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Do Experimental Forests and Ranges of the southeastern United States represent the 1 

climate, ecosystem structure, and ecosystem functions of the region? 2 

Abstract 3 

There are 20 Experimental Forests and Range sites (EFRs) across the southeastern U.S. that are 4 

currently maintained by the United States Department of Agriculture Forest Service to conduct 5 

forest ecosystem research for addressing ecosystem management challenges. The overall objective 6 

of this study is to use multiple gridded datasets to assess the extent that the 20 EFRs represent the 7 

climate, ecosystem structure, and ecosystem functions of southeastern forests. The EFRs represent 8 

the large variability of climate conditions across the region relatively well, but we identified small 9 

representation gaps. The representativeness of ecosystem structure by these EFRs can be improved 10 

by establishing EFRs in forests with relatively low tree cover, leaf area index, or tree canopy 11 

height. The current EFRs also represent the forest ecosystem functions of the region relatively 12 

well, although areas with intermediate and low aboveground biomass and water yield are not well 13 

represented. The trends in climate, ecosystem structure, and ecosystem functions were generally 14 

consistent between the region and the EFRs. Our study indicates that the current EFRs represent 15 

the region relatively well, but establishing additional EFRs in specific areas within the region could 16 

help more completely assess how southeastern forests respond to climate change, disturbance, and 17 

management practices.  18 

 19 

Keywords: Southern forests; Experimental forests; Ecosystem Services; Satellite data; 20 

Representativeness 21 

 22 

 23 



2 
 

1. Introduction 24 

The southeastern forest region of the United States stretches from Texas across to Virginia, from 25 

Kentucky down to Florida, and from Oklahoma in the West to North Carolina in the East. 26 

Southeastern forests provide important ecosystem services such as timber supply, carbon 27 

sequestration, and water supplies, and benefiting human health and well-being (Sun et al. 2005, 28 

2008; Xiao et al. 2011; Aguilos et al. 2020;  Liu et al. 2020). For example, the southeastern forest 29 

region is the “wood basket” of the nation; southeastern forests account for only 2% of the world’s 30 

forest area but produce 63% of the US timber harvest by volume (Oswalt et al. 2014) and 18% of 31 

the world’s pulpwood for paper (World Resources Institute 2010). Over 50% of people in the 32 

eastern US (57 million) depend on forests for their drinking water supply (Liu et al. 2020). The 33 

southeastern forest region also has the most biodiversity (e.g., plant families, amphibians, and 34 

freshwater fishes) in the nation by some measures (Stein et al. 2000) due to warm temperatures, 35 

abundant precipitation, and high ecosystem productivity. Disturbances such as extreme droughts 36 

and hurricanes have substantial impacts on southeastern forest ecosystems (McNulty 2002; 37 

Chambers et al. 2007; Xiao et al. 2011; Williams et al. 2017), leading to reduced forest productivity 38 

and a loss of carbon stocks. These same disturbances, which are expected to increase in the region 39 

during the 21st century, can also increase insect and disease outbreaks and wildfires (Hoffman et 40 

al. 2023).  41 

The United States Department of Agriculture (USDA) Forest Service (FS) has a national 42 

network of 80 long-term experimental areas (a.k.a., Experimental Forests and Ranges (EFRs)) 43 

dating back to 1908 (Stine 2016). The EFRs represent the largest and longest continuous ecological 44 

research network in the US (USDA FS 2023). The EFRs have been used to support research in 45 

studying how land management affects water quality and quantity; how to manage and restore 46 
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forests and watersheds; how carbon stocks/fluxes and water regulation changes in the context of 47 

climate change and management; and how fire, insects, invasive species, and other disturbances 48 

affect the health of forests. Some of these forests provide real-time data on climate, hydrology, 49 

and biology for researchers, managers, and educators (USDA FS 2023). The Southern Research 50 

Station (SRS) EFR Network consists of 20 EFRs, including 19 official EFRs and one cooperating 51 

EFR, which are distributed across the southeastern forest region (Fig. 1; Table 1). Each EFR is 52 

dominated by a specific forest or ecosystem type. For example, the Escambia EFR, located in 53 

southern Alabama, and the Palustris EFR, located in central Louisiana, support longleaf pine 54 

(Pinus palustris) restoration, management, and physiology studies. The Coweeta Hydrologic 55 

Laboratory EFR, located in Otto, North Carolia, is the world’s oldest forest hydrology research 56 

laboratory (Nippgen et al. 2016). The SRS EFR Network encompasses most major forest types of 57 

the southeastern region for long-term studies of southeastern forests. These EFRs have contributed 58 

to foundational research on forest management of plantation and natural forests, forestry best 59 

management practices (BMPs), catchment hydrological processes, and forest structure and 60 

composition dynamics under climate change (Swift 1986; Loftis 1990; Swank et al. 2001; Guldin 61 

2009). The EFRs also serve as important facilities (e.g., eddy covariance flux towers, water 62 

chemistry analytic laboratory) for collaborative research, partnerships, and platforms that create 63 

cutting-edge science, develop new tools, models, and technologies (Aguilos et al., 2024), and 64 

provide research opportunities for a range of other advances including involvement of women and 65 

other underrepresented groups (Laseter et al. 2018; Rustad et al. 2023).  66 

A better understanding of how well the 20 EFRs represent the current southeastern forest 67 

conditions will help us to assess how well the southeastern forest will respond to climate change 68 

and management. To date, it is unclear how well the SRS EFRs represent southeastern forests in 69 
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terms of climate, ecosystem structure, and ecosystem functions. Ecosystem structure can be 70 

measured by metrics such as leaf area index (LAI) and vegetation height. Ecosystem functions are 71 

“the biotic and abiotic processes that occur within an ecosystem and may contribute to ecosystem 72 

services either directly or indirectly” (Garland et al. 2020). The southeastern forests are found 73 

across variable climate and topographic conditions and are extremely diverse with differing 74 

management regimes (e.g., planted vs natural regeneration). Such climate and management 75 

complexity make site synthesis studies that examine the representativeness within the region 76 

difficult. Previous studies have assessed how eddy covariance flux sites of the AmeriFlux network 77 

represent the US terrestrial ecosystems (Hargrove et al. 2003) and how well sites in the USDA 78 

Long-Term Agroecosystems Research (LTAR) Network represent agricultural working lands 79 

across the conterminous US (CONUS) (Kumar et al. 2023). In the early 2000s, central continental 80 

environments of the CONUS were well-represented by AmeriFlux, while additional sites could be 81 

needed for south Texas, the Sonoran Desert, and the Pacific Northwest (Hargrove et al. 2003). The 82 

LTAR representativeness was good across most the CONUS (Kumar et al. 2023).      83 

Advances in climate data reanalysis, remote sensing techniques, and cloud-based 84 

geospatial computing and mapping platforms (e.g., Google Earth Engine, GEE) over the last two 85 

decades now make a variety of data products for measuring climate, ecosystem structure, and 86 

ecosystem functions readily available. Gridded climate reanalysis data for the past few decades 87 

such as ERA5-Land (Munoz-Sabater et al. 2021) and MERRA-2 (Gelaro et al. 2017) are available 88 

for scales spanning regions to the entire globe. The MODerate resolution Imaging 89 

Spectroradiometer (MODIS) sensors on NASA’s Earth Observing System (EOS)—Terra and 90 

Aqua—provide observations of the Earth’s surface with daily coverage in 36 spectral bands and a 91 

spatial resolution from 250 m to 1 km for the period from 2000 to present. The availability of 92 
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MODIS data along with in-situ measurements, data-driven methods, and modeling approaches 93 

have led to various data products for quantifying ecosystem structure and functions. For example, 94 

