
Algorithmic Dimensions via Learning Functions
Jack H. Lutz #

Department of Computer Science, Iowa State University, Ames, IA, USA

Andrei N. Migunov #

Department of Mathematics and Computer Science, Drake University, Des Moines, IA, USA

Abstract
We characterize the algorithmic dimensions (i.e., the lower and upper asymptotic densities of
information) of infinite binary sequences in terms of the inability of learning functions having an
algorithmic constraint to detect patterns in them. Our pattern detection criterion is a quantitative
extension of the criterion that Zaffora Blando used to characterize the algorithmically random (i.e.,
Martin-Löf random) sequences. Our proof uses Lutz’s and Mayordomo’s respective characterizations
of algorithmic dimension in terms of gales and Kolmogorov complexity.
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1 Introduction

Algorithmic dimension was first formulated as a Σ0
1 effectivization of classical Hausdorff

dimension [12, 14].1 The algorithmic dimension adim(Γ) of a set Γ of infinite binary
sequences is, in fact, an upper bound of the Hausdorff dimension dimH(Γ) of this set.
Since algorithmic dimension has the absolute stability property that adim(Γ) is always the
supremum of all adim({X}) for X ∈ Γ, it was natural to define dim(X) = adim({X}) for all
infinite binary sequences X and to investigate algorithmic dimension entirely in terms of the
dimensions dim(X) of individual sequences X. Mayordomo [23] proved that the dimension
dim(X), originally defined in terms of algorithmic betting strategies called gales, can also be
characterized as the lower asymptotic density of the algorithmic information content of X.
The more recent point-to-set principle [15] uses relativization to give the characterization

dimH(Γ) = min
A⊆N

sup
X∈Γ

dimA(X)

of classical Hausdorff dimension. This principle has enabled several recent uses of computab-
ility theory to prove new classical theorems about Hausdorff dimension[21, 19, 20, 27, 18, 4,
5, 16, 17].2

Algorithmic dimension has the same Σ0
1 “level of effectivization” as algorithmic random-

ness (also called “Martin-Löf randomness” [22] or, simply, “randomness”). In fact, every
algorithmically random sequence X satisfies dim(X) = 1, although the converse does not
hold [14].

1 Algorithmic dimension has also been called “constructive dimension”, “effective Hausdorff dimension”,
and “effective dimension” by various authors.

2 A theorem is “classical” here if its statement does not involve computability or related aspects of
mathematical logic. Hence “new classical theorem” is not an oxymoron.
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72:2 Algorithmic Dimensions via Learning Functions

Computable learning theory, as initiated by Gold in 1967 [7, 25, 10], has been used to
shed new light on randomness notions. Specifically, in 2008, Osherson and Weinstein [24]
characterized two randomness notions, called weak 1-randomness and weak 2-randomness,
for sequences X in terms of the inability of computable learning functions to detect patterns
in X. Even more compellingly, Zaffora Blando [32] recently formulated a clever variant of
Osherson and Weinstein’s pattern detection criteria, called uniform weak detection, and used
this to give an exact characterization of algorithmic (i.e., Martin-Löf) randomness.3

In this paper we introduce a quantitative version of Zaffora Blando’s uniform weak
detection criterion, called s-learnability, and we use this to characterize algorithmic dimension
in terms of learning functions. Our main theorem says that, for every infinite binary sequence
X, dim(X) is the infimum of all nonnegative real numbers s for which some learning function
s-learns X. Our proof of this result uses methods of Osherson, Weinstein, and Zaffora Blando,
together with martingale and Kolmogorov complexity techniques of Mayordomo [23]. We
also characterize both the classical packing dimension dimP [29, 30] and the algorithmic
strong dimension Dim(X) [1] of a sequence in terms of learning functions. Along the way, we
show that algorithmic randomness can also be characterized by specifically polynomial-time
computable learning functions.

2 Preliminaries

Let N represent the natural numbers {0, 1, 2, ...}, Q the rationals, and R the reals. We will
often use the extended naturals N ∪ {∞} and the extended reals R ∪ {∞}. More often, we
will refer to the respectively half open and closed intervals, [0, ∞) and [0, ∞].

