An Interactive Debugger for Rust Trait Errors

GAVIN GRAY, WILL CRICHTON, and SHRIRAM KRISHNAMURTHI, Brown University, USA

CoO0 < £ bevy 8~ O B8 @ os
® main.rs Argus X m -
src > ® main.rs i)

/() 1 use bevy: :prelude::*; v ® closure: IntoSystemConfigs<(IsFunctionSystem, _)>

2 — Bottom Up Top Down
29 3 #[derive(Resource)]

4 struct Timer(usize); v ® Timer: SystemParam
Bg—‘ 5 v impl<Out, Func, F@> SystemParamFunction<fn(F@) -> Out> for Func

. where
6 fn main A
Ot Func: Send + Sync + 'static,
7 App: :new()
FO: SystemParam,
8 .add_systems(
9 Undat for<'a> &'a mut Func: FnMut<(F@)> -> Out + FnMut<(<..>::Item)> -> Out,
pdate,
. Out: 'static

@ 10 |mut t: Timer| t.0 += 1

11 .

) » ® closure: SystemParamFunction<_>

{% 12 .run(Q);

13 3

®0Ao @O0 argus & & 0

J

Fig. 1. A screenshot of the ArRGus trait debugger’s bottom-up view in VS Code applied to a Bevy program
(Section 2.3). Using an interactive graphical interface for the trait inference tree, ARGus can include key
information (the bound Timer: SystemParam) elided by the Rust compiler diagnostic for the same program.

Compiler diagnostics for type inference failures are notoriously bad, and type classes only make the problem
worse. By introducing a complex search process during inference, type classes can lead to wholly inscrutable
or useless errors. We describe a system, ARGus, for interactively visualizing type class inferences to help
programmers debug inference failures, applied specifically to Rust’s trait system. The core insight of ARGUS is
to avoid the traditional model of compiler diagnostics as one-size-fits-all, instead providing the programmer
with different views on the search tree corresponding to different debugging goals. ArRGUs carefully uses
defaults to improve debugging productivity, including interface design (e.g., not showing full paths of types
by default) and heuristics (e.g., sorting obligations based on the expected complexity of fixing them). We
evaluated ARGUS in a user study where N = 25 participants debugged type inference failures in realistic Rust
programs, finding that participants using ARGUS correctly localized 2.2X as many faults and localized 3.3x
faster compared to not using ARGUS.

CCS Concepts: » Software and its engineering — Software testing and debugging; « Theory of compu-
tation — Constraint and logic programming; - Information systems — Search interfaces.

Additional Key Words and Phrases: Rust, type classes, traits, debugging

ACM Reference Format:
Gavin Gray, Will Crichton, and Shriram Krishnamurthi. 2025. An Interactive Debugger for Rust Trait Errors.
Proc. ACM Program. Lang. 9, PLDI, Article 199 (June 2025), 22 pages. https://doi.org/10.1145/3729302

Authors’ Contact Information: Gavin Gray, gavin_gray@brown.edu; Will Crichton, will_crichton@brown.edu; Shriram
Krishnamurthi, Brown University, Providence, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART199

https://doi.org/lo.l 145/3729302

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-2960-1198
HTTPS://ORCID.ORG/0000-0001-8639-6541
HTTPS://ORCID.ORG/0000-0001-5184-1975
https://doi.org/10.1145/3729302
https://orcid.org/0000-0002-2960-1198
https://orcid.org/0000-0001-8639-6541
https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0001-5184-1975
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729302
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

199:2 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

1 Introduction

Type classes improve the brevity of bounded polymorphism by implicitly passing inferred type
class instances to generic functions, as opposed to ML-style explicit passing of modules via functors.
In other words, type classes shift the burden of finding instances from the programmer to the
compiler. When a type class inference succeeds, the programmer does not need to expend any
thought on the inference process, at least for systems which enforce coherence [9, 22]. But when a
type class inference fails, the compiler is responsible for explaining the failure to the programmer.

Back in the days when type classes were a simple tool for overloading [30], diagnostics posed
no particular challenge. Say a function has a type like ToString a => a -> String , and you pass an

int , and there happens to be no instance of ToString for int . Then the compiler just needs to
say: “no instance found for ToString int .

The challenge today is that type class systems are more powerful than before. Type classes in
Haskell, Coq, Rust (traits), and Scala (implicits) have all been shown to encode Turing-complete
computations. Rust even explicitly models type class inference (“trait solving”) as Prolog-esque
logic programming [4]. Library developers in these languages, especially Rust, increasingly lean
on type classes to encode domain-specific correctness properties into the type system. While
this approach helps developers catch more mistakes at compile-time, it can at times produce
mystifying diagnostics. Given the severity of this problem, the Rust community has invested
money into studying trait diagnostics [25] as well as developed both library-specific [18] and
library-agnostic [26] utilities solely for improving trait diagnostics.

The thesis of this work is that compiler diagnostics are fundamentally limited by their represen-
tation as static text. Moreover, this limitation is felt most acutely for information-rich situations
such as type class inference. We therefore designed a system, ARGUS, to provide a richer interface
for explaining type class inferences built on a modern UI framework. ArGus is implemented as an
IDE extension for Rust, although its core design is not particularly Rust-specific. After motivating
our design principles with concrete examples (Section 2), we describe our contributions:

o A novel interface for visualizing trait inference, designed to specifically facilitate key sub-tasks
in debugging inference failures (Section 3.2).

e A new heuristic, inertia, that ranks potential root causes of trait inference failure (Section 3.3).

o A user study that shows that participants using ArRGUs could localize faults 3.3 faster compared
to using the Rust compiler’s diagnostics (Section 5).

2 Motivating Examples

Traits are a well-documented source of confusing compiler errors in the Rust community. A 2023
study [25] commissioned by the Rust Foundation identified dozens of problematic error messages
in widely-used libraries, resulting in a corpus of hard-to-debug programs. We analyzed the content
of these error messages to form hypotheses about how to design better trait diagnostics.

We chose three programs that represent the main failure modes of programs in this corpus. For
illustration, the program in Section 2.2 was taken from an online Rust forum [1] because it requires
less boilerplate than programs in the corpus, but nonetheless contains an equivalent error. We start
by walking through these concrete examples that illustrate the problems in Rust’s existing trait
diagnostics. We then generalize these examples into design principles that form the basis of the
ArgGus interface. All errors in this section were generated using Rust 1.82.0.

2.1 A Missing Table Join

Diesel [3] is a popular Rust library for object-relational mapping and statically-checked query
building. Figure 2a shows an example Diesel program where a developer wants to select fields from

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:3

1 fn users_with_eq_post_id(conn: &mut PgConnection) -> Vec<(i32, String>> {

2 users::table // .inner_join(posts::table)
3 .filter(users::id.eq(posts::id))

4 .select((users::id, posts::id))

5 .load::<(i32, String)>(conn)

6 3

(a) A program using the Diesel query builder library. The program does not join the table posts but tries to
use the posts::id column, which Diesel catches as a trait error.

error[E@271]: type mismatch resolving ~<table as AppearsInFromClause<table>>::Count == Once"

| .load: :<(i32, String)>(conn);

| - rran expected “Once™, found “Never®
I |

| required by a bound introduced by this call

|

note: required for “posts::columns::id> to implement ~AppearsOnTable<users::table>

I

| id -> Integer,

I An
= note: associated types for the current “impl~ cannot be restricted in “where” clauses
= note: 2 redundant requirements hidden
= note: required for “diesel::expression::grouped: :Grouped<diesel::expression::operators::Eq<users::
columns::id, posts::columns::id>>" to implement ~AppearsOnTable<users::table>"
= note: required for ~query_builder::where_clause::WhereClause<diesel::expression::grouped: :Grouped<
diesel::expression::operators::Eq<users::columns::id, posts::columns::id>>>" to implement ~
query_builder: :where_clause: :ValidWhereClause<FromClause<users::table>>"
= note: required for ~SelectStatement<FromClause<table>, SelectClause<(id, name)>, NoDistinctClause,
WhereClause<Grouped<Eg<id, id>>>>" to implement ~Query"
= note: required for ~SelectStatement<FromClause<table>, SelectClause<(id, name)>, NoDistinctClause,
WhereClause<Grouped<Eg<id, id>>>>> to implement ~LoadQuery<'_, _, (i32, String)>"

note: required by a bound in “diesel::RunQueryDsl::load”

|

1540 | fn load<'query, U>(self, conn: &mut Conn) -> QueryResult<Vec<U>>
| ---- required by a bound in this associated function

1541 | where

1542 | Self: LoadQuery<'query, Conn, U>,
|

ANANANANANANNNAAANAAAANAAAA raquired by this bound in “RunQueryDsl::load”

(b) The Rust compiler diagnostic for the program above.

Fig. 2. An example of a trait error where the compiler elides key information for brevity. This is noted by the
phrase “2 redundant requirements hidden”

two tables, users and posts , but forgot to join the posts table into the query. Diesel uses traits to
discover that the call to .load(conn) is ill-typed because the query selects a field of a missing table,
generating the diagnostic shown in Figure 2b. To debug this trait error, a developer must localize
the root cause (i.e., the .eq(post::id) operation) and fix the program (e.g., by inserting a join).

