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Do Experimental Forests and Ranges of the southeastern United States represent the
climate, ecosystem structure, and ecosystem functions of the region?

Abstract

There are 20 Experimental Forests and Range sites (EFRs) across the southeastern U.S. that are
currently maintained by the United States Department of Agriculture Forest Service to conduct
forest ecosystem research for addressing ecosystem management challenges. The overall objective
of this study is to use multiple gridded datasets to assess the extent that the 20 EFRs represent the
climate, ecosystem structure, and ecosystem functions of southeastern forests. The EFRs represent
the large variability of climate conditions across the region relatively well, but we identified small
representation gaps. The representativeness of ecosystem structure by these EFRs can be improved
by establishing EFRs in forests with relatively low tree cover, leaf area index, or tree canopy
height. The current EFRs also represent the forest ecosystem functions of the region relatively
well, although areas with intermediate and low aboveground biomass and water yield are not well
represented. The trends in climate, ecosystem structure, and ecosystem functions were generally
consistent between the region and the EFRs. Our study indicates that the current EFRs represent
the region relatively well, but establishing additional EFRs in specific areas within the region could
help more completely assess how southeastern forests respond to climate change, disturbance, and

management practices.

Keywords: Southern forests; Experimental forests; Ecosystem Services; Satellite data;

Representativeness
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1. Introduction

The southeastern forest region of the United States stretches from Texas across to Virginia, from
Kentucky down to Florida, and from Oklahoma in the West to North Carolina in the East.
Southeastern forests provide important ecosystem services such as timber supply, carbon
sequestration, and water supplies, and benefiting human health and well-being (Sun et al. 2005,
2008; Xiao et al. 2011; Aguilos et al. 2020; Liu et al. 2020). For example, the southeastern forest
region is the “wood basket” of the nation; southeastern forests account for only 2% of the world’s
forest area but produce 63% of the US timber harvest by volume (Oswalt et al. 2014) and 18% of
the world’s pulpwood for paper (World Resources Institute 2010). Over 50% of people in the
eastern US (57 million) depend on forests for their drinking water supply (Liu et al. 2020). The
southeastern forest region also has the most biodiversity (e.g., plant families, amphibians, and
freshwater fishes) in the nation by some measures (Stein et al. 2000) due to warm temperatures,
abundant precipitation, and high ecosystem productivity. Disturbances such as extreme droughts
and hurricanes have substantial impacts on southeastern forest ecosystems (McNulty 2002;
Chambers et al. 2007; Xiao etal. 2011; Williams et al. 2017), leading to reduced forest productivity
and a loss of carbon stocks. These same disturbances, which are expected to increase in the region
during the 21% century, can also increase insect and disease outbreaks and wildfires (Hoffman et
al. 2023).

The United States Department of Agriculture (USDA) Forest Service (FS) has a national
network of 80 long-term experimental areas (a.k.a., Experimental Forests and Ranges (EFRs))
dating back to 1908 (Stine 2016). The EFRs represent the largest and longest continuous ecological
research network in the US (USDA FS 2023). The EFRs have been used to support research in

studying how land management affects water quality and quantity; how to manage and restore
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forests and watersheds; how carbon stocks/fluxes and water regulation changes in the context of
climate change and management; and how fire, insects, invasive species, and other disturbances
affect the health of forests. Some of these forests provide real-time data on climate, hydrology,
and biology for researchers, managers, and educators (USDA FS 2023). The Southern Research
Station (SRS) EFR Network consists of 20 EFRs, including 19 official EFRs and one cooperating
EFR, which are distributed across the southeastern forest region (Fig. 1; Table 1). Each EFR is
dominated by a specific forest or ecosystem type. For example, the Escambia EFR, located in
southern Alabama, and the Palustris EFR, located in central Louisiana, support longleaf pine
(Pinus palustris) restoration, management, and physiology studies. The Coweeta Hydrologic
Laboratory EFR, located in Otto, North Carolia, is the world’s oldest forest hydrology research
laboratory (Nippgen et al. 2016). The SRS EFR Network encompasses most major forest types of
the southeastern region for long-term studies of southeastern forests. These EFRs have contributed
to foundational research on forest management of plantation and natural forests, forestry best
management practices (BMPs), catchment hydrological processes, and forest structure and
composition dynamics under climate change (Swift 1986; Loftis 1990; Swank et al. 2001; Guldin
2009). The EFRs also serve as important facilities (e.g., eddy covariance flux towers, water
chemistry analytic laboratory) for collaborative research, partnerships, and platforms that create
cutting-edge science, develop new tools, models, and technologies (Aguilos et al., 2024), and
provide research opportunities for a range of other advances including involvement of women and
other underrepresented groups (Laseter et al. 2018; Rustad et al. 2023).

A better understanding of how well the 20 EFRs represent the current southeastern forest
conditions will help us to assess how well the southeastern forest will respond to climate change

and management. To date, it is unclear how well the SRS EFRs represent southeastern forests in
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terms of climate, ecosystem structure, and ecosystem functions. Ecosystem structure can be
measured by metrics such as leaf area index (LAI) and vegetation height. Ecosystem functions are
“the biotic and abiotic processes that occur within an ecosystem and may contribute to ecosystem
services either directly or indirectly” (Garland et al. 2020). The southeastern forests are found
across variable climate and topographic conditions and are extremely diverse with differing
management regimes (e.g., planted vs natural regeneration). Such climate and management
complexity make site synthesis studies that examine the representativeness within the region
difficult. Previous studies have assessed how eddy covariance flux sites of the AmeriFlux network
represent the US terrestrial ecosystems (Hargrove et al. 2003) and how well sites in the USDA
Long-Term Agroecosystems Research (LTAR) Network represent agricultural working lands
across the conterminous US (CONUS) (Kumar et al. 2023). In the early 2000s, central continental
environments of the CONUS were well-represented by AmeriFlux, while additional sites could be
needed for south Texas, the Sonoran Desert, and the Pacific Northwest (Hargrove et al. 2003). The
LTAR representativeness was good across most the CONUS (Kumar et al. 2023).

Advances in climate data reanalysis, remote sensing techniques, and cloud-based
geospatial computing and mapping platforms (e.g., Google Earth Engine, GEE) over the last two
decades now make a variety of data products for measuring climate, ecosystem structure, and
ecosystem functions readily available. Gridded climate reanalysis data for the past few decades
such as ERA5-Land (Munoz-Sabater et al. 2021) and MERRA-2 (Gelaro et al. 2017) are available
for scales spanning regions to the entire globe. The MODerate resolution Imaging
Spectroradiometer (MODIS) sensors on NASA’s Earth Observing System (EOS)—Terra and
Aqua—provide observations of the Earth’s surface with daily coverage in 36 spectral bands and a

spatial resolution from 250 m to 1 km for the period from 2000 to present. The availability of
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MODIS data along with in-situ measurements, data-driven methods, and modeling approaches
have led to various data products for quantifying ecosystem structure and functions. For example,
MODIS data have been used to develop the global MODIS gross primary production (GPP) and
net primary production (NPP) products in MOD17 (Running et al. 2004), the MODIS
evapotranspiration (ET) product in MOD16 (Mu et al., 2011), the MODIS continuous fields (e.g.,
percent tree cover) in MOD44B (DiMiceli et al., 2021), the MODIS LAI in MOD15 (Myneni et
al. 2002), and the MODIS aboveground biomass (Blackard et al. 2008). The Global Ecosystem
Dynamics Investigation (GEDI), a spaceborne lidar instrument onboard the International Space
Station, provides footprint-based measurements of vegetation structure including forest canopy
height between 52°N and 52°S globally (Dubayah et al. 2020). The GEDI observations along with
Landsat data have been used to develop a global, gridded tree height data product (Potapov et al.
2021).

