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Abstract

The 3α phenomenological model describes the structure of the carbon-12 nucleus as a cluster of

three alpha particles. This model includes a pairwise α–α interaction and a three-body force.

To fit the three-body potential, the 12C data are used, while ensuring that the pair potential

reproduces the α–α scattering data. Alternatively, the mass-energy compensation (MEC) effect

can be used to simulate the effect of the three-body potential by adjusting the mass of the α particle

within the effective-mass approach. We demonstrate the MEC effect for the 3α ground state by

numerically solving the differential Faddeev equation, in which the α–α interaction is described

by the Ali-Bodmer potential. The effective masses of α particles are evaluated for the ground and

excited 0+ and bound 2+ states. We demonstrate a coupling between the ground and first excited

0+ states, indicated by an anti-crossing of these energy levels in the energy–mass coordinates. A

correspondence between the effective mass and a three-body potential is demonstrated. We discuss

the results of the 0+2 calculations for various models of the α–α interaction.

∗ ifilikhin@nccu.edu
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I. INTRODUCTION

We explore the application of the effective mass concept from solid-state physics [1] and

many-body physics [2] to investigate nuclear few-body systems such as 3N and 3α. Our ap-

proach is rooted in a notable property of a three-body nuclear Hamiltonian for bound states,

known as mass-energy compensation (MEC), as described in Refs. [3–5]. The MEC embod-

ies the general physical relationship between mass and energy, notably manifesting itself in

the mass defect formula for nuclei. In a recent study [3], we delved into the mass-energy

compensation for the three-nucleon Hamiltonian and developed a new phenomenological

approach to characterize the three-body force in 3N systems. The effective mass of a nu-

cleon is introduced to offset the effects of this proposed three-body force. We extended this

approximation to another nuclear system of identical particles - the three alpha particles

system, representing the cluster model for the 12C nucleus. In Ref. [5], we defined the

effective mass for each low-lying level of this nucleus based on the effective mass approach.

This work serves as a continuation of the previous study [5], with a particular focus on the

resonance state 0+2 in the 12C nucleus.

The α-cluster model for 12C was initially proposed in Ref. [6] due to observed clustering

properties in the low-lying states of 12C. As known, the fusion of two α-particles forms

the 8Be nucleus. A third α-particle can then fuse with 8Be, resulting in the formation of

the 12C nucleus. The fusion of 8Be and an α-particle leads to the creation of a higher-

energy resonance state (0+2 ), famously known as the Hoyle state [7]. This resulting 3α

system releases excess energy through a gamma-ray burst, transitioning from the excited

formation state (0+2 ) to the more stable ground state (0+1 ). The coupling between the Hoyle

state (0+2 ) and the ground state (0+1 ) enhances the cross-section for the fusion reaction,

facilitating the creation of a stable 12C nucleus before decay. This process is crucial for

stellar nucleosynthesis, contributing to the formation of other light elements in stars, which

serve as the building blocks for heavier elements.

The 3α-clustering phenomenon has been extensively studied through various approaches

[10–34]. Different inter-cluster potentials, often derived from α-α scattering data, have been

proposed [8, 9]. Several cluster models, including the three-body force (3bf), have been

explored [16, 20, 24, 34], reflecting the duality of forming a cluster nuclear structure from

cluster states and mean field states [30]. However, describing the low-lying 12C spectrum in
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detail within the cluster model faces challenges related to the three-body potential [13, 24].

