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Abstract

The 3a phenomenological model describes the structure of the carbon-12 nucleus as a cluster of
three alpha particles. This model includes a pairwise a—«a interaction and a three-body force.
To fit the three-body potential, the 2C data are used, while ensuring that the pair potential
reproduces the a—a scattering data. Alternatively, the mass-energy compensation (MEC) effect
can be used to simulate the effect of the three-body potential by adjusting the mass of the « particle
within the effective-mass approach. We demonstrate the MEC effect for the 3o ground state by
numerically solving the differential Faddeev equation, in which the a—« interaction is described
by the Ali-Bodmer potential. The effective masses of « particles are evaluated for the ground and
excited 07 and bound 27 states. We demonstrate a coupling between the ground and first excited
0T states, indicated by an anti-crossing of these energy levels in the energy-mass coordinates. A
correspondence between the effective mass and a three-body potential is demonstrated. We discuss

the results of the 0; calculations for various models of the a—« interaction.

* ifilikhin@nccu.edu



I. INTRODUCTION

We explore the application of the effective mass concept from solid-state physics [1] and
many-body physics [2] to investigate nuclear few-body systems such as 3N and 3a. Our ap-
proach is rooted in a notable property of a three-body nuclear Hamiltonian for bound states,
known as mass-energy compensation (MEC), as described in Refs. [3-5]. The MEC embod-
ies the general physical relationship between mass and energy, notably manifesting itself in
the mass defect formula for nuclei. In a recent study [3], we delved into the mass-energy
compensation for the three-nucleon Hamiltonian and developed a new phenomenological
approach to characterize the three-body force in 3N systems. The effective mass of a nu-
cleon is introduced to offset the effects of this proposed three-body force. We extended this
approximation to another nuclear system of identical particles - the three alpha particles
system, representing the cluster model for the ?C nucleus. In Ref. [5|, we defined the
effective mass for each low-lying level of this nucleus based on the effective mass approach.
This work serves as a continuation of the previous study [5], with a particular focus on the

resonance state 03 in the ?C nucleus.

The a-cluster model for '2C was initially proposed in Ref. [6] due to observed clustering
properties in the low-lying states of 2C. As known, the fusion of two a-particles forms
the 8Be nucleus. A third a-particle can then fuse with ®Be, resulting in the formation of
the 2C nucleus. The fusion of 8Be and an a-particle leads to the creation of a higher-
energy resonance state (05), famously known as the Hoyle state [7]. This resulting 3a
system releases excess energy through a gamma-ray burst, transitioning from the excited
formation state (03 ) to the more stable ground state (0f). The coupling between the Hoyle
state (0F) and the ground state (0f) enhances the cross-section for the fusion reaction,
facilitating the creation of a stable 2C nucleus before decay. This process is crucial for
stellar nucleosynthesis, contributing to the formation of other light elements in stars, which

serve as the building blocks for heavier elements.

The 3a-clustering phenomenon has been extensively studied through various approaches
[10-34]. Different inter-cluster potentials, often derived from a-a scattering data, have been
proposed [8, 9]. Several cluster models, including the three-body force (3bf), have been
explored [16, 20, 24, 34], reflecting the duality of forming a cluster nuclear structure from

cluster states and mean field states [30]. However, describing the low-lying ?C spectrum in
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detail within the cluster model faces challenges related to the three-body potential [13, 24].
Notably, the three-body potential cannot be the same for low-lying levels with different total
orbital quantum numbers [14]. Furthermore, it can be assumed that the parameters of a
three-body potential depend on energies in rotation bands [38] of the 3« system. Depending
on the two-body potential used, the three-body potential can be either repulsive [11, 13, 22]
or attractive [16, 27]. For instance, a repulsive 3 potential was introduced in Ref. [23],
dependent on the total angular momentum J=0%, 2%, and 47. The potential has a Gaussian
form with depths V(07)=31.7 MeV, V(27)=63.0 MeV, and V(47)=150.0 MeV [24]. In
contrast, an attractive three-body potential was proposed in Refs. [10, 14, 16, 26, 39]. In
these corresponding 3a-cluster models, the phenomenological pair potential with s, d, and
g partial components was utilized from Ref. [8]. In Refs. [32, 33] this model was applied
to compute momentum and energy distributions of the three a-particles emerging from
the decay of low-lying '2C-resonances. Another notable work [34] used the same model in
3a Faddeev calculations. The Faddeev component was factorized by the function &y(z),
describing the two-particle cluster (ground state 07 of ®Be), and by the function f(y),
characterizing the relative motion of the third particle relative to the pair. This model
accurately reproduced the experimental parameters of the 05 resonance. One can state that
the AB+ 3bf model with an attractive three-body potential has been applied in numerous

papers for calculations of the ?C nucleus properties (for instance see Refs. [35-37]).