Here we used 13 gridded data products to examine how well the SRS EFRs represent the
climate, ecosystem structure, and ecosystem functions of the southeastern forest region. The
specific objectives of this study are to: (1) assess how the EFRs represent the southeastern forests
in terms of the climate using six variables: air temperature, precipitation, shortwave solar radiation,
and vapor pressure deficit (VPD) as well as soil water content (SW) and drought condition; (2)
assess how EFRs represent the southeastern forests in terms of ecosystem functions measured by
percent tree cover, LAI and tree height (i.e., tree canopy height); (3) assess how the EFRs
represent the southeastern forests in terms of ecosystem functions including NPP, ET,
aboveground biomass, and water yield (defined as annual precipitation minus annual ET); (4) use
all 13 wvariables together to evaluate the representativeness the SRS EFR network.

Representativeness here is defined as how well conditions at sampling locations (i.e., the EFRs)
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represent conditions across the southeastern region as judged by a combination of the 13 variables.
Our study is unique because it examines the representativeness of the southeastern EFRs in terms
of climate, ecosystem structures, and ecosystem functions using several different variables. To the
best of our knowledge, this is the first known attempt to evaluate the representativeness of the
EFRs using these variables. Assessing how well the EFRs on land that the USDA Forest Service
manages represent various forest attributes across the Southeast can help the agency provide
research results that are useful for forest managers across ownerships. Our effort can also help
researchers and the public understand how well the agency is able to provide that research for the
Southeast, as well as for the rest of the country.

2. Materials and Methods

2.1. Study region and EFRs

In this study, the southeastern forest region refers to forests in the 13 states of the southeastern US.
The 20 EFRs of the SRS EFR Network consist of 19 official EFRs and one cooperating
experimental forest and are distributed across the southeastern region (Fig. 1; Table 1). Although
the 19 official EFRs possess considerable coverage of forest types, geographical range, and
management activities, in 2020 the SRS added a cooperating experimental forest to expand the
suite of conditions represented by including studies on university lands (Boggs et al. 2016).
Altogether, these EFRs occupy 30,223 ha of land and encompass various landscapes of the region.
There is at least one EFR within each of the southeastern states except Kentucky, Oklahoma,
Tennessee, and Virginia. The SRS EFRs are located across topographic ranges and environmental
gradients, and represent a wide range of conditions (e.g., rural to mixed-use landscapes), forest
types, and management regimes. We used the National Forest Type Dataset from USDA Forest

Service Forest Inventory and Analysis (FIA) Program & Geospatial Technology and Applications
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Center (GTAC) to assess how the EFRs represented the forest type groups in the region. The forest
type groups within each EFR were extracted from this dataset. The 20 EFRs together represent the
forest types of the southeastern region well (Fig. 2). For both the region and the EFRs, the two
dominant forest type groups were Loblolly/Shortleaf Pine and Oak/Hickory; four other types
(Longleat/Slash Pine, Oak/Pine, Oak/Gum/Cypress, Elm/Ash/Cottonwood) accounted for >2% of
the area each; each of the remaining types accounted for <0.3% of the area.

[insert Fig. 1 about here]

[insert Table 1 about here]

[insert Fig. 2 about here]
2.2. Climate data
Climate data were obtained from the widely used ERAS5-Land climate reanalysis dataset (Munoz-
Sabater et al. 2021) (Table 2). The monthly ERAS5-Land data have a spatial resolution of 9 km x
9 km and are available from the Google Earth Engine (GEE). We used monthly average air
temperature (Tair), total precipitation (Pre), shortwave solar radiation (SR), dew point temperature,
and monthly average volumetric soil water content (SW). Vapor pressure deficit (VPD) was
calculated from Tair and dew point temperature at the monthly timescale. VPD was included as it
reflects the atmospheric water demand and regulates photosynthesis and transpiration (Li et al.
2023). We then calculated annual mean Tair, annual total Pre, annual mean SR, annual mean VPD,
and annual mean SW for 2001 to 2022. Note that these variables (e.g., VPD) were calculated at
the annual scale, and deciduous forests might be more sensitive to them over the growing season.
We downloaded these gridded data for the southeastern forest region and extracted the time series
for each variable for each EFR.

[insert Table 2 about here]
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In addition to the climate and SW data, we also used the Palmer Drought Severity Index
(PDSI) (Palmer 1965) to estimate drought conditions. The original form of PDSI was used here.
Monthly PDSI was derived from the TerraClimate product (Abatzoglou et al. 2018). TerraClimate
is a dataset of monthly climate and climatic water balance for global terrestrial surfaces
(Abatzoglou et al. 2018) and is also available on the GEE platform. Mean PDSI was calculated for
each year from 2001 to 2022 and was downloaded for the southeastern forest region and extracted
for each EFR.

2.3. Ecosystem structure data

We used the following remotely sensed variables to measure ecosystem structure of the EFRs and
southeastern forests: percent tree cover (%), LAIL and tree height (Table 2). Other measures of
forest structure such as canopy geometry, volume, heterogeneity, and arrangement were not
considered as gridded data on these measures are not readily available. The percent tree cover data
were derived from the MODIS Vegetation Continuous Fields (VCF) product of MOD44B
(DiMiceli et al. 2021). The VCF product offers a sub-pixel level representation of vegetation cover
globally and consists of estimates of percent tree cover, percent non-tree cover, and percent bare
land for each 250 m % 250 m pixel across the global land surface from 2000 to 2020 (DiMiceli et
al. 2021). We used the percent tree cover data layer to measure tree cover for each EFR and each
pixel across the southeastern forest region.

LAI data were obtained from the MODIS Terra LAI product of MOD15A2 (Myneni et al.
2002). The MOD15A2 product provides LAI and fraction of photosynthetically active radiation
(FPAR) estimates at the 8-day time step and 500 m % 500 m spatial resolution. LAI, defined as
one half of the total green leaf area per unit ground surface area in broadleaf canopies (Chen and

Black 1992) and as the projected needleleaf area in coniferous canopies (Myneni et al. 2002), is a
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key parameter for depicting vegetation canopy structure and determining the exchange of mass
(e.g., CO2 and water) and energy fluxes between the land surface and the atmosphere (Liu et al.
2018). The MOD15A2 product is also available on the GEE platform. Maximum LAI instead of
mean (or median) LAI was chosen to measure the ecosystem structure over the peak growing
season.

