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ABSTRACT: Artificial intelligence (AI) has emerged as a pivotal
force in enhancing productivity across various sectors, with its
impact being profoundly felt within the pharmaceutical and
biotechnology domains. Despite AI’s rapid adoption, its integration
into scientific research faces resistance due to myriad challenges:
the opaqueness of AI models, the intricate nature of their
implementation, and the issue of data scarcity. In response to these
impediments, we introduce SmartCADD, an innovative, open-
source virtual screening platform that combines deep learning,
computer-aided drug design (CADD), and quantum mechanics
methodologies within a user-friendly Python framework. Smart-
CADD is engineered to streamline the construction of
comprehensive virtual screening workflows that incorporate a
variety of formerly independent techniquesspanning ADMET property predictions, de novo 2D and 3D pharmacophore
modeling, molecular docking, to the integration of explainable AI mechanisms. This manuscript highlights the foundational
principles, key functionalities, and the unique integrative approach of SmartCADD. Furthermore, we demonstrate its eScacy
through a case study focused on the identification of promising lead compounds for HIV inhibition. By democratizing access to
advanced AI and quantum mechanics tools, SmartCADD stands as a catalyst for progress in pharmaceutical research and
development, heralding a new era of innovation and eSciency.

C INTRODUCTION
The complex and time-consuming nature of the drug discovery
process emphasizes the growing need for new and e-ective
drug discovery procedures in modern medicine. This urgency
spans various classes of drugs, including antibiotics,1 cancer
treatments,2 and antivirals,3 to combat emerging threats like
antibiotic resistance and rapid viral mutations. Simultaneously,
artificial intelligence (AI) and machine learning (ML) have
emerged as pivotal technologies in numerous fields in recent
years,4−6 with their impact being particularly pronounced in
the realm of drug design and discovery, enabling more accurate
and eScient computation of ADMET properties,7,8 virtual
screening,9−11 binding free energy predictions,12 and synthesis
route planning.13,14 However, the performance and precision
of AI/ML models are significantly impacted by the availability
of high-quality, well-structured data sets. This condition is
often diScult to meet due to the challenges of data sparsity
and privacy concerns.15 Moreover, the interpretability and
explainability of AI models stand as critical concerns.16
Explainable Artificial Intelligence (XAI) is an important tool

in computational chemistry, particularly within the interdisci-
plinary fields of cheminformatics and drug discovery.17−20

Unlike conventional black-box AI models that o-er limited
insight into their internal workings, XAI sheds light onto the
AI’s decision-making process, providing an understandable

path from input data to output predictions. This transparency
is crucial in scientific research, where understanding the “why”
and “how” behind predictions is as important as the
predictions themselves.21 For drug screening processes, XAI
methods provide a deeper understanding of the molecular
features and interactions that drive the predictions of their AI
models. Given the insights provided by these XAI methods,
researchers can align the model with biological and chemical
intuition, enhancing the fidelity of its predictions. Furthermore,
XAI can uncover new knowledge and hypotheses, guiding the
design of novel compounds and therapeutic strategies with a
level of interpretability that accelerates discovery in the
pharmaceutical domain.22,23 Through bridging the gap
between complex AI algorithms and human comprehension,
XAI stands as an important part in the evolution of drug
discovery.24 A comprehensive review of XAI techniques,
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applications and limitations is available in Supporting
Information under the title “XAI Review”.
We introduce Smart-Computer Aided Drug Design

(SmartCADD), an open-source, virtual screening tool that
utilizes the combined capabilities of AI and quantum
mechanics (QM) to streamline and accelerate the process of
lead identification and optimization within the drug develop-
ment cycle. SmartCADD combines a diverse spectrum of
screening methodologies into a unified workflow, sketched in
Figure 1. SmartCADD uniquely integrates deep learning-

driven screening with both classical and quantum-informed
screening approaches, forming a seamless end-to-end filtration
pipeline. This pipeline is modular as depicted in Figure 2,
consisting of independent units that can function as isolated
filters or be incorporated into a sequential screening strategy.
Utilizing SmartCADD enables scientists to pinpoint promising
leads more eSciently, reducing the complexity of the advanced
stages of drug development.

C METHODOLOGY
Architecture Design. The SmartCADD framework is

designed using the Bridge Pattern,25 facilitating a modular and
adaptable approach to virtual drug screening. The flexibility of
the Bridge Pattern allows users to customize the implementa-
tions of filters to fit their needs while maintaining the
functionality of the pipeline as a whole. For example, a filter
that performs molecular docking can have an implementation
for both the Smina26 and Autodock Vina27 methods without
changing the higher-level pipeline’s code. This architecture
enhances system flexibility by allowing customization of drug
screening pipelines to accommodate various use cases, meeting
the diverse needs in drug discovery. SmartCADD is
implemented as an open-source Python package with
installation and usage instructions available at the SMU’s
Computational and Theoretical Chemistry Group’s (CATCO)
GitHub repository.28

SmartCADD Interfaces. SmartCADD implements two
distinct interfaces: the Pipeline Interface and the Filter
Interface, Figure 2A. The Pipeline interface defines the
required pipeline-specific functions that every implementation
of a pipeline should implement, such as getdata and runf ilters.
The Filter Interface defines the required filter-specific
functions, such as f ilter and preprocess. To put them together,
a specific pipeline for a data set is made by adding filters that
implement the Filter Interface to a Pipeline, as seen in Figure
2B. The flexibility of the bridge design allows users to create
custom implementations of the Pipeline or Filter classes that
for example handle di-erent data types, machine learning
frameworks, or multiprocessing schemes.

SmartCADD Data Readers. Simplifying the data reading
process, SmartCADD provides data set loader classes, such as
the IterableData set class that loads compounds from SMILES
files and batches them into a universal Compound data
structure. SmartCADD’s practical Compound data structure
represents a compound and its chemical and nonchemical
properties, such as its SMILES string, RDKit mol object,29
graph representation, ring system descriptors, and more. This
data structure is used to pass compounds between filters when
running the pipeline and performs any data conversions
necessary for custom filter implementations. Datareader
modules employ a template-based technique where the
relevant reference SMILES string is loaded and used as a

Figure 1. SmartCADD filter design flow.