We denote by {0, 1}∗ the set of all (finite) binary strings, and by {0, 1}∞ the set of all
infinite binary sequences, which we call the Cantor space C. We denote the length in bits of
a string or sequence w by |w|. The empty string is the unique string λ with |λ| = 0. If Z is
an element of {0, 1}∞ or of {0, 1}∗, we write Z ↾ n for the first n bits of Z if |Z| ≥ n, and
the value is undefined otherwise . Note that for all n ∈ N, and all Z ∈ {0, 1}∞, |Z ↾ n| = n.
We write w ⊑ Z if w is a prefix of Z, i.e., if w = Z ↾ |w|. We write w ⊏ Z if w is a proper
prefix of Z, i.e., if w is a prefix of Z and w ̸= Z.

For any string w ∈ {0, 1}∗, the cylinder at w is

Cw = {Z ∈ C | w ⊑ Z}.

If A is a set of strings, we denote the union of cylinders at those strings by JAK = ∪w∈ACw.
A (Borel) probability measure on C is a function µ : {0, 1}∗ → [0, 1] such that µ(λ) = 1 and
µ(w) = µ(w0) + µ(w1) for all w ∈ {0, 1}∗. Intuitively, µ(w) is the probability that Z ∈ Cw

when Z ∈ C is “chosen according to µ”. In this sense, µ(w) is an abbreviation for µ(Cw).
Standard methods [2] extend µ from cylinders to a σ-algebra F on C, so that (C, F , µ) is a
probability space in the classical sense.

Most of our attention is on the uniform (Lebesgue) probability measure λ on C defined
by λ(w) = 2−|w| for all w ∈ {0, 1}∗. We rely on context to distinguish Lebesgue measure
from the empty string.

3 Zaffora Blando’s paper also characterized Schnorr randomness in terms of “computably uniform weak
detection”, but this is not germane to our work here.
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▶ Definition. A function f : {0, 1}∗ → [0, ∞) is lower semicomputable if there exists a
computable function g : {0, 1}∗ × N → Q ∩ [0, ∞) such that for all w ∈ {0, 1}∗, t ∈ N,

g(w, t) ≤ g(w, t + 1) ≤ f(w)

and

lim
t→∞

g(w, t) = f(w).

We will say that a set S of real numbers is uniformly left computably enumerable (uniformly
left c.e.) if there exists a lower-semicomputable function whose range is S.

3 Algorithmic randomness via learning functions

The algorithmic randomness of a sequence was originally defined in [22] in terms of algorithmic
measure theory. In this view, an algorithmically random sequence is one which belongs to
every algorithmically definable measure one set. Martin-Löf shows that all algorithmically
nonrandom sequences belong to one universal algorithmically measure-zero set.

▶ Definition ([22]). If µ is a probability measure on C, then we say a set X has algorithmic
µ-measure zero if there exists a computable function g : N × N → {0, 1}∗ such that: for every
k ∈ N,

X ⊆
∞⋃

n=0
Cg(k,n)

and
∞∑

n=0
µ(Cg(k,n)) ≤ 2−k.

▶ Definition ([22]). We say a sequence S is Martin-Löf µ-nonrandom if {S} has algorithmic
µ-measure zero, and Martin-Löf µ-random otherwise.

When the probability measure µ is the Lebesgue measure λ defined in section 2, we
omit it from the terminology in the preceding two definitions. Randomness can also be
characterized using gambling strategies called gales.

▶ Definition ([14]). For s ∈ [0, ∞), a µ-s-gale is a function d : {0, 1}∗ → [0, ∞) that satisfies
the condition that

d(w)µ(w)s = d(w0)µ(w0)s + d(w1)µ(w1)s,

for every w ∈ {0, 1}∗.

Sometimes, when the probability distribution µ is clear from context, we will refer simply
to s-gales. A martingale is a 1-gale. If not stated explicitly otherwise, we assume that the
initial capital of a gale is d(λ) = 1.