Tree height was based on a new, 30 X 30 m spatial resolution global forest canopy height
map (Potapov et al. 2021). Here tree height indicates tree canopy height and refers to the vertical
distance from the base of a tree to the top of the canopy of the tree. This map was developed for
the year 2019 by integrating forest structure measurements from NASA’s GEDI instrument and
surface reflectance data from NASA’s Landsat satellites. This global dataset is also available on
the GEE platform. Since no high-quality gridded data were available for other years, we were
unable to assess the trends in tree height.

2.4. Ecosystem function data

Besides climate and ecosystem structure data, we also used data on NPP, ET, aboveground
biomass (AGB), and water yield (Table 2) to measure ecosystem functions of southeastern forests.
Forest water yield and NPP are the critical ecosystem functions that sustain many ecosystem
services, such as stable and high-quality water supply, carbon sequestration, climate regulation,
and biodiversity conservation (Sun et al. 2011). Estimated annual NPP was based on the MODIS
Terra NPP data product (MOD17A3) (Running et al. 2004), which consists of annual NPP
estimates at 500 m % 500 m spatial resolution from 2000 to present. Estimated annual ET was
based on the MODIS Terra ET product (MOD16A2) (Mu et al. 2011), an 8-day composite ET
product generated at 500 m X 500 m resolution from 2000 to present. We calculated annual ET

from the 8-day ET estimates for 2001 to 2022. Water yield was calculated as the difference
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between annual precipitation based on the ERAS5-Land product and annual ET based on the
MODIS ET product from 2001 to 2022. The calculation of water yield was conducted on GEE as
both ERA5-Land and MODIS ET are available on the platform.

Aboveground biomass (AGB) data were obtained from the aboveground live forest
biomass map with 250 m x 250 m resolution for the conterminous US, Alaska, and Puerto Rico
(Blackard et al. 2008). This map was developed based on plot-level biomass data from the USDA
Forest Service FIA program and a variety of spatially continuous data such as MODIS surface
reflectance, vegetation indices, and percent tree cover, topographic variables, and climate data
along with tree-based regression algorithms (Blackard et al. 2008). This product is also available
on the GEE platform.

2.5. Analyses

We examined the magnitude and spatial patterns of annual climate variables (i.e., Tair, Pre, SR,
VPD, SW, and PDSI) of the southeastern forest region. For each variable, we calculated the long-
term mean values from 2001 to 2022 for the region on a per-pixel basis and extracted the long-
term mean values for each EFR. We then generated the probability density distribution for each
variable across the region and assessed to what extent the EFRs represent the region in terms of
mean annual climate conditions. In addition, we calculated the long-term trend in each variable for
the region from 2001 to 2022 on a per-pixel basis using the Mann-Kendall trend test (Kendall
1938; Mann 1945). The Mann-Kendall method is a nonparametric test for monotonic trends, and
it does not assume a specific distribution for the data and is insensitive to outliers (Ficklin et al.
2016; Wang et al. 2019). The slopes of the trends were calculated using the Kendall robust line-fit
method (Sokal and Rohlf 1995). The time series for each variable was extracted for each EFR, and

the long-term trend in each variable was also examined using the Mann-Kendall method.
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We then assessed the magnitude and spatial patterns of ecosystem structure as measured
by percent tree cover, LAI, and tree height across the region. Percent tree cover and annual
maximum LAI were averaged between 2001 and 2022 to calculate long-term mean values on a
per-pixel basis. The probability density distribution was then generated for each variable. For each
EFR, the percent tree cover, LAI, and tree height were spatially averaged and extracted. We
assessed to what extent EFRs can represent the ecosystem structure of the region. The Mann-
Kendall method was used to examine the long-term trend in each variable for the region on a per-
pixel basis and for each EFR.

Similarly, we assessed the magnitude and spatial patterns of ecosystem functions as
measured by NPP, ET, AGB, and water yield for the region. For each variable, the probability
density distribution was generated. We calculated the spatially averaged values of long-term means
for each variable for each EFR and assessed how the EFRs encompass the ecosystem functions of
southeastern forests. We also assessed the long-term trends in ecosystem functions for the region
on a per-pixel basis and for each EFR.

Finally, we used the 13 variables in climate (i.e., mean annual Tair, Pre, SR, SW, VPD,
PDSI), ecosystem structure (i.e., mean annual percent tree cover and LAI, tree height), and
ecosystem functions (i.e., mean annual NPP, ET, and WY, AGB) together to assess the
representativeness of the SRS EFR network, following Kumar et al. (2023). For this analysis, all
the datasets were resampled to the same spatial resolution, while for the analyses described above
the native resolution of each dataset was used. Each variable was normalized to the range of [0,
1]. For each EFR or pixel, the values of the 13 normalized variables were treated as a vector in the

multivariate space. To calculate the representativeness of each EFR, we first calculated the
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Euclidean distance between the vector of the EFR and that of each pixel across the region, and

then calculated the representativeness of each EFR as follows:

representativeness = 1 — \/Ziljl(ViEF R _ypiely2 (1)

VEFR

ixel
where VEFR and VP

stands for the multivariate vector for the EFR and a given pixel,
respectively. For each EFR, we generated a representativeness map for the region, in which a
higher value indicates that the pixel is closer to the EFR in the multivariate space and that the EFR
is more representative of that pixel. To assess the representativeness of the SRS EFR network, we
calculated the maximum representativeness value among the values of the 20 EFRs for each pixel.
3. Results

3.1. Climate

We first examined the long-term means of annual mean temperature, annual precipitation, annual
mean shortwave solar radiation, annual mean VPD, annual mean soil water content, and PDSI for
the southeastern forest region (Fig. 3) and the EFRs (Fig. S1) between 2001 and 2022. We also
compared the long-term means of these variables for the EFRs against the probability density
distribution of these variables for the entire southeastern forest region (Fig. 4). Tair generally
increased with decreasing latitude, except in the Appalachian Mountains (Fig. 3a). Tair ranged
from ~9 to 25°C across the region (Fig. 4a). The 20 EFRs encompassed a large portion of the
distribution of Tair across the region, while areas with Tair above 20.6°C or below 12.0°C (mostly
in the tails of the probability distribution) had no EFR representation (Fig. 4a). Unlike Tair, Pre
showed intermediate values in the states on the East Coast (Virginia, North Carolina, South
Carolina, Georgia, Florida), low values in the West (Oklahoma and Texas), and high values in the
central parts of the region (Fig. 3b). The annual Pre across the region ranged from ~500 to ~1700

mm yr'!, while the Pre of the EFRs was between 1074 and 1518 mm yr'!; a significant portion of
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the region (the majority of Oklahoma and Texas and a small part of the states on the East Coast)
had Pre <1000 mm yr™!' and had no EFR representation (Fig. 3b, Fig. 4b). SR had a similar spatial
pattern to Tair (Fig. 3a, c), and areas with SR lower than 182 W m™ or higher than 197 W m™
contained no EFRs (Fig. 4c). The differences in solar radiation are largely caused by the changes
in sun elevation angle that varies with latitude and changes in cloud over. The spatial pattern of
VPD was similar to that of Tair or SR (Fig. 3). The VPD of the 20 EFRs centered around the peak
value of the probability density distribution of the region and ranged from 4.0 to 8.2 hPa; 2 EFRs
had VPD <4.0 hPa, while no EFR had VPD > 8.2 hPa (Fig. 4d). The SW had relatively low values
in the Southeast of the region (e.g., Georgia, Florida) (Fig. 3e); the EFRs altogether encompassed
the distribution of SW well (Fig. 4e). The long-term mean PDSI map indicates that the northern
and central parts of the region were relatively wet while the western, southern, and eastern parts
of the region were relatively dry (Fig. 3f); the PDSI value of the 20 EFRs ranged from -0.6 to 0.7,
covering a large portion of the distribution of PDSI over the southeastern forest region (Fig. 4f).