Figure 2. (A) Shows flow of SmartCADD starting with SMILES strings, filtering, and ending with final lead compounds. (B) Shows an example of
two pipeline configurations designed with di-erent filters for a specific data set.
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template for comparison with the loaded coordinate data (ex:
PDB and XYZ). This comparison ensures that any
discrepancies between the SMILES data and the coordinate
data will generate an error.
SmartCADD Transform Modules. SmartCADD data pack-

ages transform and analyze functionality into a simple Module
Interface. The Module Interface is intended to wrap functions
that do not filter input compounds but rather perform data
transforms or analysis, such as a SMILE to PDB conversion,
geometry optimization, or explainable AI analysis. Some
notable modules that come prepackaged in SmartCADD are
the SMILETo3D, XTBOptimization, and ExplainableAI Mod-
ules, some of which wrap data transform capabilities from
RDkit29 and OpenBabel tools.30
Overview of SmartCADD Capabilities. SmartCADD

integrates an extensive suite of preconfigured filters tailored for
every stage of the virtual screening workflow, as illustrated in
Figure 1. This comprehensive array encompasses Deep
Learning-based screening filters, tools powered by ADMET
filters, both 2D and 3D Pharmacophore filters, QM filters, and
molecular docking filters. The following sections provide a
comprehensive description of each filter set, detailing its
design, operational principles, and application within the
SmartCADD framework. In addition, Tautomer and protomer
packages are described in Supporting Information under the
section called “Tautomers and Protomers”.
Deep Learning-Based Virtual Screening Filter. The Deep

Learning (DL) filter is a versatile tool in cheminformatics,
enabling the screening of compounds for specific target
activities. By leveraging any pretrained deep learning model
trained on a comprehensive proxy data set, such as
MoleculeNet.31 This filter is used to identify promising
candidates from larger molecule databases such as ZINC,32
ChEMBL33 and PubChem.34 As with all filters in SmartCADD,
the DL filter accepts a list of Compound objects that contain
graph representations and chemical descriptors. Implementa-
tions of this filter cast each Compound’s graph representation
into the data type required by the wrapped deep learning
model, such as a Pytorch Geometric35 or DeepChem’s36
respective GraphData objects, which include initial atomic and
bond features are described in Table 1. The DL filter is
designed for flexibility, allowing users to wrap their preferred
deep learning model using SmartCADD’s ModelWrapper

interface. This interface defines the predict, featurize, and load
functions that perform predictions, data preparation, and
trained weights loading from a model from any deep learning
framework.

Explainable AI Analysis Module. Unlike traditional black-
box AI models that lack transparency in their decision-making
processes, explainable AI (XAI) o-ers valuable insights into the
model’s inner workings. This transparency allows scientists to
trace the path from input data to output predictions, fostering
a deeper understanding of the “why” and “how” behind
predictions. In scientific research, where comprehension is as
crucial as the results themselves, XAI proves invaluable.21
While graph neural networks (GNNs) are still evolving in their
ability to generate practical explainability descriptors for
molecules, many advancements including GNNExplainer,37
PGM-Explainer,38 and SubgraphX39 provide molecule-level
descriptors, while XGNN40 and XInsight23 provide high-level
concept descriptors.
SmartCADD integrates these XAI algorithms to address this

need, enabling researchers to understand the factors driving a
deep learning model’s decisions. The XAI modules in
SmartCADD identify and visualize specific substructures
within compounds that significantly influence the model’s
predictions. These insights, termed explanations, allow
researchers to assess the validity of their model’s learning
process, particularly in distinguishing genuine biochemical
relationships from spurious correlations in the data set. For
example, previous works20,23,40 have used XAI to identify
functional groups, such as aromatic rings, related to chemical
properties like mutagenicity, highlighting the use of XAI for
knowledge discovery. This capability enhances the reliability
and transparency of deep learning applications in drug
discovery.

ADMET Analysis Filter. In addition to high potency and
selectivity, a favorable ADMET profile is crucial, ensuring safe
and e-ective drug exposure. A drug should be e-ectively
absorbed, distributed to target tissues, metabolized without
rapid inactivation, and eliminated appropriately.41 A drug-like
molecule typically shares similar physicochemical properties
with orally active drugs, a concept that guides the drug design
process to ensure proper eScacy. The first standard in drug
design, known as the “Rule of 5” (Ro5), was introduced in
1997 by Lipinski.42 The Ro5 criteria for orally active drugs
“···’the rule of 5′ predicts that poor absorption or permeation is
more likely when there are more than 5 H-bond donors, 10 H-
bond acceptors, the molecular weight (MWT) is greater than 500
and the calculated LogP is greater than 5.···” based on a library of
2245 FDA approved compounds or at least in phase II clinical
studies. However, the relevance of the Ro5 has been
questioned by many researchers.43−45 According to the report
published by Hartung et al.,45 which examines FDA-approved
drugs from 2018 to August 31st, 2022, a notable trend
emerges. Specifically, 93% of drugs have molecular weights
exceeding 500 Da, with the 90th percentile reaching 588 Da.
Moreover, 42% of drugs exhibit HBA violations, with the 90th
percentile standing at 11. Conversely, HBD and clogP
violations were observed in 12 and 19% of drugs, respectively.
Moreover, in a study by Veber,46 a researcher at

GlaxoSmithKline, the drug-like physicochemical space was
expanded to include additional parameters such as the number
of rotatable bonds and topological polar surface area. These
descriptors are relevant to the drug’s ability to cross cell
membranes from the gastrointestinal tract, as highly flexible

Table 1. Initial Atomic and Bond Features Included in a
Compound Object

feature description size
atom type type of atom (C, N, O, etc., or metal), one-hot 10
chirality chirality (R, S, or none), one-hot 2
formal charge integer charge 1
partial charge computed charge 1
degree atom’s connectivity (0−5), one-hot 6
# of hydrogens hydrogens bonded (0−4), one-hot 5
hybridization hybridization state (sp, sp2, sp3, or none), one-hot 3
hydrogen
bonding

hydrogen bond donor/acceptor, one-hot 2

bond type bond type (single, double, triple, aromatic, or
none), one-hot

4

conjugated if bond is conjugated, one-hot 2
stereo stereo configuration of bond, one-hot 2
same ring if atoms are in the same ring 2
total number of features: 40

