
Overview of PUFs and Emerging Chaotic Structures
David G. Tindall, Aubrey N. Beal, Tommy Morris

Dept. of Electrical & Computer Engineering
The University of Alabama in Huntsville

Huntsville, AL, USA
dt0085@uah.edu, aubrey.beal@uah.edu, tommy.morris@uah.edu

Abstract—We present an abbreviated survey of common Phys-
ically Unclonable Function (PUF) structures, and highlight two
emerging chaotic structures, targeted towards application-driven
practitioners who need reliable generation of device specific
values. Interestingly, chaotic PUF structures output entropic
values over successive iterations. We also outline three distinct
PUF use cases and discuss well-suited electronic structures for
each case. We discuss security in limited cases and summarize
suitable implementation targets, aspects affecting reliability, and
notional generation rates. Altogether, this work summarizes key
concepts about PUF structures in an application-driven context
to aid both designers and users of these devices in the broader
security community.

Index Terms—Physically Unclonable Functions (PUFs),
Chaotic circuits, Hardware Security, Entropy Sources.

I. INTRODUCTION

IT has been more than twenty years since Gassend et
al. presented the idea of an in-circuit physical random

function [1], which they coined a PUF and now is known
as a physically uncloneable function. This approach differed
from prior work using physically-separate three-dimensional
micro-structures excited by coherent radiation. They noted that
statistical manufacturing differences in integrated circuits (ICs)
were well-documented, and though viewed as a problem, could
also be viewed as an opportunity - a means to generate values
useful for cryptographic operations. Later, the concept of a
controlled PUF that improved security described additional el-
ements needed for real applications [2]. Importantly, Gassend
combined both concepts and identified the need to ensure the
reliable regeneration of PUF values [3]. The first reference
in both papers is Ross Anderson’s “Security Engineering:
A Guide to Building Dependable Distributed Systems” [4]
which demonstrates that these initial researchers approached
the considered security applications from a system view.

Researchers and designers spent tremendous time and en-
ergy on PUFs over subsequent years. The community still
struggles to produce circuits that are 1) reliable over tem-
perature and age and 2) maintain the secrecy of dynamically
generated PUF values for various use cases. This difficulty
arises partly due to the continuous discovery of new attacks
to extract PUF values. Additionally, researchers have shown
the importance of characterizing PUF responses in terms of
min-entropy; to accurately calculate the guess-ability of PUF

Distribution Statement A. Approved for public release: distribution is
unlimited PR Number: PR2024206

values. In recent years, researchers have proposed new PUF
structures based on chaotic dynamics. Though reliability of
these PUF designs should be questioned, they raise interesting
areas for future research, especially because these structures
have the ability to iteratively generate entropy.

Our contribution is to compare and contrast in-circuit PUF
structures, including emerging structures based on chaos. In
Section II, we provide insights about PUF use cases and dis-
cuss how different PUF structures are particularly applicable
to specific use cases. Next, in Section III, we highlight and
compare several well-known PUF structures including arbiters,
ring oscillators, static random access memory (SRAM) cells,
butterfly architectures, and emerging chaotic structures. Sec-
tion IV introduces new terminology for entropic sources, in-
spired by differences in chaotic PUFs, which generate entropic
values over successive iterations. Finally, we propose future
work in Section V and conclude in Section VI.

II. USE CASES

Before different PUF structures are introduced, it is im-
portant for practitioners to understand what security function
an employed PUF is targeting. We consider three distinct use
cases to illustrate the suitability of different structures for vari-
ous applications. In this section three use cases are described:
Device Authentication, Intellectual Property Protection, and
Random Number Generation.