Similar considerations were made in Ref. [40], where a-cluster systems were viewed as
dilute multi-a cluster condensed states. A combination of the s-wave a—«a potential and a
repulsive three-body potential of Gaussian type was used to describe the 03 resonance of the
12C nucleus. This pairing of pair and three-body potentials resulted in a resonance energy
value of 0.98 MeV (above the three-body threshold), as reported in Ref. [40]. Importantly,
the a—a potential was fitted to reproduce the experimental resonant energy for the ®Be
ground state. Additionally, one can particularly highlight the review [41], which provides a
concise summary of most theoretical cluster approaches to the Hoyle state.

Our study builds upon the framework proposed in Refs. [5, 14], assuming three terms
in the 3o Hamiltonian: kinetic energy, two-body, and three-body potentials. The two-body
potential is chosen to reproduce two-body experimental data, while the three-body potential
parameters are determined based on 12C data. The Ali-Bodmer (AB) potential was a suitable

choice [14], displaying a simple coordinate dependence with a repulsive core in the s partial
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wave to mimic Pauli repulsion between two alpha particles. This potential has shown promise
in describing cluster systems such as aan [42] and aaA [43]. The set of AB and 3« potentials
obtained in Ref. [14] satisfactorily describes the low-lying 2C spectrum, with additional
adjustments for the three-body potential to achieve accurate spectrum reproduction. In our
present work, we use the model from Ref. [14] to establish a general scheme for defining
a three-body potential using the effective mass concept. In this scheme, we adjust the
alpha particle’s mass to describe 3a states and establish a correspondence with a three-
body potential. The mass-energy compensation property of the three-body Hamiltonian
facilitates this procedure.

Our general goal is to demonstrate the mass-energy compensation effect for the 3o Hamil-
tonian, which includes two- and three-body interactions. Specifically, we will show how the
additional three-body binding energy arising from three-body interactions can be compen-
sated by variations in the mass of the particles. The chosen 3a model is appropriate for this
purpose.

The foundation of our study rests on the application of Faddeev equations in coordinate
space [44]. This formalism empowers us to handle the Coulomb potential without resorting
to approximations, and it enables the use of coordinate-dependent potentials with a well-

defined and easily interpretable physical significance.

II. FORMALISM
A. Mass-Energy Compensation

The a-cluster model for the ?C nucleus describes the nucleus as a bound system of three

alpha particles. The three-body Hamiltonian reads

H = Hy + Vayp + Vapy. (1)

w2

Here, Hj is the kinetic operator given by Hy = 21:1,2,3 T where 72 = —h?A;, i =1,2,3.
The my represents the mass of a free alpha particle. Additionally, Vo, and Va,r denote two-
body and three-body interactions, respectively. The three-body potential Vs, is assumed
to act as a perturbation.

Ref. [3] introduces the concept of a particle’s effective mass m* in a three-body system.

Specifically, the effective nucleon mass is defined through an averaged nucleon mass cor-
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rection, compensating for the attractive effect of a three-body force in 3N systems. The
feasibility of this correction, as discussed in Ref. [3], arises from the mass-energy compensa-
tion effect in the three-body Hamiltonian. To elucidate this effect, consider the Hamiltonian
expressed in linear form:

H = BHy + aVayy, (2)

where 3, > 0. One can change the particle mass and the depth of the potential simulta-
neously by using parameters o and 5.
Averaging the Schrodinger equation over the wave function leads to the algebraic form

for matrix elements:
E = E(B,a) = B(Hoy) + aVaypy). (3)

The matrix elements (Hy) and o (Va,r) have opposite signs. One can vary the parameters
around the point a« = § = 1 such that corresponding energy changes are opposite and can
be compensated by each other. Thus, we define the mass-energy compensation effect [3-5].

