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ABSTRACT. Phase field crystal is a model used to describe the behavior of
crystalline materials at the mesoscale. In this study, we investigate the well-
posedness of a phase field crystal equation subject to a degenerate mobility
M (u) that equals zero for u < 0. First, we prove the existence of a weak
solution to a phase field crystal equation with non-degenerate cutoff mobility.
Then, assuming that the initial data ug(x) is positive, we establish the existence
of a nonnegative weak solution to the degenerate case. Such solution is the limit
of solutions corresponding to non-degenerate mobilities. We also verify that
such a weak solution satisfies an energy dissipation inequality.

1. Introduction. In this paper, we consider a phase field crystal (PFC) model.
Let u: Q — [0,00) be an Q-periodic unary atom density, where Q = [0, 27]¢ C RY,
1 < d < 3. The free energy for the state defined by wu is

Flu) = /Q [W(u) iy (;@ﬂ |Vl + ;|Au|2>] dz, (1.1)

where W : [0, 00) — [Wy, 00) is a homogeneous free energy density, Wy > —oo, and
% > 0 is a parameter. The PFC equation is a conserved gradient flow with respect
to the PFC energy functional F(u) and is written as

ug =V - (Mw)Vw), inQp:=Qx(0,7), (1.2)
w =W (u) + k(u+2Au + A%u), in Qr, (1.3)

where T' > 0 is the final time.

From a mathematical point of view, this equation and its variants have been
analyzed in [17, 22, 14, 15, 6] and references therein. In particular, Miranville
studied the existence and uniqueness of variational solutions for a PFC model with
constant mobility M (u) = 1 and logarithmic (singular) nonlinear terms [17]. Wu
and Zhu theoretically and numerically analyzed the well-posedness of a square PFC
model in the three-dimensional case [22]. The significant difference between our
result and theirs is that we are studying the PFC equation subject to a non-constant
mobility M (u) that is dependent on u.
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1.1. Derivation. In this section, we quickly re-derive the PFC model to motivate
the form that we investigate. See, for example, the nice paper by Archer et al. [1]
for all of the possible modeling choices. The phase field crystal (PFC) model was
introduced in [10, 11] as continuum description of solidification in a unary material.
It was formulated as a mass conservative version of the classical Swift-Hohenberg
equation, but, later, the model was re-derived, via certain reasonable simplifications,
from the dynamical density functional theory (DDFT) [4, 12]. (See [1] for a more in-
depth derivation from the DDFT framework.) In particular, assuming a constant,
uniform temperature field, one expresses the dimensionless Helmholtz free energy
density via

F(o) = [ 1)+ 50— De(—1)] do. (1.4)

where Q) is some spatial domain of interest; p : Q@ — [0,00) is the number density
field of the unary material in Q; x > 0 is a positive dimensionless constant; f is
the homogeneous Helmholtz free energy density; and C is a symmetric, potentially
nonlocal, two-point correlation operator. Here we have taken the state p = p, = 1
as the dimensionless reference density.

The homogeneous free energy density, f, is often taken to satisfy an “ideal gas”
model:

f(p) =pln(p) —p. (1.5)
Note that this energy density has a global minimum at the reference state p = 1.
Often, one makes a (Taylor) polynomial approximation of the logarithmic term
about the reference density to make the model more tractable. However, the singular
nature of the logarithmic term contributes to the positivity of the solutions, and
this is an important feature in the numerical and PDE analyses.

The designation of the lower-order terms of the density functional free energy
expansion (1.4) as the “ideal gas” part is standard in the literature. See, for ex-
ample, [4, Section 4.7]. This does not imply that the material being modeled is a
gas, but that the lower-order free energy has the form of that used in the modeling
of an ideal gas. The typical derivation of the free energy of a fluid starts with the
statistical mechanical ensemble of a large number of identical particles, where the
Hamiltonian of the collection has a kinetic energy (ideal gas) part and a long-range
interaction potential (non-ideal gas) part. The kinetic energy part results in the log-
arithmic form for f(p) employed in (1.5). The higher-order correction terms in the
free energy (1.4) result from the long-range interactions of particles and distinguish
the model from that of an ideal gas.

At constant temperature, one can argue that the dynamics of the model should
satisfy a diffusion-dominated mass conservation equation of the form [1]

Op=-V-J, J=—pVyp, (1.6)
where J is the diffusion flux; and pu is the chemical potential:
pi=0,F =log(p) + xC(p — 1), (1.7)

where we have assumed, for simplicity, that the boundary conditions are periodic.
Observe that

V- (pV(log(p))) = Ap,

which suggests that the model incorporates standard particle diffusion at leading
order. For this derivation, we will assume that C is a differential operator of the
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form

C(o) = vo+ 2A0 + A2,
where 7 € R is a dimensionless parameter. This chosen form promotes the formation
of spatially oscillatory density fields and was originally suggested by Elder and co-
workers [10, 11, 12]. To sum up, the chemical potential is modeled as

p=1log(p) + ky(p— 1) + & (2Ap + A?p) . (1.8)

As a consequence of our model assumptions, the total free energy is dissipated
as the system evolves toward equilibrium, and the dissipation rate is

d;F = 7/ p|Vu|? dz < 0.
Q

Of course, is be necessary to justify the property that p > 0 (or at least p > 0)
point-wise for the model to make sense.

As we indicated, it is most typical in the physics literature to use a Taylor polyno-
mial approximation of the logarithmic free energy density, around the dimensionless
reference state p = p, = 1, of the form [12]

pn(p) ~ p ~14 L(p— 11— 2o~ 1 + 1o (p— " (1.9)
This approximation regularizes the singular nature of the ideal gas law, but also it
removes the singular free energy barrier against states that have negative density
regions.

Note that we are keeping the degenerate mobility and approximating the ideal
gas law with a polynomial. Archer et al. [1] have argued that if, on the other
hand, one approximates the degenerate mobility with a positive constant, then one
is absolutely forced to replace the logarithmic potential (the ideal gas law) by the
approximating Taylor polynomial. Otherwise, the model predictions are unphysical.

With the simplifications described above, we have the following PFC model. For
each Q-periodic state function u : Q — [0, 00), the free energy is

]-'(u):/ﬂ[fo(u)—&-g(u—l) (10— 1) + 28— 1) + A%(u— 1)) de,  (1.10)

where ) ) )
fo(u) =-1 + i(u — 1)2 — g(u — 1)3 + E(’LL — 1)4.