A. Device Authentication

The first silicon-based PUF in literature focused on the
device authentication use case [2] [3]. Figure 1a shows a
model which takes an input bitstring, known as a challenge,
and outputs a device-unique value, known as a response. This
model can provide a mechanism to authenticate a remote
device over an insecure communication channel. Prior to
deploying the device, a table of challenge-response pairs
are stored on a secure server for use over the period of
deployment. To verify that a device is authentic, a user (or
server) will present a challenge value to the remote device.
This device in turn will regenerate a unique response value
that the user (or server) knows. The authentication operation
can be performed over an untrusted communication channel
as long as the Challenge Response Pairs (CRPs) are used only
once. These early researchers proposed a Controlled PUF [2]
for use in device authentication which introduced additional

20
24

 IE
EE

 P
hy

si
ca

l A
ss

ur
an

ce
 a

nd
 In

sp
ec

tio
n

of
 E

le
ct

ro
ni

cs
 (P

A
IN

E)
 |

97
9-

8-
33

15
-4

22
5-

2/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
PA

IN
E6

20
42

.2
02

4.
10

79
27

41

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on October 13,2025 at 13:44:07 UTC from IEEE Xplore. Restrictions apply.

Hash
Strong
PUF

C RHash

(optional)

Chaotic
PUF

Health
Test

Protected
Execution &
Processing

Hash I/O

Exectution &
Processing of
Plaintext IP

Weak
PUF

I/OECC Hash Decrypter

Helper Data Encrypted IP

a)

b)

c)

Fig. 1. a) Functional block diagram of a device authentication use case b)
Functional block diagram of an IP protection use case c) Functional block
diagram of a random number generation use case

elements aimed to increase reliability and security, the later
by hashing to defend against modeling attacks.

Note that Figure 1a indicates the use of a strong PUF.
Herder et al. [5] state that a PUF can be viewed as a black
box receiving a challenge c and returning a response r = f(c).
They explain that “the fundamental difference between weak
and strong PUFs is the domain of f(.).” [5] Weak PUFs only
process a few challenges while inputs to Strong PUFs become
exponentially large. Strong PUFs are intrinsically suited for the
authentication use case because the challenge-response space
is so large it prohibits an adversary from enumerating all the
possible pairs.

B. Intellectual Property (IP) Protection

We define IP Protection as encrypting off-chip firmware
and/or software as well as preventing chip cloning. For
many years, microcontrollers or Field Programmable Gate
Arrays (FPGAs) have used fuse-based mechanisms or em-
bedded nonvolatile memory to store cryptographic keys on-
chip. These cryptographic keys decrypt soft-IP stored off-
chip via symmetric-key cryptography. Gassend et al. described
a Physically Obfuscated Key (POK) as a means to prevent
potential IP theft where an adversary could simply make a
mask of a chip to clone it. IP theft is thwarted in this example
because the weak PUF (since it always receives a single,
hardwired challenge) will vary in output across devices. The
real manufacturer can program the fuse-based key split of each
chip to produce the correct decryption key when XORed with
the PUF value generated by the device. A cloned chip will
produce a different PUF value and thus an incorrect decryption
key.

The POK presented was the first hint of using PUFs for
cryptographic symmetric key generation. Though anti-cloning
could be argued as a separate use case, in essence the IP

protection Gassend et al. propose relies on the ability to deny
an adversary from decrypting software in the embedded ROM.
Generating a symmetric secret key is the more general use case
that is of interest in this paper. Note that no error correction
was incorporated in the POK and, again, a fixed challenge was
hardwired because a strong PUF was used in this design.

In 2007, Suh and Devadas [6] presented a model for
generating a cryptographic key which included syndrome data,
or Error Correction Code (ECC) helper data, that is stored
off-chip along with encrypted IP firmware or IP software as
shown in Figure 1b. Suh and Devadas also introduced the
concept of an enrollment phase to produce the syndrome
followed by an operational phase where the system applies
error correction to ensure reliable key generation. When using
symmetric key encryption, such as AES, a single bit error
would be catastrophic to the required operation. Also note
that a weak PUF suffices for this application since only
one encryption key is needed. Hashing in this model is a
mechanism to transform a large non-uniform distribution of
bits into a more uniform distribution of the proper key length.
This dynamically generated encryption key is then used to
decrypt IP that is stored externally to the device.

C. Random Number Generation

Gassend et al. originally noted that PUFs were Physical
Random Functions, so using PUFs as Random Number Gen-
erators (RNGs) is an obvious use case. RNGs have numerous
applications in security systems beyond key generation and
device authentication. Random nonce values are used to estab-
lish secure sessions that provide forward secrecy. Applications
that output encrypted data often need random padding. Some
cryptographic implementations use random values to mask
intermediate values for side-channel protection.