A comparable compensation can be achieved by incorporating a three-particle force into
the Hamiltonian (2) as part of the potential energy. To offset the effects of the three-particle
force term, we modify the particle’s mass as m* = mg + Am. The scale parameter 3 is
linked to the effective mass through the relationship m*/mgo = 1/p.

Considering small variations in the mass m*/mgy = 1+ Am/mg, where Am/my < 1, and
following Ref. [46], one can express the kinetic energy operator in terms of the individual
momenta of the particles in the center-of-mass frame:

He=Y -t~y - (1-2m) (4)

. 2m* . 2m0 mo
i=1,2,3 i=1,2,3

Here, we use Taylor expansion of the function 1/m* in the small vicinity Am of the value
m, taking the first two terms of the expansion. Thus, the corresponding variations for the
left-hand side of Eq. (2) can be written as

(Ho)

mo

A(Hp) ~ — 2 Am. (5)

This dependence is exactly linear locally near the point m*/mg = 1 for the simple case
of the s-wave approach for three-nucleon systems, as shown in Ref. [4], and for the more
complex case of three-nucleon systems interacting with the AV14 nucleon-nucleon potential,

as considered in Ref. [3].



Taking into account a three-particle potential, one can consider the linear form
H = BHy + aVayy + v Vays. (6)

Here, the three-particle potential is a perturbation. In accordance with the effective mass
approach, the Hamiltonian (6), where a = v = 1, can be approximated as H = ' Hy + Vayy,
where 3" is greater or less than [ depending on the sign of the contribution (Vs,¢) of the

three-body potential that we are trying to compensate.

We can infer that the slope of the energy-mass dependence, represented as £ = E(m*) =
B{Ho) + (Vapg), is determined by the attraction or repulsion of this potential. Utilizing the
linear form (6), the average kinetic energy can be computed as (Hy) = 0F /0, where E
denotes the binding energy for the 3o system. The average contribution from the two-body
(three-body) potential can be calculated as (Vapr) = 0E/0c|a=1 ((V3bf) = OE/07|,=1).
These equations will be subsequently employed in the numerical evaluation of matrix ele-

ments of the Hamiltonian (1).

B. The differential Faddeev Equation

The bound states of the three-particle system are characterized by the Hamiltonian (1).
Alternatively, one can describe the system using the differential Faddeev equations for the
components of the wave function [44]. In the case of identical particles, the set of Faddeev

equations is represented by a single equation of the form [34]:
(HO+Vaa+VCoul.+‘/3bf_E)U: _Vaa(Pj+Pc_)U7 (7>

Here, V,, signifies a short-range aa nuclear potential, Vi, represents the Coulomb force,
Hy = —%(AX + 2Ay) is the kinetic energy operator and (x, y) are the Jacobi coordinates.
The wave function is expressed in terms of the Faddeev component U as follows: ¥ =
(I + P+ P7)U, where P and P are cyclic permutation operators of particles. A three-
body potential, considered as a perturbation, can be added to the left-hand side of equation
(7). The eigenvalue problem for Eq. (7) is numerically solved, with boundary conditions

specified for the component U by exponentially decreasing asymptotics.



C. Potentials

Within the a-cluster model for the ?C nucleus, alpha particles interact via pair and
three-body nuclear potentials as well as the Coulomb force. We will employ the potentials
proposed in Ref. [14]. The phenomenological Ali-Bodmer (AB) a-a potential [8] defines

different s, d, and g partial components, written as two-range Gaussians:
x? x?

Varg () = VleXp(—b—%) + ‘éexp(—b—%% (8)
where the strength and range parameters are V; = 500 MeV, b; = 1.43fm, Vo, = —130 MeV,
by = 2.11fm for s-wave; V7 = 320 MeV, b; = 1.43fm, V5, = —130 MeV, by, = 2.11 fm for d-
wave; V) =0, Vo = —130 MeV, by = 2.11 fm for g-wave. The attractive s-wave component of

the potential simulates Pauli blocking. This model can be supplemented with an attractive

three-particle potential V3(p) in the form of a single-range Gaussian [14]:

Vas(p) = V expl(—5(5)?), 9

where 1p? = ZZj r? and r; is the position vector of the i-th a particle relative to the center
of mass of the system. This potential does not affect a two-body threshold of a three-body
system and was used in Ref. [14] for calculating the bound and resonance states in the 3«
system.