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00720
J. Chem. Inf. Model. 2024, 64, 6799−6813

6801

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00720/suppl_file/ci4c00720_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00720/suppl_file/ci4c00720_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00720?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and highly polar molecules are typically less permeable.47
Additionally, Ritchie and Macdonald48 suggest that lead
compounds with no more than 3 aromatic ring counts are
most favored for advancement in Phase 1, 2, and Proof-of-
Concept (POC) stages of the GSK pipeline.
To assess these properties, SmartCADD employs an

ADMET filter that analyzes compounds based on seven key
chemical attributes: molecular weight (Mw), partition coef-
ficient (logP), number of hydrogen bond donors (HBD),
number of hydrogen bond acceptors (HBA), topological polar
surface area (TPSA), number of aromatic rings (NAR), and
rotational degree of freedom (ROT). Furthermore, Smart-
CADD’s ADMET filter incorporates a step to exclude pan-
assay interference compounds (PAINS) as outlined by Baell
and Holloway49 and refined by Walters.50 SmartCADD’s
ADMET feature is designed with flexibility in mind, providing
users the ability to tailor ADMET parameters and choose
filters that best align with their specific research requirements.
SmartCADD’s ADMET filter parameters are described in
Table 2 and visualized in Figure 3.

2D Pharmacophore Analysis Filter. The concept of a
pharmacophore was introduced by Paul Ehrlich in the early
1900s. The term itself, however, was coined later, defining a
pharmacophore as a collection of molecular features necessary
for a drug’s biological activity.51 Molecular pharmacophore
patterns, encompassing HBD, HBA, positive ionizable groups,
negative ionizable groups, aromatic rings, and hydrophobic
regions, influence a drug molecule’s biological activity.52,53
These features play a key role in many commercial and
noncommercial pharmacophore modeling applications, includ-
ing HipHop, HypoGen, Pharmer, PHASE, GASP, PharmaGist,
PharmMapper, MOE, and LigandScout.54 While 2D molecular
descriptors like MACCS keys,55,56 Morgan fingerprints57,58 and
Daylight fingerprint59 are widely used as a 2D screening tools
in database searches, a significant drawback is their inability to
account for 3D conformation.60 Therefore, to enhance the

capabilities of 2D pharmacophore search methods, additional
pharmacophore features that capture intricate details of
molecular structures should be considered.61 Our approach
involves incorporating specific ring features through a four-step
process. First, pharmacophore features were identified
excluding any ring structures. Next, rings were categorized as
aromatic or aliphatic62,63 and separated according to the
number of carbon atoms64 they contained. Then, heterocyclic
rings and their types were determined.65 Finally, 2D
pharmacophore data set was generated containing all the
information per each molecule. This strategy can provide
information about a molecule’s shape, complementing the
limitations of purely 2D descriptors.66 A simplified visual
representation of 2D pharmacophore process is presented as a
four-step model in Figure 4.

3D Pharmacophore Analysis Filter with Quantum
Mechanical Calculations. Modern computational drug
discovery methods frequently utilize molecular docking
simulations to identify potential lead compounds.67,68 Docking
simulations, despite their widespread use, have limitations.
Docking scores (DS) often show inconsistencies in correlation
with experimental data,69 and these simulations typically
assume a rigid protein structure. Furthermore, docking
typically imprecise the critical influence of water molecules
and solvation e-ects on ligand-protein interactions.70 Rather
than discarding compounds solely based on docking analysis,
we propose utilizing a combination of scoring functions
commonly used in 3D pharmacophore studies such as shape
Tanimoto distances (STD),71 shape protrude distance
(SPD)72 and align score (AS).73 In addition to the four
scoring functions, we introduce a novel scoring function that
assesses compound similarity by aligning pharmacophore
coordinates (HBA, HBD and center of the rings) and
measuring distances between pharmacophores of the target
and lead compounds. This 3D model is designed to capture
five distinct distances within pharmacophores, ensuring that
potential compounds are not prematurely excluded before
undergoing lead optimization. Each calculation utilized QM-
optimized molecules, with each molecule generating 100
di-erent conformations to assess molecular flexibility. As
illustrated in Figure 5, steps A and B sample the HBA, HBD,
and middle coordinates of the rings for each conformation of
the lead and the reference compounds, respectively. Then, the
lead compound is aligned with the reference compound using a
common structural element (for NRTIs this is the aromatic
ring: Figure 5C), and calculated AS, STD and SPD scores.
Finally, To generate distance scores, we first calculate the

distances between each pharmacophore feature in the
reference compound and its corresponding reference point.
This process is repeated for all lead compounds (Figure 5d).
We then scan a range of distance cuto-s (±0.2, ±0.4, ±0.6,
±0.8, and ±1.0 Å) around the reference point in the reference
compound and identify the pharmacophore features in the lead
compounds that fall within these distance ranges. Finally, a
scoring function is employed to assess the distribution of the
identified pharmacophore features relative to the reference
compound. It is important to note that distance scores were
not utilized in the screening process. Table 3 documents the
comprehensive set of nine 3D computational parameters.
While accurate 3D structures are crucial for virtual screening

(VS), traditional QM methods like Hartree−Fock (HF) or
Density Functional Theory (DFT) calculations are often too
time-consuming for large data sets.74 Molecular dynamics

Table 2. ADMET Parameters Used in ADMET Filter

ADMET parameter range
Mw (Ro5) [0, 600]
Logp (Ro5) [−2, 5]
HBD (Ro5) [0, 5]
HBA (Ro5) [0, 12]
TPSA [0, 140]
NAR [0, 4]
ROT [3, 12]

Figure 3. ADMET filter complex described in SmartCADD.
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(MD) simulations, though faster, have lower accuracy due to
their neglect of electronic e-ects. A promising solution lies in
semiempirical QM methods, which strike a balance between
accuracy and computational cost, making them well-suited for
VS applications. Over the past few years, significant strides
have been made in the field of semiempirical QM calculations
with the development of the Extended Tight Binding (XTB)75
method. XTB has yielded improvements in the accuracy of
quantum mechanical calculations in both small molecules76,77
and macromolecules,78,79 approaching the level of precision
observed in experimental data in numerous cases. SmartCADD
introduces a de novo 3D Pharmacophore filter, intricately

combined with QM calculations. Utilizing the RDKit library,
the platform converts SMILES representations into 3D
molecular structures. XTB is used to optimize these molecules
at the GFN2-xTB level of theory.80 This optimization is crucial
for accurately determining the coordinates of HBD and HBA,
as well as the central coordinates of molecular rings, thereby
enhancing the model’s ability to pinpoint potential drug
candidates with high accuracy.