These one-time uses of random values differ from the
prior use cases presented. Most significantly, the ephemeral
values do not need to be error-corrected since there is no
need to ensure they are regenerable; however, there are other
considerations for this use case. Ideally the PUF in this
use case should continue to generate new random values.
Past applications have used pseudo-random functions that are
seeded with a unique, typically confidential, initial value that
deterministically generate a pseudo-random series. But in this
use case, the rate at which entropy can be generated becomes
of interest.

NIST has a series of publications related to RNGs. In
Special Publication 800-90B, “Recommendation for the En-
tropy Sources Used for Random Bit Generation”, Turan et
al. [7] provided the system model where the digital noise
source could be a chaotic PUF as shown in Figure 1c. Note
that for security applications, RNG implementations should
incorporate some type of health monitoring to make sure the
source continues to generate random values. It is also advisable
that the implementation includes an optional conditioning
function, shown as a hash function in this example, to ensure
random looking values are produced even in the case of failure.

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on October 13,2025 at 13:44:07 UTC from IEEE Xplore. Restrictions apply.

D. Comparing and Contrasting

For the device authentication use case, Herder et al. [5]
pointed out that PUF authentication can incorporate “an allow-
able error threshold” to eliminate the need for error correction.
For reliability, the model shown in Figure 1a must incorporate
error correction since hashed PUF output with a single bit error
will change all of the response bits with a 50% probablity
according to the strict avalanche criterion. Herder et al. [5]
stated, “It should also be noted that the security models for
weak and strong PUFs differ. The output of a weak PUF must
be kept private, while a strong PUF’s responses do not have the
same restriction.” Rather than attributing privacy to whether
a PUF is strong or weak, the authors assert this is really a
function of the use case.

Comparing and contrasting these diagrams is useful for
practitioners to understand security implications. First, each
model defines a boundary. Notionally that boundary provides
some security; it could be a secure enclosure or it may only
delineate the bounds of an integrated circuit. Of particular
interest are differences among use cases regarding interfaces
that cross the security boundary. The interface exposes attack
surfaces that may be exploitable to leak information about the
values being generated by a PUF.

III. PUF STRUCTURES

This section presents well-known PUF structures that a
practitioner should understand. We describe the mechanisms
to produce unique values or entropic values and how they are
affected by manufacturing variations. We first present arbiter
PUFs, followed by ring oscillators PUFs. Process variations
manifest as time delays in both of these structures. Next,
we describe Static Random Access Memory (SRAM) PUFs
which, when powered but not initialized, assume a state based
on the imbalanced threshold voltages of internal gates. We
describe the butterfly PUF which is an FPGA implementa-
tion, primarily because this structure exposes specific imple-
mentation problems that practitioners should know. Finally,
we introduce two chaotic PUFs that are far more complex
than the others. The authors believe these additional chaotic
structures warrant further study to understand their reliability
and security.

A. Arbiter PUFs

The arbiter PUF structure, introduced in 2002 by Gassend
et al., was the first PUF to be completely implemented with
complementary metal-oxide-semiconductor (CMOS) technol-
ogy. Figure 2 shows an arbiter PUF from Suh and Devadas
[8]. In this PUF circuit, a pulse is injected into two symmetric
paths where a race condition will result in either a 0 or a 1.
Each path has a series of multiplexers which allow the pulse
to switch paths depending on a common control bit. If the
control bit is 0 the path simply passes to the next stage; if 1,
the paths are swapped. The series of control bits compose the
challenge value. With each additional pair of multiplexers and
associated control bit, the possible path grows exponentially.

1

0

0

1

1

1

0

0

1

1

1

0

0

1

1

1

0

0

1

0

Output
D Q

Input

Fig. 2. Arbiter PUF Circuit

Ring Oscillator

Binary
Output

Input

N ring oscillators

Enable

1

...

...

2

...

N

...

Mux...

Mux...

counter

counter

>?

Fig. 3. Ring Oscillator PUF Circuit

Since the layout of multiplexer circuits are the same, in
theory, the challenge control bits should have no effect on
the resulting output, but in practice each mux has a different
propagation rate which means some are faster than others. For
this circuit, a 128 bit challenge value will result in a single
response bit. To generate n response bits, this structure can be
replicated n times, which can each take the same challenge
value and execute in parallel. Alternately the same circuit
could be evaluated n times, where the challenge value changes
each time. Circuitry, such as a linear feedback shift register,
could take the initial challenge value and produce a pseudo
random series of challenge values. This, of course, is a classic
time-space trade.

