/;@8,2/1 — 8v1/,é - Va,’L/) — 8Vz¢éV28ﬂp) } dx
Q

_ f Ay N+ Lo
= —/Q{@w (T) o —l—avw (T) Vo +8vz¢ (T) Voo + TV Je}dx.

Using periodic boundary conditions, integration-by-parts, and mass conservation, we have

e [ (o o ()= o (o251
=/Q{WV-J¢, —%V-Je}dx
:/Q{—VW-J¢+V<1T) ~Jg}dx.

Finally, using the flux conditions that appear in equations (9)—(11), namely

~ 1
Jy =—MyVw and J, =MV () ,

°(7)

2
} dx > 0.
Appendix B. Stable parameter ranges

we obtain

Q

For the setup illustrated in figure 1, we examined the range of parameters where our model
remains numerically stable. Similar to figure 2 and 3, we set C,, = 0.06, M7 = 0.06, M, =1,
£8=0.06,a; =0.1, Ty = 0.6 and varied one parameter while letting the others unchanged. For
U = U, we observed numerical convergence of our model for the following parameter ranges:

0.02<C, <0
0<Mr<08
107 <My < o0
0<p <051
0<a 034
0.1 <Ty < 1.86.

(B.1)
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For ¥ = 1 — ¥, within the following parameter ranges numerical convergence of our model
was found:

003G, <@
0<Mr<05

1077 <My < o0
0<B<041
0<a; £0.31

0.09 <Tp <1.93.

(B.2)
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