The conserved gradient flow describing the evolution of the state function w is
Ou= -V - (uVw),
w= fi(u) + K (v(u—1) + 2Au+ A%u),

which matches the form that we introduced earlier, after defining W (u) to be

K K
W (u) = folu) + - —1)? = Zu?.
1.2. Main result. In this paper, we model the mobility M (u) as
u, u>0
M = ’ ’ 1.11
(w) { v (1.11)

which degenerates when u < 0. We assume that the potential W € C?(R) satisfies
the following growth conditions:

b1 2™ — by <W(2) + §z2 < by2®™ 4 by, (1.12)
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W' (2)| < bs|z>" " + by, (1.13)
b122M72 — by <W(2) < b32®™ 72 4 by, (1.14)
for all z € R, where m > 1 is an integer, 0 < € < k, and by, b, b3, by are positive
constants. A simple example of such a potential W is
€

W) = 30— 1) — S -1,

where € € R. This satisfies the above growth conditions with m = 2.
Our analysis used a framework similar to [13, 7, 9]. First, we approximate the
degenerate mobility M (u) using a nondegenerate mobility My(u) defined by

u, u>0,
0, u<@,

for any 6 € (0,1), and show that the equation (1.2)—(1.3) with the mobility My (u)
has a sufficiently regular weak solution ug, that is, we prove the following theorem.

(1.15)

Theorem 1.1. Let ug € H?(Q). For any given constant T > 0, there ezists a
function ug that satisfies the following conditions:

(i) Forany 0 < oo < 1/2,
ug € L?(0,T; H%(Q)) N L*(0,T; C>*(Q))
N C((0,7]; H(2)) N C([0, T]; C** (%)),

(ii) Oyup € L?(0,T; H=2(Q)).
(iii) wg(z,0) = ug(x), for all x € Q.
(iv) ug solves the PFC equation (1.2)-(1.3) in the following weak sense:

T
/0 (Orug, &) -2, 2 (o) dt

T
= —/ / My (ue) (W (ug)Vug + kVug + 26V Aug + VA% ug) - VE dadt,
0 Ja

(1.16)

for all € € L2(0,T; H*>(Q)). In addition, for any t > 0, the following energy
inequality holds:

/QW(Ug(m,t)) np <;|uQ(x,t)|2 Vg (z, ) + ;Aue(m,t)|2> dx

—|—/Ot/QM@(U,g(l‘,T))‘W”(ue(xaT))VUG(va)

2

+ k (Vug(z,7) + 2VAug(z,7) + VA?up(z, 7)) | dodr
Lo 2, 1 2
< | W(uw)+k JUo ~ [Vugl® + §|Au0| dz. (1.17)
Q
(v) Ifup(z) >0, for all z € Q, then

esssup/ ((ug(z,t))— +0)* dz < C(0%+0+0/2), (1.18)

0<t<T Jo
where (ug)— = minf{uy,0}, and C is a generic positive constant that may

depend on d,T,S), by, ba, b3, by, m, K, € and ug, but not on 6.
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Next, we consider the limit of {ug} as @ — 0. We show that the limiting function
u of {up} exists and is a weak solution to the PFC equation (1.2)—(1.3) with the
mobility M (u) defined by (1.11). Moreover, if the initial data ug(x) is positive in Q,
using the estimate (1.18) in part (v) of Theorem 1.1, we can show that such weak
solution is nonnegative in Q2. We will prove the following result.

Theorem 1.2. Assume that ug € H?(). For any given constant T > 0, there
exists a function u that satisfies the following conditions:

(i) For any 0 < a < 1/2,
w € L0, T5 H*(2)) N C([0,T]; H'(Q)) N C([0,T]; C* ().
(i) Opu € L2(0,T; H=2(52)).
(iii) u(x,0) = ug.
(iv) u can be considered as a weak solution for the PFC equation (1.2)-(1.3) in

the following weak sense:
(a) Let P be the set where M(u) is not degenerate, that is,

P:={(z,t) € Qr : u(z,t) > 0}. (1.19)

There ezist a set B C Qr with |Q7\B| = 0 and a function ¥ : Qp — R4
satisfying xpnpM (u)¥ € L2(0,T; L*¥/(4+2)(Q: R%)), where xpnp is the
characteristic function of B N P, such that

T
/ (00 €) sy ooy dt = — | M(u)w - Vedadt, (1.20)
0 BNP
for all £ € L*(0,T; H*(Q)).
(b) Let VA2u be the generalized derivative of u in terms of distributions. If
VA2 € LY(Ur), where Ur = U x (0,T), for some open set U C Q and
some q > 1 that may depend on U, then we have

U =W"(u)Vu+ kVu +26VAu + kVA%*u in Ur.

(¢) For anyt >0, the following energy inequality holds:

W(u(z,t)) + K (;Iu(ac,t)2 V(e ) + ;|AU(ar,t)|2> .
" /QfﬂBﬂP M (u(z, 7))[¥(z, 7)|"dwdr

1 1

< | W(uw)+k (2ug — |Vuo|* + 2|Auo|2> dx. (1.21)

Q

(v) In addition, if ug(z) > 0, for all x € Q, then u(z,t) > 0, for a.e. x € Q and
allt € 0,T], and u(zx,t) is not always zero in Q.

1.3. Notation. In this paper, we use C to denote a generic positive constant that
may depend on d,T,, by, by, bs, by, m, k,e and ug, but nothing else, in particular
not on # and N. We also use Cy to denote a generic positive constant that may
depend on d, T, ), by, bo, b3, bs, m, K, €,ug and 6, but not on N.

The reamainder of this paper is organized as follows. In Section 2, we prove
Theorem 1.1 using the Galerkin approximation. In Section 3, we prove Theorem
1.2, which shows the existence of a weak solution to the PFC equation (1.2)—(1.3)
with the degenerate mobility (1.11).
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2. Proof of theorem 1.1: Weak solution for the positive mobility case. In
this section we prove the existence of a weak solution to the PFC equation (1.2)-
(1.3) with the nondegenerate mobility My(u) defined by (1.15).

2.1. Galerkin approximation. Let {¢; : j = 1,2,...} be the normalized eigen-
functions in L?(12), that is, ||¢;[|2(0) = 1, of the eigenvalue problem:

—Au = Auin Q, and u is Q-periodic.