B. Ring Oscillator PUFs

A ring oscillator is comprised of an odd number of invert-
ers to generate a free-running square wave. Due to process
variations, multiple instances of ring oscillator circuits which
have identical components and layouts will operate at different
frequencies. By selecting a pair of ring oscillators and compar-
ing their frequencies, an entropic bit can be produced. Figure
3 from Suh and Devadas shows a circuit where if the ring
selected by the upper mux is faster than the ring selected by the
lower mux determines whether a 1 or 0 is produced. Counters
are used to add up pulses over a fixed period of time and
these values are compared. Suh and Devadas [6] introduced
this Ring Oscillator PUF (RO PUF) design in 2007.

At first, one may believe the number of bits of entropy that
the given n RO PUFs could produce is simply based on the

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on October 13,2025 at 13:44:07 UTC from IEEE Xplore. Restrictions apply.

VDD

WLWL

BLBL

... ...

......

......

A B

VDD

Vnoise

Tsub

Leff

Vth

Fig. 4. SRAM cell with threshold voltage determining PUF State

number of combinations of the n items taken two at a time or
n(n–1)/2. But note that in this approach rings are reused when
combined in a different pairing so they are not independent.
Suh and Devadas explained that if oscillator A ran faster than
oscillator B and B in turn ran faster than C, clearly A runs
faster than C and this shows a correlation between pairings.
However, they showed by viewing the set of RO PUFs as a
randomly ordered list of varying frequencies (fast to slow),
the independent entropy can be calculated as log2(n!), since
the likelihood of different orderings is equal.

C. Static Random Access Memory (SRAM) PUFs

A Static Random Access Memory (SRAM) cell is composed
of two cross-coupled inverters. It is volatile memory that needs
power to maintain state. Two access transistors are used to set
the state of the cell and provide opposite values. An SRAM
PUF relies on the fact that when uninitialized, a mismatch
between threshold voltages determine which state the cell
takes. In 2007, Holcomb et al. [9] presented the use of SRAM
PUFs to generate device-unique RFID tags. Figure 4 is from
Holcomb et al.’s 2009 [10]paper discussing the power-up state
of SRAM PUFs.

When the circuit in Figure 4 is unpowered, A and B are
both zero, therefore, at power-up AB is 00 and this is an
unstable state. Writing to the cell will allow AB to assume
valid states of 01 or 10, and as Holcomb et al. [10] noted AB
will never hold the value 11, but after power and before the
cell is programmed, the circuit will be driven to a stable state
of either 01 or 10, again depending on the threshold voltages
of the coupled inverters. The authors also pointed out data
collected from real devices showed an unequal distribution
of states, and the SRAMs they studied tended to settle to 1
over 0. Though not uniform, the number of bits generated was
directly proportional to the number of SRAM cells used.

D. Butterfly PUF

In 2008, Kumar et al. [11] introduced a PUF structure
implementable in FPGA fabric called a butterfly PUF. The
authors used two cross-coupled latches in a novel manner to
replicate SRAM PUF behavior as shown in Figure 5. They
noted that it is not possible to create the combinatorial loops
in FPGA fabric, but by holding the CLK signal high they
produced asynchronous behavior. The preset of latch 1 and

Fig. 5. Butterfly PUF: Cross-coupled Latches

clear of latch 2 were always set low. When the external excite-
signal goes high, the crossed-coupled latches are forced into an
unstable state. The authors stressed that the interconnections
between the latches must be as symmetrical as possible,
because as soon as the excite-signal goes low, the final state of
the circuit is dependent on the delay of the connecting wires.