Notably, the three-body potential cannot be the same for low-lying levels with different total

orbital quantum numbers [14]. Furthermore, it can be assumed that the parameters of a

three-body potential depend on energies in rotation bands [38] of the 3α system. Depending

on the two-body potential used, the three-body potential can be either repulsive [11, 13, 22]

or attractive [16, 27]. For instance, a repulsive 3α potential was introduced in Ref. [23],

dependent on the total angular momentum J=0+, 2+, and 4+. The potential has a Gaussian

form with depths V (0+)=31.7 MeV, V (2+)=63.0 MeV, and V (4+)=150.0 MeV [24]. In

contrast, an attractive three-body potential was proposed in Refs. [10, 14, 16, 26, 39]. In

these corresponding 3α-cluster models, the phenomenological pair potential with s, d, and

g partial components was utilized from Ref. [8]. In Refs. [32, 33] this model was applied

to compute momentum and energy distributions of the three α-particles emerging from

the decay of low-lying 12C-resonances. Another notable work [34] used the same model in

3α Faddeev calculations. The Faddeev component was factorized by the function ξ0(x),

describing the two-particle cluster (ground state 0+ of 8Be), and by the function f(y),

characterizing the relative motion of the third particle relative to the pair. This model

accurately reproduced the experimental parameters of the 0+2 resonance. One can state that

the AB+ 3bf model with an attractive three-body potential has been applied in numerous

papers for calculations of the 12C nucleus properties (for instance see Refs. [35–37]).

Similar considerations were made in Ref. [40], where α-cluster systems were viewed as

dilute multi-α cluster condensed states. A combination of the s-wave α–α potential and a

repulsive three-body potential of Gaussian type was used to describe the 0+2 resonance of the

12C nucleus. This pairing of pair and three-body potentials resulted in a resonance energy

value of 0.98 MeV (above the three-body threshold), as reported in Ref. [40]. Importantly,

the α–α potential was fitted to reproduce the experimental resonant energy for the 8Be

ground state. Additionally, one can particularly highlight the review [41], which provides a

concise summary of most theoretical cluster approaches to the Hoyle state.

Our study builds upon the framework proposed in Refs. [5, 14], assuming three terms

in the 3α Hamiltonian: kinetic energy, two-body, and three-body potentials. The two-body

potential is chosen to reproduce two-body experimental data, while the three-body potential

parameters are determined based on 12C data. The Ali-Bodmer (AB) potential was a suitable

choice [14], displaying a simple coordinate dependence with a repulsive core in the s partial
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wave to mimic Pauli repulsion between two alpha particles. This potential has shown promise

in describing cluster systems such as ααn [42] and ααΛ [43]. The set of AB and 3α potentials

obtained in Ref. [14] satisfactorily describes the low-lying 12C spectrum, with additional

adjustments for the three-body potential to achieve accurate spectrum reproduction. In our

present work, we use the model from Ref. [14] to establish a general scheme for defining

a three-body potential using the effective mass concept. In this scheme, we adjust the

alpha particle’s mass to describe 3α states and establish a correspondence with a three-

body potential. The mass-energy compensation property of the three-body Hamiltonian

facilitates this procedure.

Our general goal is to demonstrate the mass-energy compensation effect for the 3α Hamil-

tonian, which includes two- and three-body interactions. Specifically, we will show how the

additional three-body binding energy arising from three-body interactions can be compen-

sated by variations in the mass of the particles. The chosen 3α model is appropriate for this

purpose.

The foundation of our study rests on the application of Faddeev equations in coordinate

space [44]. This formalism empowers us to handle the Coulomb potential without resorting

to approximations, and it enables the use of coordinate-dependent potentials with a well-

defined and easily interpretable physical significance.

II. FORMALISM

A. Mass-Energy Compensation

The α-cluster model for the 12C nucleus describes the nucleus as a bound system of three

alpha particles. The three-body Hamiltonian reads

H = H0 + V2bf + V3bf . (1)

Here, H0 is the kinetic operator given by H0 =
∑

i=1,2,3
π2

i

2m0

, where π2
i = −ℏ

2∆i, i = 1, 2, 3.

The m0 represents the mass of a free alpha particle. Additionally, V2bf and V3bf denote two-

body and three-body interactions, respectively. The three-body potential V3bf is assumed

to act as a perturbation.