MODIS data have been used to develop the global MODIS gross primary production (GPP) and 95 

net primary production (NPP) products in MOD17 (Running et al. 2004), the MODIS 96 

evapotranspiration (ET) product in MOD16 (Mu et al., 2011), the MODIS continuous fields (e.g., 97 

percent tree cover) in MOD44B (DiMiceli et al., 2021), the MODIS LAI  in MOD15 (Myneni et 98 

al. 2002), and the MODIS aboveground biomass (Blackard et al. 2008). The Global Ecosystem 99 

Dynamics Investigation (GEDI), a spaceborne lidar instrument onboard the International Space 100 

Station, provides footprint-based measurements of vegetation structure including forest canopy 101 

height between 52°N and 52°S globally (Dubayah et al. 2020). The GEDI observations along with 102 

Landsat data have been used to develop a global, gridded tree height data product (Potapov et al. 103 

2021).  104 

Here we used 13 gridded data products to examine how well the SRS EFRs represent the 105 

climate, ecosystem structure, and ecosystem functions of the southeastern forest region. The 106 

specific objectives of this study are to: (1) assess how the EFRs represent the southeastern forests 107 

in terms of the climate using six variables: air temperature, precipitation, shortwave solar radiation, 108 

and vapor pressure deficit (VPD) as well as soil water content (SW) and drought condition; (2) 109 

assess how EFRs represent the southeastern forests in terms of ecosystem functions measured by 110 

percent tree cover, LAI, and tree height (i.e., tree canopy height); (3) assess how the EFRs 111 

represent the southeastern forests in terms of ecosystem functions including NPP, ET, 112 

aboveground biomass, and water yield (defined as annual precipitation minus annual ET); (4) use 113 

all 13 variables together to evaluate the representativeness the SRS EFR network. 114 

Representativeness here is defined as how well conditions at sampling locations (i.e., the EFRs) 115 
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represent conditions across the southeastern region as judged by a combination of the 13 variables. 116 

Our study is unique because it examines the representativeness of the southeastern EFRs in terms 117 

of climate, ecosystem structures, and ecosystem functions using several different variables. To the 118 

best of our knowledge, this is the first known attempt to evaluate the representativeness of the 119 

EFRs using these variables. Assessing how well the EFRs on land that the USDA Forest Service 120 

manages represent various forest attributes across the Southeast can help the agency provide 121 

research results that are useful for forest managers across ownerships. Our effort can also help 122 

researchers and the public understand how well the agency is able to provide that research for the 123 

Southeast, as well as for the rest of the country.  124 

2. Materials and Methods 125 

2.1. Study region and EFRs 126 

In this study, the southeastern forest region refers to forests in the 13 states of the southeastern US. 127 

The 20 EFRs of the SRS EFR Network consist of 19 official EFRs and one cooperating 128 

experimental forest and are distributed across the southeastern region (Fig. 1; Table 1). Although 129 

the 19 official EFRs possess considerable coverage of forest types, geographical range, and 130 

management activities, in 2020 the SRS added a cooperating experimental forest to expand the 131 

suite of conditions represented by including studies on university lands (Boggs et al. 2016). 132 

Altogether, these EFRs occupy 30,223 ha of land and encompass various landscapes of the region. 133 

There is at least one EFR within each of the southeastern states except Kentucky, Oklahoma, 134 

Tennessee, and Virginia. The SRS EFRs are located across topographic ranges and environmental 135 

gradients, and represent a wide range of conditions (e.g., rural to mixed-use landscapes), forest 136 

types, and management regimes. We used the National Forest Type Dataset from USDA Forest 137 

Service Forest Inventory and Analysis (FIA) Program & Geospatial Technology and Applications 138 
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Center (GTAC) to assess how the EFRs represented the forest type groups in the region. The forest 139 

type groups within each EFR were extracted from this dataset. The 20 EFRs together represent the 140 

forest types of the southeastern region well (Fig. 2). For both the region and the EFRs, the two 141 

dominant forest type groups were Loblolly/Shortleaf Pine and Oak/Hickory; four other types 142 

(Longleaf/Slash Pine, Oak/Pine, Oak/Gum/Cypress, Elm/Ash/Cottonwood) accounted for >2% of 143 

the area each; each of the remaining types accounted for <0.3% of the area.  144 

[insert Fig. 1 about here] 145 

[insert Table 1 about here] 146 

[insert Fig. 2 about here] 147 

2.2. Climate data 148 

Climate data were obtained from the widely used ERA5-Land climate reanalysis dataset (Munoz-149 

Sabater et al. 2021) (Table 2). The monthly ERA5-Land data have a spatial resolution of 9 km × 150 

9 km and are available from the Google Earth Engine (GEE). We used monthly average air 151 

temperature (Tair), total precipitation (Pre), shortwave solar radiation (SR), dew point temperature, 152 

and monthly average volumetric soil water content (SW). Vapor pressure deficit (VPD) was 153 

calculated from Tair and dew point temperature at the monthly timescale. VPD was included as it 154 

reflects the atmospheric water demand and regulates photosynthesis and transpiration (Li et al. 155 

2023). We then calculated annual mean Tair, annual total Pre, annual mean SR, annual mean VPD, 156 

and annual mean SW for 2001 to 2022. Note that these variables (e.g., VPD) were calculated at 157 

the annual scale, and deciduous forests might be more sensitive to them over the growing season. 158 

We downloaded these gridded data for the southeastern forest region and extracted the time series 159 

for each variable for each EFR.  160 

[insert Table 2 about here] 161 
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In addition to the climate and SW data, we also used the Palmer Drought Severity Index 162 

(PDSI) (Palmer 1965) to estimate drought conditions. The original form of PDSI was used here. 163 

Monthly PDSI was derived from the TerraClimate product (Abatzoglou et al. 2018). TerraClimate 164 

is a dataset of monthly climate and climatic water balance for global terrestrial surfaces 165 

(Abatzoglou et al. 2018) and is also available on the GEE platform. Mean PDSI was calculated for 166 

each year from 2001 to 2022 and was downloaded for the southeastern forest region and extracted 167 

for each EFR.  168 

2.3. Ecosystem structure data 169 

We used the following remotely sensed variables to measure ecosystem structure of the EFRs and 170 

southeastern forests: percent tree cover (%), LAI, and tree height (Table 2). Other measures of 171 

forest structure such as canopy geometry, volume, heterogeneity, and arrangement were not 172 

considered as gridded data on these measures are not readily available. The percent tree cover data 173 

were derived from the MODIS Vegetation Continuous Fields (VCF) product of MOD44B 174 

(DiMiceli et al. 2021). The VCF product offers a sub-pixel level representation of vegetation cover 175 

globally and consists of estimates of percent tree cover, percent non-tree cover, and percent bare 176 

land for each 250 m × 250 m pixel across the global land surface from 2000 to 2020 (DiMiceli et 177 

al. 2021). We used the percent tree cover data layer to measure tree cover for each EFR and each 178 

pixel across the southeastern forest region.  179 

LAI data were obtained from the MODIS Terra LAI product of MOD15A2 (Myneni et al. 180 

2002). The MOD15A2 product provides LAI and fraction of photosynthetically active radiation 181 

(FPAR) estimates at the 8-day time step and 500 m × 500 m spatial resolution. LAI, defined as 182 

one half of the total green leaf area per unit ground surface area in broadleaf canopies (Chen and 183 

Black 1992) and as the projected needleleaf area in coniferous canopies (Myneni et al. 2002), is a 184 
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key parameter for depicting vegetation canopy structure and determining the exchange of mass 185 

(e.g., CO2 and water) and energy fluxes between the land surface and the atmosphere (Liu et al. 186 