Docking Analysis Filters. The Docking filter wraps the
Smina26 tools as default. This Filter automates protein−ligand
docking, taking a list of SMILES strings and a protein structure
as inputs and delivering docking scores as output. The

Figure 4. Four-step process of 2D pharmacophore design architecture (Aro: Aromatic ring, Ali: Aliphatic ring, MR: Membered Ring, Hetro:
Heterocyclic, Furan: Furan like rings, Pyrimidine: Pyrimidine like rings).

Figure 5. 3D pharmacophore designing. (A) Selected pharmacophore coordinates of ZN000872594074 compound (37th conformation). (B)
Target pharmacophore coordinates. (C) Aligning of target and lead compound with pharmacophore coordinates. (D) Mapping pharmacophore
distances.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00720
J. Chem. Inf. Model. 2024, 64, 6799−6813

6803

https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?fig=fig5&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00720?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


complete docking process involves obtaining the protein and
ligand structures and preparing them for docking. This
preparation includes cleaning unnecessary data from protein
stucture and ensuring the correct format. The protein and
ligand PDB structures are then converted into a PDBQT
format. Next, the binding pocket search space is explored and
defined. Upon completion of the docking simulation, the
results can be visualized.
The filter o-ers two options for protein input. Users can

provide a protein structure ID from the RCSB Protein Data
Bank81 or users can upload their own protein structure file
directly. It is important to note that if the protein does not
have a ligand already occupying the binding pocket, the user
needs to define the potential binding site by providing its
coordinates in XYZ format. The docking simulation runs on
AutoDock Vina docking engine. We utilize Vinardo82 scoring
function, known for its accuracy based on experimental results.
The exhaustiveness parameter was set to its default value of 8.
RDKit and Openbabel were utilized to develop the docking
filter, while py3Dmol83 was employed for visualization
purposes.

C CASE STUDY: IDENTIFYING THREE TYPES OF HIV
INHIBITORS

The human immunodeficiency virus (HIV) infection remains a
significant global public health concern, despite the develop-
ment of life-saving combination antiretroviral treatment
(cART).84 According to reports from the World Health
Organization (WHO), as of the end of 2022, an estimated 39.0
million individuals were living with HIV, with a significant
majority25.6 millionresiding in the WHO African Region.
In 2022, 630,000 individuals lost their lives due to HIV-related
causes, while 1.3 million people acquired HIV during that
year.85 This virus exhibits the capability to infect various
immune system cells, including CD4+ T cells, dendritic cells,
and macrophages. Nonetheless, its primary predilection is
toward CD4+ T cells, wherein it causes infection and
subsequent cell death. Consequently, this process leads to a
depletion of the CD4+ T cell population, resulting in severe
immunodeficiency.86 This, in turn, incapacitates the immune
system, rendering the patient vulnerable to opportunistic
infections. The structure of the HIV is depicted in Figure S1.
Our case study serves a dual purpose: validating the

SmartCADD platform and identifying potential HIV inhibitors
for further drug development. The study uses SmartCADD,
with a deep learning model, trained on experimental HIV
screening data from the MoleculeNet database,31 and other
filters, to screen the 800 million compounds from the ZINC
database for potential HIV inhibitors.

Data Set, Preprocessing, Training and Prediction. In
this case study, we utilize the HIV data set as described by Wu
et al.31 within the MoleculeNet library, which is derived from
the AIDS Antiviral Screen Data set released by the National
Cancer Institute (NCI).87 This data set consists of 43,850
molecules, each annotated with its respective experimental
EC50 and IC50 values. These molecules are classified into three
categories based on these values: Confirmed Active (CA),
Confirmed Moderately Active (CM), and Confirmed Inactive
(CI).
Notably, the MoleculeNet version of the HIV data set

introduces modifications to the original NCI data set, primarily
by aggregating both CA and CM molecules under the active
category, while labeling CI molecules as inactive. The
MoleculeNet HIV data set is imbalance, with 1443 active
compounds contrasted against 39,684 inactive ones. Random
undersampling88 method was employed to balance the data set
with 1443 compounds in each class. Undersampling process
was repeated three times to account for the inherent
randomness in selecting data points for removal. It is important
to note that data cleaning procedures can vary depending on
the specific data set. Therefore, we recommend that users
provide a cleaned data set for SmartCADD’s deep learning
filter.
The HIV data set was used to train multiple GNNs with

di-erent architectures, with the best being wrapped in the deep
learning filter for screening HIV-active compounds. The deep
learning filter was then applied to predict activity against the
ZINC database, which encompasses nearly 800 million
compounds. The 800 million compounds were prioritized
based on their predicted activity probabilities, facilitating a
more focused analysis.

Selection of Three HIV Target Proteins: NNRTIs,
NRTIs and PIs. Several proteins exist within the HIV virus
as drug targets, including reverse transcriptase (RT), protease,
integrase, envelope proteins, and entry coreceptors.89 HIV
drugs target specific HIV proteins, such as non-nucleoside
reverse transcriptase inhibitors (NNRTIs), nucleoside reverse
transcriptase inhibitors (NRTIs), protease inhibitors (PIs),
integrase inhibitors (IIs) and more. The NIC HIV data set
contains a collection of inhibitors, potentially including several
di-erent inhibitor types. To identify the inhibitor types present
in this data set, we employed our trained model to analyze a set
of FDA-approved HIV drugs. The identified NNRTIs, NRTIs,
and PIs from the model were utilized as three distinct use cases
to validate the SmartCADD platform, as elaborated in detail in
the results section.