Ref. [3] introduces the concept of a particle’s effective mass m∗ in a three-body system.

Specifically, the effective nucleon mass is defined through an averaged nucleon mass cor-
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rection, compensating for the attractive effect of a three-body force in 3N systems. The

feasibility of this correction, as discussed in Ref. [3], arises from the mass-energy compensa-

tion effect in the three-body Hamiltonian. To elucidate this effect, consider the Hamiltonian

expressed in linear form:

H = βH0 + αV2bf , (2)

where β, α > 0. One can change the particle mass and the depth of the potential simulta-

neously by using parameters α and β.

Averaging the Schrödinger equation over the wave function leads to the algebraic form

for matrix elements:

E = E(β, α) = βïH0ð+ αïV2bfð. (3)

The matrix elements ïH0ð and αïV2bfð have opposite signs. One can vary the parameters

around the point α = β = 1 such that corresponding energy changes are opposite and can

be compensated by each other. Thus, we define the mass-energy compensation effect [3–5].

A comparable compensation can be achieved by incorporating a three-particle force into

the Hamiltonian (2) as part of the potential energy. To offset the effects of the three-particle

force term, we modify the particle’s mass as m∗ = m0 + ∆m. The scale parameter β is

linked to the effective mass through the relationship m∗/m0 = 1/β.

Considering small variations in the mass m∗/m0 = 1+∆m/m0, where ∆m/m0 j 1, and

following Ref. [46], one can express the kinetic energy operator in terms of the individual

momenta of the particles in the center-of-mass frame:

H0
∗ =

∑

i=1,2,3

π2
i

2m∗
≈

∑

i=1,2,3

π2
i

2m0

(1−
∆m

m0

). (4)

Here, we use Taylor expansion of the function 1/m∗ in the small vicinity ∆m of the value

m, taking the first two terms of the expansion. Thus, the corresponding variations for the

left-hand side of Eq. (2) can be written as

∆ïH0ð ≈ −
ïH0ð

m0

∆m. (5)

This dependence is exactly linear locally near the point m∗/m0 = 1 for the simple case

of the s-wave approach for three-nucleon systems, as shown in Ref. [4], and for the more

complex case of three-nucleon systems interacting with the AV14 nucleon-nucleon potential,

as considered in Ref. [3].
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Taking into account a three-particle potential, one can consider the linear form

H = βH0 + αV2bf + γV3bf . (6)

Here, the three-particle potential is a perturbation. In accordance with the effective mass

approach, the Hamiltonian (6), where α = γ = 1, can be approximated as H = β′H0 +V2bf ,

where β′ is greater or less than β depending on the sign of the contribution ïV3bfð of the

three-body potential that we are trying to compensate.

We can infer that the slope of the energy-mass dependence, represented as E = E(m∗) =

βïH0ð + ïV2bfð, is determined by the attraction or repulsion of this potential. Utilizing the

linear form (6), the average kinetic energy can be computed as ïH0ð = ∂E/∂β, where E

denotes the binding energy for the 3α system. The average contribution from the two-body

(three-body) potential can be calculated as ïV2bfð = ∂E/∂α|α=1 (ïV 3bfð = ∂E/∂γ|γ=1).

These equations will be subsequently employed in the numerical evaluation of matrix ele-

ments of the Hamiltonian (1).

B. The differential Faddeev Equation

The bound states of the three-particle system are characterized by the Hamiltonian (1).

Alternatively, one can describe the system using the differential Faddeev equations for the

components of the wave function [44]. In the case of identical particles, the set of Faddeev

equations is represented by a single equation of the form [34]:

(H0 + Vαα + VCoul. + V3bf − E)U = −Vαα(P
+
c + P−

c )U, (7)

Here, Vαα signifies a short-range αα nuclear potential, VCoul. represents the Coulomb force,

H0 = − ℏ
2

m0

(∆x +
3
4
∆y) is the kinetic energy operator and (x, y) are the Jacobi coordinates.