The eigenfunctions ¢; are orthogonal with respect to the H*(Q2) and L?($2) inner
products. We assume that A\; = 0, which implies that ¢;(z) = (27)~%2.
We consider the Galerkin approximation for the PFC equation (1.2)—(1.3):

N

N
o t) =3 0o @), Vet =Y (1)0), 1)

j=1
/atquf)jdx: f/ My (v )V - V;dx (2.2)
Q Q

/ Wi ¢;de = /(W/(UN)%' + rulV gy — 26Vul - Vo, + kAU Agj)dr  (2.3)
Q Q

N

W (,0) =Y < /Q u0¢jdx> 6:(). (2.4)

j=1

This system is equivalent to the following system of ordinary differential equations

N N.
for c¢f',...,cn:

N N
o) ==Y df / My <Z Y @) Vor - Vo,da, (2.5)
k=1 Q i=1
N
ay :/QW/ (Z cwk) pjdx + kel —2x;¢) + kX)), (2.6)
k=1
cé-V(O) :/Quoqﬁjdx. (2.7)

Because the right hand side of (2.5) depends continuously on ¥, ..., e¥, according
to the Peano existence theorem [18, 19], the initial value problem (2.5)—(2.7) has a
local solution. Lemma 2.2 gives the uniform bound for ¢¥, ..., ¢¥, therefore, by the
Picard-Lindel6f theorem (see [5], page 12, Theorem 3.1), a global solution for the
initial value problem (2.5)—(2.7) exists.

2.2. A priori estimates. We will establish some necessary prior estimates in this
section.

Lemma 2.1. Let u" be a solution of the system (2.2)-(2.4). Then, for any 0 <
t<T,

/QuN(:c,t)dx:/QuN(x,O)dx. (2.8)

Proof. Taking j = 1 in (2.2) gives [,0uNdx = 0. Thus, [,u"(z,t)dx
=/, uN(z,0)dx, for any 0 <t < T. O
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Lemma 2.2. Let u" be a solution of the system (2.2)-(2.4), then, for any
0<t<T,

™| Lo (0,73 12 (0)) < C (2.9)
/Ot /Q My(u (2, 7))V (2, 7)Pdzdr < C. (2.10)
Proof. For any 0 <t < T, since
GF @) = = [ Mofu(2,0)9 0.0 P

integrating in time over (0,t), we obtain

1 2 2 1 2
/QW(uN(x,t)) +x <2|uN(x,t)| — |V (z,t)]* + §|AuN(a:,t)\ ) dx

‘ N N 2
+/0 /QMg(u (z, 7))|Vw™ (z, 7)|*dzdr

1 2 2 1 2
:/QW(UN(JZ,O))—FK:<2|U,N(z,0)| — IV (@, 0) + 5 |Au (2,0) >da:.
(2.11)

Using the growth condition (1.12) and Sobolev embedding for H?(f2) in R4(d =
1,2, 3), we obtain the bound for the right hand side of (2.11):

1 2 2 1 2
/QW(UN(x,O)) +5 (2|UN(J:,O)| — V™ (z,0)* + §|AuN(x,0)\ ) dx

< / (bgluN(m,O)Pm byt o 5 1M (2,0)]2 — K| VU™ (z,0)]2 + ;|AuN(:v,0)|2) da
Q

< O (116 (2, 0) |33 ) + 16 (2, 0) 3y + 1) o

< C (Jluoli3 @) + luol}aay +1)

<C. (2.12)

Now, let us consider the first integral on the left hand side of (2.11). For any

number a > 0, applying the AM-GM inequality (see [3], page 457, Theorem 17),
we obtain

bilu¥ P + (m — 1)a > m(by [ Pa™ Y™ = mbi/ma(m_l)/mmN\Q. (2.13)
We choose the number a so that mbyma(m_l)/m = K/2, that is,

m/(m—1) _
a=ay:= (%) b}/(m b,

So, with the choice a = ag, (2.13) implies

/ by [u™ [P dx > / E|uN|2dm — (m —1)ap|9|. (2.15)
Q 02

In addition, using integration by parts and Young’s inequality, for any number
B > 0, we obtain

—/{/ |VuN\2dx:/s/ uN AulNdz > —i/ |u™ |2da — @/ |AuN|?dz. (2.16)
Q Q 26 Ja 2 Ja

(2.14)
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Combining (1.12), (2.15) and (2.16) we obtain

/ W) + K <;|uN|2 — |Vul? + ;|AuN|2) dx
Q

> / <b1|uN|2m b+ 2 > SN2 — k| VN2 + ;|AuN|2> d
Q

> (H —f ") W 2de + 21— 8) [ |AuN|2dz — (by + (m — 1)ag)|Q.
2 28) Ja 2 Q
(2.17)
We choose the number § so that kK — § — ﬁ >0and 1 -3 >0, that is, 5"~ <

P <ﬁo < 1. Define

. €
’Yo-mln{foZﬁo 2( 50)}
then we have

/ W)+ k <1|uN|2 — Va2 + 1|AuN2> dx
0 2 2
> v (/ |u™ |2 dx —|—/ |AuN|2dx> — (by + (m — 1)ag)|Q]. (2.18)

Combining (2.11), (2.12) and (2.18) we get

</u xt|2dx—|—/|Au ;vtdx)

N 2
—|—/0 /QMg(u(x,T))|Vw (x,7)|*dxdr < C, (2.19)

for a.e. t € [0,T]. The estimate (2.10) is established.
From (2.19), using integration by parts and Young’s inequality again, we get

/ |VulN|?de = 7/ u™N AuNdx < 5/ |u™ |2dx + 5/ |AuN|2dr < C. (2.20)
Q Q
Then we obtain the estimate (2.9) by combining (2.19) and (2.20). O

Using the growth conditions (1.12)—(1.14) and Sobolev embedding for H?(2) in
R? (1 < d < 3), we obtain the following corollary.

Corollary 2.1. Let uN be a solution of the system (2.2)—(2.4). Then, we have

||uN||Loo(07T;Co,a(Q)) < C, forany 0 < a < 1/2, (2.21)
[ Mo(u™)|| oo 0,71 (02)) < C, (2.22)
W' (u™)|| oo (0,750 (02)) < C, (2.23)
W (™)l Loo 0,751.2¢ () < C- (2.24)

Lemma 2.3. Let u™ be a solution of the system (2.2)-(2.4). Then, we have
||WN||L2(0,T;H1(Q)) < Cp. (2.25)
Proof. Since Mp(u) > 6, by (2.10) we have

T c
/0 IV 2 dzxdt < 7 (2.26)
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which implies (2.25) by using Poincaré’s inequality. O
Lemma 2.4. Let u™ be a solution of the system (2.2)—(2.4). Then, we have

[u™ (| 20,7115 (2)) < Co- (2.27)

Proof. Since AuN =N N (¢ VAP = A () Aj¢;, then from (2.3) we get

j=16j j=15j

/ wN AuN = / (W' (™M) AN + ku Aul — 26VuY - VAN + kAulN A%u™N)da
Q Q
- /(W’(UN)AUN VN + 26| AUV P — /[ VAGN Pz, (2.28)
Q