▶ Definition. A µ-s-gale d succeeds on a set Γ of sequences if

lim sup
n→∞

d(X ↾ n) = ∞

for every sequence X ∈ Γ.

MFCS 2024
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Ville shows the following:

▶ Theorem 1 ([31]). Let λ(E) denote the Lebesgue measure of a set E ⊆ {0, 1}∞. The
following are equivalent:
(1) λ(E) = 0
(2) There exists a martingale d : {0, 1}∗ → [0, ∞) that succeeds on E.

Schnorr effectivizes Ville’s theorem as follows:

▶ Theorem 2 ([26]). A set of sequences Γ is Martin-Löf random if and only if there exists
no lower-semicomputable martingale that succeeds on Γ.

We will revisit gales in a later section, when we discuss dimension.

▶ Definition ([25]). A function l : {0, 1}∗ → {YES, NO} is called a learning function.

YES and NO are simply aliases for 1 and 0, respectively.
One can impose resource bounds on learning functions or on properties of these functions

such as their average answers “along” a string w. l may be computable (in which case we call
it a computable learning function or CLF), or l may have lower-semicomputable averages at
all points in {0, 1}∗, or any number of other resource restrictions.

▶ Definition ([32]). A learning function l is said to uniformly weakly detect that a sequence
X ∈ {0, 1}∞ is patterned if and only if
1. l(X ↾ m) = YES for infinitely many m ∈ N, and
2. λ({Y ∈ {0, 1}∞ | #{m ∈ N | l(Y ↾ m) = YES} ≥ n}) ≤ 2−n

for all n ∈ N.

Zaffora Blando shows that computable learning functions and uniform weak detectability
characterise Martin-Löf randomness:

▶ Theorem 3 ([32]). A sequence X ∈ {0, 1}∞ is Martin-Löf random if and only if there is
no computable learning function that uniformly weakly detects that X is patterned.

▶ Theorem 4. The following are equivalent:
1. There exists a computable learning function that uniformly weakly detects that X is

patterned.
2. There exists a polynomial-time computable learning function that uniformly weakly detects

that X is patterned.

Proof. (2) =⇒ (1) is immediate.
To see that (1) =⇒ (2):
Let l be a computable learning function which uniformly weakly detects that X is

patterned. Let Ml(w) be a TM which computes l(w). Algorithm 1 specifies a learning
function with the following properties:

l̂ = YES if there exist w′ ⊏ w and tw′ ∈ N such that all of the following hold:
1. |w| = |w′| + tw′

2. l(w′) = YES
3. tw′ = min{t | Ml(w′) = YES after t steps},
and l̂ = NO otherwise.

If l says YES infinitely often on X, then there are infinitely many w′, tw′ where Ml(w′) =
YES after exactly tw′ time steps. Thus there are infinitely many w with |w| = |w′| + tw′

where l̂ says YES. Thus, l̂ says YES infinitely often on X.
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For all Y ∈ {0, 1}∞, the number of YES given by l̂ along Y remains the same as the
number given by l, all such answers being “delayed” until later. Thus, the measure condition
is satisfied. Thus, l̂ is a learning function which uniformly weakly detects that X is patterned.

Algorithm 1 Ml̂.

1: Input w:
2: for all w′ ⊏ w do
3: Run Ml(w′) for exactly |w| − |w′| steps.
4: if Ml(w′) prints YES for the first time after exactly |w| − |w′| steps then
5: return YES
6: else
7: Continue
8: end if
9: end for

10: return NO

Ml̂ always halts and terminates in time polynomial in |w|. Thus, l̂ is polynomial-time
computable. ◀

As a result, one can characterize algorithmic randomness in terms of polynomial-time
computable learning functions:

▶ Corollary 5. A sequence X ∈ {0, 1}∞ is Martin-Löf random if and only if there is
no polynomial-time computable learning function that uniformly weakly detects that X is
patterned.