[insert Fig. 3 about here]

[insert Fig. 4 about here]

The trends in Tair, SR, VPD, and SW varied substantially across the southeastern forest
region (Fig. 5). The southeastern half of the region had increasing trends in Tair, while the rest of
the region except Texas had decreasing trends in Tair (Fig. 5a); the trends in Tair were statistically
significant for only a small portion of the region (Fig. S2). Among the 20 EFRs, only one EFR
(Harrison, in southern Mississippi) had a statistically significant trend in Tair (Fig. S3). SR
exhibited an increasing trend in the Appalachian Mountains and areas in Oklahoma and Texas but
a declining trend in the rest of the region (Fig. 5¢). None of the EFRs had a statistically significant

trend in SR (Fig. S3). Compared with Tair, SR, and SW, Pre, VPD, and PDSI were more spatially
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consistent in the direction of change across the region. Most of the region had upward trends in
VPD, and only areas in Louisiana and southern Florida exhibited downward trends (Fig. 5d). The
VPD trend was statistically insignificant for all the EFRs (Fig. S3). The entire region except a
small area in Texas exhibited an increasing trend in Pre and PDSI (Fig. 5b, f). The trend in Pre
was statistically significant for three EFRs (Henry R. Koen in northwestern Arkansas, Palustris in
central Louisiana, and Santee in eastern South Carolina). None of the EFRs had a significant trend
in VPD. The PDSI trend was significant for five EFRs: Alum Creek (central Arkansas), Bent Creek
(western North Carolina), Chipola (Florida panhandle), Harrison, and Olustee (northeastern
Florida) (Fig. S3).
[insert Fig. 5 about here]

3.2. Ecosystem structure

We examined the ecosystem structure indicators of the southeastern forest region (Fig. 6) and
EFRs (Fig. S4) based on percent tree cover, maximum LAI, and tree height. Percent tree cover
exhibited the highest values (>80%) in the Appalachian Mountains, the lowest values in
Oklahoma, Texas, and sporadic areas in the states of the East Coast (Fig. 6a). The probability
density distribution of percent tree cover across the region showed that percent tree cover primarily
ranged from 0% to 80% and peaked around 50%; the percent tree cover of the EFRs ranged from
46% (Delta in western Mississippi) to 72% (Coweeta Hydrologic Laboratory in western North
Carolina) (Fig. 7a). Compared with percent tree cover, LAl was more homogenous across
southeastern forests. Most of the region had high LAI values while areas within Oklahoma and
Texas had low values; the remaining areas had intermediate values (Fig. 6b). The distribution of
LAI across the region peaked at ~6.7; the LAI of the 20 EFRs ranged from 5.1 (Escambia in

southern Alabama) to 6.8 (Coweeta Hydrologic Laboratory); there were no EFRs in areas with
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LAl lower than 5 (Fig. 7b). Tree height had high values in the Appalachian Mountains, low values
in areas in Oklahoma and Texas as well as sporadic areas in the states on the East Coast, and
intermediate values in the rest of the southeastern forest region (Fig. 6¢). The probability density
distribution of tree height peaked at ~20m. The tree height of the majority of the EFRs ranged
from 17 to 24 meters; Alum Creek and Bent Creek had an average tree height of 8 and 11 m,
respectively, while Sylamore in northern Arkansas and Tallahatchie in northern Mississippi had
an average tree height of 27 and 28 m, respectively (Fig. 7c).
[insert Fig. 6 about here]
[insert Fig. 7 about here]
We then examined the long-term trends in percent tree cover and maximum LAI (Fig. 8).
The trends were statistically significant for a large fraction of the pixels (Fig. S5). No widespread
areas exhibited either upward or downward trends in percent tree cover; instead, pixels with
upward trends in percent tree cover were interspersed with those with downward percent tree cover
(Fig. 8a). Seven EFRs had upward trends in percent tree cover, but none of the trends was
statistically significant; the remaining 13 EFRs had downward trends, and four of them (Bent
Creek, Chipola, Sylamore, and Tallahatchie) had statistically significant trends (p < 0.05) (Fig.
S6). Many areas of the region (e.g., western North Carolina, South Carolina, Georgia, Alabama,
southern Mississippi, and Oklahoma) had increasing trends in LAI, while the Appalachian
Mountains and some other areas of the region had nearly no trends in LAI (Fig. 8b). The spatially
averaged LAI had an increasing trend for all the EFRs except Chipola, Santee, and Tallahatchie,
and the increasing trend was statistically significant for seven EFRs (Fig. S6). We were not able
to explore the long-term trend in tree height as the tree height map is only available for 2019.

[insert Fig. 8 about here]
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3.3. Ecosystem functions

Besides climate and ecosystem structure, we also examined the ecosystem functions in ecosystem
productivity and water cycle regulation in the southeastern forests (Fig. 9) and EFRs (Fig. S7)
using four indicators: mean annual NPP, ET, and water yield as well as AGB. All these metrics
exhibited relatively large variability across the southeastern forest region (Fig. 9). Annual NPP
had the highest values in the Appalachian Mountains, western Louisiana/eastern Texas, southern
Mississippi, Florida, and coastal areas of Georgia and the Carolinas, the lowest values in central
and southern Arkansas, northern Louisiana, and northern Mississippi, and intermediate values in
other areas of the region (Fig. 9a). The mean annual NPP of the 20 EFRs had a large range, varying
from 257 g C m™ yr'! (Crossett in southeastern Arkansas) to 1145 g C m™ yr'! (Harrison) (Fig. S7)
and well encompassed the distribution of the NPP of the region (Fig. 10a). Mean annual ET
generally increased with decreasing latitude across the region except in the Appalachian
Mountains and Texas (Fig. 9b). A large portion of the southeastern forest region had annual ET
between 500 and 900 mm yr™!, and the ET of 18 EFRs was within this range (Fig. 10b); Coweeta
Hydrologic Laboratory and Olustee had the lowest (432 mm yr'') and highest ET (934 mm yr'!),
respectively (Fig. S7). The AGB was the highest in North Carolina and northern Virginia,
intermediate in southern Virginia, Kentucky, Tennessee, Arkansas, Mississippi, northern Georgia,
and Florida, and the lowest in other areas of the region (Fig. 9c). The probability density
distribution of AGB across the region peaked ~100 Mg ha''. The AGB of 16 EFRs centered around
the peak value of the distribution (i.e., mode) and ranged from 81 to 127 Mg ha’!, while the
remaining four EFRs had much higher AGB: Coweeta Hydrologic Laboratory (164 Mg ha™!), Hill
Demonstration Forest in central North Carolina (171.7 Mg/ha), Bent Creek (187 Mg ha™'), and