The wave function is expressed in terms of the Faddeev component U as follows: Ψ =

(I + P+
c + P−

c )U , where P+
c and P−

c are cyclic permutation operators of particles. A three-

body potential, considered as a perturbation, can be added to the left-hand side of equation

(7). The eigenvalue problem for Eq. (7) is numerically solved, with boundary conditions

specified for the component U by exponentially decreasing asymptotics.
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C. Potentials

Within the α-cluster model for the 12C nucleus, alpha particles interact via pair and

three-body nuclear potentials as well as the Coulomb force. We will employ the potentials

proposed in Ref. [14]. The phenomenological Ali-Bodmer (AB) α-α potential [8] defines

different s, d, and g partial components, written as two-range Gaussians:

V2bf (x) = V1 exp(−
x2

b21
) + V2 exp(−

x2

b22
), (8)

where the strength and range parameters are V1 = 500 MeV, b1 = 1.43fm, V2 = −130 MeV,

b2 = 2.11fm for s-wave; V1 = 320 MeV, b1 = 1.43fm, V2 = −130 MeV, b2 = 2.11 fm for d-

wave; V1 = 0, V2 = −130 MeV, b2 = 2.11 fm for g-wave. The attractive s-wave component of

the potential simulates Pauli blocking. This model can be supplemented with an attractive

three-particle potential V3(ρ) in the form of a single-range Gaussian [14]:

V3bf (ρ) = V exp(−
1

2
(
ρ

b
)2), (9)

where 1
2
ρ2 =

∑i=3
i=1 r

2
i and ri is the position vector of the i-th α particle relative to the center

of mass of the system. This potential does not affect a two-body threshold of a three-body

system and was used in Ref. [14] for calculating the bound and resonance states in the 3α

system.

A three-body potential acting at short distances can describe the well-known violation

of the cluster structure [45]. In line with the concept of effective mass, the contribution

from the three-body potential can be compensated by adjusting the mass of the α-particles.

This compensation is achieved when the calculated energy matches the experimental value.

Depending on the energy level, the effective massm∗ can be less or greater than the free mass

m0. There exists a correlation between the depth (attraction/repulsion) of the three-body

potential and the value of the effective mass [5].

III. NUMERICAL RESULTS

Our approach to the 12C nucleus is fundamentally grounded in mass-energy compensation

(3). According to Eq. (2), the ground state energy E of the 3α system is expressed as a

function of two scaling parameters, α and β, such that E = E(β, α). To illustrate the effect

of mass and energy compensation, we carried out calculations for two functions: E(β, α =
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1) and E(β = 1, α). In these calculations, we neglected the three-particle potential and

employed the Ali-Bodmer potential (8) for pair interactions. The numerical results are

presented in Fig. 1. The resulting functions exhibit nonlinearity and intersect at the point

β = α = 1. By independently varying the parameters β and α, we are able to replicate

the experimental energy of the 12C ground state. This suggests that a change in mass can

effectively compensate for any small alteration in the potential energy term.

FIG. 1. The 3α(0+1 ) ground state energy E as a function of the scaling parameter α or β in Eq.

(2) using the Ali-Bodmer potential (8). The dashed line indicates the experimental ground state

energy of 12C.

The nonlinear behavior of the function E(β, α = 1) as the parameter β decreases is

associated with the significant contribution of the three-particle potential, which must be

compensated for by an increase in the effective mass. To gauge the impact of variations in

the effective mass m∗, one should consider the next term of the Taylor expansion instead of

the linear representation in Eq. (4). In this way, the first k terms of the Taylor series for

the function 1/m must be taken into account near the point m∗/m0 = 1. The energy can be

written as E(m∗) = E(m∗ = m0)(1 −
∑

n=1,2,...k(−1)n(m∗/m0 − 1)n). By contrast, a linear

relationship between effective mass and energy was observed in Ref. [3] for the ground state

of 3H and 3He, where the three-body potential is a small perturbation of the Hamiltonian,

and the effective mass was estimated as m∗/m0 = 1.02.