2018). The MOD15A2 product is also available on the GEE platform. Maximum LAI instead of 187 

mean (or median) LAI was chosen to measure the ecosystem structure over the peak growing 188 

season. 189 

Tree height was based on a new, 30 × 30 m spatial resolution global forest canopy height 190 

map (Potapov et al. 2021). Here tree height indicates tree canopy height and refers to the vertical 191 

distance from the base of a tree to the top of the canopy of the tree. This map was developed for 192 

the year 2019 by integrating forest structure measurements from NASA’s GEDI instrument and 193 

surface reflectance data from NASA’s Landsat satellites. This global dataset is also available on 194 

the GEE platform. Since no high-quality gridded data were available for other years, we were 195 

unable to assess the trends in tree height.  196 

2.4. Ecosystem function data 197 

Besides climate and ecosystem structure data, we also used data on NPP, ET, aboveground 198 

biomass (AGB), and water yield (Table 2) to measure ecosystem functions of southeastern forests. 199 

Forest water yield and NPP are the critical ecosystem functions that sustain many ecosystem 200 

services, such as stable and high-quality water supply, carbon sequestration, climate regulation, 201 

and biodiversity conservation (Sun et al. 2011). Estimated annual NPP was based on the MODIS 202 

Terra NPP data product (MOD17A3) (Running et al. 2004), which consists of annual NPP 203 

estimates at 500 m × 500 m spatial resolution from 2000 to present. Estimated annual ET was 204 

based on the MODIS Terra ET product (MOD16A2) (Mu et al. 2011), an 8-day composite ET 205 

product generated at 500 m × 500 m resolution from 2000 to present. We calculated annual ET 206 

from the 8-day ET estimates for 2001 to 2022. Water yield was calculated as the difference 207 
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between annual precipitation based on the ERA5-Land product and annual ET based on the 208 

MODIS ET product from 2001 to 2022. The calculation of water yield was conducted on GEE as 209 

both ERA5-Land and MODIS ET are available on the platform.    210 

Aboveground biomass (AGB) data were obtained from the aboveground live forest 211 

biomass map with 250 m × 250 m resolution for the conterminous US, Alaska, and Puerto Rico 212 

(Blackard et al. 2008). This map was developed based on plot-level biomass data from the USDA 213 

Forest Service FIA program and a variety of spatially continuous data such as MODIS surface 214 

reflectance, vegetation indices, and percent tree cover, topographic variables, and climate data 215 

along with tree-based regression algorithms (Blackard et al. 2008). This product is also available 216 

on the GEE platform. 217 

2.5. Analyses  218 

We examined the magnitude and spatial patterns of annual climate variables (i.e., Tair, Pre, SR, 219 

VPD, SW, and PDSI) of the southeastern forest region. For each variable, we calculated the long-220 

term mean values from 2001 to 2022 for the region on a per-pixel basis and extracted the long-221 

term mean values for each EFR. We then generated the probability density distribution for each 222 

variable across the region and assessed to what extent the EFRs represent the region in terms of 223 

mean annual climate conditions. In addition, we calculated the long-term trend in each variable for 224 

the region from 2001 to 2022 on a per-pixel basis using the Mann-Kendall trend test (Kendall 225 

1938; Mann 1945). The Mann-Kendall method is a nonparametric test for monotonic trends, and 226 

it does not assume a specific distribution for the data and is insensitive to outliers (Ficklin et al. 227 

2016; Wang et al. 2019). The slopes of the trends were calculated using the Kendall robust line-fit 228 

method (Sokal and Rohlf 1995). The time series for each variable was extracted for each EFR, and 229 

the long-term trend in each variable was also examined using the Mann-Kendall method.  230 
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We then assessed the magnitude and spatial patterns of ecosystem structure as measured 231 

by percent tree cover, LAI, and tree height across the region. Percent tree cover and annual 232 

maximum LAI were averaged between 2001 and 2022 to calculate long-term mean values on a 233 

per-pixel basis. The probability density distribution was then generated for each variable. For each 234 

EFR, the percent tree cover, LAI, and tree height were spatially averaged and extracted. We 235 

assessed to what extent EFRs can represent the ecosystem structure of the region. The Mann-236 

Kendall method was used to examine the long-term trend in each variable for the region on a per-237 

pixel basis and for each EFR.  238 

Similarly, we assessed the magnitude and spatial patterns of ecosystem functions as 239 

measured by NPP, ET, AGB, and water yield for the region. For each variable, the probability 240 

density distribution was generated. We calculated the spatially averaged values of long-term means 241 

for each variable for each EFR and assessed how the EFRs encompass the ecosystem functions of 242 

southeastern forests. We also assessed the long-term trends in ecosystem functions for the region 243 

on a per-pixel basis and for each EFR.  244 

Finally, we used the 13 variables in climate (i.e., mean annual Tair, Pre, SR, SW, VPD, 245 

PDSI), ecosystem structure (i.e., mean annual percent tree cover and LAI, tree height), and 246 

ecosystem functions (i.e., mean annual NPP, ET, and WY, AGB) together to assess the 247 

representativeness of the SRS EFR network, following Kumar et al. (2023). For this analysis, all 248 

the datasets were resampled to the same spatial resolution, while for the analyses described above 249 

the native resolution of each dataset was used. Each variable was normalized to the range of [0, 250 

1]. For each EFR or pixel, the values of the 13 normalized variables were treated as a vector in the 251 

multivariate space. To calculate the representativeness of each EFR, we first calculated the 252 
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Euclidean distance between the vector of the EFR and that of each pixel across the region, and 253 

then calculated the representativeness of each EFR as follows:  254 

                           𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 1 −  √∑ (𝑉𝑖
𝐸𝐹𝑅 − 𝑉𝑖

𝑝𝑖𝑥𝑒𝑙)213
𝑖=1                          (1) 255 

where 𝑉𝑖
𝐸𝐹𝑅  and 𝑉𝑖

𝑝𝑖𝑥𝑒𝑙
 stands for the multivariate vector for the EFR and a given pixel, 256 

respectively. For each EFR, we generated a representativeness map for the region, in which a 257 

higher value indicates that the pixel is closer to the EFR in the multivariate space and that the EFR 258 

is more representative of that pixel. To assess the representativeness of the SRS EFR network, we 259 

calculated the maximum representativeness value among the values of the 20 EFRs for each pixel.  260 

3. Results 261 

3.1. Climate  262 

We first examined the long-term means of annual mean temperature, annual precipitation, annual 263 

mean shortwave solar radiation, annual mean VPD, annual mean soil water content, and PDSI for 264 

the southeastern forest region (Fig. 3) and the EFRs (Fig. S1) between 2001 and 2022. We also 265 

compared the long-term means of these variables for the EFRs against the probability density 266 

distribution of these variables for the entire southeastern forest region (Fig. 4). Tair generally 267 

increased with decreasing latitude, except in the Appalachian Mountains (Fig. 3a). Tair ranged 268 

from ~9 to 25°C across the region (Fig. 4a). The 20 EFRs encompassed a large portion of the 269 

distribution of Tair across the region, while areas with Tair above 20.6°C or below 12.0°C (mostly 270 

in the tails of the probability distribution) had no EFR representation (Fig. 4a). Unlike Tair, Pre 271 

showed intermediate values in the states on the East Coast (Virginia, North Carolina, South 272 

Carolina, Georgia, Florida), low values in the West (Oklahoma and Texas), and high values in the 273 

central parts of the region (Fig. 3b). The annual Pre across the region ranged from ~500 to ~1700 274 

mm yr-1, while the Pre of the EFRs was between 1074 and 1518 mm yr-1; a significant portion of 275 
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the region (the majority of Oklahoma and Texas and a small part of the states on the East Coast) 276 

had Pre <1000 mm yr-1 and had no EFR representation (Fig. 3b, Fig. 4b). SR had a similar spatial 277 

pattern to Tair (Fig. 3a, c), and areas with SR lower than 182 W m-2 or higher than 197 W m-2 278 

contained no EFRs (Fig. 4c). The differences in solar radiation are largely caused by the changes 279 

in sun elevation angle that varies with latitude and changes in cloud over. The spatial pattern of 280 