The diagnostic’s goal is principally to help with the localization phase of debugging by providing
context about the origin of the type error. For instance, the Rust compiler diagnostic in Figure 2b
does not just report the top-level failed trait bound, printed at the very bottom of the diagnostic.
Rust instead starts by reporting the failed predicate deepest into the trait inference tree:

type mismatch resolving ~<table as AppearsInFromClause<table>>::Count == Once”

The developer’s localization task is to blame a specific program element for this failed predicate.
This task presents two problems. First, the associated type AppearsInFromClause::Count may not
be self-evidently meaningful, requiring additional context to interpret the constraint (e.g., where

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:4 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

did this constraint come from?). Second, the types users::table and posts::table have been
unfortunately truncated to simply table , suggesting the types are the same when they are not.

To try solving problem #1, the developer could read the rest of the diagnostic. The remaining text
explains the provenance of the constraint, which is a sequence of five trait constraints deriving from
the originating constraint on the call to .1load(conn) . One possibly useful constraint to read would be

Eq<users::columns::id, posts::columns::id>: AppearsOnTable<users::table> . The Eg<...> type hints
at the problem originating with the expression users::id.eq(posts::id) . This bound helps the
developer localize the fault: that posts must be joined before using this expression.

However, this constraint does not actually appear in the text of the diagnostic! It is elided with
the statement: = note: 2 redundant requirements hidden . Also observe that the diagnostic includes
the source code and location for the first two trait bounds walking up from the deepest failed bound
(at the top of the diagnostic) and the originating trait bound (at the bottom of the diagnostic). The
diagnostic does not include this information for any of the intermediate trait bounds.

The Rust compiler omits all this information out of necessity, not convenience. Consider the
counterfactual where Rust includes the full text of every bound and its source-mapped origin. This
diagnostic could easily stretch over 100 lines long, just for a relatively simple error. Therefore,
Rust applies heuristics to include only information that is probably relevant. The problem with
identical-looking table types is similar. Rust heuristically decides when to present fully-qualified
versus shortened paths for brevity, but it sometimes makes a wrong decision. Without representing
diagnostics as static text, we can consider alternative solutions to both problems:

Principle CoLLAPSESEQ. Instead of omitting steps of an inference sequence for brevity, allow
the developer to progressively unfold the sequence.

Principle SHORTTYs. Instead of heuristically shortening types, show shortened types by default,
but make fully-qualified types available on-demand.

2.2 An Accidental Infinite Recursion

A Rust developer was designing an AST data type to be generic with respect to user-specific
node-associated data. They wrote the code in Figure 3a, which caused an infinite loop in the trait
solver, as indicated in the trait diagnostic in Figure 3b. The developer asked on a Rust forum [1]:

I'm running into a compiler error, stating that there is an overflow when evaluating a
trait requirement. However, that requirement should obviously be satisfied. I just can’t
seem to understand where the overflow comes from.

The actual loop has a simple logical structure, as shown in Figure 3c. If EmptyNode needs to im-
plement AstAssocs (due to line 18), then that requires EmptyNode implements AssocData<EmptyNode>
(due to line 10), which in turn requires EmptyNode implements AstAssocs (due to line 15).

However, the Rust diagnostic obscures this fact because the diagnostic interleaves the “core”
information used in the trait solver (the trait-bounds and impl blocks) with “auxiliary” information
used for debugging (the source-location of constraints). This approach makes it harder for a
developer to identify the logical structure of the cycle. Again, the ultimate issue is the static text
representation, which requires diagnostics to commit to a specific sequential interleaving of all
relevant information. Therefore our principle is:

Principle CTxTLINKS. Instead of interleaving the trait inference steps with auxiliary informa-
tion, enable developers to access auxiliary information on-demand through contextual links.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors

trait AssocData<A: AstAssocs> {}
trait AstAssocs: Sized {
type Data: AssocData<Self>;

struct EmptyNode;
struct Statement<A: AstAssocs>(..);

impl<Data> AstAssocs for Data
where Data: AssocData<Self> {
type Data = Data;

199:5

error[E0275]: overflow evaluating the requirement °
EmptyNode: AssocData<EmptyNode>"

|
18 | let s: Statement<EmptyNode> =

I AAAAAAAAAAAAAAAAAAAAN
|
note: required for “EmptyNode™ to implement ~AstAssocs”

9 | impl<Data> AstAssocs for Data

I AAAAAAAAA AAAA

10 | where Data: AssocData<Self> {
| _______________

unsatisfied trait bound introduced here
13 note: required by a bound in “Statement”

14 impl<A> AssocData<A> for EmptyNode |

15 where A: AstAssocs {} 7 | struct Statement<A: AstAssocs>(

16 | ARAAAAAAA
17 fn main() {

18 let s: Statement<EmptyNode> =

required by this bound in ~Statement”

(b) The Rust compiler diagnostic for the program on the left.

19 Statement(..);
20 3}
EmptyNode: AstAssocs
a) A program which tries to model an AST impl 9-12
(a) A prog w &= EmptyNode: AssocData<EmptyNode>

with user-specified associated data on AST
nodes. The described trait bounds and impl
blocks cause an infinite loop in the trait
solver.

impl 14-15

&— EmptyNode: AstAssocs

(c) A diagrammatic representation of the logical structure of the
recursion.

Fig. 3. An example of a trait error where the interleaving of information in the diagnostic obscures the logical
structure of the problem.

2.3 An Errant Function Parameter

Bevy [2] is a popular Rust library for writing 2D and 3D games in the entity-component-system
(ECS) style. Systems in ECS are functions that perform updates on the game. A system’s func-
tion parameters declare the required inputs to the system, and the game engine essentially does
dependency injection to run the system with the appropriate inputs.

For example, Figure 4a shows a developer trying to write a system which increments a global
mutable timer. The correct approach is to declare Timer asa Resource , and then to use the container
type ResMut<Timer> as the function parameter. However, a common Bevy mistake is to forget the
container and simply write timer: Timer . The function run_timer is still well-typed, but now Bevy
rejects the developer’s attempt to register the system on the game. The type error arises from a
failed trait inference, where the method add_systems requires that run_timer implements a trait

IntoSystem , which converts a value into a system. A function system requires each parameter
to implement a trait SystemParam , for which one implementation is that ResMut<T>: SystemParam if
Timer doesnotimplement SystemParam,so run_timer does notimplement IntoSystem .

The problem is that the Rust diagnostic, shown in Figure 4b, only mentions the IntoSystem
bound. It says, essentially, “something is wrong with the type of run_timer ” without pointing to a
more specific culprit. Rust lacks specificity because there are other ways to potentially implement

T: Resource .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:6 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

1 #[derive(Resource)] error[E0277]: ~fn(Timer) {run_timer}" does not
2 struct Timer(usize); describe a valid system configuration

3

4 fn run_timer(12 .add_systems(Update, run_timer)

AAAAAAAAA

//mut timer: ResMut<Timer>

w

|
|
|

6 mut timer: Timer | | invalid system configuration
7) { timer.0 +=1; } |
|

required by a bound introduced by this call
9 fn main() { |

10 App: :new() = help: the trait “IntoSystem<(), (), _>° is not

11 .insert_resource(Timer(0)) implemented for fn item ~fn(Timer) {run_timer
12 .add_systems(Update, run_timer) 3}, which is required by ~fn(Timer) {run_timer
13 .run(); }: IntoSystemConfigs<_>"

14}

(b) The Rust compiler diagnostic for the program on the left.
(a) A program using the Bevy game engine. The
run_timer function incorrectly takes a param-
eter of type Timer instead of ResMut<Timer> .

{run_timer}:
IntoSystem<(), (), M>

- ~

_- ~<
-~ T ~a

impl IntoSystem<(), (), FunctionMarker> impl IntoSystem<(), (), SystemMarker>

for F where F: Fn(T) -> (), T: SystemParam for S where S: System

Timer: SystemParam {run_timer}: System

impl<T: Resource> SystemParam impl<T: QueryData> SystemParam
for ResMut<T> {} for Query<T> {}

(c) A diagrammatic representation of the relevant fragment of the trait inference tree, showing the branch
point in the possible implementations of the IntoSystem trait.

Fig. 4. An example of a trait error where a branch point in the inference process causes the diagnostic to
omit information deeper in the search tree.

IntoSystem for run_timer . The diagram in Figure 4c shows how IntoSystem can also be implemented
for types that implement the System trait.!

Once more, we observe the limitations of the static text representation. Rust adopts the approach
that when a branch point exists in the trait inference tree, its diagnostics stop at the branch point
and do not provide finer-grained details along every branch. In other words, the diagnostics are
constrained to presenting a sequence of information, not a tree of information. Therefore, we adopt
the principle:

Principle TREEDATA. Instead of omitting tree-shaped information in a trait inference, provide
an interface that supports exploring trait inference as a tree.