The results presented in Fig. 2 illustrate the coupling between the 0+1 and 0+2 states.
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Level anti-crossing occurs when the effective mass approach is applied. We systematically

increased the effective mass, commencing from a value of 0.9m0. During this increment,

we observed an anti-crossing of the ground (blue) and excited levels (red), with dual colors

indicating entangled states. The crosses on the graph denote the calculated effective mass

values and corresponding experimental energies, signifying the entangled states. Note that

the 12C level anti-crossing has been also observed in an oscillator trap in Ref. [47].

The general theory of two-level systems [48] stipulates two parameters that influence anti-

crossing. The first parameter, W , describes the strength of the coupling and is derived from

the overlap integral of the wave functions taken in uncoupled states. The second parameter,

∆, represents the energy difference between the considered levels in the uncoupled scenario.

A strong coupling of two states occurs when the coupling parameter W is large and the

energy gap ∆ is small, according to the relation [49]

2W/∆ > 1. (10)

The limit 2W/∆ → 0 corresponds to the condition for uncoupled states. By using Fig. 2,

we can approximate the value of W . The energies of the coupled states are expressed by the

following formula [48]

E+, E− =
1

2
((E0 + E1)±

√

(E0 − E1)
2 + 4W 2). (11)

Here, E0 and E1 denote the energies of the uncoupled ground and first excited states,

respectively, with a difference of ∆ = |E0 − E1|. We have selected the effective mass value

corresponding to the condition of E0 = E1which is the point of intersection of the dot and

dashed lines in Fig. 2. In this scenario, the energy difference E+ −E− of coupled states can

be roughly evaluated as 2 MeV. Utilizing Eq. (11), we have determined W ∼2 MeV that is

a value comparable to the characteristic energy difference of 7.3/2 MeV. The ratio 2W/∆

serves as an approximation for Eq. (10). Consequently, the coupling between the 0+1 and 0+2

states can be characterized as weak. Table I outlines the results of the Faddeev calculations

for the energy levels of 12C, specifically focusing on the 0+1 , 0+2 , and 2+1 levels. The 0+1

and 2+1 levels are identified as bound states, whereas 0+2 manifests as a resonance near the

three-body threshold. The energy of this resonance is estimated using linear interpolation

on an auxiliary parameter, resulting in a bound state below the break-up threshold (see Ref.

[22]). Both the effective mass approach and the model incorporating a three-body potential
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FIG. 2. The level anti-crossing of the first two 0+ states in 12C within the effective mass approach.

The crosses correspond to the α particle effective mass value shown for each state. Dual symbols

mark the entanglement states. The dot and dashed lines show the imaginary crossing of the levels

according to the linear relation of Eq. (5).

are employed. In the former, the effective mass is fine-tuned to align with the experimental

data for the corresponding level. In the latter, the suitable parameters of the three-body

potential are determined.

In both approaches, we compute the contributions of the kinetic and potential energy

terms of the Hamiltonian (Eq. 1) to the overall energy. These contributions are presented

as average values of the corresponding operators, denoted as ïEð = ïH0ð + ïV2bfð + ïV3bfð.

Table I also includes a numerical assessment of the MEC effect for the bound states, 0+1 and

2+1 . The scaling parameter α and the effective mass are computed as illustrated in Fig. 1.

The asymmetry in scaling with the parameters α and β becomes evident when comparing

the values of ïH0ð and ïV2bfð. The α-scaling amplifies both the kinetic and potential terms.

For each energy level, we identify the three-body potential parameters that exhibit the

closest correlation with the effective mass model. The potential in Eq. (9) encompasses two

free parameters, strength V and range b, which cannot be solely determined by the energy

of the bound state. We leverage the inherent correspondence between an effective mass and

the contribution of a three-body potential, assuming that the correction of the particle mass

(or the kinetic energy operator) must compensate the contribution of the potential.