VPD was similar to that of Tair or SR (Fig. 3). The VPD of the 20 EFRs centered around the peak 281 

value of the probability density distribution of the region and ranged from 4.0 to 8.2 hPa; 2 EFRs 282 

had VPD < 4.0 hPa, while no EFR had VPD > 8.2 hPa (Fig. 4d).  The SW had relatively low values 283 

in the Southeast of the region (e.g., Georgia, Florida) (Fig. 3e); the EFRs altogether encompassed 284 

the distribution of SW well (Fig. 4e). The long-term mean PDSI map indicates that the northern 285 

and central parts of the region were relatively wet while the western, southern, and eastern parts 286 

of the region were relatively dry (Fig. 3f); the PDSI value of the 20 EFRs ranged from -0.6 to 0.7, 287 

covering a large portion of the distribution of PDSI over the southeastern forest region (Fig. 4f).  288 

[insert Fig. 3 about here] 289 

[insert Fig. 4 about here] 290 

The trends in Tair, SR, VPD, and SW varied substantially across the southeastern forest 291 

region (Fig. 5). The southeastern half of the region had increasing trends in Tair, while the rest of 292 

the region except Texas had decreasing trends in Tair (Fig. 5a); the trends in Tair were statistically 293 

significant for only a small portion of the region (Fig. S2). Among the 20 EFRs, only one EFR 294 

(Harrison, in southern Mississippi) had a statistically significant trend in Tair (Fig. S3). SR 295 

exhibited an increasing trend in the Appalachian Mountains and areas in Oklahoma and Texas but 296 

a declining trend in the rest of the region (Fig. 5c). None of the EFRs had a statistically significant 297 

trend in SR (Fig. S3). Compared with Tair, SR, and SW, Pre, VPD, and PDSI were more spatially 298 



14 
 

consistent in the direction of change across the region. Most of the region had upward trends in 299 

VPD, and only areas in Louisiana and southern Florida exhibited downward trends (Fig. 5d). The 300 

VPD trend was statistically insignificant for all the EFRs (Fig. S3). The entire region except a 301 

small area in Texas exhibited an increasing trend in Pre and PDSI (Fig. 5b, f). The trend in Pre 302 

was statistically significant for three EFRs (Henry R. Koen in northwestern Arkansas, Palustris in 303 

central Louisiana, and Santee in eastern South Carolina). None of the EFRs had a significant trend 304 

in VPD. The PDSI trend was significant for five EFRs: Alum Creek (central Arkansas), Bent Creek 305 

(western North Carolina), Chipola (Florida panhandle), Harrison, and Olustee (northeastern 306 

Florida) (Fig. S3).  307 

[insert Fig. 5 about here] 308 

3.2. Ecosystem structure  309 

We examined the ecosystem structure indicators of the southeastern forest region (Fig. 6) and 310 

EFRs (Fig. S4) based on percent tree cover, maximum LAI, and tree height. Percent tree cover 311 

exhibited the highest values (>80%) in the Appalachian Mountains, the lowest values in 312 

Oklahoma, Texas, and sporadic areas in the states of the East Coast (Fig. 6a). The probability 313 

density distribution of percent tree cover across the region showed that percent tree cover primarily 314 

ranged from 0% to 80% and peaked around 50%; the percent tree cover of the EFRs ranged from 315 

46% (Delta in western Mississippi) to 72% (Coweeta Hydrologic Laboratory in western North 316 

Carolina) (Fig. 7a). Compared with percent tree cover, LAI was more homogenous across 317 

southeastern forests. Most of the region had high LAI values while areas within Oklahoma and 318 

Texas had low values; the remaining areas had intermediate values (Fig. 6b). The distribution of 319 

LAI across the region peaked at ~6.7; the LAI of the 20 EFRs ranged from 5.1 (Escambia in 320 

southern Alabama) to 6.8 (Coweeta Hydrologic Laboratory); there were no EFRs in areas with 321 
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LAI lower than 5 (Fig. 7b). Tree height had high values in the Appalachian Mountains, low values 322 

in areas in Oklahoma and Texas as well as sporadic areas in the states on the East Coast, and 323 

intermediate values in the rest of the southeastern forest region (Fig. 6c). The probability density 324 

distribution of tree height peaked at ~20m.  The tree height of the majority of the EFRs ranged 325 

from 17 to 24 meters; Alum Creek and Bent Creek had an average tree height of 8 and 11 m, 326 

respectively, while Sylamore in northern Arkansas and Tallahatchie in northern Mississippi had 327 

an average tree height of 27 and 28 m, respectively (Fig. 7c).  328 

[insert Fig. 6 about here] 329 

[insert Fig. 7 about here] 330 

We then examined the long-term trends in percent tree cover and maximum LAI (Fig. 8). 331 

The trends were statistically significant for a large fraction of the pixels (Fig. S5). No widespread 332 

areas exhibited either upward or downward trends in percent tree cover; instead, pixels with 333 

upward trends in percent tree cover were interspersed with those with downward percent tree cover 334 

(Fig. 8a). Seven EFRs had upward trends in percent tree cover, but none of the trends was 335 

statistically significant; the remaining 13 EFRs had downward trends, and four of them (Bent 336 

Creek, Chipola, Sylamore, and Tallahatchie) had statistically significant trends (p < 0.05) (Fig. 337 

S6). Many areas of the region (e.g., western North Carolina, South Carolina, Georgia, Alabama, 338 

southern Mississippi, and Oklahoma) had increasing trends in LAI, while the Appalachian 339 

Mountains and some other areas of the region had nearly no trends in LAI (Fig. 8b). The spatially 340 

averaged LAI had an increasing trend for all the EFRs except Chipola, Santee, and Tallahatchie, 341 

and the increasing trend was statistically significant for seven EFRs (Fig. S6). We were not able 342 

to explore the long-term trend in tree height as the tree height map is only available for 2019. 343 

[insert Fig. 8 about here] 344 
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3.3. Ecosystem functions 345 

Besides climate and ecosystem structure, we also examined the ecosystem functions in ecosystem 346 

productivity and water cycle regulation in the southeastern forests (Fig. 9) and EFRs (Fig. S7) 347 

using four indicators: mean annual NPP, ET, and water yield as well as AGB. All these metrics 348 

exhibited relatively large variability across the southeastern forest region (Fig. 9). Annual NPP 349 

had the highest values in the Appalachian Mountains, western Louisiana/eastern Texas, southern 350 

Mississippi, Florida, and coastal areas of Georgia and the Carolinas, the lowest values in central 351 

and southern Arkansas, northern Louisiana, and northern Mississippi, and intermediate values in 352 

other areas of the region (Fig. 9a). The mean annual NPP of the 20 EFRs had a large range, varying 353 

from 257 g C m-2 yr-1 (Crossett in southeastern Arkansas) to 1145 g C m-2 yr-1 (Harrison) (Fig. S7) 354 

and well encompassed the distribution of the NPP of the region (Fig. 10a). Mean annual ET 355 

generally increased with decreasing latitude across the region except in the Appalachian 356 

Mountains and Texas (Fig. 9b). A large portion of the southeastern forest region had annual ET 357 

between 500 and 900 mm yr-1, and the ET of 18 EFRs was within this range (Fig. 10b); Coweeta 358 