Blue Valley in western North Carolina (202 Mg ha™!) (Fig. 10c; Fig. S7). The annual water yield
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had high values in the Appalachian Mountains and Arkansas, intermediate values in eastern
Virginia, eastern portions of North Carolina, northern South Carolina, Louisiana, southern
Mississippi, and central Alabama, and low values in western Virginia, western North Carolina,
Georgia, northern Florida, southern Alabama, Oklahoma, and Texas (Fig. 9d). Notably, Olustee
Experimental Forest had low water yield but high NPP (Fig. S7a, d). The probability density
distribution of annual water yield of the southeastern forest region peaked at ~250 mm yr'!; only
one EFR (Olustee) had water yield lower than this value (Fig. 10d). Among the remaining 19
EFRs, four EFRs (Crossett: 609 mm yr!'; Coweeta Hydrologic Laboratory: 675 mm yr''; Blue
Valley: 707 mm yr'!'; Delta: 733 mm yr'') had water yield greater than 600 mm yr''; the water yield
of the other 15 EFRs ranged from 283 to 526 mm yr! (Fig. S7).

[insert Fig. 9 about here]

[insert Fig. 10 about here]

We then assessed the long-term trends in annual NPP, ET, and water yield over the period
2001-2022 for the southeastern forest region on a per-pixel basis (Fig. 11, Fig. S8) and for each
EFR (Fig. S9). The NPP exhibited increasing trends in the entire region except in some areas (e.g.,
areas along the East Coast and Gulf Coast, and a part of Texas) (Fig. 11a); a total of 18 EFRs had
increasing trends in NPP, but only two of them (Hill Demonstration Forest and Tallahatchie) had
statistically significant trends (p < 0.05); Chipola and Henry R. Koen (in northwest Arkansas) had
insignificant decreasing trends (p > 0.05) (Fig. S9). Increasing trends in annual ET were observed
for nearly the entire southeastern forest region (Fig. 11b); 18 EFRs had increasing trends in ET,
and the trend was significant for 11 of these EFRs; two EFRs (Chipola and Coweeta Hydrologic
Laboratory) had insignificant decreasing trends in ET (Fig. S9). Unlike NPP and ET, water yield

exhibited large variability in the direction of change across the region; an increasing trend in water
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yield was found in the Appalachian Mountains, northern Arkansas, northeastern Oklahoma,
Louisiana, southern Mississippi, and parts of Florida and South Carolina (Fig. 11¢); 12 and 8 EFRs
had upward and downward trends in water yield, respectively, while none of the trends was
statistically significant (Fig. S9). The long-term trend in AGB was not examined because the
gridded AGB data were not available yearly for a long period of time.

[insert Fig. 11 about here]
3.4. Representativeness based on all the 13 variables
The representativeness of specific EFRs varies substantially among the EFRs (Figure 12). Some
EFRs only represent a very small part of the region well but others are well representative of a
significant portion of the region. For example, two EFRs (Calhoun Experimental Forest, #4;
Coweeta Hydrologic Lab, #6) are only representative of the Appalachian Mountains area adjoining
NC, SC, GA, and TN, and the Chipola Experimental Forest (#5) is only well representative of the
Florida Panhandle. By contrast, some EFRs such as Alum Creek Experimental Forest (#1), Hitchiti
Experimental Forest (#13), Scull Shoals Experimental Forest (#17), and Tallahatchie Experimental
Forest (#20) are representative of a sizable portion of the southeastern region. The SRS EFR
network overall, however, represents a large portion of the region relatively well, while central
OK and TX are least represented (Figure 13).
4. Discussion
We used a variety of gridded datasets to assess how the 20 EFRs represent the southeastern forests.
The southeastern forest region is dominated by a humid, subtropical climate that is influenced by
various factors such as latitude, topography, and proximity to the Gulf of Mexico and Atlantic
Ocean (Carter et al. 2018). The southeastern forest region has relatively large gradients in mean

annual climate (i.e., Tair, Pre, SR, VPD), SW, and PDSI. Temperature generally decreases with
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increasing latitude and elevation (Carter et al. 2018). Altogether, the 20 EFRs encompass a large
range of the distribution of each climate variable, while the areas with low and high values (often
in the tails of the probability distributions) are typically under-represented or have no EFRs at all.
Understanding the tails of the climate distributions is important as ecosystems in these areas are
likely more sensitive to climate change. For example, dryland ecosystems are more sensitive to
changes in precipitation, while ecosystems in areas with high temperatures are more susceptible
to warmer temperatures. To improve the representativeness of the mean climate conditions across
the southeastern forest region, additional EFRs could be established in areas such as the
Appalachian Mountains of Virginia, southern Florida, Oklahoma, and central/northern Texas. A
large portion of forest across the southeastern forest region has intermediate to higher percent tree
cover and LAI while a sizable portion of the region has relatively low tree height. All the EFRs
have intermediate and high values in ecosystem structure metrics (i.e., percent tree cover, LAIL
and tree height). Establishing EFRs in forests with relatively low percent tree cover, LAI, or tree
height or in young forests could improve the representativeness of EFRs in terms of ecosystem
structure, as none of the EFRs has percent tree cover lower than 45%, maximum LAI lower than
4.5, or tree height lower than 7.9 m. The lack of representation for areas with low tree cover, LAI
and/or tree height is perhaps not surprising since all of the EFRs in the southeastern region are
experimental forests (not experimental ranges), but additions to the network could also include
experimental ranges that focus on grassland and savanna systems, such as the Cross Timbers
region of eastern Oklahoma and north-central Texas (Hallgren et al. 2012). Ecosystem functions
as measured by NPP, ET, AGB, and water yield exhibited large gradients across the southeastern
forest region. A large portion of the distribution for both NPP and ET is well represented by the

EFRs. Establishing EFRs in areas with intermediate and low AGB and water yield such as large
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parts of South Carolina, Georgia, Oklahoma, and Texas could improve the representativeness of
the EFRs in terms of AGB and water yield. These areas have intermediate or low biomass because
of intermediate or low annual precipitation, tree height, and LAI and have intermediate or low
water yield because of intermediate or low precipitation but intermediate or high temperature
and/or VPD.