E. Tent-map PUF
In 2015, Cohen [12] published a novel circuit to be used

as a PUF. This PUF design implements a one-dimensional
(1-D), chaotic tent-map. Cohen cited as foundational Rosin’s
et al [13] work with autonomous boolean networks which
realize asynchronous logic gates in FPGA fabric with cleverly
arranged delay lines. The tent-map, is defined as

f [x] =

{
rx, 0 ≤ x ≤ 1

2

r − rx, 1
2 < x ≤ 1

(1)

for 0 ≤ r ≤ 2 and 0 ≤ x ≤ 1. It forms a 1-D iterated map
that, though deterministic, produces chaotic behavior when r
is greater than one [14]. The Liapunov exponent, λ, is the rate
at which entropy is generated by iterations of a map. For the
tent-map λ = ln(r).

The ingenuity of Cohen’s design was his leveraging un-
clocked, digital delay lines to form 1-D iterated maps that
output varying pulse widths [13] where the pulse-width at
time t represents the current map iterate. The circuit shown in
Figure 6 consists of a folding function f and a gain function
g as well as a time delay element to ensure the circuit only
processes one pulse at a time. An input pulse of initial width
w0 is injected in the circuit at t = 0. The resulting output
pulses with varying widths. This output pulse train can be
quantized to produce a bitstring.

F. Hybrid Boolean Network (HBN) PUF
In contrast to low-dimensional iterated maps, high-

dimensional chaotic structures may also be employed as PUFs.

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on October 13,2025 at 13:44:07 UTC from IEEE Xplore. Restrictions apply.

s

Stretch

f

Fold

Chaotic Map: g

Delayed Feedback

Initial
Pulse Width

Δτ
w0 w1 w2 w3

T T
win wout

...

...

Fig. 6. Tent-map PUF

Delayed Feedback
Throughout

xb

xa

xi (0)

From ABN To ABN

Reset

Single ABN Node: xi

Registers
xc

xb

xa

xc

Fig. 7. Hybrid Boolean Network (HBN) PUF

In 2021, Charlot et al. [15] presented a strong PUF design
suited for device authentication taking N challenge bits and
producing N response bits. The core of this PUF is an
Autonomous Boolean Network (ABN) made of unclocked
logic gates in an FPGA. The ABN consists of N nodes where
each node takes input from three neighbors and XORs them
as shown in Figure 7. The number of neighbor connections is
configurable, but limited to the maximum number of Look-Up
Table (LUT) inputs available in a targeted FPGA. Each node
has an associated multiplexer controlling whether it takes the
challenge input bit or the result of XORed neighboring nodes.
At the start of execution, a challenge bit is held while the
network stabilizes. When the multiplexers are switched, values
are allowed to propagate through the network asynchronously.

The authors coin this PUF element a Hybrid Boolean
Network (HBN) because synchronous logic is also used to
input challenges to the ABN as well as latch responses. Rather
than simply using the system clock to select when to register
the N node responses, the designers incorporated M pairs of
inverters which are driven by the system clock to generate
M registration periods. For this implementation, sampling
rates are determined by inverter pairs and will vary in a
manner similar to the nodes in the ABN with temperature and
voltage, thus the design is interpreted to have some intrinsic
reliability. This work also provides guidance about the optimal
time period selection for registering a network response, but
the authors acknowledge future work is needed to improve
reliability.

G. Comparing and Contrasting

It is worthwhile to compare and contrast these PUF struc-
tures.

1) Delay Based versus Threshold Voltage: As described
before, both the arbiter PUF and RO PUF rely on random
delay as the source of entropy, whereas in SRAM PUFs, the
imbalanced voltage biases of interconnected transistors results
in random states [5]. A practitioner should be cognizant of

the time these circuits need to produce responses. The arbiter
and RO PUFs presented, require much more time to generate
values compared to the settle time of the SRAM PUF. Both
chaotic PUFs presented also rely on random delay, but because
the HBN PUF iterates N nodes in parallel, it quickly produces
responses.

2) Weak versus Strong: Again the SRAM PUF is a weak
PUF because one response is generated at power-up. Con-
versely, an arbiter PUF is a strong PUF, because by design it
has a large challenge space producing responses. Herder et al.
classified RO PUFs as weak, “since there are a limited number
of ‘challenge bits’ that can configure the PUF’s operation.” [5]
These challenge bits would involve the selection of different
ring pairs. The authors believe the tent-map PUF is a weak
PUF based on the limited challenge bits, but we noted that
the width of the initial pulse is not the only parameter for
this structure. The value of r is also a tunable parameter that
could be part of the challenge space. It is difficult to provide
more analysis since a specific implementation was not studied.
Finally, as alluded to previously, we consider the HBN PUF a
strong PUF when the number of nodes N is sufficiently large
and would likely be 128 or 256 for such applications.