We select the parameters of the three-body force to obtain approximate relations where
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the matrix element ïV2bfð and the value of ïH0ð + ïV3bfð are similar within both models.

This approach provides additional conditions for the parameters of the three-body potential.

The parameters obtained are included in the caption of Tabl. I. The strength of the poten-

tial for the ground state is the highest among the states considered. The relative contribution

of the three-body potential term is maximal for the 0+1 state and decreases subsequently for

the 0+2 and 2+1 levels. Trying to use the three-body potential determined for the ground state

to calculate the energy of the 0+2 resonance results in a negative value corresponding to a

bound state (see the fourth row of the table). It is evident from this table that the matrix

TABLE I. The 3α binding energy and the contributions of kinetic and potential energy terms of

the Hamiltonian (1) (in MeV) to the energy E; Eq. (2) is used with the parameters β = 1/m∗ and

α; here, ïEð = βïH0ð + αïV2bf ð + ïV3bf ð; the parameters of the three-body potential in Eq. (9)

are (a) V = 743.53 MeV, b = 1.253 fm, (b) V = 101.47 MeV, b =1 .9139 fm, (c) V= 288.93 MeV,

b=1.3534 fm; the AB potential [8] is used as a pair interaction.

State Model m∗/m0 α E ïH0ð ïV2bf ð ïV3bf ð ïEð

0+1 AB+eff.mass 1.292 1 -7.28 56.7 -64.0 – -7.3

1 1.2557 -7.28 58.5 -65.8 – -7.3

AB+3bf 1 1 -7.28 90.0 -63.1 -34.2(a) -7.3

0+2 AB+3bf 1 1 -0.86 40.3 -27.2 -14.0(a) -0.9

AB+3bf 1 1 – 26.9 -22.4 -4.25(b) 0.2

AB+eff.mass 1.167 1 – 23.0 -22.8 – 0.26

2+1 AB+eff.mass 1.148 1 -2.93 41.4 -44.3 – -2.9

1 1.1379 -2.93 43.4 -46.3 – -2.9

AB+3bf 1 1 -2.93 48.2 -43.6 -7.5(c) -2.9

elements ïV2bfð of the two-body potential, calculated within both the (AB+ eff.mass) and

(AB+3bf) models for the 0+1 ground state, exhibit similarity. These results correspond to

the first and third rows of Table I. The disparity between them is approximately 1.4%. One

can write ïV2bfðAB+eff. ≈ ïV2bfðAB+3bf . One can assume, that the same observation applies to

the matrix element of the square of the hyper-radius: ïρ2ðAB+eff.mass ≈ ïρ2ðAB+3bf . Further
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details on the calculations for root mean square radius and form factors can be found in

Ref. [14, 50], where the identical (AB+3bf) model was employed.

For the 0+2 resonance, the numerical method developed for the bound state cannot be

directly applied. In this case, a method of linear interpolation into the region of positive

energy was proposed, motivated by the procedure of analytic continuation in relation to

the coupling constant[18, 22, 51]. The resulting interpolation is shown in Fig. 3. The

contribution of the kinetic and potential terms corresponding to the Hamiltonian of the

0+2 state is estimated. For the effective mass model, the calculated values are the matrix

elements ïEð = ïH0ð and ïV 2bfð for different parameters β, where β = m∗/m0(1 + ζ), and

the effective mass is m/m0=1.167, given the condition |ζ| j 1.

We calculate the corresponding matrix elements for a model with a three-body potential

for various values of the parameter ζ : V3bf = V3bf (1+ζ), where the potential V3bf is selected

from option (b) in Table I. The average energy is calculated as ïEð = ïH0ð+ ïV2bfð+ ïV3bfð.

The interpolation (solid lines in Fig. 3) was calculated approximating the linear term of the

Taylor series, as in Eqs. (4)-(5).