Case Study Design. We conducted a screening of the
ZINC database for potential leads using a custom SmartCADD
pipeline. The pipeline for this case study begins with the deep
learning filter wrapping a trained GNN, followed by the
ADMET filter, 2D pharmacophore filter, 3D pharmacophore
and quantum mechanics filter, clustering filter, and finally a
Smina docking filter. Additionally, we employed an explainable
AI module to analyze the predictive ability of our deep learning
filter. Further details on these filters are provided in subsequent
sections.

C RESULTS AND DISCUSSION
Attentive FP: GNN-based Predictions on ZINC Data

Set. The initial filter of the SmartCADD pipeline is a deep
learning filter, which wraps a GNN trained to discriminate
between active and inactive HIV compounds. For GNN model

Table 3. 3D Modeling Techniques Used in SmartCADD

parameter
1 shape Tanimoto distances (STD)
2 shape protrude distance (SPD)
3 align score (AS)
4 docking score (DS)
5 distance score within 0.2 (0.2d)
6 distance score within 0.4 (0.4d)
7 distance score within 0.6 (0.6d)
8 distance score within 0.8 (0.8d)
9 distance score within 1.0 (1.0d)
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selection, we conducted a comprehensive comparison of
several state-of-the-art GNN architectures, including Attentive
FP,90 GAT (Graph Attention Networks),91 GCN (Graph
Convolutional Networks),92 and PAGTN (Position-Aware
Graph Neural Networks).93 The eScacy of these models in
distinguishing between HIV active and inactive compounds
was quantitatively evaluated using the Receiver Operating
Characteristic and Area Under the Curve (ROC-AUC) metric.
The evaluation revealed that all tested models achieved ROC-
AUC scores ranging from 75 to 85%, signifying their
substantial predictive capacities shown in Table 4. Among

these, the Attentive FP model distinguished itself by employing
an attention mechanism that eSciently captures information
from neighboring atoms, outperforming other techniques.
Consequently, the Attentive FP model was selected for
extracting HIV active compounds from the ZINC database,
although any model could easily be used within the
SmartCADD pipeline due to its flexible filter design. The
Deep Learning-based virtual screening filter was employed to
identify the top 10 million potential HIV inhibitors,
encompassing a diverse range of classes including NNRTIs,
NRTIs, PIs and more, for subsequent pharmacophore analysis.

ADMET Analysis. Our ADMET filter system e-ectively
identified and removed 409,997 compounds (4.10%) from the
10 M compounds, ensuring the ZINC data set contains drug-
like molecules suitable for further analysis.

HIV Inhibitors from De Novo 2D Pharmacophore
Analysis. 2D pharmacophore models operate by analyzing
pharmacophore features extracted from target compounds,
typically FDA-approved drugs or those in clinical trials. Unlike
conventional drug targets, viruses often possess multiple drug
targets. Table S2 provides a detailed list of the selected drugs,
while Figure 6 o-ers a visual representation. Our case study
aimed to identify three categories of lead compounds: NRTIs,
NNRTIs and PIs. Emtricitabine, lamivudine, and zidovudine
from NRTIs, nevirapine and rilpivirine from NNRTIs, and
atazanavir, darunavir, and fosamprenavir from PIs were
selected as target compounds for each respective analysis.
Analysis of NRTIs using the 2D pharmacophore filter

yielded 1452 lead compounds. Notably, all these compounds
share the basic structure of the target compounds: a six-
membered aromatic pyrimidine ring and a five-membered
aliphatic furan ring. Similarly, the analysis of NNRTIs
identified 2716 lead compounds, all containing three six-
membered aromatic rings, one of which is a pyrimidine ring.
However, the lead compounds derived from PIs were less
e-ective than those from the other two categories, primarily
due to the significant structural di-erences between the target
compounds. Three example compounds from each analysis are
depicted in Figure 7.

Explainable AI Analysis. To investigate the functional
groups governing compound potency, we strategically selected
representative compounds from each use caseNNRTIs,
NRTIs, and PIsas illustrated in Figure 8A. Then we use the

Table 4. Comparison of Leading-Edge GNN Architectures

model ROC_AUC
attentive FP 83.34%
GCN 81.40%
PAGTN 80.18%
GAT 77.35%

Figure 6. FDA-Approved HIV inhibitors predicted active by GNN.
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ExplainableAI module, wrapping the SubgraphX algorithm,39

to investigate the functional groups and their importance to the
deep learning filter’s predictions. The SubgraphX algorithm
uses Monte Carlo Tree Search and Shapley Values94,95 to
identify subgraphs within a compound’s graph representation
that are important to the deep learning models prediction.
A core objective in XAI for drug discovery is to identify

functional groups that influence the potency di-erence
between active and inactive compounds. However, current

XAI algorithms are under development and often struggle to
address more than one specific question at a time.96−98 In our
case, we leveraged XAI to understand the role of aromatic
rings99,100 in compound activity.
To understand the functional groups a-ecting activity in

these molecules, we employed a two-pronged approach. First, a
functional group removal method identified potential activity
determinants including HBA, HBD, and aromatic rings.
Second, SubgraphX algorithm-based XAI analysis provided

Figure 7. Example compounds obtained by 2D pharmacophore modeling for NRTIs, NNRTIs, and PIs.