The long-term trends in the climate-related variables (i.e., Tair, Pre, SR, VPD, SW, and
PDSI) were generally consistent between the EFRs and the southeastern forest region. For
example, Tair had an increasing trend for nearly every location across the region, and all the EFRs
had increasing trends in Tair; SR exhibited negative trends for nearly the entire southeastern forest
region, and the majority of the EFRs (16 out of 20) also had negative trends in SR. This indicates
that these EFRs are generally representative of the region in terms of climate trends. The trends in
percent tree cover and LAI were also generally consistent between the region and the EFRs. On a
per-pixel basis, increases and decreases in percent tree cover were interspersed with each other,
and 7 and 13 EFRs had increasing and decreasing percent tree cover, respectively; increasing LAI
was observed for most of the pixels in the region and 17 out of the 20 EFRs. The trends in
ecosystem functions (i.e., NPP, ET, and water yield) of the EFRs were also generally
representative of those of the region.

Ecosystem structure and functions could exhibit spatial variability within a given EFR. For
example, although on average none of the EFRs have low percent tree cover or tree height or young
forests, short or young trees could exist in any given EFR. Assessing the variability within each
EFR is limited by the spatial resolution of the data used. The smallest EFR has an area of 259 ha
(~2.6 km?), while the spatial resolution (or grid cell size) of most of the datasets ranges from 500m

to 4km. The only dataset that is suitable for assessing within-EFR variability is the tree height
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dataset that is at 30-m resolution. We used this dataset to assess whether the distribution of tree
height for these 30-m grid cells could better represent that of the southeastern forests (Fig. S10).
With all the 30-m grid cells within each EFR considered, the tree height of the EFRs mainly ranges
from 18 to 24 m, and still under-represents medium and relatively short trees.

It should be noted that there are other research forests across the southeastern region other
than the EFRs. Notably, there are other research forests on federal or state lands. Moreover, some
universities have their own research forests. For example, the Duke Forest in North Carolina,
which is owned and managed by Duke University, consists of more than 2,800 hectares of forested
land and has been managed for research experiments (e.g., Free-Air Carbon Dioxide Enrichment
or FACE). Although these forests are not part of the EFR network, tremendous research has been
done to examine ecosystem functions and services amidst climate change based on these sites.
These research forests in combination with the EFRs are likely able to better represent the
southeastern forests in terms of climate, ecosystem functions, and ecosystem structure than the
EFR network alone and to better answer science questions related to climate change, disturbance,
and management practices.

Future representativeness studies of the EFRs could benefit from the following ways. First,
using climate and PDSI data with finer spatial resolution can better characterize climate and
drought conditions of the EFRs, particularly the small ones. Second, besides the magnitude and
trends in annual climate variables, the seasonality of climate could be considered. Third, the future
availability of time series data for AGB and tree height will allow for the characterization of the
temporal dynamics of these two variables. Finally, besides climate, ecosystem functions, and
ecosystem services, other aspects such as soil properties, elevation, stand age, and structural

diversity (Crockett et al. 2023) could be incorporated into future representativeness assessments.
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This study across the EFRs and the southeastern forest region fills the knowledge gap
regarding the climate, ecosystem structure, and ecosystem functions of EFRs in the context of the
broader southeastern forest region. Understanding ecosystem functions and structures across the
EFR network can help the SRS to address new research questions, including those associated with
expected climate change across the southeastern forest region during the remainder of the 21
century (Carter et al. 2018). Although projected increases in temperature for some parts of the
region are smaller than for other regions of the United States, projected increases are larger for
interior areas of the Southeast than for coastal areas of the region (Carter et al. 2018). Projections
for future precipitation are less certain than those for temperature increases (Kunkel et al. 2013).
Many model projections show only small changes in precipitation with drier conditions in the far
southwest of the region and wetter conditions in the far northeast of the region (Kunkel et al. 2013).

The EFRs have some unique advantages that include dedicated research facilities, core
budgets, maintenance of long-term research and data, involvement of land and resource managers
from the FS National Forest System, and support for research across disciplines (Adams et al.
2008). The wealth of long-term data sets, spanning up to a century, distinguishes EFRs and
underscores their value in studying ecological systems. Our societal perspective on the value of
forest ecosystems has changed since these EFRs were established. The management of National
Forests, for example, has shifted from a focus primarily on timber and water to a focus on the
management of forest ecosystems, which includes recreation and biodiversity as well as timber
and water (Williams 2005). However, to continue to function as an effective EFR network and to
address contemporary environmental challenges, it will be vital to define existing conditions across
the EFRs and refine and maintain the most important attributes of the network that include data

continuity, scientific consistency, baseline data, comparative research, and adaptation to change
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(e.g., effective methods of data sharing). Future sites in underrepresented regions and continued
operation of existing EFRs should consider several factors including geographic and climate
representation and the potential for collaborative cross-site research. In the establishment of new
EFRs, other factors that could be important to consider are whether the disturbance and
management scenarios are well represented, whether relevant long-term monitoring data
already exists for the location to allow for comparison with existing EFRs, and whether funding
and personnel are available to maintain the infrastructure needed. Results from this study can
provide useful information to offer guidance on the direction of future site selections, on research
actions, needs, and programs including new sampling designs, and on scientific infrastructure,
tools, and models. The biggest challenges lie in the availability of funding and land. Sufficient and
sustained funding will be essential for the successful establishment of a new EFR. Southeastern
forests are mostly privately owned and thereby partnerships are likely to be important for the
expansion of the network. One practical solution is to identify and incorporate existing university,
state, and nonprofit research forests into a larger network of research forests with the EFR network
as its backbone.

5. Conclusions

We assessed how the Experimental Forests and Ranges (EFRs) represent the variation in climate,
ecosystem structure, and ecosystem functions across the southeastern forest region using a variety
of gridded data products. The southeastern forest region exhibits large gradients in climate,
ecosystem structure, and ecosystem functions. Overall, the existing 20 EFRs managed by the SRS
largely represent the distribution of climate (i.e., air temperature, precipitation, shortwave solar
radiation, vapor pressure deficit, soil water content, and PDSI), ecosystem structure (i.e., percent

tree cover, LAI, tree height), and ecosystem functions (i.e., NPP, ET, AGB, water yield) of the
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region. The long-term trends in climate, ecosystem structure, and ecosystem functions of the EFRs
were generally consistent with those of the southeastern forest region. The representativeness of
the mean climate conditions of the region could be improved by establishing EFRs in some parts
of the region (e.g., the Appalachian Mountains of Virginia, southern Florida, Oklahoma, and
central/northern Texas). Moreover, areas with a percent tree cover lower than 45%, LAI lower
than 4.5, or tree height lower than 8 m have no EFR representation, indicating that establishing
new EFRs in forests with relatively low percent tree cover, LAI or tree height or in young forests
could improve the representativeness of the SRS EFR network in terms of ecosystem structure.
Establishing EFRs in areas with intermediate and low AGB and WY, such as large parts of South
Carolina, Georgia, Oklahoma, and Texas, could improve the representativeness of the EFRs in
terms of AGB and water yield. Better understanding and improving the representativeness of the
EFRs can help understand the past, present, and future changes in southeastern forests for the past,
present, and future in the context of climate change and management. A potential next step would
be to identify specific locations for additions to the EFR network to improve its representativeness.
One line of work could assess the most efficient way to achieve a certain degree of
representativeness — for example, how many more sites are needed to be 95% representative?
This study could provide a framework for how other Forest Service research stations could
assess the representativeness of their EFRs. More generally, it could provide a helpful blueprint
for assessing the representativeness of any research network (or collection of associated research
sites). The findings of this work could help researchers who do work in the SRS EFRs to better
understand the geographic context of their work, and to encourage them to think about the
limitations of their work and how it could be improved by expanding the EFRs into new locations.