Then, using (2.9), (2.23) and (2.25), we obtain

T
/ / |VAuN |2 dzdt

= / / — WV AU — k| VU2 + 2k|Au™ |?)dxdt

S (W' (u )HLZ(QT) + ™ ||L2(0T L2 T 2) || Au® ||L2(o T;L2(Q))
< Cg. (2.29)

By (2.3), we have
N =W (™) + sul + 26AuN + kAZUN. (2.30)
So by (2.9), (2.23) and (2.25), we obtain

T
/ / |A2uN |2 dadt

/ / W (™) + 2|u™ |2 + 4r2| Au | + |V |?)dzdt
< Cg. (2.31)
Taking the derivatives with respect to « on both sides of (2.30), we get
VbV =W WM)Vu + kVul + 26VAUY + kVAZY . (2.32)
Then, by (2.9), (2.24), (2.25) and (2.29), we obtain

T
/ / |VA2uN [ dxdt
0 Q

< % /T/(|V</JN|2 + W (W™ P VUl |2 + &2 VU P + 42 VALY ?)dadt

< Cy. n (2.33)
Combining (2.9), (2.29), (2.31) and (2.33), we obtain (2.27). O
Lemma 2.5. Let u™ be a solution of the system (2.2)—(2.4), then we have

10eu™ || z2 0,7, -2(0)) < C. (2.34)
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Proof. First, the estimate (2.19) implies that [|\/My(uN)Vw™ | 12¢0,7;12(0)) < C.
Then, for any ¢ € L?(0,T; H?(R)), by (2.2) and the generalized Hélder’s inequality,
we have

/ o pda| =

/ My(u™N )V V pda

< [y |y v

||V(b||L2d/(d—2) (Q)dt

L4(Q) L2
< OH\/MQ(UN)VWN ‘|V¢||L2d/(d—2)(ﬂ). (2.35)
)

Since H'(Q) cc L*>¥(4=2)(Q), by (2.22) and Holder’s inequality, we have

<o/
el

< CIVollL20,m;m ()
< Clldllz20,1;m2(2)- (2.36)

My( uN Vuwh ||V¢||L2d/(d—2)(ﬂ)dt

L2(Q)

/ AN pdadt

||V¢||L2(0,T;L2d/(d—2> (Q))
L2(0,T;L2(Q))

This implies [|0yuN ]| 2(0,7;1-2(0)) < C. m

2.3. Convergence of u" and the existence of a weak solution. In R? with
1 <d < 3, we have H*(Q) cc H'(Q) cc C"*(Q) — H*(Q) and H°(Q) cC
HY(Q) cc ¢32(Q) — H%(Q), for any integer 1 <1 < 4 and any 0 < a < 1/2.
Hence, by the Aubin—Lions lemma (see [2, 21]), we have

Q) : 9 f € L*(0,T; H2())} < O([0, T); H'()),

Q) : 9 f € L*(0,T; H~2(Q))} < O([0,T; C**(Q)),

)0 f € L*(0,T; H2())} cc L*(0,T; H'(Q)),

)1 0uf € L2(0,T; H72(Q))} cC L*(0,T; C*(9),

{f € L>(0,T; H?
{f € L>0,T;H?
{f € L*(0,T; H>(Q
{f € L*0,T; H*(Q

,_\A
—~

—_ —

)
)
for any integer 1 < I < 4 and any 0 < a < 1/2. Combining with the weak

compactness in L2(0,T; H5(Q)) and L2(0,T; H=2(Q), by (2.9), (2.27) and (2.34),
there exist a subsequence of {u™'} (not relabeled) and a function

ug € L*(0,T; H*(Q)) N L*(0,T; C*>*(Q)) n C([0, T]; H*(Q)) N C(]0, T]; C**())

such that as N — oo,

u™N — uy  weakly in L?(0,T; H>(Q)), (2.37)
o™ — Oyug  weakly in L2(0,T; H 2(Q)), (2.38)
u™N — up strongly in C([0,T); H(Q)), (2.39)
u — g strongly in C([0,T]; C**(Q)), (2.40)
u™ — ug  strongly in L*(0,T; H'(Q)) and a.e. in Qr, (2.41)
u™ — ug strongly in L*(0,T;C*(Q)), (2.42)



A NONNEGATIVE WEAK SOLUTION 11

for any 1 <! <4 and any 0 < o < 1/2. In addition, using (2.9) and (2.34), we have
the following bounds for wug:

lug Lo 0, 7;m2(02)) < C, (2.43)
||at’u/0||L2(07T;H—2(Q)) <C. (2.44)

From (2.25), there exist a subsequence of {w™} (not relabeled) and a function
wy € L?(0,T; HY(Q)) such that as N — oo,

wh = wy  weakly in L*(0,T; H'(Q)). (2.45)
By (2.39), Mp(u™) — Mpy(ug) strongly in C([0,T]; L4(R2)), hence

My(uN)VwN — My(ug)Vwy weakly in L2(0, T; L*¥ (@42 (Q, R?)) as N — oo.
(2.46)

For any v(t) € L?(0,T), because v(t)V¢; € L?(0,T; L*¥/(4=2)(Q)), multiplying
both sides of (2.2) by «(t), integrating over the time interval (0,T"), and taking the
limits as N — oo, by (2.38) and (2.46), we have

T T
| @016, e eeit == [ [ Me<ue>m-w<t>v¢j<x>dx<e;t;m

For any function £ € L*(0, T; H?*(9)), since its Fourier series > 72 | a;(t)p;(x) con-
verges strongly to & in L2(0,T; H%(Q)), then > i1 aj(t)Ve;(x) converges strongly
to V¢ in L2(0,T; L*¥/(1=2)(Q,R?)). Hence, by (2.47), we have

T T
/ (atua, £>H*2(Q),H2(Q) dt = — / /{; M@(Ue)vw.g . Vfdl‘dt, (248)
0 0

for all £ € L2(0,T; H?(2)),.
By (2.40) and (2.23), we have
W (uN) — W'(ug) strongly in C([0,T]; L9(f)) as N — oo, (2.49)

for any 1 < g < oo. Then, for any (t) € L?(0,T), because v(t)¢; € L*(0,T; C(f)),
multiplying both sides of (2.3) by v(¢), integrating over the time interval (0,7, and
taking the limits as N — oo, by (2.37) and (2.49), we obtain

/O ' /Q wy(t)p;dadt

T
= / / W (ug)y(t)p; + Kugy(t)d; — 26Vug - y(t)Vd; + KAugy(t) Ag; dxdt.
e (2.50)
For any function & € L?(0,T; H?(Q)), since its Fourier series Z;’il a;(t)¢;(x) con-
verges strongly to & in L2(0,7T; H?(2)), then Z;’il a;(t)Ve;(x) converges strongly
to V¢ in L2(0, T; L2%(4=2)(Q, RY)) and Z;ozl a;(t)A¢;(x) converges strongly to A&
in L2(0, T; L*%(4=2)(Q)). Hence, by (2.50), we obtain

T T
/ / wobdxdt = / / W' (ug)€ + kugé — 26V ug - VE + kAupgAE dadt, (2.51)
0o Ja o Ja
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for all £ € L2(0,T; H*(Q)). Since ug € L2(0,T; H5(2)), then wy € L2(0,T; H3(2)),
hence, from (2.51) we obtain
wyp = W (ug) + kug + 26Aug + kA%uy a.e. in Qr, (2.52)
and
Vwy = W (ug)Vug + kVug + 26V Aug + sVA%uy a.e. in Q. (2.53)

Combining (2.53) and (2.48) we get (1.16).
For the initial value, by (2.4), we have

u™ (x,0) — ug(z) strongly in L*(Q) as N — oo.