Hydrologic Laboratory and Olustee had the lowest (432 mm yr-1) and highest ET (934 mm yr-1), 359 

respectively (Fig. S7). The AGB was the highest in North Carolina and northern Virginia, 360 

intermediate in southern Virginia, Kentucky, Tennessee, Arkansas, Mississippi, northern Georgia, 361 

and Florida, and the lowest in other areas of the region (Fig. 9c). The probability density 362 

distribution of AGB across the region peaked ~100 Mg ha-1. The AGB of 16 EFRs centered around 363 

the peak value of the distribution (i.e., mode) and ranged from 81 to 127 Mg ha-1, while the 364 

remaining four EFRs had much higher AGB: Coweeta Hydrologic Laboratory (164 Mg ha-1), Hill 365 

Demonstration Forest in central North Carolina (171.7 Mg/ha), Bent Creek (187 Mg ha-1), and 366 

Blue Valley in western North Carolina (202 Mg ha-1) (Fig. 10c; Fig. S7). The annual water yield 367 
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had high values in the Appalachian Mountains and Arkansas, intermediate values in eastern 368 

Virginia, eastern portions of North Carolina, northern South Carolina, Louisiana, southern 369 

Mississippi, and central Alabama, and low values in western Virginia, western North Carolina, 370 

Georgia, northern Florida, southern Alabama, Oklahoma, and Texas (Fig. 9d). Notably, Olustee 371 

Experimental Forest had low water yield but high NPP (Fig. S7a, d). The probability density 372 

distribution of annual water yield of the southeastern forest region peaked at ~250 mm yr-1; only 373 

one EFR (Olustee) had water yield lower than this value (Fig. 10d). Among the remaining 19 374 

EFRs, four EFRs (Crossett: 609 mm yr-1; Coweeta Hydrologic Laboratory: 675 mm yr-1; Blue 375 

Valley: 707 mm yr-1; Delta: 733 mm yr-1) had water yield greater than 600 mm yr-1; the water yield 376 

of the other 15 EFRs ranged from 283 to 526 mm yr-1 (Fig. S7).  377 

[insert Fig. 9 about here] 378 

[insert Fig. 10 about here] 379 

We then assessed the long-term trends in annual NPP, ET, and water yield over the period 380 

2001-2022 for the southeastern forest region on a per-pixel basis (Fig. 11, Fig. S8) and for each 381 

EFR (Fig. S9). The NPP exhibited increasing trends in the entire region except in some areas (e.g., 382 

areas along the East Coast and Gulf Coast, and a part of Texas) (Fig. 11a); a total of 18 EFRs had 383 

increasing trends in NPP, but only two of them (Hill Demonstration Forest and Tallahatchie) had 384 

statistically significant trends (p < 0.05); Chipola and Henry R. Koen (in northwest Arkansas) had 385 

insignificant decreasing trends (p > 0.05) (Fig. S9). Increasing trends in annual ET were observed 386 

for nearly the entire southeastern forest region (Fig. 11b); 18 EFRs had increasing trends in ET, 387 

and the trend was significant for 11 of these EFRs; two EFRs (Chipola and Coweeta Hydrologic 388 

Laboratory) had insignificant decreasing trends in ET (Fig. S9). Unlike NPP and ET, water yield 389 

exhibited large variability in the direction of change across the region; an increasing trend in water 390 
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yield was found in the Appalachian Mountains, northern Arkansas, northeastern Oklahoma, 391 

Louisiana, southern Mississippi, and parts of Florida and South Carolina (Fig. 11c); 12 and 8 EFRs 392 

had upward and downward trends in water yield, respectively, while none of the trends was 393 

statistically significant (Fig. S9). The long-term trend in AGB was not examined because the 394 

gridded AGB data were not available yearly for a long period of time. 395 

[insert Fig. 11 about here] 396 

3.4. Representativeness based on all the 13 variables 397 

The representativeness of specific EFRs varies substantially among the EFRs (Figure 12). Some 398 

EFRs only represent a very small part of the region well but others are well representative of a 399 

significant portion of the region. For example, two EFRs (Calhoun Experimental Forest, #4; 400 

Coweeta Hydrologic Lab, #6) are only representative of the Appalachian Mountains area adjoining 401 

NC, SC, GA, and TN, and the Chipola Experimental Forest (#5) is only well representative of the 402 

Florida Panhandle. By contrast, some EFRs such as Alum Creek Experimental Forest (#1), Hitchiti 403 

Experimental Forest (#13), Scull Shoals Experimental Forest (#17), and Tallahatchie Experimental 404 

Forest (#20) are representative of a sizable portion of the southeastern region. The SRS EFR 405 

network overall, however, represents a large portion of the region relatively well, while central 406 

OK and TX are least represented (Figure 13).    407 

4. Discussion 408 

We used a variety of gridded datasets to assess how the 20 EFRs represent the southeastern forests. 409 

The southeastern forest region is dominated by a humid, subtropical climate that is influenced by 410 

various factors such as latitude, topography, and proximity to the Gulf of Mexico and Atlantic 411 

Ocean (Carter et al. 2018). The southeastern forest region has relatively large gradients in mean 412 

annual climate (i.e., Tair, Pre, SR, VPD), SW, and PDSI. Temperature generally decreases with 413 



19 
 

increasing latitude and elevation (Carter et al. 2018). Altogether, the 20 EFRs encompass a large 414 

range of the distribution of each climate variable, while the areas with low and high values (often 415 

in the tails of the probability distributions) are typically under-represented or have no EFRs at all. 416 

Understanding the tails of the climate distributions is important as ecosystems in these areas are 417 

likely more sensitive to climate change. For example, dryland ecosystems are more sensitive to 418 

changes in precipitation, while ecosystems in areas with high temperatures are more susceptible 419 

to warmer temperatures. To improve the representativeness of the mean climate conditions across 420 

the southeastern forest region, additional EFRs could be established in areas such as the 421 

Appalachian Mountains of Virginia, southern Florida, Oklahoma, and central/northern Texas. A 422 

large portion of forest across the southeastern forest region has intermediate to higher percent tree 423 

cover and LAI, while a sizable portion of the region has relatively low tree height. All the EFRs 424 

have intermediate and high values in ecosystem structure metrics (i.e., percent tree cover, LAI, 425 

and tree height). Establishing EFRs in forests with relatively low percent tree cover, LAI, or tree 426 

height or in young forests could improve the representativeness of EFRs in terms of ecosystem 427 

structure, as none of the EFRs has percent tree cover lower than 45%, maximum LAI lower than 428 

4.5, or tree height lower than 7.9 m. The lack of representation for areas with low tree cover, LAI 429 

and/or tree height is perhaps not surprising since all of the EFRs in the southeastern region are 430 

experimental forests (not experimental ranges), but additions to the network could also include 431 

experimental ranges that focus on grassland and savanna systems, such as the Cross Timbers 432 

region of eastern Oklahoma and north-central Texas (Hallgren et al. 2012). Ecosystem functions 433 

as measured by NPP, ET, AGB, and water yield exhibited large gradients across the southeastern 434 

forest region. A large portion of the distribution for both NPP and ET is well represented by the 435 

EFRs. Establishing EFRs in areas with intermediate and low AGB and water yield such as large 436 
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parts of South Carolina, Georgia, Oklahoma, and Texas could improve the representativeness of 437 

the EFRs in terms of AGB and water yield. These areas have intermediate or low biomass because 438 

of intermediate or low annual precipitation, tree height, and LAI and have intermediate or low 439 

water yield because of intermediate or low precipitation but intermediate or high temperature 440 

and/or VPD. 441 

The long-term trends in the climate-related variables (i.e., Tair, Pre, SR, VPD, SW, and 442 