We also note a useful fact about uniform weak detectability:

▶ Observation 6. If l1 uniformly weakly detects that Γ1 is patterned, and l2 uniformly weakly
detects that Γ2 is patterned, then there exists a learning function l3 which uniformly weakly
detects that Γ1 ∪ Γ2 is patterned. This transformation preserves computability.

Proof. Define l3 by:
l3(v) = YES if either l1(v) = YES or l2(v) = YES, unless for all v′ ⊏ v l1(v) = NO or for

all v′ ⊏ v l2(v) = NO.
That is, l3 says YES whenever either l1 or l2 would say YES, except for the first time for

each.
It is easy to verify that l3 says YES infinitely often on every X ∈ Γ1 ∪ Γ2 and that the

measure property is satisfied. It is also easy to show that if l1 and l2 are computable, then l3
is as well. ◀

As a result, uniform weak detectability by computable learning functions is closed under
finite unions.

4 Classical and algorithmic dimensions

Next, we review the definitions of classical and algorithmic dimensions.
We say a set A covers a set of sequences Γ if for every X ∈ Γ there is some w ∈ A, w ⊑ X.

Let k ∈ N, and let Ak = {A | A is a prefix set and ∀x ∈ A, |x| ≥ k}. Let

Ak(Γ) = {A ∈ Ak | A covers Γ},

MFCS 2024
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and let

Hs
k(Γ) = inf

A∈Ak(Γ)

∑
w∈A

2−s|w|.

Note that this infimum is taken only over sets of cylinders, not over all possible covers. For
that reason, the following function is a proxy for - and is within a constant multiplicative
factor of - what is know as the s-dimensional Hausdorff outer measure, in which all covers
are considered.

▶ Definition ([8]). Hs(Γ) = limk→∞ Hs
k(Γ).

For any set Γ, there exists some s ∈ [0, ∞) such that for every a < s < b,
1. Ha(Γ) = ∞, and
2. Hb(Γ) = 0.

The real number s is the Hausdorff dimension of Γ:

▶ Definition ([8]). The Hausdorff dimension of a set Γ ⊆ {0, 1}∞ is

dimH(Γ) = inf{s ∈ [0, ∞) | Hs(Γ) = 0}.

Hausdorff dimension can be characterized in terms of gales:

▶ Theorem 7 ([13]).

dimH(Γ) = inf{s ∈ [0, ∞)| there exists an s-gale that succeeds on Γ}.

Lutz also showed that by effectivizing gales4 at various levels, one can obtain various
effective dimension notions, including the algorithmic dimension:

▶ Definition ([14]). The algorithmic dimension of a set Γ ⊆ {0, 1}∞ is

adim(Γ) = inf{s ∈ [0, ∞)| there exists

a lower semicomputable s-gale that succeeds on Γ}.

We also note the following theorem:

▶ Theorem 8 ([14]). Let µ be a probability measure on {0, 1}∞, let s, s′ ∈ [0, ∞), and let
d, d′ : {0, 1}∗ → [0, ∞). Assume that

d(w)µ(w)s = d′(w)µ(w)s′

for all w ∈ {0, 1}∗. Then, d is a µ-s-gale if and only if d′ is a µ-s′-gale.

A corollary of this theorem, which we will make use of in the main proof of the next
section, is the following:

▶ Proposition 9. If d is an s-gale that succeeds on X then there exists a martingale d′ that
succeeds on X against order h(w) = 2(1−s)|w|. That is,

lim sup
n→∞

d(X ↾ n)
h(n) = ∞.

4 In Lutz’ original proof, supergales are used. These satisfy the gale definition with ≤ in place of equality.
[9] shows that gales suffice for the characterization of algorithmic dimension.
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Another important classical dimension notion is the packing dimension [30, 29]. As with
the Hausdorff dimension, it is easier to define it in terms of gales than in terms of its original
conception via coverings. First we define a notion of strong success for gales:

▶ Definition ([1]). A µ-s-gale d succeeds strongly on a set Γ of sequences if

lim inf
n→∞

d(X ↾ n) = ∞

for every sequence X ∈ Γ.