Using the AB potential, the effective mass of the 0+2 state of the 12C is evaluated as

1.167m0. It is apparent that the effective mass approach could substitute a cluster model

with a three-body potential, such that the magnitude of the mass correction compensates

for the contribution of the three-body potential. Our study incorporates various models for

the α–α interaction to provide a comprehensive analysis. The considered models include

the Ali-Bodmer (AB) [8, 14], Yamada-Schuck (YS) [40], and Bhoi-Upadhyay-Laha (BUL)

[52] pair potentials. These potentials accurately represent the 8Be(0+) resonance, which is

particularly relevant given the distinct 8Be+α structure of the 0+2 state. It is crucial to

emphasize that the three-body potential must be a perturbation of the three-body Hamil-

tonian within the proposed approach. Additionally, the effective mass m∗/m0 must satisfy

the condition within a small vicinity around 1:

|1−m∗/m0| j 1. (12)

This constraint is approximately satisfied for the AB potential for both the ground and

excited states. However, the BUL potential is relatively weak and fails to form a bound

state when m∗/m0 = 1. The AB, YS, and BUL potentials exhibit somewhat different short-

distance behaviors, as illustrated in Fig. 4(a). Both AB and BUL potentials depend on the
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orbital quantum numbers, L = 0, 2, 4, while the effective potential YS only has an s-wave

component. The AB potential, in particular, shows strong nuclear repulsion in the s-wave

at distances less than 2 fm. Evidently, the specific characteristics of the interactions can

influence the calculation results for the effective mass of the 0+2 resonance. Nevertheless,

the effective-mass approach, when applied with the AB and YS potentials, yields similar

effective mass values, approximating around 1.2m0. The outcomes of these calculations are

depicted in Fig. 4(b).

The BUL potential exhibits less strength than the AB potential. The repulsive core of

the BUL potential appears at distances less than 1 fm, and the α–α attraction is shallower

than that of the AB potential. The effective mass required to replicate the energy of the

12C bound state is roughly 0.4m0, and the energy of the second state 0+ is reproduced

with an effective mass of approximately 0.35m0. These values diverge significantly from a

perturbative approximation, and the condition (12) is not met. We can thus infer that this

FIG. 3. The kinetic and potential energy contributions for the 0+2 bound state. (a) Calculations

were carried out for different values of the β parameter, β = m/m0(1 + ζ), where the effective

mass m/m0=1.167 and |ζ| j 1. (b) Calculations were also performed for different values of

the parameter ζ : V 3bf = V3bf (1 + ζ), where the potential V3bf is the version (b) from Table

I. The solid circles and open squares (rhombus) correspond to the kinetic ïH0ð and potential

ïV (2bf)ð (ïV (3bf)ð) terms, respectively. The solid squares represent the energy calculated as

ïEð = ïH0ð + ïV (2bf)ð(+ïV (3bf)ð). Interpolation (solid lines) was calculated by approximating

the linear term (5) of the Taylor series.
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potential is too weak to generate a 0+2 state near the breakup threshold.

The YS potential was specifically designed to mimic the molecular state of the 3α system

near the three-body threshold. However, this potential results in a weakly bound state

for m∗/m0 = 1. To address this, a repulsive three-body potential was introduced in Ref.

[40] to adjust the energy of the 0+2 resonance to the experimentally observed positive value.

Within the effective mass approach, increasing the effective mass is required to achieve a

similar energy decrease, as illustrated in Fig. 4(b). This contrasts with the situation for the

AB potential. The weakly repulsive nature of the AB potential necessitates an attractive

three-body force for the 3α model of the 12C nucleus.