PDSI) were generally consistent between the EFRs and the southeastern forest region. For 443 

example, Tair had an increasing trend for nearly every location across the region, and all the EFRs 444 

had increasing trends in Tair; SR exhibited negative trends for nearly the entire southeastern forest 445 

region, and the majority of the EFRs (16 out of 20) also had negative trends in SR. This indicates 446 

that these EFRs are generally representative of the region in terms of climate trends. The trends in 447 

percent tree cover and LAI were also generally consistent between the region and the EFRs. On a 448 

per-pixel basis, increases and decreases in percent tree cover were interspersed with each other, 449 

and 7 and 13 EFRs had increasing and decreasing percent tree cover, respectively; increasing LAI 450 

was observed for most of the pixels in the region and 17 out of the 20 EFRs. The trends in 451 

ecosystem functions (i.e., NPP, ET, and water yield) of the EFRs were also generally 452 

representative of those of the region.  453 

Ecosystem structure and functions could exhibit spatial variability within a given EFR. For 454 

example, although on average none of the EFRs have low percent tree cover or tree height or young 455 

forests, short or young trees could exist in any given EFR. Assessing the variability within each 456 

EFR is limited by the spatial resolution of the data used. The smallest EFR has an area of 259 ha 457 

(~2.6 km2), while the spatial resolution (or grid cell size) of most of the datasets ranges from 500m 458 

to 4km. The only dataset that is suitable for assessing within-EFR variability is the tree height 459 
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dataset that is at 30-m resolution. We used this dataset to assess whether the distribution of tree 460 

height for these 30-m grid cells could better represent that of the southeastern forests (Fig. S10). 461 

With all the 30-m grid cells within each EFR considered, the tree height of the EFRs mainly ranges 462 

from 18 to 24 m, and still under-represents medium and relatively short trees.  463 

It should be noted that there are other research forests across the southeastern region other 464 

than the EFRs. Notably, there are other research forests on federal or state lands. Moreover, some 465 

universities have their own research forests. For example, the Duke Forest in North Carolina, 466 

which is owned and managed by Duke University, consists of more than 2,800 hectares of forested 467 

land and has been managed for research experiments (e.g., Free-Air Carbon Dioxide Enrichment 468 

or FACE). Although these forests are not part of the EFR network, tremendous research has been 469 

done to examine ecosystem functions and services amidst climate change based on these sites. 470 

These research forests in combination with the EFRs are likely able to better represent the 471 

southeastern forests in terms of climate, ecosystem functions, and ecosystem structure than the 472 

EFR network alone and to better answer science questions related to climate change, disturbance, 473 

and management practices.  474 

Future representativeness studies of the EFRs could benefit from the following ways. First, 475 

using climate and PDSI data with finer spatial resolution can better characterize climate and 476 

drought conditions of the EFRs, particularly the small ones. Second, besides the magnitude and 477 

trends in annual climate variables, the seasonality of climate could be considered. Third, the future 478 

availability of time series data for AGB and tree height will allow for the characterization of the 479 

temporal dynamics of these two variables. Finally, besides climate, ecosystem functions, and 480 

ecosystem services, other aspects such as soil properties, elevation, stand age, and structural 481 

diversity (Crockett et al. 2023) could be incorporated into future representativeness assessments.  482 
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This study across the EFRs and the southeastern forest region fills the knowledge gap 483 

regarding the climate, ecosystem structure, and ecosystem functions of EFRs in the context of the 484 

broader southeastern forest region. Understanding ecosystem functions and structures across the 485 

EFR network can help the SRS to address new research questions, including those associated with 486 

expected climate change across the southeastern forest region during the remainder of the 21st 487 

century (Carter et al. 2018). Although projected increases in temperature for some parts of the 488 

region are smaller than for other regions of the United States, projected increases are larger for 489 

interior areas of the Southeast than for coastal areas of the region (Carter et al. 2018). Projections 490 

for future precipitation are less certain than those for temperature increases (Kunkel et al. 2013). 491 

Many model projections show only small changes in precipitation with drier conditions in the far 492 

southwest of the region and wetter conditions in the far northeast of the region (Kunkel et al. 2013).  493 

The EFRs have some unique advantages that include dedicated research facilities, core 494 

budgets, maintenance of long-term research and data, involvement of land and resource managers 495 

from the FS National Forest System, and support for research across disciplines (Adams et al. 496 

2008). The wealth of long-term data sets, spanning up to a century, distinguishes EFRs and 497 

underscores their value in studying ecological systems. Our societal perspective on the value of 498 

forest ecosystems has changed since these EFRs were established. The management of National 499 

Forests, for example, has shifted from a focus primarily on timber and water to a focus on the 500 

management of forest ecosystems, which includes recreation and biodiversity as well as timber 501 

and water (Williams 2005). However, to continue to function as an effective EFR network and to 502 

address contemporary environmental challenges, it will be vital to define existing conditions across 503 

the EFRs and refine and maintain the most important attributes of the network that include data 504 

continuity, scientific consistency, baseline data, comparative research, and adaptation to change 505 



23 
 

(e.g., effective methods of data sharing). Future sites in underrepresented regions and continued 506 

operation of existing EFRs should consider several factors including geographic and climate 507 

representation and the potential for collaborative cross-site research. In the establishment of new 508 

EFRs, other factors that could be important to consider are whether the disturbance and 509 

management scenarios are well represented, whether relevant long-term monitoring data 510 

already exists for the location to allow for comparison with existing EFRs, and whether funding 511 

and personnel are available to maintain the infrastructure needed. Results from this study can 512 

provide useful information to offer guidance on the direction of future site selections, on research 513 

actions, needs, and programs including new sampling designs, and on scientific infrastructure, 514 

tools, and models. The biggest challenges lie in the availability of funding and land. Sufficient and 515 

sustained funding will be essential for the successful establishment of a new EFR. Southeastern 516 

forests are mostly privately owned and thereby partnerships are likely to be important for the 517 

expansion of the network. One practical solution is to identify and incorporate existing university, 518 

state, and nonprofit research forests into a larger network of research forests with the EFR network 519 

as its backbone. 520 

5. Conclusions 521 

We assessed how the Experimental Forests and Ranges (EFRs) represent the variation in climate, 522 

ecosystem structure, and ecosystem functions across the southeastern forest region using a variety 523 

of gridded data products. The southeastern forest region exhibits large gradients in climate, 524 

ecosystem structure, and ecosystem functions. Overall, the existing 20 EFRs managed by the SRS 525 

largely represent the distribution of climate (i.e., air temperature, precipitation, shortwave solar 526 

radiation, vapor pressure deficit, soil water content, and PDSI), ecosystem structure (i.e., percent 527 

tree cover, LAI, tree height), and ecosystem functions (i.e., NPP, ET, AGB, water yield) of the 528 
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region. The long-term trends in climate, ecosystem structure, and ecosystem functions of the EFRs 529 

were generally consistent with those of the southeastern forest region. The representativeness of 530 

the mean climate conditions of the region could be improved by establishing EFRs in some parts 531 

of the region (e.g., the Appalachian Mountains of Virginia, southern Florida, Oklahoma, and 532 

central/northern Texas). Moreover, areas with a percent tree cover lower than 45%, LAI lower 533 

than 4.5, or tree height lower than 8 m have no EFR representation, indicating that establishing 534 

new EFRs in forests with relatively low percent tree cover, LAI, or tree height or in young forests 535 

could improve the representativeness of the SRS EFR network in terms of ecosystem structure. 536 

Establishing EFRs in areas with intermediate and low AGB and WY, such as large parts of South 537 

Carolina, Georgia, Oklahoma, and Texas, could improve the representativeness of the EFRs in 538 

terms of AGB and water yield. Better understanding and improving the representativeness of the 539 

EFRs can help understand the past, present, and future changes in southeastern forests for the past, 540 

present, and future in the context of climate change and management.  A potential next step would 541 

be to identify specific locations for additions to the EFR network to improve its representativeness. 542 