Figure 8. Example XAI analysis from each case study(NNRTIs, NRTIs and PIs). (A) XAI analysis utilizing functional group removal method. (B)
SubgraphX method.
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deeper insights for specific drug classes. This analysis revealed
aromatic rings as the key functional group for predicting
activity in NNRTIs and PIs, while for NRTIs, heterocyclic
rings20 emerged as the critical factor.
It is crucial to acknowledge that the chosen method, while

insightful, possesses inherent limitations. These limitations
include its applicability only to active compounds and its
inability to modify ring structures in Figure 8A. SubgraphX
e-ectively identified ring structures critical for predicting
compound activity, as depicted by the red atoms in Figure 8B.
However, it does not capture the full context by overlooking
other functional groups.
3D Pharmacophore and Docking Analysis. The most

promising lead compounds exhibit higher AS and DS values,
coupled with lower STD and SPD values. This allows users to

selectively choose the best compounds based on their
preferences. Scores between 0.2d and −1.0d indicate the
likelihood of finding the maximum number of pharmacophores
within a specific distance. Higher scores at any distance suggest
a greater chance of compound similarity to the target. An
example analysis is showcased in Figure 9. These scores are
crucial for the lead optimization process, guiding modifications
to enhance the compound’s potency and pharmacokinetic
features.
Following a 2D study, we extracted 1452 compounds and

generated 8 3D parameters for each, considering 100
conformations per compound. Then, we sorted all compounds
(1452 × 100) based on their aligning score (AS). The sorting
based on AS yielded a pattern nearly identical to the sorting
based on the shape Tanimoto and shape protrude scores. To

Figure 9. Example 3D analysis results for 26th conformation of ZINC000002583385 taken by NRTIs category. (A) ZINC000002583385
compound, (B) 26th conformation of ZINC000002583385 with emtricitabine, and (C) docked ZINC000002583385 structure with reverse
transcriptase protein (PDB ID: 6WPJ).101 The reference value mentions the docking score of emtricitabine.

Figure 10. Molecular representations of the top 20 NRTIs from SmartCADD described in Table 5.
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further validate the observed pattern, we performed docking
simulations of the compounds with their corresponding
specific receptors (PDB ID: 6WPJ). Interestingly, docking
scores for top-selected compounds consistent with the
identified pattern were either higher than or close to the
reference value, suggesting strong agreement between the
pattern and docking results. It is important to note that while
docking simulation is a valuable tool have limitations in
precisely capturing protein−ligand interactions due to
potential variations in docking scores of up to ±1 kJ/mol.
The top 20 lead compounds for NRTIs are depicted in Figure
10, accompanied by their respective nine parameters listed in
Table 5. Similarly, the lead compounds for NNRTIs and PIs
are illustrated in Figures S2 and S3, respectively, along with
their corresponding data provided in Tables S1 and S2.

Literature consistently highlights the use of FDA-approved
drug derivatives as foundational structures for drug discovery
campaigns, aiming to enhance properties like ADMET,102
aSnity,103 and selectivity.104 Similarly, derivatives of HIV
NRTI drugs, such as Zidovudine (AZT) and Lamivudine
(3TC), have demonstrated potential for drug develop-
ment.105−108 We selected the top 30 NRTI compounds from
the SmartCADD and divided them into two clusters based on
structural similarity to the FDA-approved drugs, AZT and
3TC, as detailed in Figure 11. SMU_NRTIs_2, 7, and 21
exhibit high structural similarity to AZT. Compounds 2 and 7
are particularly similar, di-ering only in the substituent at the
3′ position of the five-membered ring. On the other hand,
SMU_NRTIs_1, 6, and 27 displayed structural similarities to
Lamivudine, with primary di-erences observed in the
substituents at the 3′ and 2’ positions of the five-membered

Table 5. Top 20 NRTIs from SmartCADD with Their Eight 3D Parameters and Docking Scorea

lead compound conf STD SPD AS DS 0.2d 0.4d 0.6d 0.8d 1.0d
SMU_NRTIs_1 29 0.36 0.08 157.34 −6.79 0.30 0.40 0.40 0.50 0.60
SMU_NRTIs_2 51 0.42 0.07 140.79 −5.62 0.50 0.50 0.63 0.63 0.88
SMU_NRTIs_3 74 0.41 0.12 140.22 −6.92 0.40 0.40 0.60 0.60 0.70
SMU_NRTIs_4 83 0.42 0.14 139.53 −6.37 0.40 0.40 0.50 0.50 0.60
SMU_NRTIs_5 47 0.41 0.13 137.86 −7.30 0.40 0.40 0.50 0,60 0.70
SMU_NRTIs_6 6 0.45 0.15 137.83 −5.95 0.50 0.50 0.63 0.63 0.75
SMU_NRTIs_7 39 0.52 0.14 137.76 −7.63 0.32 0.44 0.66 0.66 0.77
SMU_NRTIs_8 18 0.43 0.08 137.74 −5.65 0.50 0.50 0.63 0.75 0.88
SMU_NRTIs_9 19 0.46 0.17 137.40 −5.35 0.50 0.50 0.63 0.63 0.88
SMU_NRTIs_10 39 0.44 0.16 136.80 −6.61 0.00 0.30 0.40 0.70 0.80
SMU_NRTIs_11 52 0.40 0.11 136.63 −6.06 0.30 0.40 0.40 0.60 0.60
SMU_NRTIs_12 92 0.43 0.15 136.41 −7.41 0.40 0.40 0.50 0.50 0.60
SMU_NRTIs_13 22 0.45 0.17 136.17 −7.30 0.40 0.40 0.50 0.50 0.70
SMU_NRTIs_14 2 0.40 0.12 135.90 −6.08 0.30 0.40 0.50 0.60 0.60
SMU_NRTIs_15 22 0.41 0.13 135.89 −6.32 0.40 0.40 0.50 0.60 0.70
SMU_NRTIs_16 48 0.44 0.18 134.93 −6.95 0.30 0.40 0.60 0.60 0.70
SMU_NRTIs_17 8 0.41 0.12 134.80 −6.61 0.33 0.44 0.55 0.55 0.66
SMU_NRTIs_18 66 0.41 0.13 134.40 −6.78 0.40 0.50 0.60 0.60 0.60
SMU_NRTIs_19 83 0.44 0.18 134.32 −7.35 0.30 0.40 0.40 0.50 0.60
SMU_NRTIs_20 77 0.50 0.10 133.65 −5.59 0.00 0.11 0.22 0.55 0.55

aCompounds were sorted according to the AS value, and the pattern was validated using docking simulation. The docking simulation was carried
out for the HIV NRT protein (PDB ID: 6WPJ). Emtricitabine was taken as the reference docking score with a docking score of −6.68 kJ/mol.
(Conf, molecular conformation; STD, shape tanimoto distances; SPD, shape protrude distance; AS, align score; DS, docking score; d, distance
score).