▶ Definition ([1]). The packing dimension of a set Γ ⊆ {0, 1}∞ is

dimP (Γ) = inf{s ∈ [0, ∞)| there exists an s-gale that succeeds strongly on Γ}.

The packing dimension can be effectivized as follows:

▶ Definition ([1]). The algorithmic packing dimension or algorithmic strong dimension of a
set Γ ⊆ {0, 1}∞ is

aDim(Γ) = inf{s ∈ [0, ∞)| there exists a lower semi-computable s-gale

that succeeds strongly on Γ}.

We use the above notations adim and aDim when describing the algorithmic dimensions
of sets in order to distinguish these from their classical counterparts. When applied to
individual sequences, we often use dim and Dim, respectively, as there is no ambiguity.

5 Hausdorff dimension via learning functions

Learning functions can be used to characterize the classical (Hausdorff) dimension. Once
such a characterization is in place, one can impose further restrictions on the computability
of learning functions and thereby use the notion of learning to characterize dimension notions
at various levels of effectivity.

We refine the definition of uniform weak detectability, by adding a requirement on the
frequency of YES answers, in order to characterize dimension. Recall that we identify YES
with 1 and NO with 0, thus the sum in the following definition is well-defined.

▶ Definition. If l is a learning function, the path average of l up to w is denoted

AVGl(w) =
∑i=|w|

i=0 l(w ↾ i)
|w|

.

Let ∆ be a computability restriction such as “lower semi-computable”, “computable”, or
“all” (the absence of a restriction).

▶ Definition. A sequence X is (∆)-s-learnable if and only if there exists a function l :
{0, 1}∗ → {YES, NO} such that the following three conditions are satisfied.
1. For every w ∈ {0, 1}∗, the path averages AVGl(w) are uniformly ∆-computable (in w).
2. For all n ∈ N,

λ({Y ∈ {0, 1}∞ | #{i | l(Y ↾ i) = YES} ≥ n)}) ≤ 2−n.

3. lim sup
n→∞

AVGl(X ↾ n) ≥ 1 − s.

MFCS 2024
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We say that a sequence X is strongly (∆)-s-learnable if it satisfies (1) and (2) above, and
satisfies condition (3) with a lim inf rather than a lim sup.

Specifically, we will say that algorithmic s-learnability corresponds to ∆ = Σ0
1, computable

s-learnability corresponds to ∆ = ∆0
1 and s-learnability as such corresponds to no resource

restriction (in other words, any learning functions at all can be used). Note that the restriction
on computability is not applied to the learning function itself, but to its path averages on
the elements of {0, 1}∗.

We often refer to a learning function which satisfies these properties as an s-learner, and
we say it s-learns a sequence or set of sequences.

This definition is in the spirit of [28], emphasizing learnability criteria based on frequencies
of YES answers, rather than restrictions on the measure conditions.

A function l : {0, 1}∗ → {NO, YES} is associated to a transformation l̂ : {0, 1}∞ →
{NO, YES}∞ defined by l̂(Y ) = X, where X[n] = l(Y ↾ n). In this sense, each sequence x is
transformed into a sequence consisting of YES and NO “bits”. For any set S, and function
f : {0, 1}∞ → {0, 1}∞, f−1[S] is the set of all X with f(X) ∈ S. Define functions l̂ on finite
strings analogously.

▶ Observation 10. For every learner l and every Y ∈ {0, 1}∞, either l s-learns every
X ∈ l̂−1[Y ] or none of them.

This is immediate from the success criterion. s-learning a sequence is purely a matter of
the asymptotic frequency with which some learner says YES on prefixes of that sequence,
assuming the measure condition is satisfied by l.

Closure under finite unions also holds for s-learnability:

▶ Observation 11. If l1 s-learns Γ1 and l2 s-learns Γ2, then there exists a learning function
l3 which s-learns Γ1 ∪ Γ2.