Combining with (2.41), we have ug(z,0) = ug(x), for a.e. x € Q.

2.4. Energy inequality. From (2.39), we have \/Mp(ulN) — /Mjy(ug) strongly
in C([0,7; L*(2)) as N — oo. Combining with (2.45), we get
My(uN )V — \/My(ug)Vwy weakly in L?(0,T; L} (;R?)) as N — oc.
(2.54)

On the other hand, by (2.10), there exist a subsequence of {\/My(u?N)Vw™} (not
relabeled) and a function Ag € L2(0,T; L?(£2;R?)) such that

Mp(uN)Vw™ — Ay  weakly in L*(0,T; L*(Q; R?)) as N — oo. (2.55)
By the uniqueness of weak limits, we have Ag = \/Mng, which implies
My(uN)VwV — /My(ug)Vws weakly in L2(0,T; L*(Q; R?)) as N — oc.
(2.56)
Also, by (2.40), we have
W(u™) — Wi(ug) strongly in C([0,T]; L9(R)) as N — oo, (2.57)

for any 1 < g < oo.

Because u” and w? satisfy the energy identity (2.11), using (2.37)—(2.42), (2.56)
and (2.57), and the weak lower semicontinuity of norms, by taking the limits as
N — oo in (2.11), we obtain the energy inequality (1.17).

2.5. Positive initial data. In this section, we assume that the initial data ug(z) >
0, for all z € 2. For any 0 < § < 1, we define the entropy densities ® : (0,00) —
[0,00) and Py : R — [0, 00) as

1
P(z2) = P(1) =d'(1) =
O = ¥ =W =0,

and

1

0y (2) = ma Dy(1) = Dy(1) = 0.
Using the definitions of M (u) and Mp(u) in (1.11) and (1.15), we obtain
®(z) =zIln(z) —z+1 for z > 0, (2.58)

and

(I)e(z):{zln(z)—z—i—l .2 >0, (2.59)

§22+(1n(9)71)z+1—g ,2 <0.
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We see that &g € C?(R), 0 < ®y(2) < &(2), for all z > 0, and Py(z) = &(2), for all
z>0.
Claim 1. For any t € [0,T],

/Q@g(ue(x,t))dx —/gzq)g(uo(x))dx = —/Ot/Qng - Vugdzdr. (2.60)

Proof. For any € > 0, let ®p . be the mollification of ®y. Since ®y € C?(R), then
Py — Py, Py . — Pf and &y — g uniformly on compact subsets of R as € — 0.
We will show that

¢
/ g (ug(x,t))dx — / Qg (uo(z))dz = —/ / Mg(u(g)@g’e(ug)ng - Vugdxdr.
Q Q o Ja
(2.61)
For any h > 0, define

1 t
ug.p(z,t) == E/ ug(z, 7)dr, (2.62)
t—h

where we set ug(x,t) = ug(z) for t < 0. Since H3*(Q) cC H*(Q) — H3(Q), by
the Aubin—Lions lemma,

{f € L*0,T; H*(Q)) : 0.f € L*(0,T; H3(Q))} cc L*(0,T; H*(Q)).
Since ug € L>(0,T; H*(2)) and oy ., Pp ., DY, <I>g,l) are bounded, we have

i‘lp 95, (uo,n)ll 20,513 (02)) < Co and 0y Py (uo,n) € L*(0,T; H?(Q)),
>0
for any h > 0. Hence, there exists a subsequence of {®} (ug,n)}r>0 (not relabeled)
such that

@y (ug,n) — P (ug) strongly in L?(0,T; H*(2)) as h — 0. (2.63)
On the other hand, define Jy := —My(ug)Vwy. Since wy € L?(0,T; H3(R)), Jg €
L2(0,T; H*(;RY)). Hence, for any & € L?(0,T; H?(12)),

‘@t“"ﬁ — Oyue, ’9<L2<o,T;H—2m)),L?(o,T;H?(Q))’

1 T t
-1 / < / (Oruo(7) — 5‘tua(t))d7,§> dt
0 \Je—n (H2(),H2(@)
1 T 0
= — / </ (Qrup(t + s) — 8tue(t))ds,§> dt
o NJ-n (H-2(0), H2(Q)

/T VE- (Jg(t+ s) — To(t))dzdt| ds
0 Q

1 0
“i/
S

||€||L2(0,T;H2(Q)) 7:2p<0 |Jo(- 4+ s) — Je(')”LQ(O,T;Hz(Q))a (2.64)

IN

which implies that

|0sug. 1 — Osual| 20,1, HH—2(0)) < SEP<0 Jo(- 4 5) = Jo()ll20,7;m2(2))-  (2.65)

Since sup_j,<,<q [[Jo(- +5) = Ja(-) |20, 7:52(2)) — 0 as h — 0, then

Opug p, — Opug  strongly in L?(0,T; H2(Q)) as h — 0. (2.66)
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Since @ (ug,n) and dyug p are both in L?(Q7), we have

¢
/0 (Byug,p, . (ug, h)>(H 2. H2(@)) O / / Dy (ug,n)Oue,pdrdr
= / / 0@ e(uo,n(7, x))drdx

aJo

_ / By (., 1))da — / By, (uo(x))da,
Q Q
(2.67)

for a.e. t € [0,T]. Passing to the limit as h — 0 and combining with (2.63) and
(2.66), we get

t
/ (D10, B} (00)) 1200 1120 I / B (g (7, 1))da — / Bo. (o) )da.
0 Q Q
(2.68)

Since ®j . and ®f’, are bounded, then ®}, (ug) € L*(0,T; H*()). So @ (ug) is
an admissible test function for the equation (2.48). Hence, for any ¢t € [0, T,

t
/0 <8t7.l,9,q)g’é(tm)>( 2(q), H"’(Q))d / / Mg ’LLg VWQ V(Cbee(U(;))dl'dT

= —/ /MQ(UQ)QIQCS(U@)V(U@'VU@d.ﬁdT.
0 Ja
(2.69)

Combining (2.68) and (2.69) we get (2.61).