IThese implementations seems to violate coherence. Indeed, with a straightforward definition of IntoSystem , Rust would
reject the two impl blocks as overlapping. Bevy employs the technique of adding a marker type parameter to the IntoSystem
trait, written as FunctionMarker and SystemMarker in Figure 4c. This parameter ensures that the two implementations are
not strictly overlapping. It then increases the burden on Rust’s type inference to deduce the correct type of the marker.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:7

Type Variable « Region Variable o Type Constructor S
Trait T Assoc Type Constructor D

Trait Instance 7 — T(7,0)

Typer —unit|a | &o 7| &omutz |z |S(T) | X1 |11 — 2| Jap

Projection 1 — 71. D7(T3, 0)

Predicatep — 7: 7 |7t:p0 | n==71

DECLARATIONS | TRAIT INFERENCE TREE |

ctxt —> tydecl; trdecl; impl Predicate Evaluation G — p X {E} X R
tydecl — newtype S ¢ =t Candidate Evaluation C — implx{é} X R
trdecl — trait T ¢1 { D ¢ } Evaluation Result R — yes | no | maybe

impl — impl ¢; T forr; {Dga =12 }

Parameters ¢ — V p,a where p

Fig. 5. A grammar for Lgarr, the essence of Rust’s trait language and inference.

3 System Design

ARaus facilitates trait debugging by visualizing the entire trait inference tree in an interactive
interface. The primary goal of ARGUS is to help developers localize the root cause of trait errors,
i.e., specific failed trait obligations. ARGUS consists of two principal components:

(1) A Rust compiler plugin that extracts an idealized representation of trait inferences.
(2) A web-based interface for visualizing extracted trait inferences inside an IDE.

In this section, we describe the concepts most fundamental to ArGus: an idealized representation
of trait inferences (Section 3.1), the interface design (Section 3.2), and the heuristics used to organize
information in the interface (Section 3.3). We discuss the implementation details of extracting trait
inferences in Section 4.

3.1 Trait Model

First, we need to describe the precise shape of a trait inference to understand what is being visualized
in the ArGuUs interface. ARGUS operates over a trait language, which is the subset of Rust features
relevant to trait inference. This trait language is embedded within a trait inference tree extracted
from the compiler, which can be conceptualized as a partial proof in a natural deduction system.

Figure 5 describes L1garr, the core syntax of Rust’s trait language and trait inference trees. Rust’s
trait language consists of types 7, which are mostly standard with the notable addition of region-
annotated references. Types are embedded in declarations, which include newtypes (tydecl), traits
(trdecl), and implementation blocks (impl). Newtypes are relevant to the model because nominal
typing permits otherwise overlapping trait implementations for the same type.

At a high level, the semantics of traits are that given a context ctxt and a predicate p, the
compiler produces a trait inference tree G which describes either a successful or failed inference.
An evaluated predicate G consists of the predicate p, a result R, and a set of evaluated candidates
C. If the predicate definitely succeeded or failed then the result is yes or no. If a predicate refers to
an un-inferred type variable, then the result is maybe. A predicate evaluation succeeds if one of its

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:8 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

® SelectStatement<..>: LoadQuery<Conn, (i32, String)>

BottomUp Top Down

() AR T = G SelectStatement<..>: LoadQuery<Conn, (i32, String)>

~impl<QS> AppearsOnTable<QS> for id Bottom Up Top Down

where QS: AppearsInFromClause<table>, - ® SelectStatement<..>: LoadQuery<Conn, (i32, String)>
<QS as AppearsInFromClause<table>>::Count == Once ~impl<..> LoadQuery<..> for T
where
~ ® id: AppearsOnTable<table>
~ ® SelectStatement<..>: AsQuery

~impl<T, U, QS> AppearsOnTable<QS> for Eq<T, U> ~impl<. > AsQuery for T

where Eq<T, U>: Expression, where
T: AppearsOnTable<QS>, ~ @ SelectStatement<..>: Query
U: AppearsOnTable<QS> ~impl<..> Query for SelectStatement<..>

where
» ® Eq<id, id>: AppearsOnTable<table> B

WhereClause<Grouped<Eq<id, id>>>: ValidWhereClause<FromClause<table>>
(a) Expanding the inference tree in the bottom-up (b) Expanding the inference tree in the top-down view.
view.

Fig. 6. Interactions in ARGus for iteratively expanding inference steps.

candidates succeeds, which in turn succeeds if all of its nested predicates succeed. Therefore a trait
inference tree is an “AND/OR tree,” of the same type found in logic program execution.

It is beyond the scope of this paper to provide a formal semantics for Lrpar, €.g., a description
of the trait solving process or coherence checks. The core design of ArRGus is largely agnostic to
the internal details of the trait solver — our main focus is how to visualize the inference tree once
extracted from the compiler. Instead, we will observe a few key facts about Rust’s type class design
which influence the kinds of trait inference trees that can emerge:

e Rust supports multi-parameter type classes. A trait can be instantiated with type parameters,
and each instance is distinct from the others for purposes of coherence.

e Rust supports flexible instances and flexible contexts. Any type can be used in the “head” or “self”
of an impl block and the constraints of a trait definition, so long as coherence is satisfied.

e Rust supports undecidable instances. It places no restrictions on the kinds of recursion permitted
in trait bounds, as shown in Section 2.2.

Note that we call Lrpar an idealized model of Rust’s trait language for two reasons. First, the
model omits features that are part of Rust’s type system but don’t meaningfully affect the design of
ARGUs, such as constant value generics. Second, the model abstracts the complexity of the trait
solver, which does not actually produce the beautiful AND/OR tree shown in Figure 5. We describe
how to bridge that gap in Section 4.

3.2 Interface Design

The Arcus interface, shown in Figure 1, takes an evaluated predicate G and presents an interactive
visualization of G to the developer. The Arcus interface is embedded in an IDE extension (specifi-
cally to VS Code, in our prototype) which opens a window adjacent to the developer’s code when
the developer’s program contains a trait error. The ArRGUS interface can also be embedded in other
contexts, such as in an online textbook to pedagogically illustrate the process of trait inference in
the style of recent work [10].

ARGus is principally inspired by performance profiling tools, which also visualize a different
kind of tree: a profile, i.e., a weighted call graph. Profilers can generally visualize a profile in either
a top-down way (starting at the main function and descending to callees) or a bottom-up way
(starting at the functions deepest in the call graph, and ascending to callers). ARGUSs similarly
exposes top-down and bottom-up views on the trait inference tree.

The details of the ArGus interface are inspired by the design principles described in Section 2,
which we elaborate below.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:9

SelectStatement<..>: LoadQuery<Conn, (i32, String)>
Bottom Up Top Down

- <table as AppearsInFromClause<table>>::Count == Once

~impl<QS> AppearsOnTable<QS> for id

id: A OnTable<table> where QS: AppearsInFromClause<table>
v ® id: earsOnTable<table:
i <QS as AppearsInFromClause<table>>::Count == Once

~impl<T, U, QS> AppearsOnTable<QS> for Eq<T, U>
where Eq<T, U>: Expression

T: AppearsOnTable<QS>,
U: AppearsOnTable<QS>

~ ® id: AppearsOnTable<table>
~impl<T, U, QS> AppearsOnTable<QS> for Eq<T, U>
where Eq<T, U>: Expression,
T: AppearsOnTable<QS>,
U: AppearsOnTable<QS>

» ® Eg<id, id>: Appeara?nTable<tablez
Definition Path » Eqg<id, id>: AppearsOnTable<table>

diesel::expression: :AppearsOnTable<users::table>

ii
%

(a) Hovering over a type to see its fully-qualified (b) Clicking an elided type to expand its definition
paths in the minibuffer. in-place.

Fig. 7. Interactions in ArGus for expanding shortened types.

3.2.1 CoLLAPSESEQ. Instead of omitting steps of an inference sequence for brevity, allow the developer
to progressively unfold the sequence.

Unlike traditional compiler diagnostics, ARGUS presents an exhaustive view onto the trait in-
ference tree. Every node is accessible with enough user interaction. To avoid overwhelming the
developer with information, the developer iteratively unfolds levels of the tree. ARGUS provides
two views onto the trait inference tree: bottom-up and top-down.

The bottom-up view shows the leaves of the tree first and developers can recursively expand
downward towards the tree root. The developer traverses the tree from the bottom up. For example,
Figure 6a shows the bottom-up view in ARGUS for the Diesel type error discussed in Section 2.1.
Starting at the innermost failed trait bound, the developer can recursively expand its children (i.e.,
its parents in the inference tree) until reaching a trait bound that provides useful information about
the situation, such as the Eqg<...> type.

The top-down view first shows the root of the tree, i.e., the required trait bound in the program,
and developers can recursively expand the children until reaching the tree leaves. For example,
Figure 6b shows the top-down view in Argus for the same Diesel type error.

3.2.2 SHORTTYs. Instead of heuristically shortening types, show shortened types by default, but make
fully-qualified types available on-demand.