For researchers who do not work in these EFRs, the results of this study could encourage them to
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use the data collected from the network and to apply the resulting research findings to their own

work.
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Table 1. Description of the 20 Experimental Forests and Ranges (EFRs) across the southeastern

forest region: ID (i.e., the numbers in Fig. 1), name, location, latitude, longitude, size (ha), and

year established.

ID Name

1

2

10

11

12

13

14

15

16
17

18

19

20

*Cooperating Experimental Forest added to the SRS EFR Network in 2020 based on an agreement

Alum Creek Experimental
Forest

Bent Creek Experimental
Forest

Blue Valley Experimental
Forest

Calhoun Experimental
Forest

Chipola Experimental
Forest

Coweeta Hydrologic Lab
Crossett Experimental
Forest

Delta Experimental Forest
Escambia Experimental
Forest

Harrison Experimental
Forest

Henry R. Koen
Experimental Forest

*Hill Demonstration Forest

Hitchiti Experimental
Forest

Olustee Experimental
Forest

Palustris Experimental
Forest

Santee Experimental Forest
Scull Shoals Experimental
Forest

Stephen F. Austin
Experimental. Forest
Sylamore Experimental
Forest

Tallahatchie Experimental
Forest

Location

Central Arkansas
Western North Carolina
Western North Carolina
Northwestern South
Carolina

Florida Panhandle

Western North Carolina
Southeastern Arkansas

Western Mississippi
Southern Alabama

Southern Mississippi
Northwestern Arkansas
North Central North
Carolina

Central Georgia
Northeastern Florida

Central Louisiana

Eastern South Carolina
Central Georgia

Eastern Texas
Northern Arkansas

Northern Mississippi

Latitude

34.79

35.49

35.00

34.62

30.43

35.06
33.03

33.47
31.01

30.63

36.04

36.21

33.05

30.20

31.18

33.13
33.74

31.50

36.01

34.50

between the Forest Service and North Carolina State University.

Longitude
-93.04
-82.63
-83.25
-81.71
-85.26

-83.44
-91.94

-90.90
-87.06

-89.06
-93.19
-78.87
-83.70
-82.44
92.67

-79.81
-83.28

-94.77
-92.17

-89.44

Area
(ha)
1,885
2,550
526
2,078
259

2,218
680

1,044
1,214

1,662
291

1,089
1,916
1,268
3,035

2,469
1,815

1,072
1,736

1,416

Year

Established

1959

1927

1964

1947

1934

1934
1934

1961
1947

1934

1951

1947

1938

1934

1935

1937
1961

1945

1934

1950
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Table 2. Summary of the data products used to characterize the climate, ecosystem structure, and

ecosystem functions for the southeastern forest region and EFRs.

Properties

Climate

Ecosystem structure

Ecosystem functions

Variables

Air temperature (Tair)
Precipitation (Pre)
Shortwave solar
radiation (SR)

Soil water content
(SW)

Vapor pressure deficit
(VPD)

Palmer Drought
Severity Index (PDSI)
Percent tree cover

Leaf area index (LAI)

Tree height

Net primary
production (NPP)
Evapotranspiration
(ET)

Aboveground biomass
(AGB)

Water yield (WY)

Data products

ERAS5-Land

TerraClimate

MODIS VCF
(MOD44B)
MODIS LAI
(MOD15A2)
Global Forest
Canopy Height
Map

MODIS NPP
(MOD17A3)
MODIS ET
(MOD16A2)

FS Forest biomass

map
ERAS5-Land,
MODIS ET

Resolution

9 km

~4 km
250 m
500 m

30 m

500 m
500 m
250 m

500 m"*

Duration

2001-2022

2001-2022

2001-2020

2001-2022

2019

2001-2022

2001-2022

Circa 2002

2001-2022

Source

Munoz-
Sabater et al.,
2021

Abatzoglou et
al., 2018
DiMiceli et
al., 2021
Myneni et al.,
2002

Potapov et
al., 2021

Running et
al., 2004

Mu et al.,
2011
Blackard et
al., 2008
Munoz-
Sabater et al.,
2021; Mu et
al. 2011

* The resolution of water yield is between 500 and 9 km as it was calculated from the MODIS ET (500 m)

and the ERAS-Land (9 km).
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Fig. 1 Distribution of southeastern forests and location of the Southern Research Station (SRS)
Experimental Forests and Ranges (EFRs). The base map, derived from the National Forest Type
Dataset (https://data.fs.usda.gov/geodata/rastergateway/forest type/), shows the distribution of
forests across the southeastern forest region. The numbers stand for the EFRs, while the centers of
the circles indicate the locations of the EFRs. The numbers are within the circles except for EFRs
3 and 6 as the circles of these two EFRs overlap with each other. The names of the EFRs are

provided in Table 1.
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Fig. 2 Percentage area of each forest type group for the southeastern region (a) and the EFRs (b).
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Fig. 3 Mean annual temperature (Tair; °C) (a), precipitation (Pre; mm) (b), shortwave solar
radiation (SR; W m™) (c), vapor pressure deficit (VPD; hPa) (d), volumetric soil water content
(SW; %) (e), and PDSI (f) from 2001 to 2022 for the southeastern forest region. The numbers in
circles stand for EFRs, and the correspondence between the numbers and the EFRs is provided in
Table 1.
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820  Fig. 4 Probability density distribution of mean annual temperature (Tair; °C) (a), precipitation (Pre;
821 mm yr'!), shortwave solar radiation (SR; W m™) (c), vapor pressure deficit (VPD; hPa) (d),
822  volumetric soil water content (SW; %) (e), and PDSI (f) from 2001 to 2022 across the southeastern

823  forest region. The vertical lines indicate the mean annual values for the EFRs.
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Fig. 5 Long-term trends of annual temperature (Tair; °C yr'') (a), precipitation (Pre; mm yr!) (b),
shortwave solar radiation (SR; W m™? yr') (c), vapor pressure deficit (VPD; hPa yr!) (d),
volumetric soil water content (SW; % yr'!) (e), and PDSI (f) from 2001 to 2022 f or the
southeastern forest region. The numbers in circles stand for EFRs, and the correspondence between
the numbers and the EFRs is provided in Table 1.
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835  Fig. 6 Long-term mean percent tree cover (%) (2001 to 2020) (a), long-term mean of maximum
836 leaf area index (LAI) (2001 to 2022) (b), and tree height (2019) (c) for the southeastern forest
837  region. The numbers in circles stand for EFRs, and the correspondence between the numbers and
838  the EFRs is provided in Table 1.
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841  Fig. 7 Probability density distribution of long-term mean annual tree cover (%) (2001 to 2020) (a),
842  long-term mean of maximum leaf area index (LAI) (2001 to 2022) (b), and tree height (m) (c)