3) Potential multi-use of PUF Structures: The SRAM PUF
is not a circuit designed specifically for generating random
values compared to the other structures considered, rather
standard SRAM memory cells are repurposed to capture one-
time information at power up. After key generation the SRAM
could be used as on-chip memory. If the tent-map PUF proves
reliable for key generation, it could first generate an encryption
key and then continue to run in the role as the digitial noise
source for a random number generator. Note, as a random
number generator, thermal noise would not be a detriment
rather it would be an additional source of entropy. Likewise,
a single instantiation of the HBN PUF could conceivably
support device authentication in addition to Random Number
Generation.

4) Candidates for FPGA Implementation: In 2009, Moro-
zov et al. [16] provided a comparison of delay-based PUFs
implemented in FPGA fabric. Their analysis showed that
both the arbiter PUF and the butterfly PUF structures were
not suitable designs for FPGA implementations. The reason
neither of these PUFs could be realized is that the time delays
caused by routing asymmetries were significantly greater than
the propagation delays in the logic gates due to manufacturing
variations. The authors also noted that RO PUFs do not suffer
the same ill effects because symmetric connections are not
required. However, practitioners should still be cognizant of
the proportion of delay caused by routing when instantiating
ring oscillators in an FPGA. A pair of poorly implemented RO
PUFs, where the difference in their frequencies is not affected
by process variation, would not vary across devices.

5) Reliability Design Principles: Herder et al. [5] explain
that differential design techniques can be used to cancel out
first-order environmental dependencies. This is an important
principle that PUF designers should remember. Additionally,
this paper notes the concept of conditioned timing, such as

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on October 13,2025 at 13:44:07 UTC from IEEE Xplore. Restrictions apply.

the HBN PUF’s use of clocked inverter pairs, to improve
reliability.

6) Security: Some interesting comparisons can be made
between the HBN PUF and arbiter PUF. As referenced earlier,
researchers are investigating modeling and machine learning
(ML) attacks that use a small number of known challenge-
response pairs to predict responses of new challenge values.
In 2019, Ganji et al. [17] introduced a tool called PUFmeter
to examine if a PUF is susceptible to ML attacks. The authors
of the HBN PUF reported that PUFmeter was unable to model
its behavior [15].

7) Additional Thoughts on the HBN PUF: As stated earlier
the HBN PUF is delay-based and implemented on an FPGA.
Interestingly, Charlot et al. claimed that, “the HBN PUF does
not require carefully constructed circuit paths with specified
delay characteristics.” [15] This claim warrants further inves-
tigation. It is unclear if the authors attributed the immunity to
different time delays due to asymmetric routing among nodes
simply because of the complexity of the network. The authors
also suggested “additional bits per response can be used for
error correction”, but do not provide details on their error
correction approach.

Charlot et al. also noted given the number of network
nodes N >= 16, the network “consistently exhibits chaos”,
however an ABN constructed with N <= 8 may produce
periodic responses. When analyzing dynamical systems, fixed
point analysis is an important tool to determine if a system
will converge to a single value or a periodic pattern. When
referencing a single XOR gate with two time-delayed feedback
loops, Rosin [13] explained, “A Boolean fixed point in the
feedback system corresponds to rows in the lookup table,
where all entries have the same value and hence inputs and
output can be the same.” Rosin then eliminates the possible
fixed point by altering the look-up table. Charlot et al. seemed
to hypothesize that, given a sufficient length and interaction
among nodes, this zero fixed point case does not occur. Though
empirical results support their claim, the authors suggest that
logic similar to Rosin’s modified look-up table should be
considered instead of simply an XOR.

IV. ENTROPIC SOURCES

Charlot et al. described three sources of entropy in their
HBN PUF: “1) Frozen-in heterogeneity (manufacturing differ-
ences), 2) Thermal and charge fluctuations (noise), and 3) De-
terministic chaos (unpredictability and nonlinear amplification
of timing differences)”. The authors suggest that these sources
might be generalized for all PUFs and are renamed here. In
this section, we define and discuss three sources: instantiated
entropy, execution entropy, and execution noise.