Textual diagnostics must deal with large types via a combination of pretty-printing, heuristic
shortening, and file logging. ArRGUSs instead shortens all types by default and enables developers to
contextually expand them in two ways:

e Fully-qualified definition paths are removed, and only symbol names are printed by default.
For example, the interface would print selectStatement instead of diesel::SelectStatement . To
observe the full path, the developer can hover their mouse over a symbol name, and its path
appears in a mini buffer at the bottom of the page as shown in Figure 7a.

o Trait parameters, impl block quantified types, and impl block where-bounds are hidden by
default, represented by an ellipsis. For example, Arcus will display SelectStatement<..> instead
of SelectStatement<FromClause<table, ...>>.The developer can click the ellipsis to expand out the
hidden content as shown in Figure 7b.

3.2.3 CrxtLinks. Instead of interleaving the trait inference steps with auxiliary information, enable
developers to access auxiliary information on-demand through contextual links.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:10 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

v < EmptyNode: AstAssocs

Top Down
v > EmptyNode: AstAssocs

~ < EmptyNode: AstAssocs

Top Down ~impl<..> AstAssocs for Data
R where
v O EmptyNode: AstAssocs v O EmptyNode: AssocData<EmptyNode> %D
. ~impl<..> AssocDy+==*~ Emm e
v impl<Data> AstAssocs for Data whsre

There are 2 AssocData implementors

where Data: AssocData<Data> » & EmptyNode:

~ < EmptyNode: AssocData<EmptyNode> impl<A> AssocData<A> for EmptyNode
where A: AstAssocs
v impl<A> AssocData<A> for EmptyNode

where A: AstAssocs impl<A> AssocData<A> for LetNode

where A: AstAssocs

|> O EmptyNode: AstAssocs

(b) The developer can query any trait bound for
(a) Contextual information is hidden by default, the full set of impl blocks for that trait, shown in
showing only the core inference tree structure. a popup.

Fig. 8. Interactions in ArRGus for accessing contextual information about types and traits.

v ® run_timer : IntoSystemConfigs<M>
run_timer ..: IntoSystemConfigs<M>
Bottom Up Top Down
Bottom Up Top Down
v ® Timer: SystemParam

~ ® run_timer ..: IntoSystemConfigs<M>

vimpl<..> SystemParamFunction<fn(F@) -> Out> for Func ~impl<..> IntoSystemConfigs<Marker> for F
where .. where

~ ® run_timer ..: IntoSystem<(), (), _>

» @ run_timer ..: SystemParamFunction<_> X .
» impl<..> IntoSystem<<..>::In, <..>::0ut, (IsFunctionSystem, Marker)>

for F

+ Other failures ... where

» @ run_timer ..: System » impl<..> IntoSystem<<..>::In, <..>::0ut, ()> for T
where

(a) The bottom-up view shows the deepest failed pred- (b) The top-down view shows the root failed predicate,
icates, and unfolds the parents. and unfolds its children.

Fig. 9. ARrcus visualizes two different projections of a trait inference tree: bottom-up and top-down.

The core visualization of the inference tree in ArRGUSs just shows the information strictly needed
for the inference process: trait bounds and impl blocks. As shown in Figure 8a, this declutters the
inference tree so that previously-obscured relationships like the overflow from Section 2.2 become
simpler to visually track. All auxiliary data is instead accessible through hyperlinks and popup
windows. Specifically:

o Developers can command-click any symbol to jump to its definition in the adjacent code editor.
e Developers can click a button next to each trait to access the list of impl blocks for that trait, as
shown in Figure 8b.

3.24 TReeDATA. Instead of omitting tree-shaped information in a trait inference, provide an interface
that supports exploring the trait inference as a tree.

A tree can be visualized in dozens of ways [23], with different trade-offs for the kinds of informa-
tion which are easy and hard to find and understand. For example, one could imagine visualizing the
inference tree in a pannable node-link diagram, which would more effectively convey the “10,000
foot view” on the inference tree. We opted specifically for a nesting-based representation because
we expect that a high-level view is not particularly useful for trait debugging, since a developer
most often cares about finding specific nodes in the tree. Future versions of ARGUS targeted at, e.g.,
helping Rust compiler developers design and debug the trait system itself might benefit more from
a high-level view, but here we just focus on user-space debugging.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:11

. Compute minimum Classif Assign .
Extract inference tree putk ssity 18! Sort weights
correction subsets predicates weights
{run_timer} MCS #1 5
IntoSystem<(), (), M> internal type

- — c —
Timer: SystemParam external trait |
"
MCS #2

fn type

{run_timer}: System external trait 9

impl IntoSystem<(), (), FunctionMarker>
for F where F: Fn(T) -> (), T: SystemParam

impl IntoSystem<(), (), SystemMarker>
for S where S: Systen

lTimer: SystemParaml [{run,timer): Systeml

Fig. 10. Anexample of applying the inertia heuristic to the Bevy inference tree in Figure 4c. Given an extracted
inference tree, ARGUS computes the set of smallest subsets required to satisfy the root obligation, classifies
each predicate based on its structure, assigns a human-decided weight to each category, and sorts the weights.

In particular, our hypothesis is that a developer may find useful both the top-down and bottom-up
views on the inference tree, depending on their specific question. A bottom-up view, as shown
in Figure 9a, emphasizes most directly the possible root causes for the error. If the developer can
understand these failed trait bounds without much context, e.g., by reading Timer: SystemParam
and immediately understanding the problem, then the bottom-up view most directly facilitates
fault localization. If a developer cannot understand failed trait bounds out of context, one option is
to iteratively unfold the parents in the bottom-up view. Alternatively, the developer can use the
top-down view to get a more “logical” view on the situation, as shown in Figure 9b. The developer
reads from the visualization: we started needing to show run_timer: IntoSystemConfigs<M>, and that
required run_timer: IntoSystem<(), (), _>, which could be satisfied in one of two ways, and so on.

3.3 Ranking Predicates with Inertia

The bottom-up view presents the innermost failing predicates in a particular sequence, which the
developer presumably reads top-to-bottom. There is no inherent order to these predicates, because
in theory each predicate could be the one that the developer intended to satisfy. In practice, we
believe that some predicates are on average more likely than others to be the root cause, and that
likelihood can be analyzed just from the structure of the predicate.

Our theory is that the correct fix to a failed trait error on average involves the fewest modifications
to program elements, such as type definitions and trait implementations. This theory motivates
our heuristic, inertia, used by ARGUS to sort failed predicates as shown in Figure 10. Inertia models
the complexity of the patch required to fix a failed predicate. For Rust, we designed the inertia
heuristic to reflect two common sources of complexity in fixing trait errors:

(1) Orphan rule: to ensure coherence of trait implementations between libraries, Rust disallowed
implementing an externally-defined trait for an externally-defined type. This means a failed
trait bound requiring an external type to implement an external trait requires more changes
than with local types or traits (e.g., wrapping the external type in a local newtype, or changing
the external type/traits).

(2) Function traits: higher-order functions in Rust are not generally written using function types as
in most functional languages, but rather function traits due to the interaction of closures and
ownership in Rust. Traits implemented for functions are written as blanket implementations
like impl<F: Fn(A) -> B> Foo for F as opposed to hypothetically impl Foo for fn(A) -> B.Asa
result, function implementations are not rejected via unification of the head type, and they
often appear as failed alternatives in trait inferences.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:12 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

For example, consider the two innermost failed trait bounds in the bottom-up view on the Bevy
program in Figure 9a: {run_timer}: System and Timer: SystemParam . Informally, the first bound
should be higher inertia because (a) it would violate the orphan rule and (b) it involves creating a
new function trait. The second bound should be lower inertia because (a) Timer is a local type and
therefore does not violate the orphan rule, and (b) no referenced types are functions.

Formally, we compute inertia by first enumerating all minimum correction subsets (Mcs). An Mcs
is a set of failing predicates in the trait inference tree that, if they hold true, would cause the proof
to hold true. Specifically, we treat the AND/OR tree as a propositional logic formula and normalize it
into disjunctive-normal form (DNF). For each conjunct in the pNF formula, we apply the inertia
heuristic to compute a score for each predicate in the conjuct. The conjunct’s final score is the sum
of its predicate scores.

To score a predicate, we categorize it into one of eight categories of predicates. Three key
categories are (1) coherent non-function trait bounds, (2) orphaned non-function trait bounds, and
(3) function trait bounds. For example, {run_timer}: System isin category #3 and Timer: SystemParam
is in category #1. We assigned each category a numeric rank based on the expected complexity of
the fix, so e.g. category 1 is lower than 2 is lower than 3. This produces the sort order shown in
Figure 9a. An exhaustive list of the categories and their ranking is provided in Appendix A.1.

4 Implementation

Arcus is implemented as a VS Code extension that is freely available on the VS Code Marketplace
and Open VSX Registry. The Rust compiler plugin is 10,393 lines of Rust code, of which 4,216 lines
(40.6%) are just for serializing the Rust type system to JSON. The ARrGus interface is 8,470 lines of
TypeScript code, of which 2,327 lines (27%) are just for pretty printing the Rust type system.

Beyond type serialization, the most significant implementation detail in ARGUS is how we extract
the idealized AND/OR tree representation from the trait solver. One complication is that not all
predicates evaluated by the trait solver represent the “final” predicates that should be presented
to the developer, because trait solving and type checking are interleaving processes. It is possible
that the Rust compiler provides a trait predicate with unknown type variables. Solving predicates
happens in a fixpoint; ambiguous predicates remain in the trait solver queue until they are proved
true or false, or until inference finishes, at which point all ambiguous predicates become failures.
This reality is difficult for extensions like ARGUs because predicates re-entered into the trait solving
queue are represented as new predicates. This means that ARGUS sees all snapshots of a predicate’s
evolution, and we use an implication heuristic to remove earlier predicates.