Proof. The idea is the same as in Observation 6. Define l3 by:
l3(v) = YES if either l1(v) = YES or l2(v) = YES, unless it’s the first time that either l1

or l2 has said YES on any v′ ⊑ v.
Note that lim supn→∞

∑n
l(X↾i)
n ≥ (1−s) implies that lim supn→∞

∑n
l(X↾i)
n − k

n ≥ (1−s)
for any fixed k. ◀

We will now show that s-learning characterizes Hausdorff dimension.
Let G (Γ) = {s ∈ (0, ∞) | there exists a learning function l which s-learns every X ∈ Γ}.

The following theorem is a characterization of Hausdorff dimension in terms of learning
functions.

▶ Theorem 12. For all Γ ⊆ {0, 1}∞,

dimH(X) = inf G (Γ).

Proof. Assume dimH(Γ) ≤ s. Then for all s′ > s there exists an s′-gale which succeeds on
Γ, and by Proposition 9 there exists a martingale d which, for every X ∈ Γ succeeds on X

against order h(w) = 2(1−s′)|w|. That is, d doubles its money asymptotically 1 − s′ share of
the time. Let

γd(w) =


YES if there exists w′ ⊑ w such that d(w) ≥ 2 · d(w′) and

∀ŵ satisfying w′ ⊏ ŵ ⊏ w, γd(ŵ) = NO
NO otherwise

(5.1)
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γd says YES every time d doubles its money (attains a new 2k value). The set of sequences
on which γd says YES infinitely often is the same as the set of sequences on which d wins
unbounded money against h, thus it has measure zero. Thus for any X ∈ Γ there must be
infinitely many X ↾ n such that γd(X ↾ n) has YES density at least (1 − s′) at X ↾ n.

Let n ∈ N and let Bn = {w | d(w) ≥ 2n and ∀v ⊑ w, d(v) < 2n}. Bn is the (prefix-)set of
all w at which d has accumulated 2n value for “the first time”. By the Kolmogorov inequality
([31]), λ(∪w∈BnCw) ≤ 2−n. For all n,

Aγd
n = {Y | #{m | γd(Y ↾ m) = YES} ≥ n}

⊆ {Y | ∃k d(Y ↾ k) ≥ 2n}
= ∪w∈Bn

Cw,

Thus, for all n, λ(Aγd
n ) ≤ λ(∪w∈Bn

Cw) ≤ 2−n. Thus γd s′-learns every X ∈ Γ.
In the other direction, suppose that for all s′ > s there is a learning function which

s′-learns every X ∈ Γ. Let l be such a learning function. We show dimH(Γ) ≤ s. Let k, r be
any integers. Let

Âk = {w | # YES(w) ≥ r + (1 − s′)|w| and ∀v ⊏ w, v /∈ Âk}.

Âk ∈ Ak(Γ) because for all w ∈ Âk, |w| > k, and Âk is a prefix set.
For every n,

λ({Y | # YES(Y ) ≥ r + (1 − s′)n}) ≤ 2−r−(1−s′)n.

Thus, the number of strings of length exactly k which can have at least r + (1 − s′)k YES
answers is at most

2−r−(1−s′)k

2−k
= 2−r+s′k.

Hs′

k (Γ) ≤
∑

w∈Âk

2−s′|w| ≤
∞∑

n=k

|Â=n
k |2−s′n ≤ 2−r+s′k2−s′k = 2−r,

where the third inequality is due to the Kraft inequality [11, 3], because Âk is a prefix set.
Thus

Hs′
(Γ) = lim

k→∞
inf

A∈Ak(Γ)

∑
w∈A

2−s|w|

≤ lim
k→∞

∑
w∈Âk

2−s|w|

= 0.

Thus dimH(Γ) ≤ s. ◀

6 Algorithmic dimension via learning functions

In this section, we show that algorithmic s-learning characterizes algorithmic dimension.
Recall that a learning function algorithmically s-learns a set Γ ⊆ {0, 1}∞ if it satisfies

the definition of s-learning with ∆ = Σ0
1. In other words, we require that the path-averages

of l on all strings w are uniformly lower semicomputable real numbers.