Now, for each ¢ € [0, 7], since ug € C([0,T]; C**(Q)), then ug(,t) := {ug(z,t) :
x € Q} is a compact subset of R, so ®g . — Py and <I>"9’7e — @7 uniformly in ug (€2, t)
as € — 0, hence, ®p(ug) — Pg(ug) and @y (ug) — Py (ug) uniformly in Q as
€ — 0. Also, ug(Qr) = {ug(x,7) : # € Q,7 € [0,T]} is a compact subset of R, so
<I>’9’7€ — @y uniformly in ug(Qr) as € — 0, hence, <I>’9’7€(u9) — @} (ug) uniformly in

Qr as € — 0. Using Lemma 2.2, we obtain

| My (ug)|| Lo () < 00 and H\/ (a9 w(,‘

Since ug € C([0,T]; C**(R)), then ||Vugl| (s < oo. Thus,

< 0. (2.70)
L2 QT)

¢
/ My (ug)Vwe - Vug (4 (ug) — ®f (ug)) dudr
0 Jo

1/2
< HMe(Uo)HL/oo(QT)||VU9HLOC(QT)||\/ Mo (ug)Vwol| 1200 |95, (ug) — ©f (up) | L2(021)
—0 ase—0. (2.71)

So passing to limits as € — 0 on both sides of (2.61) and using @} (ug) = 1/Mg(ug),
we get (2.60). O

Claim 2. Let (up)- := min{ug, 0}, then, for any 0 < 6 <1,

ess Sup/ |(ug)— + 02dx < C(8% 4 6 + 61/2). (2.72)

0<t<T
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Proof. For any z < 0, we rewrite ®g(z) as

1
Dy(2) = %(z+9)2+(1n9—2)z+(1—9). (2.73)

Since 0 < 0 < 1, (2.73) implies
(z 4+ 6)? < 20®4(2) forall z < 0. (2.74)

Hence, for any ¢ € [0, T, since ®g(z) > 0, for all z € R, we have

/ |(ug(z,1)) - + 0*dx < 20/ Dy (ug(z,t)_)dx
Q Q

( / By (g (2, 1)) dar + / @9(0)d1‘>
{ug<0} {ue>0}

<2 ( /Q o (g (2, 1)) + /Q <I>g(0)d:r,>
<90 UQ By (g (, £))dz + (1 _ g) |Q|} (2.75)

From (2.26) and (2.9), we have |[Vwe| z2(q,) < C/6Y? and ||[Vugl| 120, < C.
Thus, by (2.60) and Holder’s inequality, we have

‘/gzq)g(ue(x,t))dx /Q<I>9(u0)dx AtAVWQ(x,T)-VUg(x,T)dxdT

< / By (o) + | Vel 12crp V0 | L2rpy
Q

IA
S

2

< +

C
< | P(up)dr + —+, (2.76)
/Q 0 91/2
for any ¢ € [0, T]. This inequality and (2.75) implies (2.72). O

3. Proof of theorem 1.2: Weak solutions for the degenerate mobility case.
In this section we prove the existence of a nonnegative weak solution to the PFC
equation (1.2)—(1.3) with the degenerate mobility M (u) defined by (1.11).

3.1. Convergence of {up} as 6 — 0. Fix ug € H?({2) and a sequence of positive
numbers {6, }$2, that monotonically decreases to 0 as i — oco. For each 6;, according
to Theorem 1.1, there exists a function

ug, € L*(0,T; H>(Q)) N L*(0,T; C**(92)) N C([0, T); H(R2)) N C([0, T); C*>*(Q)),
for any 0 < o < 1/2, whose weak derivative is

dyug, € L*(0,T; H™*(Q)),
such that, for any & € L?(0,T; H?(2)),

T T
/0 <6tu9717£>H*2(Q),H2(Q) dt = 7/0 /Q]\497 (UQi)ngt . Vfd:z:dt, (31)
wo;, = W' (ug,) + Kug, + 26Vug, + kAuyg,, (3.2)
ug, (x,0) = ug(x), for all z € Q. (3.3)

For simplicity, we use the notations w; := wg,,w; = wp, and M; := My,. By the
proofs of the lemmas in Section 2.2, the bounds on the right hand sides of (2.9),
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(2.10) and (2.34) depend ounly on d,T, 2, by, ba, b3, by, m, k, € and ug, but not on 6.
Therefore, there exists a constant C' > 0 independent on {6;}52; such that

il oo 0,7; 12 (02)) < O (3.4)
10¢will 20,152 (02)) < C, (3.5)

H\/Mi(ui)Vwi <c. (3.6)
By the Aubin—Lions lemma, we have

{f € L>=(0,T; H*(Q)) : 0, f € L*(0,T; H2(Q))} cc C([0,T]; H(Q)),

L2(Qr)

and
{f € L>(0,T; H*()) : 9, f € L*(0,T; H*(Q))} cC C([0,T]; C¥* (),

for any 0 < a < 1/2. Combining with the weak compactness in L>(0,T; H2(2))
and L%(0,T; H=2(f2), there exist a subsequence of {u;} (not relabeled) and a func-
tion

w € L0, T; H*(2)) N C([0, T]; H' (@) N C([0, T ¢**()

such that as i — oo,

u; — v weakly—* in L>(0,T; H*(Q)), (3.7)
dyu; — dyu  weakly in L2(0,T; H2(Q)), (3.8)
u; — u  strongly in C([0,T]; C**(Q)), for any 0 < o < 1/2, (3.9)
u; — u  strongly in C([0,T]); H'()) and a.e. in Q. (3.10)

From (3.9) and (3.10), the uniform convergence of M; — M and VM; — vM
as ¢ — 0o, and the General Lebesgue Dominated Convergence Theorem (see [20],
page 89, Theorem 19) we have

M;(u;) — M(u) strongly in C([0,T]; L¥?(Q)), (3.11)
VM;(u;) — /M(u) strongly in C([0,T]; L4(2)), (3.12)

as i — 0o. By (3.6), there exist a subsequence of {4/M;(u;)Vw;} (not relabeled)
and a function A € L2(Q7;R9) such that

VMi(u;)Vw; = A weakly in L?(Qr; R?) as i — oo. (3.13)
Combining with (3.12) we get
M;(u;)Vw; = /M(u)A  weakly in L2(0,T; L>*¥(@+2) (Q: R?)) as i — co. (3.14)

So, taking the limits as ¢ — oo in (3.1), we obtain

T T
/(; (&gu, §>H_2(Q),H2(Q) dt = — /0 /Q \ M(U)A . ngxdt (315)

for all £ € L%(0,T; H?(2)). For the initial data, from (3.3) and (3.9), we have
u(z,0) = up(x), for all z € Q.