The second complication is the process by which trait solving and type inference guide each other.
A good example is trait method calls. Consider the expression my_value.to_string() . Initially, there
are two unknowns: the type of my_value , and where the method .to_string() comes from. Say
that my_value hastype Vec<i32> and two traits ToString and CustomToString provide the method

.to_string() . The type inference engine may ask the trait solver to evaluate Vec<i32>: ToString,

but this predicate is speculative. If the predicate fails, the inference engine may ask the trait solver
to evaluate Vec<i32>: CustomToString . The issue is that all predicates, regardless of whether they are
soft or hard constraints, look identical to external compiler plugins. ARGUS uses a heuristic to reverse-
engineer the predicates evaluated in a program and attempts to show as few as possible. However,
the version of ArRGus deployed in the user study showed potentially more failing predicates than
necessary.

Finally, the grammar for Lrp.r contains three possible predicates (trait bounds, projections,
outlives-constraints), but there are actually fourteen in the Rust compiler implementation. Several
of the included predicates are important details specific to Rust, but we don’t want to expose them

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:13

to unsuspecting developers. ARGUs provides a toggle setting where developers can see the full
range of predicates.

Beyond a higher quantity of predicates, the compiler also contains stateful predicates, such
as NormalizesTo 7 a. This predicate is the Rust equivalent of Prolog unification, except that
normalization is unidirectional. Within the compiler this predicate is used semantically like a
function, where the expression 7 is normalized, and the expression is written into the unconstrained
type variable a. From this perspective, neither is the predicate useful nor is its subtree. ARGUS
therefore cannot treat the entire inference tree as a tree, but rather some predicates must be treated
as stateful nodes whose values can be captured only after their subtrees execute.

5 Evaluation

The central question of our evaluation is: how does ArRGuUs actually influence a Rust programmer’s
process of debugging complex trait errors? We explore this question in three parts:

e RQ1: How does Arcus affect the overall time to localize and fix a trait error?

o RQ2: How do the features of the ArRGUSs interface individually affect a programmer’s debugging
process?

e RQ3: How useful is the inertia heuristic in improving the rank order of the bottom-up view?
We answer RQ1 and RQ2 by conducting a user study of N = 25 Rust programmers debugging a

variety of trait-related errors both with and without ArRGus. We evaluate RQ1 quantitatively by

measuring time-on-task, and RQ2 qualitatively by observing themes in participants’ use of the

tool. We answer RQ3 by running an experiment to quantitatively compare the relative efficacy of

different predicate orderings given a ground truth specification of the correct fault.

5.1 User Study

The goal of this study was to compare Rust programmers’ trait debugging strategies both with and
without ARGUS in a variety of domains on relatively self-contained tasks.

5.1.1 Methodology.

Participants. We recruited participants from three main sources: a mailing list of Rust learners,
the Rust subreddit, and the Rust Zulip. Each source provides Rust developers of different knowledge
levels. The mailing list contains people with minimal Rust knowledge, the Rust subreddit contains a
diverse range of experiences, and the Rust Zulip channel is mostly Rust experts and those working
on the language itself. We recruited 11 participants for a trial study. Participant feedback was used
to improve the materials and instructions for the final study. We recruited N = 25 participants for
the final study. Participants had a median 11 years of programming experience (min: 2, max: 39),
and a median 3 years of Rust experience (min: 1, max: 9).

The study design was reviewed by our university IRB and determined not to meet their defi-
nition of human subjects research. We nonetheless took reasonable precaution when designing
and executing our user study. No personal identifiable information was collected outside of the
participant’s audio and screen share during the study session. Participants were compensated $20.

Materials. We created seven debugging tasks to cover a range of domains and types of trait
problems. Each task consisted of a Rust crate containing one or more trait-related type errors, such
as the ones shown in Section 2. The tasks contained an average of 62 lines of application code. We
used two types of libraries:

o Real libraries: widely-used Rust libraries that make heavy use of traits, specifically: the web
framework Axum [5], the game engine Bevy [2], and the SQL query builder Diesel [3]. These
libraries contain an average of 25,771 lines of code.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:14 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

o Synthetic libraries: bespoke libraries created by us for this experiment. brew provides an API
for creating potion recipes from various plant ingredients, with invalid recipes ruled out by
trait-based rules. space provides an API to construct intergalactic flight plans, with invalid flight
plans also ruled out by traits. These APIs closely mirror the designs of Axum, Bevy, and Diesel.
These libraries contain an average of 721 lines of code.

Tasks involving real libraries are maximally ecologically valid, i.e., correspond to realistic prob-
lems that Rust developers encounter. However, real libraries introduce confounds: participants may
have prior experience with the library, and the quality of the documentation (e.g., prose explanation
and code examples) may influence task performance. The synthetic libraries control for these
factors: participants cannot have prior experience with the libraries, and the libraries only use
automatically-generated documentation via Rustdoc.

For each real library, we looked at community resources and selected errors that represent
common beginner mistakes. We then constructed each task by injecting a fault into a well-typed
program. For example, for Bevy we used the Unofficial Bevy Cheat Book [8], which contains a
section titled Obscure Compiler Errors. One entry is “Using a resource type directly without a Res
or ResMut ” We then took one of the Bevy example applications and removed the ResMut wrapper
around the parameter of a system function. For the synthetic libraries, we injected faults that
mirror the ones in the real libraries. The full set of study materials is provided in the supplementary
materials.

Procedure. Participants were asked to solve a series of four debugging tasks via Zoom over the
span of one hour. Study sessions were conducted during one and a half months, beginning in
September 2024 and running through mid-October. All sessions were recorded.

Before arriving at their session, participants read an ARGUs tutorial and installed the ArGus
VS Code extension. At the start of the session, we verbally confirmed with participants that they
completed the preparation. We gave participants time to ask questions about traits, the tutorial,
or ARGUS. We then gave a live demonstration of ArGuUs using the first problem from the tutorial.
In the demonstration, the study administrator dictated editor actions that were carried out by the
participant; each action was accompanied by a reason. For example, “Please hover over the symbol

Handler in the ARGUS interface — I want to see in which module it is defined”

During the study, participants were given four tasks drawn randomly from the available seven.
A maximum of ten minutes was allotted per task. All debugging resources were allowed, including
Google, StackOverflow, and Al chatbots / coding assistants. Participants completed four tasks total,
two in each condition: with ArGus, and without ArRGuUs. Task order was blocked by condition, so
participants did both with-ArGus tasks and then both without-ARrGus tasks, or vice versa based on
random assignment. We asked participants to think aloud and specify (1) when they had localized
the error, and (2) when they had fixed the error.

Analysis. For each task in each session we determined two values: time-to-fix and time-to-localize.
Time-to-fix is relatively straightforward: we identified when the participant provided a solution
that solved the type error consistent with the problem specification. This required some qualitative
analysis to distinguish trivial fixes (e.g., deleting the ill-typed code) from true fixes. Note that
both times are measured from the start of the task, so time-to-fix is always strictly greater than
time-to-localize.

Although we asked participants to say when they localized an error, not all did, so we qualitatively
coded a localization time for each task. We consider a participant to have localized a fault once they
have identified the fault and started to work on a fix for the fault. For instance, in one of the Bevy
tasks, the fault is that a type Assets<Mesh> does not implement a trait SystemParam . We would look

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:15

No Yes No Yes
Has Argus Has Argus

(a) Localization Rate (b) Localization Time (c) Fix Rate (d) Fix Time

Fig. 11. Distributions of localization/fix rates/times. Error bars on rates are a 95% binomial proportion
confidence interval.

for indicators that the participant identified the specific issue with Assets<Mesh> , as opposed to the
entire function or unrelated parameters. We would also look for indicators that the participant was
determining how Assets<Mesh> could change to implement SystemParam .

To evaluate our ability to consistently code for time-to-localize, the second author independently
coded for this variable in 20 randomly selected tasks from the dataset. The correlation between
raters was r = 0.998 with a mean absolute deviation of 34s. Therefore, we believe this qualitative
metric can be coded with enough objectivity to be worth analyzing.

5.1.2 Results.

RQ1: How does ARGUS affect overall time to localize and fix a trait error? For both metrics, we
consider its overall rate (did a participant localize/fix an error), and its overall duration (when
did they localize/fix the error, capped at 10min). Localization rate and time are visualized in
Figures 11a and 11b. For the localization rate, participants localized the error with ArGus in
84% of cases (95% CI = [71%,93%]), and localized without in 38% of cases (CI = [25%,53%]), a
difference of 46pp or 2.2x more cases. Using a chi-square test, this effect is statistically significant
(x(1,100) = 22.24, p < 0.001).