MFCS 2024
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Before we discuss the proof that algorithmic s-learnability characterizes algorithmic
dimension, we note why it is at least seemingly difficult to directly lower semi-compute
the learning function described in Theorem 12. For one, a suitable notion of lower semi-
computability is hard to establish for functions mapping to {0, 1}. Secondly, the learning
function γd in the proof of Theorem 12 relies on being able to place a YES answer every
time the “underlying” martingale doubles its money for the first time. That is, every time it
achieves a new value 2k for the first time along some sequence. Though checking whether
this happens eventually is lower semicomputable, checking whether it has happened at a
particular w for the first time is not. Instead, we can simply require that path-averages be
lower semicomputable. Thus, the conditions of algorithmic s-learnability coincide with the
existence of lower semi-computable martingales succeeding against exponential orders.

For a given martingale d, we define the learning function γd as in Theorem 12. Note
that if d is lower semi-computable with computable witness d̂, then the path averages of
γd are lower semi-computable uniformly in w via the computable witness below (Algorithm 2).

Algorithm 2 AVGl.

1: Input w, k:
2: Compute all the values d̂(λ, k), . . . , d̂(w, k).
3: Compute mw,k = maxw′⊑w

{
log2

(
d̂(w′, k)

)}
4: return mw,k

|w|

As a result, the set

T = {w | AVGγd
(w) ≥ 1 − s}

is computably enumerable, and so are all of the slices

Tm = {w | AVGγd
(w) ≥ 1 − s and |w| = m}.

Let Galg(Γ) = {s ∈ [0, ∞) | there exists a learning function l which algorithmically s-learns
every X ∈ Γ}.

We now prove our main theorem.

▶ Theorem 13. For all Γ ⊆ {0, 1}∞,

adim(Γ) = inf Galg(Γ).

Proof. Let s = inf Galg(Γ). We will show dim(Γ) ≤ s.
Let s′ > s and let l be a learning function that algorithmically s′-learns every X ∈ Γ.
[6] Theorem 13.3.4 ([23], Theorem 3.1) states that dim(X) = lim infn

C(X↾n)
n where C is

the plain Kolmogorov complexity.
Let T = ∪Tn where Tn = {w | |w| = n and AVGl(w) ≥ 1 − s}. T is computably

enumerable due to the first condition of s′-learnability.
For each n, λ(∪w∈Tn

Cw) ≤ 2−(1−s′)n as a result of the measure condition of s′-learnability,
since every sequence Y with at least n(1−s) YES answers at length n is in the set of sequences
which have at least n(1 − s) YES answers total, and the measure of the latter set is at most
2−(1−s′)n. Thus, since each w ∈ Tn has measure 2−n and all are disjoint, we have |Tn| ≤ 2s′n.
As a result, in plain Kolmogorov complexity terms, we only need to supply at most s′n bits
to identify an element of T living in Tn (we get n “for free” as long as we supply exactly s′n

bits, and use them to identify the slice Tn of T ).
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This means that for all w ∈ T , C(w) ≤ s′|w|. Note that for every X ∈ Γ, there are
infinitely many n so that X ↾ n ∈ T .

It follows, then, that for every X ∈ Γ,

dim(X) = lim inf
n

C(X ↾ n)
n

≤ s′n

n
= s′,

and thus - since s′ > s was arbitrary - dim(Γ) ≤ s.
In the other direction, we show that if dim(Γ) ≤ s, then for every s′ > s, Γ is algorith-

mically s′-learnable.
Again, let s′ > s and let d be a martingale which succeeds against order 2(1−s′)n on every

X ∈ Γ. Define the learning function γd, as in Theorem 12 ( Eq. 5.1), to say YES every time
d doubles its money (attains a new 2k value) for the first time along each path.