A three-body potential acting at short distances can describe the well-known violation
of the cluster structure [45]. In line with the concept of effective mass, the contribution
from the three-body potential can be compensated by adjusting the mass of the a-particles.
This compensation is achieved when the calculated energy matches the experimental value.
Depending on the energy level, the effective mass m* can be less or greater than the free mass

mg. There exists a correlation between the depth (attraction/repulsion) of the three-body

potential and the value of the effective mass [5].

III. NUMERICAL RESULTS

Our approach to the 2C nucleus is fundamentally grounded in mass-energy compensation
(3). According to Eq. (2), the ground state energy E of the 3a system is expressed as a
function of two scaling parameters, o and g, such that E' = E(f, «). To illustrate the effect

of mass and energy compensation, we carried out calculations for two functions: E(f5,a =
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1) and E(f = 1,«). In these calculations, we neglected the three-particle potential and
employed the Ali-Bodmer potential (8) for pair interactions. The numerical results are
presented in Fig. 1. The resulting functions exhibit nonlinearity and intersect at the point
£ = a = 1. By independently varying the parameters § and «, we are able to replicate
the experimental energy of the '2C ground state. This suggests that a change in mass can

effectively compensate for any small alteration in the potential energy term.
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FIG. 1. The 3a(0]) ground state energy E as a function of the scaling parameter o or 3 in Eq.
(2) using the Ali-Bodmer potential (8). The dashed line indicates the experimental ground state

energy of '2C.

The nonlinear behavior of the function F(S,a = 1) as the parameter § decreases is
associated with the significant contribution of the three-particle potential, which must be
compensated for by an increase in the effective mass. To gauge the impact of variations in
the effective mass m*, one should consider the next term of the Taylor expansion instead of
the linear representation in Eq. (4). In this way, the first & terms of the Taylor series for
the function 1/m must be taken into account near the point m*/mgy = 1. The energy can be
written as E(m*) = E(m* = mo)(1 = >, _,, (=1)"(m*/mo —1)"). By contrast, a linear
relationship between effective mass and energy was observed in Ref. [3] for the ground state
of 3H and 3He, where the three-body potential is a small perturbation of the Hamiltonian,
and the effective mass was estimated as m*/my = 1.02.

The results presented in Fig. 2 illustrate the coupling between the 0f and 0 states.
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Level anti-crossing occurs when the effective mass approach is applied. We systematically
increased the effective mass, commencing from a value of 0.9my. During this increment,
we observed an anti-crossing of the ground (blue) and excited levels (red), with dual colors
indicating entangled states. The crosses on the graph denote the calculated effective mass
values and corresponding experimental energies, signifying the entangled states. Note that
the 12C level anti-crossing has been also observed in an oscillator trap in Ref. [47].

The general theory of two-level systems [48] stipulates two parameters that influence anti-
crossing. The first parameter, W, describes the strength of the coupling and is derived from
the overlap integral of the wave functions taken in uncoupled states. The second parameter,
A, represents the energy difference between the considered levels in the uncoupled scenario.
A strong coupling of two states occurs when the coupling parameter W is large and the

energy gap A is small, according to the relation [49]
2W/A > 1. (10)

The limit 2WW/A — 0 corresponds to the condition for uncoupled states. By using Fig. 2,
we can approximate the value of W. The energies of the coupled states are expressed by the

following formula [48]

E, E_= %((E0+E1)i \/(EO—E1)2+4W2). (11)

Here, Ey and E; denote the energies of the uncoupled ground and first excited states,
respectively, with a difference of A = |Ey — E|. We have selected the effective mass value
corresponding to the condition of Ey = E;which is the point of intersection of the dot and
dashed lines in Fig. 2. In this scenario, the energy difference £, — E_ of coupled states can
be roughly evaluated as 2 MeV. Utilizing Eq. (11), we have determined W ~2 MeV that is
a value comparable to the characteristic energy difference of 7.3/2 MeV. The ratio 2W/A
serves as an approximation for Eq. (10). Consequently, the coupling between the 0 and 05
states can be characterized as weak. Table I outlines the results of the Faddeev calculations
for the energy levels of 12C, specifically focusing on the 07, 05, and 2] levels. The 0f
and 27 levels are identified as bound states, whereas 03 manifests as a resonance near the
three-body threshold. The energy of this resonance is estimated using linear interpolation
on an auxiliary parameter, resulting in a bound state below the break-up threshold (see Ref.