843  across the southeastern forest region. The vertical lines indicate the average values for the 20 EFRs.
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Fig. 8 Long-term trends of percent tree cover (% yr'!) (a) and maximum leaf area index (LAI) (b)
for southeastern forests from 2001 to 2020, and 2001 to 2022, respectively. The numbers in circles

stand for EFRs, and the correspondence between the numbers and the EFRs is provided in Table

(a) Tree cover
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Fig. 9 Mean annual NPP (g C m? yr'!) (2001 to 2022) (a), mean annual ET (mm yr'!) (2001 to
2022) (b), AGB (Mg ha') (c), and mean annual water yield (WY; mm yr') (2001 to 2022) (d) for
the southeastern forest region. The numbers in circles stand for EFRs, and the correspondence

between the numbers and the EFRs is provided in Table 1.
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Fig. 10 Probability density distribution of mean annual NPP (g C m yr'!) (2001 to 2022) (a), mean
annual ET (mm yr!") (2001 to 2022) (b), AGB (Mg ha™!) (c), and mean annual water yield (WY;

mm yr'!) (2001 to 2022) (d) across the southeastern forest region. The vertical lines indicate the

average values for the EFRs.
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894  Fig. 11 Trends of annual NPP (g C m? yr!) (a), ET (mm yr') (b), and water yield (WY; mm yr!)
895  (c) for the southeastern forest region from 2001 to 2022. The numbers in circles stand for EFRs,

896  and the correspondence between the numbers and the EFRs is provided in Table 1.
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Fig. 12 Representativeness of each EFR based on the 13 variables in climate, ecosystem structure,
and ecosystem functions together. The representativeness was calculated based on Equation (1).

The numbers in circles stand for EFRs, and the names of the EFRs are provided in Table 1.
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Fig. 13 Representativeness of the SRS EFR network assessed with the 13 variables together.

each pixel, the value indicates the maximum representativeness among the 20 EFRs.

For

47



931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

Table and figure captions
Tables:
Table 1. Description of the 20 Experimental Forests and Ranges (EFRs) across the southeastern
forest region: ID (i.e., the numbers in Fig. 1), name, location, latitude, longitude, size (ha), and
year established.
Table 2. Summary of the data products used to characterize the climate, ecosystem structure, and
ecosystem functions for the southeastern forest region and EFRs.
Figures:
Fig. 1 Distribution of southeastern forests and location of the Southern Research Station (SRS)
Experimental Forests and Ranges (EFRs). The base map, derived from the National Forest Type
Dataset (https://data.fs.usda.gov/geodata/rastergateway/forest type/), shows the distribution of
forests across the southeastern forest region. The numbers stand for the EFRs, while the centers of
the circles indicate the locations of the EFRs. The numbers are within the circles except for EFRs
3 and 6 as the circles of these two EFRs overlap with each other. The names of the EFRs are
provided in Table 1.
Fig. 2 Percentage area of each forest type group for the southeastern region (a) and the EFRs (b).
Fig. 3 Mean annual temperature (Tair; °C) (a), precipitation (Pre; mm) (b), shortwave solar
radiation (SR; W m™) (c), vapor pressure deficit (VPD; hPa) (d), volumetric soil water content
(SW; unitless) (e), and PDSI (f) from 2001 to 2022 for the southeastern forest region. The numbers
in circles stand for EFRs, and the correspondence between the numbers and the EFRs is provided
in Table 1.
Fig. 4 Probability density distribution of mean annual temperature (Tair; °C) (a), precipitation (Pre;

mm yr!), shortwave solar radiation (SR; W m™) (c), vapor pressure deficit (VPD; hPa) (d),
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volumetric soil water content (SW; unitless) (e), and PDSI (f) from 2001 to 2022 across the
southeastern forest region. The vertical lines indicate the mean annual values for the EFRs.

Fig. 5 Long-term trends of annual temperature (Tair; °C yr'!) (a), precipitation (Pre; mm yr'!) (b),
shortwave solar radiation (SR; W m™ yr!) (c), vapor pressure deficit (VPD; hPa yr!) (d),
volumetric soil water content (SW; % yr'") (e), and PDSI (f) from 2001 to 2022 for the southeastern
forest region. The numbers in circles stand for EFRs, and the correspondence between the numbers
and the EFRs is provided in Table 1.

Fig. 6 Long-term mean percent tree cover (%) (2001 to 2020) (a), long-term mean of maximum
leaf area index (LAI) (2001 to 2022) (b), and tree height (2019) (c) for the southeastern forest
region. The numbers in circles stand for EFRs, and the correspondence between the numbers and
the EFRs is provided in Table 1.

Fig. 7 Probability density distribution of long-term mean annual tree cover (%) (2001 to 2020) (a),
long-term mean of maximum leaf area index (LAI) (2001 to 2022) (b), and tree height (m) (c)
across the southeastern forest region. The vertical lines indicate the average values for the 20 EFRs.
Fig. 8 Long-term trends of percent tree cover (% yr'!) (a) and maximum leaf area index (LAI) (b)
for southeastern forests from 2001 to 2020, and 2001 to 2022, respectively. The numbers in circles
stand for EFRs, and the correspondence between the numbers and the EFRs is provided in Table
1.

Fig. 9 Mean annual NPP (g C m? yr'!) (2001 to 2022) (a), mean annual ET (mm yr'!) (2001 to
2022) (b), AGB (Mg ha') (c), and mean annual water yield (WY; mm yr') (2001 to 2022) (d) for
the southeastern forest region. The numbers in circles stand for EFRs, and the correspondence

between the numbers and the EFRs is provided in Table 1.
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Fig. 10 Probability density distribution of mean annual NPP (g C m™ yr") (2001 to 2022) (a), mean
annual ET (mm yr!) (2001 to 2022) (b), AGB (Mg ha!) (c), and mean annual water yield (WY;
mm yr'!) (2001 to 2022) (d) across the southeastern forest region. The vertical lines indicate the
average values for the EFRs.

Fig. 11 Trends of annual NPP (g C m? yr'!) (a), ET (mm yr!) (b), and water yield (WY; mm yr'')
(c) for the southeastern forest region from 2001 to 2022. The numbers in circles stand for EFRs,
and the correspondence between the numbers and the EFRs is provided in Table 1.

Fig. 12 Representativeness of each EFR based on the 13 variables in climate, ecosystem structure,
and ecosystem functions together. The representativeness was calculated based on Equation (1).
The numbers in circles stand for EFRs, and the names of the EFRs are provided in Table 1.

Fig. 13 Representativeness of the SRS EFR network assessed with the 13 variables together. For

each pixel, the value indicates the maximum representativeness among the 20 EFRs.
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