A. Instantiated Entropy

PUF designers intend to exploit the process variations in-
troduced during manufacturing to generate, at run-time, values
unique to an integrated circuit. These process/manufacturing
differences are also called device heterogeneities. For the use
of IP protection, i. e., generating a secret key, it is essential that

the device heterogeneities reliably generate the same values.
For example, each memory cell in an SRAM PUF should settle
on the same value at startup since the bits will be used to derive
a cryptographic key. In practice, however, this characteristic is
not true for all SRAM cells. From the perspective of reliability,
a practitioner does not want a probabilistic generation of
memory values.

Imagine that, instead of a pair of cross-coupled inverters,
each cell contains a weighted coin that is flipped at start-
up. For PUF applications, practitioners want heavily weighted
coins, ideally perfectly weighted. In fact, enrollment is the
process of excluding fairly weighted coins. This may seem
counterintuitive but one wants to be certain of the value
the flipped coin will take. When generating the PUF value,
uncertainty should be minimized; entropy should be mini-
mized. Stated differently, across different devices or different
instances, we want to maximize entropy, but for the generation
of a PUF value in a single instance we want to mininize
entropy(uncertainty) of the value it will produce.

The authors also contend that instantiated entropy is a better
term than “Frozen-in heterogeneity”, because all sources are
dynamic over time. For example, a device’s PUF response may
change over time due to aging effects. The authors contend
that “Frozen-in heterogeneity” can be misconstrued to imply
reliable.

B. Execution Entropy

The tent-map PUF operates as an iterated map, thus dis-
cretely, and produces an entropic response each iteration.
The HBN PUF operates in a continuous time regime and
outputs entropic values that can be sampled at some rate. The
authors want readers to understand these chaotic PUFs are
fundamentally different from traditional PUF structures which
perform an operation once to produce an entropic result. The
authors suggest execution entropy captures this idea.

C. Execution Noise

PUF literature is full of examples of execution noise. PUF
circuits fail to reliably regenerate values due to thermal or shot
noise. Implementations may employ error correction methods
to generate consistent values. Charlot et al. [15] show noise
overwhelms their chaotic network over time. They show that
within approximately 10 nanoseconds their circuit is stochastic
and from a use case perspective is an ideal random number
generator.

V. FUTURE WORK

The considered PUF structures need to be implemented to
accurately compare their execution rates. The authors believe
implementing these PUFs on a current FPGA would be
valuable. In addition to demonstrating the rate these PUFs
can generate comparable entropic results, the number of logic
gates needed should also be captured. Note, as shown in this
paper, additional circuitry is needed for certain use cases. For
example, error correction code circuitry is required for the IP
protection use case. Furthermore, error correction can affect

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on October 13,2025 at 13:44:07 UTC from IEEE Xplore. Restrictions apply.

the rate; for example, if repetition error correction is used, the
PUF must execute multiple times. Other design decisions, such
as the number of inverters used in an RO PUF would affect
rate. The work to implement and compare PUF structures
would require navigation of trade-off spaces, and the authors
assert that separate studies for different use cases should be
performed.

Though implementations are not available to fairly measure
execution rates, notional estimates of these PUF structures can
be provided based on the number of gates and the number
of times they are exercised. The SRAM PUF followed by the
butterfly PUF have the fewest gates thus are the fastest. Arbiter
PUFs have more stages than an RO PUF, but the RO PUF has
to iterate many times to generate unique counts. Therefore, an
RO PUF requires the longest time to execute. The HBN PUF
is massively parallel and thus produces a result faster than an
arbiter when implementing a challenge-response scheme. The
tent-map we describe executes in a serial manner so it is slower
than the HBN. A comparison of entropy generation rates for a
tent-map versus an HBN implementation on a current FPGA
would be useful.

Finally, analysis of error correction methods is warranted
along with the security vulnerabilities they expose. Specifi-
cally, error-correction-code helper-data attacks which are not
evaluated in this paper. Health monitoring methods for random
number generation also merit investigation.