[22]). Both the effective mass approach and the model incorporating a three-body potential
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FIG. 2. The level anti-crossing of the first two 01 states in '?C within the effective mass approach.
The crosses correspond to the « particle effective mass value shown for each state. Dual symbols
mark the entanglement states. The dot and dashed lines show the imaginary crossing of the levels

according to the linear relation of Eq. (5).

are employed. In the former, the effective mass is fine-tuned to align with the experimental
data for the corresponding level. In the latter, the suitable parameters of the three-body
potential are determined.

In both approaches, we compute the contributions of the kinetic and potential energy
terms of the Hamiltonian (Eq. 1) to the overall energy. These contributions are presented
as average values of the corresponding operators, denoted as (E) = (Ho) + (Vaps) + (Vapg)-
Table I also includes a numerical assessment of the MEC effect for the bound states, 0] and
27 . The scaling parameter a and the effective mass are computed as illustrated in Fig. 1.
The asymmetry in scaling with the parameters a and [ becomes evident when comparing
the values of (Hy) and (Vayr). The a-scaling amplifies both the kinetic and potential terms.

For each energy level, we identify the three-body potential parameters that exhibit the
closest correlation with the effective mass model. The potential in Eq. (9) encompasses two
free parameters, strength V' and range b, which cannot be solely determined by the energy
of the bound state. We leverage the inherent correspondence between an effective mass and
the contribution of a three-body potential, assuming that the correction of the particle mass
(or the kinetic energy operator) must compensate the contribution of the potential.

We select the parameters of the three-body force to obtain approximate relations where

10



the matrix element (Va,r) and the value of (Hp) + (Vs,r) are similar within both models.
This approach provides additional conditions for the parameters of the three-body potential.

The parameters obtained are included in the caption of Tabl. I. The strength of the poten-
tial for the ground state is the highest among the states considered. The relative contribution
of the three-body potential term is maximal for the 0 state and decreases subsequently for
the 05 and 2 levels. Trying to use the three-body potential determined for the ground state
to calculate the energy of the 0 resonance results in a negative value corresponding to a

bound state (see the fourth row of the table). It is evident from this table that the matrix

TABLE I. The 3« binding energy and the contributions of kinetic and potential energy terms of
the Hamiltonian (1) (in MeV) to the energy F; Eq. (2) is used with the parameters 5 = 1/m* and
a; here, (E) = S(Ho) + a(Vapr) + (Vaps); the parameters of the three-body potential in Eq. (9)
are (a) V = 743.53 MeV, b = 1.253 fm, (b) V = 101.47 MeV, b =1 .9139 fm, (c) V= 288.93 MeV,

b=1.3534 fm; the AB potential [8] is used as a pair interaction.

State  Model ~ m*/my « E  (Ho) (Varr) (Vary) (E)

07 AB+effmass 1292 1 -7.28 56.7 -64.0 7.3
1 1.2557 -7.28 58.5 -65.8 7.3

AB+3bf 1 1 -7.28 90.0 -63.1 -34.2( 7.3

0y  AB+3bf 1 1 -0.86 40.3 -27.2 -14.0® -0.9
AB-+3bf 1 1 - 269 -224 -4.25() 0.2
AB+teffmass 1.167 1 - 230 -22.8 0.26

27 AB+effmass 1.148 1 -2.93 414 443 - 29
1 1.1379 -2.93 43.4 -46.3 -2.9

AB+3bf 1 1 -2.93 48.2 -43.6 -7.5(9 2.9

elements (Va,r) of the two-body potential, calculated within both the (AB+ eff.mass) and
(AB+3bf) models for the 0 ground state, exhibit similarity. These results correspond to
the first and third rows of Table I. The disparity between them is approximately 1.4%. One
can write (Vayf)aBrer. = (Vanf)aB+3ps. One can assume, that the same observation applies to

the matrix element of the square of the hyper-radius: (p?)Aptefimass = (0%)AB+3ps. Further
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details on the calculations for root mean square radius and form factors can be found in
Ref. [14, 50], where the identical (AB+3bf) model was employed.

For the 03 resonance, the numerical method developed for the bound state cannot be
directly applied. In this case, a method of linear interpolation into the region of positive
energy was proposed, motivated by the procedure of analytic continuation in relation to
the coupling constant[18, 22, 51]. The resulting interpolation is shown in Fig. 3. The
contribution of the kinetic and potential terms corresponding to the Hamiltonian of the
072 state is estimated. For the effective mass model, the calculated values are the matrix
elements (E) = (Hy) and (V2bf) for different parameters 5, where 8 = m*/mo(1 + (), and
the effective mass is m/m=1.167, given the condition |¢| < 1.