We have established that the values AVGγd
(w) are uniformly lower-semicomputable when

d is lower-semicomputable. We also know from the proof of Theorem 12 that γd satisfies the
measure condition and that lim supn→∞ AVG(l, X ↾ n) ≥ 1 − s′, for every X ∈ Γ. ◀

7 Strong algorithmic dimension via learning functions

In this section, we characterize the packing dimension as well as the strong algorithmic
dimension of a set of binary sequences in terms of strong s-learning and strong algorithmic
s-learning, respectively.

For any Γ ⊆ {0, 1}∞, let Γ ↾ n = {w | |w| = n and w is a prefix of some v ∈ Γ}.

▶ Definition ([6]). For any Γ ⊆ {0, 1}∞, let the upper box-counting dimension of Γ be

dimB(Γ) = lim sup
n

log |Γ ↾ n|
n

.

▶ Theorem 14 ([1]). For every X ∈ {0, 1}∞,

Dim(X) = lim sup
n

C(X ↾ n)
n

.

Let Gstr(Γ) = {s ∈ [0, ∞) | there exists a learning function f which strongly s-learns
every X ∈ Γ}.

▶ Theorem 15. Let Γ ⊆ {0, 1}∞. Then,

dimP (Γ) = inf Gstr(Γ).

Proof. First, we show that if, for arbitrary s′ > s, l is a learning function that strongly
s′-succeeds on Γ, then dimP (Γ) ≤ s.

The proof is much the same as [1] and [4] Theorem 13.11.9, except we start with a learning
function instead of a gale. Assume the hypothesis. Let ŝ > s′ be arbitrary.

Let

Tn = {w | AVGl(w) ≥ 1 − ŝ and |w| = n}

be the set of strings of length n on which l achieves the requisite density. Then, for all X ∈ Γ,

and for all but finitely many n ∈ N, X ∈ ∪w∈Tn
Cw, i.e.

Γ ⊆ ∪i ∩j≥i JTjK.

MFCS 2024
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Let Zn = ∩m≥nJTmK. Then, X ∈ Zn means that after the nth prefix, all remaining
prefixes of X have density at least 1 − ŝ.

It suffices - by the countable stability of dimP and the fact that dimP ≤ dimB (see [6]
13.11.3) - to show that dimB(Zn) ≤ ŝ, for all n. While the original proof uses Kolmogorov’s
inequality, we are not dealing with a gale. We have shown in the proof of Theorem 13 that if
l is an ŝ-learner, then the set Tn satisfies |Tn| ≤ 2ŝn.

Then,

dimB(Zi) = lim sup
n

log |Zi ↾ n|
n

≤ lim sup
n

log |Tn|
n

≤ ŝ.

Since ŝ > s′ > s are arbitrary, dimP (Γ) ≤ dimB(Γ) = dimB(∪Zi) ≤ s.

In the other direction, simply note that if dimP (Γ) ≤ s then for every s′ > s there exists
a martingale ds′ which strongly s′-succeeds against order 2(1−s′)n on every X ∈ Γ, and
the frequency with which the martingale doubles its money is always eventually bounded
below. Thus, a learner defined as in Eq. 5.1 will have the desired YES density on the same
sequences. ◀

Let G str
alg (Γ) = {s ∈ [0, ∞) | there exists a learning function l which strongly algorithmically

s-learns every X ∈ Γ}.

▶ Theorem 16. Let Γ ⊆ {0, 1}∞. Then,

aDim(Γ) = inf G str
alg (Γ).

Proof. Much like the gale characterization of aDim resembles the gale characterization of
adim with minor changes (see [1] and [6], Corollary 13.11.12), this proof closely resembles
the proof of Theorem 13.

We replace the lim inf with a lim sup in order to apply Theorem 14, and we replace the
observation that infinitely many n satisfy X ↾ n ∈ T with “all but finitely many.”

In the other direction, we assume there exists a lower semi-computable martingale ds′

which succeeds strongly against order 2(1−s′)n on every X ∈ Γ. A learning function defined
in the same way as before (Eq. 5.1) will have the requisite density of YES answers, and will
also have uniformly lower-semicomputable averages at each w ∈ {0, 1}∗, as established in
Section 6. ◀
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