For the localization time, participants localized the error with ARGUs in a median 3m3s (CI =
[2m28s,3m46s]) and without was 9m58s (CI = [7m40s, 10m]), a difference of 6m55s or 3.3X faster.
Using a Kruskal-Wallis test, this effect is statistically significant (y(1, 100) = 31.39, p < 0.001).

Fix rate and time are visualized in Figures 11c and 11d. For the fix rate, participants fixed the error
with ARGUS in 50% of cases (CI = [36%, 64%]), and fixed without in 32% (CI = [20%, 47%]) of cases,
a difference of 18pp or 1.6X more cases. Using a chi-square test, this effect is borderline statistically
significant (y(1, 100) = 3.35, p = 0.07). To account for the within-subjects design, we further use
a generalized linear model with condition as a fixed effect and participant ID as a random effect.
Under this model, the effect is statistically significant (p = 0.03).

For the fix time, participants fixed the error with ArGUs in a median 8m7s (CI = [6m30s, 10m]),
and fixed without in 10m (CI = [9m52s,10m]), a difference of 1m53s or 1.2Xx faster. Using a
Kruskal-Wallis test, this effect is statistically significant (y(1, 100) = 5.04,p = 0.02).

RQ2: How do the features of the ArRGUS interface individually affect a programmer’s debugging
process? We answer RQ2 using qualitative observations from our user study, considering each
design principle in turn.

(1) CoLLAPSESEQ: Participants iteratively unfolded the trait inference tree to varying depths,
supporting the claim that there is no one-size-fits-all depth that is optimal for diagnostics.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:16 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

Participants tended towards either unfolding a few steps, or unfolding the entire sequence at
once. In the the former case, participants stopped early if they felt they had enough contextual
information to localize an error or discard a debugging hypothesis. In the latter case, participants
reported a preference for seeing all the data at once, however, they tended to spend more time
debugging irrelevant information.

When first opened, the ArGus interface shows the list of all bottom-up predicates together
and by collapsing the inference steps the related information is viewable side by side. Not all
participants started their exploration in the same place, but participants frequently collapsed
inference steps after they concluded the information was no longer important. From these
observations, we infer that giving participants the choice to unfold sequences is important in
the exploratory phase of localization.

(2) SHORTTYS: For the tasks in our study, we did not observe an instance when a participant needed
fully-qualified types to localize or fix a trait error, suggesting that presenting shortened types
by default reduced visual noise without an adverse impact on debugging ability.

Conversely, the compiler diagnostics contain mostly fully-qualified types. Very few par-
ticipants read the full error message. Developers using VS Code’s diagnostic tooltips were
especially likely to skip reading the diagnostic, as most of the diagnostic overflows the tooltip
and is rendered offscreen.

(3) CrxTLInKs: We observed that many developers preferred to look at types in in-editor source
code rather than in online documentation. Participants searched source code in 73% of tasks,
while documentation was opened in only 31% of tasks.

Several participants reported that if ArRGUs was useful for nothing else, they would still use
it for access to the source hyperlinks. This observation suggests that compiler diagnostics could
benefit from a rich text representation that hyperlinks types to their source definitions.

(4) TREeDATA: Most participants used both the bottom-up and top-down views, with a general
preference for the bottom-up view (which is presented by default). Participants used the top-
down view in 24% of tasks. Of those who used the top-down view, most said they preferred it
for the additional context it provided. In the bottom-up view, participants generally explored
the failed trait obligations from top to bottom, supporting the need for a sorting heuristic like
inertia to optimize developer effort.

The specific root causes in the inference tree provide participants with information they
otherwise would not have in cases such as Bevy. For tasks involving a branching inference tree,
we analyzed whether each participant identified that the root cause trait (e.g., SystemParam) was
used in the inference tree (not even that the trait was the root cause, just that it exists in the
problem). Without ArGus, participants only identified the trait in 29% of cases. Recall that the
key trait is absent from the compiler’s diagnostic, but useful to localize the error.

Several participants reported feeling overwhelmed by the additional information surfaced by
ARGuUs. Debugging a trait error as a tree was itself a novel idea to many participants. Because
ARGUSs exposes so much information, some participants got lost in the data and ended up
debugging non-issues. It is possible that these issues can be ameliorated with more instruction
and further use, but we will analyze how the interface is used by the community.

5.2 Inertia Analysis

The goal of the inertia heuristic is to increase the likelihood that the root cause of a trait failure
appears near the top of the bottom-up tree view. To evaluate the efficacy of the heuristic (RQ3), we
compare inertia against two categories of alternatives:

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:17

61 .
151)
. 5] - M
’5,‘4, ’ e
22 10+ £ f !))
D:ﬁ% + g 31
51 H B 21
. ++++:+++++ 14 *
o000 00OS L™
0 (XYY YY) 4) o= o U
inertia depth vars rust 0 1.0x10* 2.0x10* 3.0x10*
Heuristic Number of Tree Nodes (N)

(a) The distance to the root cause for the inertia heuris- (b) Time spent normalizing the trait inference trees
tic, baseline heuristics, and Rust compiler diagnostic. from the test suite into DNF.

Fig. 12. Inertia experiment results.

o Against the Rust compiler’s diagnostics. Because the compiler’s diagnostics do not describe branch
points, the compiler may report a failing trait bound that is higher up in the inference tree than
the root cause (see Section 2.3). In this comparison, we ask: what is the minimal number of
inference steps a developer would have to manually trace to reach the root failure?

o Against simpler heuristics. We can consider the ARGUs bottom-up view but ranked using simpler
heuristics than inertia. In this comparison, we ask: if sorted by a given metric, how far down
from the top would a developer have to read before reaching the root failure? We specifically
consider two heuristics: depth of predicate in the inference tree, and number of uninstantiated
inference variables in the predicate.

Additionally, one concern with our particular inertia heuristic is the step which converts the trait
inference tree into a propositional logic formula in disjunctive-normal form (bNF). Normalizing the
tree into DNF is an exponential operation, which could theoretically mean significant slowdowns for
larger trait inference trees. To evaluate this performance concern, we measured the normalization
time on the trait inference trees in our dataset.

5.2.1 Methodology. For both comparisons, we need a dataset of Rust programs containing trait
errors where a specific failed trait bound can be blamed as the root cause of the error. We sourced
the programs from Semmler’s [25] database of 25 Rust programs with complex trait errors. For
each program, we manually identified the trait bound in its inference tree that corresponded to the
root cause of the error. We removed 8 programs for a few reasons: 2 for not having a clear program
intention and error cause, 2 that are well-typed but fail to compile due to bugs in the Rust compiler,
2 for not being actual trait errors, and 2 that crash the Rust compiler. Therefore, the final suite has
a total of 17 programs.

For each program, we compared against the Rust compiler by generating the trait inference tree,
and counting the number of nodes between the compiler’s most-specific reported error and the
root cause. We compared against the alternative heuristics by computing the index of the root
cause in the list sorted by each heuristic. In both cases, the optimal value is 0.

To measure performance, we profiled the time spent in DNF normalization for each program in
the dataset. Performance was measured on a 2023 MacBook Pro M3 laptop with 32GB RAM.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:18 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

5.2.2 Results. Figure 12a shows the distribution of distances for each approach. The median
distance for each approach is 0 for inertia, 1 for predicate depth, 1 for number of inference variables,
and 2 for the Rust compiler diagnostic. That is, our inertia heuristic accurately sorts the root cause
to the top for every case in this particular dataset, while the other heuristics make mostly small
and sometimes significant errors.

Figure 12b shows the distribution of normalization time plotted against size of inference tree.
The trees in our evaluation have a median size of 2, 554 nodes (min=1, max=36, 794), and take a
median 0.1ms (min<0.001ms, max=6.1ms) to normalize.

5.3 Threats to Validity

5.3.1 Internal Validity. Standard measures were taken to account for threats to internal validity.
To account for sequencing effects, we randomized both the order of tasks the order of conditions
(with vs. without ARGUSs). Participants received training in ARGUs before completing any tasks,
ensuring that participants did not receive different levels of exposure to trait debugging based on
whether they used ArGus first or last.

5.3.2 External Validity. We designed the tasks used to evaluate ArRGus, which could introduce bias
by picking tasks favorable to our system. We combated this bias by grounding our task selection
in problems identified by other people, not inventing totally new kinds of trait-related problems.
Additionally, we recruited from a broad pool of Rust developers (not just, e.g., university students)
so our results more likely reflect the effect of ArRGUs in the general population of potential users.

Additionally, we designed the evaluation tasks to be comparable to our motivating examples
described in Section 2, which could indicate that our evaluation does not generalize. We combat
this by making ArRGUSs a general mechanism that can visualize any trait inference tree extracted
from the compiler. We evaluate the system on at least the tasks it was designed for, but we cannot
discount the possibility of the interface performing poorly on obscure trait errors found in the wild.
We will analyze how the community uses the tool and conduct additional research should further
hard-to-debug trait errors emerge.

5.3.3 Construct Validity. Localization time is a qualitatively-defined construct, which would be
problematic if different people defined the point of localization differently. We checked for this
consistency by measuring inter-rater reliability, finding that at least among ourselves we could
consistently agree on the specific point plus/minus 30 seconds.