We calculate the corresponding matrix elements for a model with a three-body potential
for various values of the parameter ¢ : Va,r = V3,7(1+ (), where the potential Va s is selected
from option (b) in Table I. The average energy is calculated as (E) = (Ho) + (Vapr) + (Vapy)-
The interpolation (solid lines in Fig. 3) was calculated approximating the linear term of the
Taylor series, as in Egs. (4)-(5).

Using the AB potential, the effective mass of the 03 state of the 2C is evaluated as
1.167myg. It is apparent that the effective mass approach could substitute a cluster model
with a three-body potential, such that the magnitude of the mass correction compensates
for the contribution of the three-body potential. Our study incorporates various models for
the a—«a interaction to provide a comprehensive analysis. The considered models include
the Ali-Bodmer (AB) [8, 14], Yamada-Schuck (YS) [40], and Bhoi-Upadhyay-Laha (BUL)
[52] pair potentials. These potentials accurately represent the ®¥Be(0T) resonance, which is
particularly relevant given the distinct ®Be+a structure of the 05 state. It is crucial to
emphasize that the three-body potential must be a perturbation of the three-body Hamil-
tonian within the proposed approach. Additionally, the effective mass m*/mg must satisfy

the condition within a small vicinity around 1:
[T —m*/mg| < 1. (12)

This constraint is approximately satisfied for the AB potential for both the ground and
excited states. However, the BUL potential is relatively weak and fails to form a bound
state when m*/my = 1. The AB, YS, and BUL potentials exhibit somewhat different short-
distance behaviors, as illustrated in Fig. 4(a). Both AB and BUL potentials depend on the
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orbital quantum numbers, L = 0, 2,4, while the effective potential YS only has an s-wave
component. The AB potential, in particular, shows strong nuclear repulsion in the s-wave
at distances less than 2 fm. Evidently, the specific characteristics of the interactions can
influence the calculation results for the effective mass of the 0] resonance. Nevertheless,
the effective-mass approach, when applied with the AB and YS potentials, yields similar
effective mass values, approximating around 1.2mg. The outcomes of these calculations are
depicted in Fig. 4(b).

The BUL potential exhibits less strength than the AB potential. The repulsive core of
the BUL potential appears at distances less than 1 fm, and the a—« attraction is shallower
than that of the AB potential. The effective mass required to replicate the energy of the
12C bound state is roughly 0.4mg, and the energy of the second state 0 is reproduced
with an effective mass of approximately 0.35mg. These values diverge significantly from a

perturbative approximation, and the condition (12) is not met. We can thus infer that this
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FIG. 3. The kinetic and potential energy contributions for the 03 bound state. (a) Calculations
were carried out for different values of the 8 parameter, 8 = m/ mo(1 + (), where the effective
mass m/my=1.167 and |¢| < 1. (b) Calculations were also performed for different values of
the parameter ¢ : V3bf = Va,r(1 + (), where the potential V3¢ is the version (b) from Table
I. The solid circles and open squares (rhombus) correspond to the kinetic (H0) and potential
(V(2bf)) ((V(3bf))) terms, respectively. The solid squares represent the energy calculated as
(E) = (HO) + (V(2bf))(+(V(3bf))). Interpolation (solid lines) was calculated by approximating

the linear term (5) of the Taylor series.
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potential is too weak to generate a 05 state near the breakup threshold.

The YS potential was specifically designed to mimic the molecular state of the 3 system
near the three-body threshold. However, this potential results in a weakly bound state
for m*/my = 1. To address this, a repulsive three-body potential was introduced in Ref.
[40] to adjust the energy of the 05 resonance to the experimentally observed positive value.
Within the effective mass approach, increasing the effective mass is required to achieve a
similar energy decrease, as illustrated in Fig. 4(b). This contrasts with the situation for the
AB potential. The weakly repulsive nature of the AB potential necessitates an attractive

three-body force for the 3 model of the 2C nucleus.