Figure 11. Structural alignment of NRTI derivatives from SmartCADD with zidovudine (AZT) and lamivudine (3TC).
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ring. Furthermore, the ZINC database o-ers multiple
conformations for compounds, each assigned a unique ZINC
ID. SmartCADD can also identify top lead conformations. For
example, among the top 30 NRTI compounds, SMU_NR-
TIs_1, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, and 18 were identified
as di-erent conformations of the same molecule. However,
SMU_NRTIs_20 and 26 exhibited significant structural
di-erences compared to the FDA-approved compounds. We
have included detailed information regarding the SmartCADD
validation protocol in the Supporting Information.
Summary: Case Study. We demonstrated the Smart-

CADD platform through three case studies targeting HIV
NRTIs, NNRTIs, and PIs. The GNN model was trained on a
data set of approximately 1500 active and 1500 inactive
compounds. The model achieved an accuracy of approximately
85% and was further validated with FDA-approved com-
pounds. Subsequently, the trained GNN model was wrapped
in the deep learning filter to identify the top 10 million
potentially active HIV compounds from the ZINC data set.
Next, the ADMET filter ensured the retention of only drug-like
candidates. Following this initial filtering step, the 2D
pharmacophore filter further refined the pool, resulting in
1452 NRTIs, 2716 NNRTIs, and 871 PIs as promising lead
candidates. Next, the 3D pharmacophore filter was applied to
these QM-optimized compounds identified from the 2D
analysis. This 3D model generated nine key 3D parameters,
with 100 conformations analyzed for each molecule to account
for structural flexibility. The top 20 compounds were selected
based on a careful evaluation of the nine parameters. In
addition, the explainable AI model pinpointed functional
groups crucial for potency determination, providing valuable
insights into GNN decision-making. Computational time and
power for the case study are described in Supporting
Information (Table S1).
While this specific example showcases SmartCADD’s

capabilities, it is important to note that the software’s full
potential extends beyond this scenario. One key aspect of
SmartCADD is its deep learning filter. This filter requires
training data with both active and inactive compounds, these
types of Boiassay data is available on the PubChem BioAssay
database109 which includes over one million records.
SmartCADD is versatile. It can function as a complete
screening pipeline, but its individual filters can also be used

independently. Furthermore, 2D and 3D pharmacophore
analysis require reference compounds for a specific target.
While FDA-approved drugs are ideal, Users can use reference
compounds with experimental results, such as those obtained
from in vitro or clinical trials. Also, if the reference compounds
are structurally di-erent, consider using reference compounds
with higher alignment scores for better accuracy for 2D
pharmacophore analysis. SmartCADD’s complete filter process
can be applied to uncover potential lead compounds for a
variety of targets, including the Formylpeptide Receptor, Rho
kinase 2, and the sphingolipid G-protein-coupled receptor and
more.110

SmartCADD Feature Comparison with AIDDISON. AI
and CADD-empowered drug discovery platforms are not
extensively documented in the literature. A recent publication
from Merck Healthcare detailed the AIDDISON platform,111
highlighting its utilization of AI and CADD methodologies.
AIDDISON uses advanced 2D/3D pharmacophore models
and docking analysis to identify promising drug candidates
with generative techniques. By comparatively analyzing the
functionalities of SmartCADD with those of AIDDISON (as
presented in Table 6), we aim to illuminate the specific
advantages o-ered by our SmartCADD platform.

C CONCLUSIONS
We introduce SmartCADD, a user-friendly virtual screening
platform providing researchers with a highly integrated and
flexible framework for building drug discovery pipelines. Built
as a Python package, it seamlessly integrates a wide range of
functionalities, including AI/ML algorithms, explainable AI
descriptors, ADMET property calculations, de novo 2D/3D
pharmacophore analysis, molecular docking, and even QM
calculations. When applying SmartCADD to screen the ZINC
database for HIV-inhibiting compounds, we successfully
identified promising drug candidates, including 1452 NRTIs,
2716 NNRTIs, and 871 PIs. These candidates were further
refined using QM-optimized 3D parameters generated for all
compounds by SmartCADD. Notably, these nine 3D
parameters hold significant value for following lead optimiza-
tion and development processes. SmartCADD’s ability to
eSciently screen billions of compounds daily significantly
reduces discovery timelines and expedites the identification of
promising leads. This unique combination of flexibility,

Table 6. SmartCADD Feature Comparison with the AIDDISON Package

AIDDISON SmartCADD

DL-based initial
Screening

NA deep learning filter - Users have the flexibility to bring their pretrained models or choose
from a variety of model options

ADMET
calculation

NA updated Ro5 filters; TPSA, ROT and NAR filters; PAINS filters

2D
pharmacophore

FTrees112 topological discriptors capture rings, chains and
pharmacophore attributes.

2D pharmacophore filter capture both aromatic and aliphatic rings, pharmacophore
attributes and specific heterocyclic rings (ex. furan, pyrimidine and etc.)

3D
pharmacophore

Cresset’s flare113 scores -3D alignment score with the target
energy minimization - XTB (GFN2-xTB) ligand flexibility
- not mentioned extra - asymmetric Tversky index subfield
or superfield search to filter out molecules

3D pharmacophore filter scores -3D alignment score (AS) with the target shape Tanimoto
distances (STD) shape protrude distance (SPD) energy minimization - XTB (GFN2-
xTB) ligand flexibility - use 100 conformations extra - distance score (0.2−1.0) determine
the number of pharmacophores can be found in a specific distance.

molecular
docking

flare docking from Cresset114 PDB ID or user can directly
upload a protein structure.