6 Related Work

Argus follows in a long line of systems designed to improve compiler diagnostics for type inference.
Most prior work has focused on explaining failures in Hindley-Milner type inference, starting in
the 1980s with the seminal work of Wand [31] on provenance-tracking for HM. Later work focused
primarily on automatic fault localization by algorithmically deducing a single constraint to blame.
Methods varied from SMT solving [20, 21] to Bayesian analysis [32] to machine learning [24].

The systems more closely related to ARGUs focus on human-centered methods of fault localization.
These fall into three categories:

(1) Improved diagnostics: These systems retain the static text representation of compiler diagnostics,
but attempt to improve the diagnostics in some manner. One approach is to include provenance
information, such as the OCaml flow-based diagnostics of Bhanuka et al. [7]. We similarly
believe that communicating provenance is important, but for reasons discussed in Section 2,
static text is not the ideal medium to do so.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:19

Another approach is to include domain-specific information provided by library-level an-
notations, such as in the Helium subset of Haskell [17], which can improve the argumen-
tative structure of a diagnostic [6]. This is the current strategy being pursued by the Rust
language developers, who recently added an #[on_unimplemented] attribute for custom er-
ror messages [26]. For example, the Bevy diagnostic in Figure 4b started with the phrase

“fn(Timer) {run_timer}" does not describe a valid system configuration due to a library—level
annotation in Bevy. This approach is largely orthogonal to Arcus, which focuses on visu-
alizing the formal structure of an inference. These approaches could also work together, e.g.,
if ArGus used domain-specific messages to augment nodes in the inference tree. But we also
believe that domain-specific annotations are not sufficient for diagnosing trait errors in all cases,
as also shown by the Bevy example (Section 2.3).

(2) Algorithmic debugging: These systems present the developer a sequence of questions about
predicates they expect to hold or not [28]. This approach is conceptually similar to using the top-
down view in ARGUS and iteratively unfolding nodes, entering sub-trees if one believes a given
predicate should hold. ArGus improves on algorithmic debugging both by providing alternative
views on the inference tree (bottom-up), but also because a graphical interface simplifies certain
interactions compared to the CLI such as backtracking and exploring alternative paths.
Graphical interfaces: These systems provide an interactive view onto the type inference process.
In our review, we only identified two such published systems. First, MrSpidey [14] is a visualizer
for a set-based static analysis of Scheme. MrSpidey contextually visualizes inferred abstract
values, and it explains the provenance of individual constraints by overlaying arrows onto
the source code. Instead, ARGUS opts to provide a profiler-style separate visualization of the
inference tree, which we believe is more useful in practice for debugging trait inferences.
Second, the Chameleon IDE [15] is a graphical enhancement of the Chameleon system [29]
for Haskell. Chameleon IDE is a single-step debugger, offering an interface for stepping through
the effects of each constraint on a type inference problem. ARGUs does not try to present a
stateful view on the inference process, but rather a projection of the final inference tree.

—
w
=~

The vast majority of research published in this area has no human-centered evaluation of their
techniques. In our review, the only systems with user studies that report task performance are
Chameleon IDE [15] and OCaml flow diagnostics [7]. Notably, these studies found their tools
either had extremely small effects or no significant effects on task performance, respectively. By
contrast, we show in Section 5 that ArRGus significantly improves both the rates and duration for
both localization and fixes.

In another sense, ARGUS is more properly placed in the dormant line of work on debuggers for
logic programming. Back in the 1980s and 90s, researchers developed several tools to facilitate
debugging of Prolog programs, in particular by visualizing AND/OR trees [11-13, 27]. ARGUS is
essentially modernizing these interfaces and specializing their design to the use case of trait
error debugging, while avoiding complexities of Prolog execution such as backtracking with cuts.
However, if programmers continue to write ever more complex Turing-complete programs with
type classes, then that line of work may provide useful ideas for visualizing type class inference as
a stateful process rather than a pure natural deduction.

7 Discussion

Many prior systems have attempted to improve type inference diagnostics through increasingly
sophisticated algorithms and heuristics. In this paper, we have argued that the interface matters,
too. It’s useful to think about inference trees as data and inference diagnostics as data visualization,
especially for type classes. The results back up this argument — ArGUs saves developers time and

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

199:20 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

energy they would otherwise waste scrounging around the documentation. In part, this is because
Arcus empowers developers to grapple directly with the logical structure of a trait inference, rather
than falling back on heuristic reasoning based on similarity to examples. Looking forward, we hope
to extend ARGUS to other sub-tasks of debugging (Section 7.1) and to other languages (Section 7.2).

7.1 Trait Debugging Beyond Localization

ARrGus primarily facilitates localization, or identifying the root cause of a trait error. However,
localization is only part of debugging. As illustrated in Figure 11, many participants in our study
could use ARGUSs to successfully localize an error, but still fail to fix the error. Future iterations of
ArGUs would ideally present more information that also facilitates fixes.

One such feature already in ARGUS is the ability to query for the implementers of a trait, as
shown in Figure 8b. For example, if a user localizes a failed predicate like Timer: SystemParam in
the Bevy example, then the user can inspect the implementers of SystemParam to potentially find
alternatives like the ResMut<...> type. While better than nothing, this strategy is still limited
because additional context is likely needed to select the appropriate implementation. Bevy provides
about 30 other implementations of SystemParam , and it requires understanding of the library design
and application design to pick among them. More generally, an open question is how to provide
domain-specific feedback by making an educated guess at the user’s intention from context. The

#[on_unimplemented] feature discussed in Section 6 is one approach, but it cannot capture the full
range of effective diagnostics as we have discussed.

7.2 Trait Debugging Beyond Rust

Rust’s traits represent a particular configuration in the broader design space of type classes, and
the Rust compiler uses a particular diagnostic approach. This raises the question: are the problems
in Section 2 caused by Rust’s specific design, or are they more fundamental to type classes? To
what extent would the ideas in ArRGUS be useful in other languages? We expect that for cases like
the Diesel example (Section 2.1) and the AST example (Section 2.2) that the problems described are
fairly general. Every type class system involves chains of inferences, and every textual diagnostic
must somehow format that inference chain along with auxiliary information like source-mapping.

The Bevy example (Section 2.3) is more interesting because the core concept can be encoded dif-
ferently into different type class designs. Recall that the key problem with the Bevy example in Rust
is the use of an inferred marker type to distinguish otherwise-overlapping trait implementations.
We examined how this problem changes when implemented in Scala, Lean, and Haskell:

e Scala’s implicits seem most similar of the three to Rust’s traits. Scala similarly requires a marker
type to avoid conflicting given blocks. When confronted with a branch point, Scala’s diagnostics
curiously seem to pick a single branch and assume the developer intended that branch, but we
could not determine Scala’s algorithm for selecting the best branch.

e Lean’s type classes are more expressive than Rust, as Lean has both first-class variables and per-
mits overlapping instances (disambiguated via either names or via a numeric priority system). If
we use the approach of encoding the marker type as a metavariable, then Lean returns a pithy diag-
nostic that again halts at the branch point: failed to synthesize IntoSystem (Timer -> Unit) ?m.619
with no further explanation.

o Haskell’s type system offers more mechanisms for manipulating type class inference than Rust,
Scala, or Lean. One way to model the Bevy API in Haskell is to represent the marker type as a
type family. When encoded this way, the type family eliminates the branch point in the trait
inference tree, because the type of the marker is computed via the type family as opposed to

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

An Interactive Debugger for Rust Trait Errors 199:21

inferred from constraints. Subsequently, the Haskell encoding of the Bevy program generates a
diagnostic that is comparably specific to ARGUS, i.e., that Timer: SystemParam is the root cause.

In sum, the design of a language’s type class system will certainly affect the level of quality
achievable in the language’s diagnostics. More generally, modern languages increasingly use some
form of search during compilation, whether that’s automated theorem proving at the type-level (e.g.,
type classes, refinement types, tactic-based proofs) or program search/synthesis at the expression-
level (e.g., supercompilation, polyhedral analysis, e-graph optimization). From the developer’s
perspective, all of these techniques share a common thread: it’s great when they work, and hard
to understand when they don’t. Language designers need to understand the usability trade-offs
inherent to search-based methods: they place a greater burden on the compiler to explain its work.
We hope that tools like ARGUSs help broaden our community’s conception of the ways a compiler
can explain itself.

Data-Availability Statement

The tutorial, study questions, raw data, and data analyses are all available in our Zenodo artifact [16].
ARGUS is open-source software available on GitHub [19], and the IDE extension is published and
freely available on the VS Code Marketplace and Open VSX Registry.

Acknowledgments

This work was partially supported by the DARPA under Agreement No. HR00112420354 and partially
supported by the NSF under Award No. CCF-2227863. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not reflect the views
of our funders. We thank our reviewers and shepherd for their insightful and thorough feedback.
Library maintainers Georg Semmler (Diesel) and Alice Ryhl (Bevy) provided early feedback and
expert opinions on trait diagnostics. Members of the Rust Types Team, especially lenr and Michael
Goulet, answered numerous questions about working with the compiler and the new trait solver’s
interface. We are extremely grateful for the Rust community and their consistent enthusiasm to
participate in user studies.