Next, we will show that the function u solves the PFC equation (1.2)—(1.3) in
any open subset of Qp in which u has sufficient regularity. Moreover, the set in
which u does not have sufficient regularity is contained in the set in which M (u) is
degenerate and another set of Lebesgue measure zero.
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3.2. Weak solution to the degenerate PFC equation. Choose a sequence of
positive numbers {4,}72; that monotonically decreases to 0. For each d;, by (3.10)
and Egorov’s theorem, there exists a subset B; C Qp with |Q7\B,| < §; such that

u; — u uniformly in B; as i — oo. (3.16)

We may choose B;’s so that By C By C ... C B; C Bj11 C ... C Qp. Let
= U B;
j=1
then |Q7\B| = 0. We also define

P = {(z,t) € Qp : u(z,t) > 6;},
then P, C P, C ... C Pj C Pj+1 C ... C Qp. Let

oo
P .= U P; ={(z,t) € Qp : u(z,t) > 0}.
j=1
For each j, B; can be split into two parts:
B; N P;, where u > d; and u; — w uniformly as i — oo,
Bj\Pj, where u < d; and u; — v uniformly as i — oo.
By the choice of B; and P;, we have
(BiNP)C(BoNP)C...C(BjNP;) C(Bjy1NPj41) C...C (BNP), (3.17)

and

fj B;NP)) (3.18)

For any ® € L?(0,T; L*¥/(?=2(Q;R%)) and for each j, we have

/ M;(u;)Vw; - Ddadt z/ M;(u;)Vw; - Ddadt —|—/ M;(u;)Vw; - Ddadt
Qr QT\B Bjﬁpj

+ / M;(u;)Vw; - Ddadt. (3.19)
Bj\P
As i — o0, by (3.14), the left hand side of (3.19) has the limit

lim M;(u;)Vw; - @dxdt = v M(u)A - Pdxdt. (3.20)
Qr

i—00 Qp

For the first term on the right hand side of (3.19), since lim;_, o |27\ B;| = |Q7\B| =
0, we have

lim lim M;(u;)Vw; - @dadt = lim VM)A - @dzdt = 0. (3.21)

jooci=ee Jo .\ B; i—=oe Jar\B,

We now analyze the second term on the right hand side of (3.19). Because u; — u
uniformly in By as ¢ — oo, there exists an integer N7 > 0 such that, for all ¢ > Ny,

1)
U; > 51 in ByN P, and u; < 2071 in Bl\Pl.
Then by (3.6), for any i > Ny, we have
1

Vi 2dedt < / M () [Veon|davclt
2 BiNP;

BiNP;
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< M;(u;)|Vw; Pdedt < C, (3.22)
Qr
which implies {Vw;}2 5 is bounded in L?*(B; N P;RY). So there exist a subse-
quence {Vwy ;}72; of {Vw;}22y, and a function ¥y € L*(B;y N P; RY) such that
Vwip — ¥y weakly in L2(B; N Pi;RY) as k — oo.

We also write {uy x }32; as the subsequence of {u; }§° y corresponding to {Vw; x}72 .
Using the same process, for each j = 1,2, ..., we obtain a subsequence {Vw; x}7
of {Vw;_1,}52, and a function ¥; € L?(B; N P;;RY) such that

Vw;r — ¥; weakly in L*(B; N P;;RY) as k — oo,
and we also write {u;,}72, as the subsequence of {u;_1,}72, corresponding to
{Vw, 1} . Moreover, for any j,k =1,2,..., we have

5.

Ujg > 5J in BjNP;, and wuj; <20;in B;\P;. (3.23)
Also, by (3.17) and (3.18), ¥; = ¥;_; a.e. in Bj_1NP;_;. Moreover, we can extend
each function ¥; € L%(B; N P;;RY) to a function ¥; € L?(B N P;R?) by defining

(I\/]—(%t) _ \IJj(l‘,t) , lf (.Z‘,t) € B;NPFP;, .
0 , if (x,t)E(BﬂP)\(B]ﬁP])
With this definition, lim;_, \T/j (z,t) exists for a.e. (x,t) € BN P. Define
U(z,t) := lim \le(x,t) for a.e. (z,t) € BN P,
j—o0

then ¥(z,t) = ¥;(z,t), for a.e. (z,t) € B; N P; and for any j = 1,2, ....

Using a standard diagonal argument, we can extract a subsequence {Vwg, n, 172,
such that, for each j = 1,2, ...,

Vwin, — V¥ weakly in L?(B; N Pj;RY) as k — oo. (3.24)

Combining with (3.12), for each j = 1,2, ..., we have
XB;nP;\/ Mk,Nk (uhNk,)Vwk,Nk — XB;nP; V M(u)\IJ Weakly in LQ(O, T; L‘%:l2 (Q; Rd))
(3.25)

as k — oo, where xp,np, is the characteristic function of B; N P; C Qr. Then,
combining with (3.13), we have A = /M (u)V in every set B; N P;, which implies
that
A=+/Mu)¥ in BNP. (3.26)
Consequently, by (3.14), we have, as k — oo,
XBp My n, (Ui v, ) Ver n, — XBrpM (u)¥ weakly in L2(0, T; L* (42 (Q; RY)).
(3.27)

For the third term on the right hand side of (3.19), from (3.6) and (3.23), and
the generalized Holder’s inequality, we have

/ Mp, N, (uk, N, ) Vwi, N, - Pdxdt
B;\P;
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@l L2(B,\P))
L2(B;\P;)

< ( sup \/Mk-,Nk (Uk,Nk)> H\/Mk,Nk (uk, Ny, ) VWi N,
B;\P;
< max{\/26;, /0.~ } H \ M, Ny, (ug, Ny, ) Vo, Ny,

< max{\/25j, \/ek,Nk} H\/Mk)Nk (uhNk)Vwk,Nk
L2(Qr)
S Cmax{\/ 2(5]', \/ Hk’Nk}. (328)

Since lim 6; =0 and lim 6 n, =0, (3.28) implies that
Jj—oo k— o0

@[l 2(0,7;22(2)

L2(Qr)

19| L2 (0,7 L2402 (027 |2 ?

hm lim Mk,Nk (uk.,Nk)Vwk’Nk - Odxdt =0 (329)
Jj—00 k—oo Bi\P;
Now, in (3.19), replacing u; with the above subsequence uy n, and taking the
limits first as & — oo and then as j — oo, by (3.20) (3.21), (3.27) and (3.29), we
have