B, G
® L
] * *
. L
0%, il
* r
X ABpot. 5
4+ YSpot I
Cal. (E>0) AB pot. * g
5 1 Cal. (E>0) YS pot. B
_40_,‘,,‘.,‘,'I_,,,,I,,,,I,‘,,‘,,‘,I,,,‘_ 25—
0 1 2 3 4 5 6 7 0.8 0.9 1 1.1 1.2 1.3
a) r (fm) b) m*/mo

FIG. 4. (a) The Ali-Bodmer (AB) [8, 14], Yamada—Schuck (YS) [40], and Bhoi-Upadhyay-Laha
(BUL) [52] a~a potentials. The nuclear components corresponding to the orbital quantum num-
bers L = 0,2,4 are differentiated by various symbols. (b) The energy E of the 05 bound state
calculated for different values of the a particle effective mass, m*/mg. The solid rhombus and
circles correspond to calculations performed using the Ali-Bodmer and Yamada—Schuck a—a po-
tentials, respectively. Calculations above the three-body threshold (marked as ”Cal. (E > 0)”) are
indicated by smaller gray symbols. The horizontal dashed line marks the experimental value for
the energy of the Hoyle state (denoted as Exp.). Crosses depict the extrapolated positive energy

values.
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IV. CONCLUSIONS

In this study, we adopted a phenomenological approach to the 3a-cluster model of the 2C
nucleus, where a pair interaction describes existing a—« experimental data. The key feature
of this model is the incorporation of a three-body potential. Additionally, our approach
involves the application of the effective mass method, leveraging the mass—energy compen-
sation effect, to estimate the effective mass of the first (ground state) and second (Hoyle
state) 0T states, as well as the first 27 state. The Faddeev calculations for the bound 3«
system demonstrate the mass—energy compensation for a three-body Hamiltonian using the
Ali-Bodmer a—« potential. This potential fails to provide the correct value for the ground
state of the 2C nucleus without incorporating a three-body potential, which can be fitted
to match '2C experimental data. The MEC effect permits the use of an a-particle effective
mass as a substitute for the three-body force. This effective mass can variate near the free
mass of the a particle and can be phenomenologically estimated by a correspondence to
experimental data. The results yield values of approximately 1.292m for the ground state,
about 1.167myg for the Hoyle state, and around 1.148m, for the 2] state.

We discerned a coupling between the initial two 0" states, and this connection can be
elucidated through the application of the two-level systems theory [48]. The anti-crossing
illustration, constructed on the energy /effective mass plane, serves as compelling evidence of
the entanglement between these states. In line with this interpretation, the non-zero coupling
matrix elements of this quasi-doublet arise from the overlapping of the wave functions of the
involved states.

In our approach, the effective mass is correlated with the strength of the three-body
potential, as exemplified in the case of the AB potential. By employing experimental data
and scrutinizing the matrix elements of the three-body Hamiltonian terms, two free param-
eters of the three-body potential can be fine-tuned. We conducted a comparative analysis
between the contribution (V3,r) of the three-body potential and the averaged kinetic energy
terms (Ho)spf model Of the cluster model, juxtaposed with the three-body potential and the

effective mass model (Hp)efmass- The relationship

(Ho)ef.mass =~ (Vapg) + (Ho)3bf model

establishes an additional criterion (the first being the experimental value of binding energy)

for defining the parameters of the three-body potential. The introduction of effective mass
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addresses our challenges in describing cluster systems where the traditional notion of a
cluster structure is violated at short distances.

We utilized three phenomenological models AB [8], Y'S [40], and BUL [52] to examine the
a—« interaction for evaluating the effective mass in the 03 state. Our findings reveal that
the BUL potential is unsuitable for 3« calculations, failing to produce a bound state and
necessitating a robust three-body potential adjustment to achieve the desired energy, thereby
compromising the integrity of the cluster model. Conversely, the AB and YS potentials yield
comparable effective mass values, approximately 1.2my, despite variations in the energy-mass
dependence for each potential. The matrix element (Va,f) of the Hamiltonian Hy+ Vay s+ Vaps
can be compensated for by adjusting the effective mass. This adjustment leads to the
simplified Hamiltonian Hy + Vs within the framework of the effective mass approximation.
This alteration in mass influences the kinetic energy matrix element (Hy), the sign of which
is contingent on the sign of (Va,r). The attractive or repulsive contribution of the three-
body potential determines the dependence of energy on the effective mass, a phenomenon

demonstrated in the 03 state for the AB and YS potentials.
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