References

[1] 2022. E0275: Overflow evaluating the requirement with a generic impl. https://users.rust-lang.org/t/e0275-overflow-
evaluating-the-requirement-with-a-generic-impl/73211.

[2] 2024. bevyengine/bevy: A refreshingly simple data-driven game engine built in Rust. https://github.com/bevyengine/
bevy/.

[3] 2024. diesel-rs/diesel: A safe, extensible ORM and Query Builder for Rust. https://github.com/diesel-rs/diesel.

[4] 2024. rust-lang/chalk: An implementation and definition of the Rust trait system using a PROLOG-like logic solver.
https://github.com/rust-lang/chalk.

[5] 2024. tokio-rs/axum: Ergonomic and modular web framework built with Tokio, Tower, and Hyper. https://github.com/
tokio-rs/axum.

[6] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How should compilers explain problems
to developers?. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for
Computing Machinery, New York, NY, USA, 633-643. doi:10.1145/3236024.3236040

[7] Ishan Bhanuka, Lionel Parreaux, David Binder, and Jonathan Immanuel Brachthéduser. 2023. Getting into the Flow:
Towards Better Type Error Messages for Constraint-Based Type Inference. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 237 (Oct. 2023), 29 pages. doi:10.1145/3622812

[8] Ida Borisova. 2024. Unofficial Bevy Cheat Book. online, Chapter 4.3. https://bevy-cheatbook.github.io/pitfalls/into-

system.html#obscure-rust-compiler-errors

Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom Schrijvers. 2019. Coherence of type class resolution. Proc.

ACM Program. Lang. 3, ICFP, Article 91 (July 2019), 28 pages. doi:10.1145/3341695

—
Ne)
—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

https://marketplace.visualstudio.com/items?itemName=gavinleroy.argus
https://open-vsx.org/extension/gavinleroy/argus
https://users.rust-lang.org/t/e0275-overflow-evaluating-the-requirement-with-a-generic-impl/73211
https://users.rust-lang.org/t/e0275-overflow-evaluating-the-requirement-with-a-generic-impl/73211
https://github.com/bevyengine/bevy/
https://github.com/bevyengine/bevy/
https://github.com/diesel-rs/diesel
https://github.com/rust-lang/chalk
https://github.com/tokio-rs/axum
https://github.com/tokio-rs/axum
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1145/3622812
https://bevy-cheatbook.github.io/pitfalls/into-system.html#obscure-rust-compiler-errors
https://bevy-cheatbook.github.io/pitfalls/into-system.html#obscure-rust-compiler-errors
https://doi.org/10.1145/3341695

199:22 Gavin Gray, Will Crichton, and Shriram Krishnamurthi

[10]
[11]
[12]
[13]

[14]

[15]

[16]
[17]

(18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

Will Crichton, Gavin Gray, and Shriram Krishnamurthi. 2023. A Grounded Conceptual Model for Ownership Types in
Rust. Proc. ACM Program. Lang. 7, OOPSLA, Article 265 (oct 2023), 29 pages. doi:10.1145/3622841 arXiv:2309.04134
Alan D. Dewar and John G. Cleary. 1986. Graphical display of complex information within a Prolog debugger.
International Journal of Man-Machine Studies 25, 5 (1986), 503-521. doi:10.1016/50020-7373(86)80020-7

Mireille Ducassé. 1998. Abstract Views of Prolog Executions in Opium. Research Report RR-3531. INRIA. https:
//inria.hal.science/inria-00073154

Marc Eisenstadt and Mike Brayshaw. 1988. The Transparent Prolog Machine (TPM): an execution model and graphical
debugger for logic programming. The Journal of Logic Programming 5, 4 (1988), 277-342.

Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie Weirich, and Matthias Felleisen. 1996. Catching
bugs in the web of program invariants. In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation (Philadelphia, Pennsylvania, USA) (PLDI *96). Association for Computing Machinery, New
York, NY, USA, 23-32. doi:10.1145/231379.231387

Shuai Fu, Tim Dwyer, Peter J. Stuckey, Jackson Wain, and Jesse Linossier. 2023. ChameleonIDE: Untangling Type
Errors Through Interactive Visualization and Exploration . In 2023 IEEE/ACM 31st International Conference on Program
Comprehension (ICPC). IEEE Computer Society, Los Alamitos, CA, USA, 146-156. doi:10.1109/ICPC58990.2023.00029
Gavin Gray. 2025. gavinleroy/pldi25-artifact: v2.2.0. doi:10.5281/zenodo.15226307

Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. 2003. Scripting the Type Inference Process. In Proceedings of
the Eighth ACM SIGPLAN International Conference on Functional Programming (Uppsala, Sweden) (ICFP "03). Association
for Computing Machinery, New York, NY, USA, 3-13. doi:10.1145/944705.944707

Jakob Hellermann. 2024. bevycheck. https://github.com/jakobhellermann/bevycheck.

Cognitive Engineering Lab. 2025. Argus: an IDE extension for debugging trait errors in Rust. https://github.com/
cognitive-engineering-lab/argus.

Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridharan. 2016. A Practical Framework for Type Inference
Error Explanation. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing Machinery,
New York, NY, USA, 781-799. doi:10.1145/2983990.2983994

Zvonimir Pavlinovic, Tim King, and Thomas Wies. 2014. Finding Minimum Type Error Sources. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications (Portland, Oregon,
USA) (OOPSLA °14). Association for Computing Machinery, New York, NY, USA, 525-542. doi:10.1145/2660193.2660230
John C. Reynolds. 1991. The coherence of languages with intersection types. In Theoretical Aspects of Computer
Software, Takayasu Ito and Albert R. Meyer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 675-700.
Hans-Jorg Schulz. 2011. Treevis.net: A Tree Visualization Reference. IEEE Computer Graphics and Applications 31, 6
(2011), 11-15. doi:10.1109/MCG.2011.103

Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit Jhala. 2017. Learning to Blame:
Localizing Novice Type Errors with Data-Driven Diagnosis. Proc. ACM Program. Lang. 1, OOPSLA, Article 60 (oct
2017), 27 pages. doi:10.1145/3138818

Georg Semmler. 2022. Rust Foundation Project Grant 2022. https://github.com/weiznich/rust-foundation-community-
grant.

Georg Semmler. 2023. The diagnostic attribute namespace. https://github.com/rust-lang/rfcs/pull/3368.

H. Senay and S. Lazzeri. 1991. Graphical representation of logic programs and their behaviour. In Proceedings 1991 IEEE
Workshop on Visual Languages. IEEE Computer Society, Los Alamitos, CA, USA, 25-31. doi:10.1109/WVL.1991.238854
Ehud Yehuda Shapiro. 1982. Algorithmic Program Debugging. Yale University, USA. AAI8221751.

Peter]J. Stuckey, Martin Sulzmann, and Jeremy Wazny. 2003. Interactive Type Debugging in Haskell. In Proceedings of
the 2003 ACM SIGPLAN Workshop on Haskell (Uppsala, Sweden) (Haskell *03). Association for Computing Machinery,
New York, NY, USA, 72-83. doi:10.1145/871895.871903

P. Wadler and S. Blott. 1989. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL °89). Association for Computing
Machinery, New York, NY, USA, 60-76. doi:10.1145/75277.75283

Mitchell Wand. 1986. Finding the Source of Type Errors. In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (St. Petersburg Beach, Florida) (POPL °86). Association for Computing Machinery,
New York, NY, USA, 38-43. doi:10.1145/512644.512648

Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-Jones. 2015. Diagnosing Type Errors with
Class. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 12-21. doi:10.1145/2737924.
2738009

Received 2024-11-14; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 199. Publication date: June 2025.

https://doi.org/10.1145/3622841
https://arxiv.org/abs/2309.04134
https://doi.org/10.1016/S0020-7373(86)80020-7
https://inria.hal.science/inria-00073154
https://inria.hal.science/inria-00073154
https://doi.org/10.1145/231379.231387
https://doi.org/10.1109/ICPC58990.2023.00029
https://doi.org/10.5281/zenodo.15226307
https://doi.org/10.1145/944705.944707
https://github.com/jakobhellermann/bevycheck
https://github.com/cognitive-engineering-lab/argus
https://github.com/cognitive-engineering-lab/argus
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1145/3138818
https://github.com/weiznich/rust-foundation-community-grant
https://github.com/weiznich/rust-foundation-community-grant
https://github.com/rust-lang/rfcs/pull/3368
https://doi.org/10.1109/WVL.1991.238854
https://doi.org/10.1145/871895.871903
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/2737924.2738009

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 A Missing Table Join
	2.2 An Accidental Infinite Recursion
	2.3 An Errant Function Parameter

	3 System Design
	3.1 Trait Model
	3.2 Interface Design
	3.3 Ranking Predicates with Inertia

	4 Implementation
	5 Evaluation
	5.1 User Study
	5.2 Inertia Analysis
	5.3 Threats to Validity

	6 Related Work
	7 Discussion
	7.1 Trait Debugging Beyond Localization
	7.2 Trait Debugging Beyond Rust

	Acknowledgments
	References
	A Appendix
	A.1 Inertia