One line of work could assess the most efficient way to achieve a certain degree of 543 

representativeness — for example, how many more sites are needed to be 95% representative? 544 

This study could provide a framework for how other Forest Service research stations could 545 

assess the representativeness of their EFRs. More generally, it could provide a helpful blueprint 546 

for assessing the representativeness of any research network (or collection of associated research 547 

sites). The findings of this work could help researchers who do work in the SRS EFRs to better 548 

understand the geographic context of their work, and to encourage them to think about the 549 

limitations of their work and how it could be improved by expanding the EFRs into new locations. 550 

For researchers who do not work in these EFRs, the results of this study could encourage them to 551 
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use the data collected from the network and to apply the resulting research findings to their own 552 

work. 553 

 554 
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Table 1. Description of the 20 Experimental Forests and Ranges (EFRs) across the southeastern 766 

forest region: ID (i.e., the numbers in Fig. 1), name, location, latitude, longitude, size (ha), and 767 

year established.  768 

ID Name Location Latitude Longitude Area 

(ha) 

Year 

Established 

1 Alum Creek Experimental 

Forest 

Central Arkansas 34.79 -93.04 1,885 1959 

2 Bent Creek Experimental 

Forest 

Western North Carolina 35.49 -82.63 2,550 1927 

3 Blue Valley Experimental 

Forest 

Western North Carolina 35.00 -83.25 526 1964 

4 Calhoun Experimental 

Forest 

Northwestern South 

Carolina 

34.62 -81.71 2,078 1947 

5 Chipola Experimental 

Forest 

Florida Panhandle 30.43 -85.26 259 1934 

6 Coweeta Hydrologic Lab Western North Carolina 35.06 -83.44 2,218 1934 

7 Crossett Experimental 

Forest 

Southeastern Arkansas 33.03 -91.94 680 1934 

8 Delta Experimental Forest Western Mississippi 33.47 -90.90 1,044 1961 

9 Escambia Experimental 

Forest 

Southern Alabama 31.01 -87.06 1,214 1947 

10 Harrison Experimental 

Forest 

Southern Mississippi 30.63 -89.06 1,662 1934 

11 Henry R. Koen 

Experimental Forest 

Northwestern Arkansas 36.04 -93.19 291 1951 

12 *Hill Demonstration Forest North Central North 

Carolina 

36.21 -78.87 1,089 1947 

13 Hitchiti Experimental 

Forest 

Central Georgia 33.05 -83.70 1,916 1938 

14 Olustee Experimental 

Forest 

Northeastern Florida 30.20 -82.44 1,268 1934 

15 Palustris Experimental 

Forest 

Central Louisiana 31.18 -92.67 3,035 1935 

16 Santee Experimental Forest Eastern South Carolina 33.13 -79.81 2,469 1937 

17 Scull Shoals Experimental 

Forest 

Central Georgia 33.74 -83.28 1,815 1961 

18 Stephen F. Austin 

Experimental. Forest 

Eastern Texas 31.50 -94.77 1,072 1945 

19 Sylamore Experimental 

Forest 

Northern Arkansas 36.01 -92.17 1,736 1934 

20 Tallahatchie Experimental 

Forest 

Northern Mississippi 34.50 -89.44 1,416 1950 

*Cooperating Experimental Forest added to the SRS EFR Network in 2020 based on an agreement 769 

between the Forest Service and North Carolina State University.  770 

 771 
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Table 2. Summary of the data products used to characterize the climate, ecosystem structure, and 772 

ecosystem functions for the southeastern forest region and EFRs.  773 

Properties Variables Data products Resolution Duration Source 

 

 

 

Climate 

Air temperature (Tair)  

 

 

ERA5-Land 

 

 

 

9 km 

 

 

 

2001-2022 

 

 

Munoz-

Sabater et al., 

2021 

Precipitation (Pre) 

Shortwave solar 

radiation (SR) 

Soil water content 

(SW) 

Vapor pressure deficit 

(VPD) 

Palmer Drought 

Severity Index (PDSI) 

TerraClimate ~4 km 2001-2022 Abatzoglou et 

al., 2018 

 

 

 

Ecosystem structure  

Percent tree cover MODIS VCF 

(MOD44B) 

250 m 2001-2020 DiMiceli et 

al., 2021 

Leaf area index (LAI) MODIS LAI 

(MOD15A2) 

500 m 2001-2022 Myneni et al., 

2002 

Tree height Global Forest 

Canopy Height 

Map 

30 m 2019 Potapov et 

al., 2021 

 

 

 

 

Ecosystem functions 

Net primary 

production (NPP) 

MODIS NPP 

(MOD17A3) 

500 m 2001-2022 Running et 

al., 2004 

Evapotranspiration 

(ET) 

MODIS ET 

(MOD16A2) 

500 m 2001-2022 Mu et al., 

2011 

Aboveground biomass 

(AGB) 

FS Forest biomass 

map 

250 m Circa 2002 Blackard et 

al., 2008 

Water yield (WY) ERA5-Land, 

MODIS ET 

500 m* 2001-2022 Munoz-

Sabater et al., 

2021; Mu et 

al. 2011 
* The resolution of water yield is between 500 and 9 km  as it was calculated from the MODIS ET (500 m) 774 

and the ERA5-Land (9 km). 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 



34 
 

Fig. 1 Distribution of southeastern forests and location of the Southern Research Station (SRS) 786 

Experimental Forests and Ranges (EFRs). The base map, derived from the National Forest Type 787 

Dataset (https://data.fs.usda.gov/geodata/rastergateway/forest_type/), shows the distribution of 788 

forests across the southeastern forest region. The numbers stand for the EFRs, while the centers of 789 

the circles indicate the locations of the EFRs. The numbers are within the circles except for EFRs 790 

3 and 6 as the circles of these two EFRs overlap with each other. The names of the EFRs are 791 

provided in Table 1. 792 
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Fig. 2 Percentage area of each forest type group for the southeastern region (a) and the EFRs (b).   802 
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Fig. 3 Mean annual temperature (Tair; °C) (a), precipitation (Pre; mm) (b), shortwave solar 811 

radiation (SR; W m-2) (c), vapor pressure deficit (VPD; hPa) (d), volumetric soil water content 812 

(SW; %) (e), and PDSI (f) from 2001 to 2022 for the southeastern forest region. The numbers in 813 

circles stand for EFRs, and the correspondence between the numbers and the EFRs is provided in 814 

Table 1.    815 

 816 
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Fig. 4 Probability density distribution of mean annual temperature (Tair; °C) (a), precipitation (Pre; 820 

mm yr-1), shortwave solar radiation (SR; W m-2) (c), vapor pressure deficit (VPD; hPa) (d), 821 

volumetric soil water content (SW; %) (e), and PDSI (f) from 2001 to 2022 across the southeastern 822 

forest region. The vertical lines indicate the mean annual values for the EFRs. 823 

 824 

 825 
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Fig. 5 Long-term trends of annual temperature (Tair; ˚C yr-1) (a), precipitation (Pre; mm yr-1) (b), 826 

shortwave solar radiation (SR; W m-2 yr-1) (c), vapor pressure deficit (VPD; hPa yr-1) (d), 827 

volumetric soil water content (SW; % yr-1) (e), and PDSI (f) from 2001 to 2022 f or the 828 

southeastern forest region. The numbers in circles stand for EFRs, and the correspondence between 829 

the numbers and the EFRs is provided in Table 1.  830 
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Fig. 6 Long-term mean percent tree cover (%) (2001 to 2020) (a), long-term mean of maximum 835 

leaf area index (LAI) (2001 to 2022) (b), and tree height (2019) (c) for the southeastern forest 836 

region. The numbers in circles stand for EFRs, and the correspondence between the numbers and 837 

the EFRs is provided in Table 1.  838 

 839 

 840 
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Fig. 7 Probability density distribution of long-term mean annual tree cover (%) (2001 to 2020) (a), 841 

long-term mean of maximum leaf area index (LAI) (2001 to 2022) (b), and tree height (m) (c) 842 

across the southeastern forest region. The vertical lines indicate the average values for the 20 EFRs. 843 