VM(u)A - Pdxdt = lim M(u)V - ddxdt
Qr J—r0 Bjﬁpj
= M (u)¥ - ddzdt, (3.30)
BNP

for any @ € L?(0, T; L*¥/(4=2)(Q; R?)). Combining this equation with (3.15), we see
that v and ¥ satisfy the weak formulation

T
/ <8tu, §>H_2(Q),H2(Q) dt = — M(u)\Il . Vfdmdt, (331)
0 BNP

for all £ € L2(0,T; H?(2)).
3.3. The relationship between ¥ and u. From (1.2)-(1.3) and (3.31), we expect
¥ to be

U =Vw=W"u)Vu+ kVu+ 2VAu + kVA?u,

if the weak solution u has a sufficient regularity. However, given the known regular-
ities of u, the terms VAu and VAZ?u are only defined in the sense of distributions
and may not even be functions. Therefore, we need higher regularity conditions on
U.

Claim. For any open set U C § such that VA%*u € L4(Ur), for some ¢ > 1 (q may
depend on U ), where Up = U x (0,T), we have

U = W"(u)Vu + kVu + 26VAu + kVA*u in Ur. (3.32)

Proof. Let U C € be an open set such that VA%u € LY(Ur), for some ¢ > 1. Let
us consider the limit of

Vwk,Nk = W”(uk}Nk)Vuk’Nk + nVuk,Nk + 2HVA’LL;€,N,C + :‘iVAQ’LLk,N,C (333)

as k — co. Since VA?u € LY(Up) and u € L>(0,T; H*(Q)) N C([0,T}; H' () N
C([0,T); C%%(€Q)), for any 0 < a < 1/2, then we have

A%u e LU0, T;WH(U)), VAue LY0,T;W>9(U)),
Au € LU0, T; W4(U)) N L>(0,T; L*(U)),
Vu € LU0, T; WHI(U)) N L>(0,T; H'(U)) N C ([0, T); L*(U)),
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we L0, T; W>4(U)) N L*(0,T; H*(U)) N C([0,T]; H'(U)) N C([0, T]; C**(1)),

for any 0 < v < 1/2.
By (3.7), we have, as k — oo,

Vugn, — Vu weakly—* in L°°(0,T; H (U)), (3.34)
VAuy N, = VAu  weakly—* in L>(0,T; (H*(U))"), (3.35)
VA%uy, n, — VA?u  weakly—* in L>=(0,T; (H*(U))"). (3.36)

We see that the bound on the right hand side of (2.24) depends only on d,T, 2,
b1, b2, b3, bs, m, k, € and ug, but not on §. Combining with (3.10), we obtain

W (ug.n,) — W"(u) strongly in C([0,T]; L*(U)) as k — oc. (3.37)
Combining with (3.34), we have
W (up.n, ) Vur.n, — W (u)Vu  weakly—* in L>(0,T; LY (U)) as k — co. (3.38)
Then, using (3.33), (3.34), (3.35), (3.36) and (3.38), we obtain
Vwin, — W (u)Vu + kVu + 26VAu + kVA*u  weakly—* in L>(0,T; (H3(U)))
as k — oo. Combining this with (3.24), by the uniqueness of the weak limit, we get
U =W (u)Vu + kVu + 26VAu + kVA*u in BNPNUr.
Because ¥ is originally defined only in B N P, we may extend it to U by defining
U= W (u)Vu + £Vu + 26VAu + kVA?u  in Ur\(BN P).
The claim is established. O
Now define the set
A= U{UT =U x (0,7) : U is open in Q and VA?u € LY(Ur),
for some ¢ > 1 that may depend on U},
then A is open in Qp and
U =W (u)Vu + kVu + 26VAu + kVA%u  in A.
So ¥ is defined in (BN P)U.A. To extend ¥ to {2r, notice that
Qr\((BNP)UA) C Qr\(BNP) = (Qr\B) U (Qr\P).
(

Since |Qr\B| = 0 and M (u) = 0 in Q7\ P, the value of ¥ outside of (BN P)U A
does not contribute to the integral on the right hand side of (3.31), so we may define
T=0in Qr\((BNP)UA).

3.4. Energy inequality. By the energy inequality (1.17), for any j, k = 1,2, ...
and any t € [0, 7], we have

1 1
/ W ug, vy (,1)) + & (QIUk,Nk (@ )" = [V, n (2,0 + 5 Ak, (a?,t)2> dx
Q

+/ Mo (ug, N, (2, 7)) | Vwi, N, (I,T))|2dxd7
QtﬂB]'ﬂPj

1 1
< / W (up) + & <2ug — |Vug|? + 2Au0|2> dz. (3.39)
Q

Using (3.9), (3.10) and (3.25), by taking the limits as k — oo first and then j — oo
in (3.39), we obtain the energy inequality (1.21).
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3.5. Nonnegative weak solution with positive initial data. Assume that the
initial data ug(z) > 0, for all x € Q. By (1.18), there exists a constant C' indepen-
dent on {6,}2, such that, for each i = 1,2, ...,

55 Sup / (s, ) + 0,dz < C(62 + 6; + 6172, (3.40)
0<t<T Jo

Passing to the limits as ¢ — oo in (3.40), by the convergence in (3.9) and (3.10),
we get u > 0 a.e. in Q7. Moreover, since ug > 0 in £, u is not always zero in Qp
owing to the continuity of w in Q7. This completes the proof of Theorem 1.2.

4. Conclusions. We have derived the phase field crystal (PFC) equation by mak-
ing standard approximations in the equations of the dynamic density function theory
(DDFT) of freezing. We have shown that the inclusion of a degenerate mobility in
the phase field crystal model is a natural carryover from the DDFT context. We
then used a Galerkin approximation method to build solutions to a PFC model with
positive mobility obtained via the degenerate mobility but using a cutoff. We then
showed that we can shrink the cutoff to zero an thereby establish the existence of
a weak, non-negative solution, provided that the initial data are positive.

In the future, we wish to analyze the a version of the PFC model with degen-
erate mobility and singular lower order free energy coming from the logarithmic
“ideal gas” component of the free energy. We also want to perform a numerical
analysis of the model, along the lines of the work in [16], where a degenerate mo-
bility is analyzed in the Poisson-Nernst-Planck model. We also plan to perform
extensive simulations of the degenerate PFC model along the lines of the work done
by Shibin Dai and Qiang Du, for example, [8], which was done for a degenerate
Cahn-Hilliard model. We point out that Archer and co-workers [1] have already
done some preliminary simulations for a model similar to one considered here.
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