VI. CONCLUSION

This paper presents traditional PUF structures as well as
emerging chaotic structures. We describe three use cases
for PUFs: device authentication, IP protection, and random
number generation. This paper shows why practitioners should
first consider the use case when assessing the suitability of
a PUF structure, given certain structures are inherently better
for particular use cases. For example, the described HBN PUF
naturally provides a large challenge-response space needed in
device authentication. The authors also point out that these
structures may be repurposed during system operation. SRAM
may be used for key generation at startup and then provide
normal memory functionality. Likewise, a HBN PUF can be
used for device authentication at startup and then function as
a true random number generator (TRNG).

Practitioners are concerned about three fundamental at-
tributes of PUFs: entropy, reliability and security. This paper
discusses entropy sources of the considered PUFs, time delay,
and transistor bias. We also discuss reliability and highlight
the use of differential logic to produce structures that are
more resilient to environmental changes. The authors show that
different use cases can expose different attack surfaces. Finally
the authors call attention to the unique ability of chaotic PUFs
to successively generate entropic values. Table 1 summarizes
some of the features of PUF structures considered in this paper.

REFERENCES

[1] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, 2002, pp. 148–160.

TABLE I
COMPARISON OF PUFS

PUF Use Case Target Reliability Speed

Arbiter Device ASIC Temperature Slow
Authentication Sensitive

Ring IP ASIC/ Temperature Slowest
Oscillator Protection FPGA Sensitive

SRAM IP ASIC Aging Fastest
Protection Effects

Butterfly IP FPGA Routing Fast
Protection Imbalances

Tent-map IP FPGA Temperature Slow
Protection Sensitive

Tent-map RNG FPGA N/A Slow

HBN Device FPGA Temperature Fast
Authentication Sensitive

HBN RNG FPGA N/A Fast

[2] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in 18th Annual Computer Security Applications
Conference, 2002. Proceedings., 2002, pp. 149–160.

[3] B. Gassend, “Physical random functions,” 2003.
[4] R. Anderson, Security engineering: a guide to building dependable

distributed systems. John Wiley & Sons, 2020.
[5] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclon-

able functions and applications: A tutorial,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1126–1141, 2014.

[6] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proceedings of the 44th
annual design automation conference, 2007, pp. 9–14.

[7] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, M. Boyle
et al., “Recommendation for the entropy sources used for random bit
generation,” NIST Special Publication, vol. 800, no. 90B, p. 102, 2018.

[8] M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Design & Test of Computers,
vol. 27, no. 1, pp. 48–65, 2010.

[9] D. E. Holcomb, W. P. Burleson, K. Fu et al., “Initial sram state as
a fingerprint and source of true random numbers for rfid tags,” in
Proceedings of the Conference on RFID Security, vol. 7, no. 2, 2007,
p. 01.

[10] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up sram state as
an identifying fingerprint and source of true random numbers,” IEEE
Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, 2009.

[11] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “The
butterfly puf protecting ip on every fpga,” in 2008 IEEE International
Workshop on Hardware-Oriented Security and Trust. IEEE, 2008, pp.
67–70.

[12] S. D. Cohen, “Structured scale dependence in the lyapunov exponent of
a boolean chaotic map,” Physical Review E, vol. 91, no. 4, p. 042917,
2015.

[13] D. P. Rosin, D. Rontani, D. J. Gauthier, and E. Schöll, “Excitability in
autonomous boolean networks,” Europhysics Letters, vol. 100, no. 3, p.
30003, 2012.

[14] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to
physics, biology, chemistry, and engineering. CRC press, 2018.

[15] N. Charlot, D. Canaday, A. Pomerance, and D. J. Gauthier, “Hybrid
boolean networks as physically unclonable functions,” IEEE Access,
vol. 9, pp. 44 855–44 867, 2021.

[16] S. Morozov, A. Maiti, and P. Schaumont, “A comparative analysis of
delay based puf implementations on fpga,” Cryptology ePrint Archive,
2009.

[17] F. Ganji, D. Forte, and J.-P. Seifert, “Pufmeter a property testing tool for
assessing the robustness of physically unclonable functions to machine
learning attacks,” IEEE Access, vol. 7, pp. 122 513–122 521, 2019.

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on October 13,2025 at 13:44:07 UTC from IEEE Xplore. Restrictions apply.