 844 

 845 
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Fig. 8 Long-term trends of percent tree cover (% yr-1) (a) and maximum leaf area index (LAI) (b) 846 

for southeastern forests from 2001 to 2020, and 2001 to 2022, respectively. The numbers in circles 847 

stand for EFRs, and the correspondence between the numbers and the EFRs is provided in Table 848 

1. 849 

 850 
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Fig. 9 Mean annual NPP (g C m-2 yr-1) (2001 to 2022) (a), mean annual ET (mm yr-1) (2001 to 868 

2022) (b), AGB (Mg ha-1) (c), and mean annual water yield (WY; mm yr-1) (2001 to 2022) (d) for 869 

the southeastern forest region. The numbers in circles stand for EFRs, and the correspondence 870 

between the numbers and the EFRs is provided in Table 1. 871 
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Fig. 10 Probability density distribution of mean annual NPP (g C m-2 yr-1) (2001 to 2022) (a), mean 882 

annual ET (mm yr-1) (2001 to 2022) (b), AGB (Mg ha-1) (c), and mean annual water yield (WY; 883 

mm yr-1) (2001 to 2022) (d) across the southeastern forest region. The vertical lines indicate the 884 

average values for the EFRs. 885 
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Fig. 11 Trends of annual NPP (g C m-2 yr-1) (a), ET (mm yr-1) (b), and water yield (WY; mm yr-1) 894 

(c) for the southeastern forest region from 2001 to 2022. The numbers in circles stand for EFRs, 895 

and the correspondence between the numbers and the EFRs is provided in Table 1. 896 
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Fig. 12 Representativeness of each EFR based on the 13 variables in climate, ecosystem structure, 901 
and ecosystem functions together. The representativeness was calculated based on Equation (1). 902 

The numbers in circles stand for EFRs, and the names of the EFRs are provided in Table 1. 903 
  904 

 905 



46 
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Fig. 13 Representativeness of the SRS EFR network assessed with the 13 variables together. For 910 

each pixel, the value indicates the maximum representativeness among the 20 EFRs.  911 
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Table and figure captions 931 

Tables: 932 

Table 1. Description of the 20 Experimental Forests and Ranges (EFRs) across the southeastern 933 

forest region: ID (i.e., the numbers in Fig. 1), name, location, latitude, longitude, size (ha), and 934 

year established.  935 

Table 2. Summary of the data products used to characterize the climate, ecosystem structure, and 936 

ecosystem functions for the southeastern forest region and EFRs.  937 

Figures: 938 

Fig. 1 Distribution of southeastern forests and location of the Southern Research Station (SRS) 939 

Experimental Forests and Ranges (EFRs). The base map, derived from the National Forest Type 940 

Dataset (https://data.fs.usda.gov/geodata/rastergateway/forest_type/), shows the distribution of 941 

forests across the southeastern forest region. The numbers stand for the EFRs, while the centers of 942 

the circles indicate the locations of the EFRs. The numbers are within the circles except for EFRs 943 

3 and 6 as the circles of these two EFRs overlap with each other. The names of the EFRs are 944 

provided in Table 1. 945 

Fig. 2 Percentage area of each forest type group for the southeastern region (a) and the EFRs (b).   946 

Fig. 3 Mean annual temperature (Tair; °C) (a), precipitation (Pre; mm) (b), shortwave solar 947 

radiation (SR; W m-2) (c), vapor pressure deficit (VPD; hPa) (d), volumetric soil water content 948 

(SW; unitless) (e), and PDSI (f) from 2001 to 2022 for the southeastern forest region. The numbers 949 

in circles stand for EFRs, and the correspondence between the numbers and the EFRs is provided 950 

in Table 1.    951 

Fig. 4 Probability density distribution of mean annual temperature (Tair; °C) (a), precipitation (Pre; 952 

mm yr-1), shortwave solar radiation (SR; W m-2) (c), vapor pressure deficit (VPD; hPa) (d), 953 
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volumetric soil water content (SW; unitless) (e), and PDSI (f) from 2001 to 2022 across the 954 

southeastern forest region. The vertical lines indicate the mean annual values for the EFRs. 955 

Fig. 5 Long-term trends of annual temperature (Tair; ˚C yr-1) (a), precipitation (Pre; mm yr-1) (b), 956 

shortwave solar radiation (SR; W m-2 yr-1) (c), vapor pressure deficit (VPD; hPa yr-1) (d), 957 

volumetric soil water content (SW; % yr-1) (e), and PDSI (f) from 2001 to 2022 for the southeastern 958 

forest region. The numbers in circles stand for EFRs, and the correspondence between the numbers 959 

and the EFRs is provided in Table 1.  960 

Fig. 6 Long-term mean percent tree cover (%) (2001 to 2020) (a), long-term mean of maximum 961 

leaf area index (LAI) (2001 to 2022) (b), and tree height (2019) (c) for the southeastern forest 962 

region. The numbers in circles stand for EFRs, and the correspondence between the numbers and 963 

the EFRs is provided in Table 1.  964 

Fig. 7 Probability density distribution of long-term mean annual tree cover (%) (2001 to 2020) (a), 965 

long-term mean of maximum leaf area index (LAI) (2001 to 2022) (b), and tree height (m) (c) 966 

across the southeastern forest region. The vertical lines indicate the average values for the 20 EFRs. 967 

Fig. 8 Long-term trends of percent tree cover (% yr-1) (a) and maximum leaf area index (LAI) (b) 968 

for southeastern forests from 2001 to 2020, and 2001 to 2022, respectively. The numbers in circles 969 

stand for EFRs, and the correspondence between the numbers and the EFRs is provided in Table 970 

1. 971 

Fig. 9 Mean annual NPP (g C m-2 yr-1) (2001 to 2022) (a), mean annual ET (mm yr-1) (2001 to 972 

2022) (b), AGB (Mg ha-1) (c), and mean annual water yield (WY; mm yr-1) (2001 to 2022) (d) for 973 

the southeastern forest region. The numbers in circles stand for EFRs, and the correspondence 974 

between the numbers and the EFRs is provided in Table 1. 975 
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Fig. 10 Probability density distribution of mean annual NPP (g C m-2 yr-1) (2001 to 2022) (a), mean 976 

annual ET (mm yr-1) (2001 to 2022) (b), AGB (Mg ha-1) (c), and mean annual water yield (WY; 977 

mm yr-1) (2001 to 2022) (d) across the southeastern forest region. The vertical lines indicate the 978 

average values for the EFRs. 979 

Fig. 11 Trends of annual NPP (g C m-2 yr-1) (a), ET (mm yr-1) (b), and water yield (WY; mm yr-1) 980 

(c) for the southeastern forest region from 2001 to 2022. The numbers in circles stand for EFRs, 981 

and the correspondence between the numbers and the EFRs is provided in Table 1. 982 

Fig. 12 Representativeness of each EFR based on the 13 variables in climate, ecosystem structure, 983 

and ecosystem functions together. The representativeness was calculated based on Equation (1). 984 

The numbers in circles stand for EFRs, and the names of the EFRs are provided in Table 1. 985 

Fig. 13 Representativeness of the SRS EFR network assessed with the 13 variables together. For 986 

each pixel, the value indicates the maximum representativeness among the 20 EFRs.  987 
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