FIG. 4. (a) The Ali–Bodmer (AB) [8, 14], Yamada–Schuck (YS) [40], and Bhoi–Upadhyay–Laha

(BUL) [52] α-α potentials. The nuclear components corresponding to the orbital quantum num-

bers L = 0, 2, 4 are differentiated by various symbols. (b) The energy E of the 0+2 bound state

calculated for different values of the α particle effective mass, m∗/m0. The solid rhombus and

circles correspond to calculations performed using the Ali–Bodmer and Yamada–Schuck α–α po-

tentials, respectively. Calculations above the three-body threshold (marked as ”Cal. (E > 0)”) are

indicated by smaller gray symbols. The horizontal dashed line marks the experimental value for

the energy of the Hoyle state (denoted as Exp.). Crosses depict the extrapolated positive energy

values.
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IV. CONCLUSIONS

In this study, we adopted a phenomenological approach to the 3α-cluster model of the 12C

nucleus, where a pair interaction describes existing α–α experimental data. The key feature

of this model is the incorporation of a three-body potential. Additionally, our approach

involves the application of the effective mass method, leveraging the mass–energy compen-

sation effect, to estimate the effective mass of the first (ground state) and second (Hoyle

state) 0+ states, as well as the first 2+ state. The Faddeev calculations for the bound 3α

system demonstrate the mass–energy compensation for a three-body Hamiltonian using the

Ali-Bodmer α–α potential. This potential fails to provide the correct value for the ground

state of the 12C nucleus without incorporating a three-body potential, which can be fitted

to match 12C experimental data. The MEC effect permits the use of an α-particle effective

mass as a substitute for the three-body force. This effective mass can variate near the free

mass of the α particle and can be phenomenologically estimated by a correspondence to

experimental data. The results yield values of approximately 1.292m0 for the ground state,

about 1.167m0 for the Hoyle state, and around 1.148m0 for the 2+1 state.

We discerned a coupling between the initial two 0+ states, and this connection can be

elucidated through the application of the two-level systems theory [48]. The anti-crossing

illustration, constructed on the energy/effective mass plane, serves as compelling evidence of

the entanglement between these states. In line with this interpretation, the non-zero coupling

matrix elements of this quasi-doublet arise from the overlapping of the wave functions of the

involved states.

In our approach, the effective mass is correlated with the strength of the three-body

potential, as exemplified in the case of the AB potential. By employing experimental data

and scrutinizing the matrix elements of the three-body Hamiltonian terms, two free param-

eters of the three-body potential can be fine-tuned. We conducted a comparative analysis

between the contribution ïV3bfð of the three-body potential and the averaged kinetic energy

terms ïH0ð3bf model of the cluster model, juxtaposed with the three-body potential and the

effective mass model ïH0ðef.mass. The relationship

ïH0ðef.mass ≈ ïV3bfð+ ïH0ð3bf model

establishes an additional criterion (the first being the experimental value of binding energy)

for defining the parameters of the three-body potential. The introduction of effective mass
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addresses our challenges in describing cluster systems where the traditional notion of a

cluster structure is violated at short distances.

We utilized three phenomenological models AB [8], YS [40], and BUL [52] to examine the

α–α interaction for evaluating the effective mass in the 0+2 state. Our findings reveal that

the BUL potential is unsuitable for 3α calculations, failing to produce a bound state and

necessitating a robust three-body potential adjustment to achieve the desired energy, thereby

compromising the integrity of the cluster model. Conversely, the AB and YS potentials yield

comparable effective mass values, approximately 1.2m0, despite variations in the energy-mass

dependence for each potential. The matrix element ïV3bfð of the Hamiltonian H0+V2bf+V3bf

can be compensated for by adjusting the effective mass. This adjustment leads to the

simplified Hamiltonian H0+V2bf within the framework of the effective mass approximation.

This alteration in mass influences the kinetic energy matrix element ïH0ð, the sign of which

is contingent on the sign of ïV3bfð. The attractive or repulsive contribution of the three-

body potential determines the dependence of energy on the effective mass, a phenomenon

demonstrated in the 0+2 state for the AB and YS potentials.
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