Smina Docking PDB ID or user can directly upload a protein structure.

generative
techniques

REINVENT 2.0115 and synthetic accessibility via
SYNTHIA116

NA

explainable AI NA SubgraphX module
type of
application

web-based tool Python package

type of workflow isolated calculations modular pipeline flow
availability commercially available open-source
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cutting-edge technology, and eSciency positions SmartCADD
at the forefront of drug discovery, empowering researchers to
make groundbreaking advancements in the field.

C ASSOCIATED CONTENT
Data Availability Statement
The SmartCADD platform is freely available on GitHub at
https://github.com/SMU-CATCO/SmartCADD.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720.

Review of explainable AI: tools, methods, applications,
and limitations; description of SmartCADD’s tautomers
and protomers models; evaluating computational cost of
SmartCADD modules; graphical representation of HIV
virus structure; validation of the GNN filter with FDA-
approved HIV drugs; case study 2 results: HIV NNRTIs
from SmartCAD; case study 3 results: HIV PIs from
SmartCADD; SmartCADD validation; references (PDF)

C AUTHOR INFORMATION
Corresponding Author

Elfi Kraka − Department of Chemistry, Southern Methodist
University, Dallas, Texas 75205, United States;
orcid.org/0000-0002-9658-5626;

Email: amahamadakalapuwage@smu.edu, ejlaird@
smu.edu

Authors
Ayesh Madushanka − Department of Chemistry, Southern
Methodist University, Dallas, Texas 75205, United States

Eli Laird − Department of Computer Science, Southern
Methodist University, Dallas, Texas 75205, United States;
orcid.org/0000-0002-0668-8745

Corey Clark − Department of Computer Science, Southern
Methodist University, Dallas, Texas 75205, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.4c00720

Notes
The authors declare no competing financial interest.

C ACKNOWLEDGMENTS
This work was financially supported by the National Science
Foundation (grant number CHE 2102461) and the DSF
Charitable Foundation. We thank SMU’s O’Donnell Data
Science and Research Computing Institute for a generous
allotment of computer time.

C REFERENCES
(1) Stokes, J. M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.;
Donghia, N. M.; MacNair, C. R.; French, S.; Carfrae, L. A.; Bloom-
Ackermann, Z.; et al. A deep learning approach to antibiotic
discovery. Cell 2020, 180, 688−702.
(2) Cortes, J.; Perez-García, J. M.; Llombart-Cussac, A.; Curigliano,
G.; El Saghir, N. S.; Cardoso, F.; Barrios, C. H.; Wagle, S.; Roman, J.;
Harbeck, N.; et al. Enhancing global access to cancer medicines. CA
Cancer J. Clin. 2020, 70, 105−124.
(3) Bianculli, R. H.; Mase, J. D.; Schulz, M. D. Antiviral polymers:
past approaches and future possibilities. Macromolecules 2020, 53,
9158−9186.

(4) Walters, W. P.; Barzilay, R. Applications of deep learning in
molecule generation and molecular property prediction. Acc. Chem.
Res. 2021, 54, 263−270.
(5) Sousa, T.; Correia, J.; Pereira, V.; Rocha, M. Generative deep
learning for targeted compound design. J. Chem. Inf. Model. 2021, 61,
5343−5361.
(6) Makos,́ M. Z.; Verma, N.; Larsson, E. C.; Freindorf, M.; Kraka,
E. Generative adversarial networks for transition state geometry
prediction. J. Chem. Phys. 2021, 155, No. 024116.
(7) Wei, Y.; Li, S.; Li, Z.; Wan, Z.; Lin, J. Interpretable-ADMET: a
web service for ADMET prediction and optimization based on deep
neural representation. Bioinformatics 2022, 38, 2863−2871.
(8) Tian, H.; Ketkar, R.; Tao, P. ADMETboost: a web server for
accurate ADMET prediction. J. Mol. Model. 2022, 28, 408.
(9) Maia, E. H. B.; Assis, L. C.; De Oliveira, T. A.; Da Silva, A. M.;
Taranto, A. G. Structure-based virtual screening: from classical to
artificial intelligence. Front. Chem. 2020, 8, 343.
(10) Yang, Y.; Zhu, Z.; Wang, X.; Zhang, X.; Mu, K.; Shi, Y.; Peng,
C.; Xu, Z.; Zhu, W. Ligand-based approach for predicting drug targets
and for virtual screening against COVID-19. Briefings in Bioinformatics
2021, 22, 1053−1064.
(11) Verma, N.; Qu, X.; Trozzi, F.; Elsaied, M.; Karki, N.; Tao, Y.;
Zoltowski, B.; Larson, E.; Kraka, E. SSnet: A Deep Learning Approach
for Protein−Ligand Interaction Prediction. Int. J. Mol. Sci. 2021, 22,
1392.
(12) Coderc, G.; de Lacam, E.; Roux, B.; Chipot, C. Classifying
Protein−Protein Binding Affinity with Free-Energy Calculations and
Machine Learning Approaches. J. Chem. Inf. Model. 2024, 64, 1081−
1091.
(13) Jiang, Y.; Yu, Y.; Kong, M.; Mei, Y.; Yuan, L.; Huang, Z.;
Kuang, K.; Wang, Z.; Yao, H.; Zou, J.; et al. Artificial intelligence for
retrosynthesis prediction. Engineering 2023, 25, 32−50.
(14) Ishida, S.; Terayama, K.; Kojima, R.; Takasu, K.; Okuno, Y. Ai-
driven synthetic route design incorporated with retrosynthesis
knowledge. J. Chem. Inf. Model. 2022, 62, 1357−1367.
(15) Schneider, P.; Walters, W. P.; Plowright, A. T.; Sieroka, N.;
Listgarten, J.; Goodnow, R. A., Jr; Fisher, J.; Jansen, J. M.; Duca, J. S.;
Rush, T. S.; et al. Rethinking drug design in the artificial intelligence
era. Nat. Rev. Drug Discovery 2020, 19, 353−364.
(16) Bender, A.; Cortés-Ciriano, I. Artificial intelligence in drug
discovery: what is realistic, what are illusions? Part 1: Ways to make
an impact, and why we are not there yet. Drug Discovery Today 2021,
26, 511−524.
(17) Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable
AI: A Review of Machine Learning Interpretability Methods. Entropy
2021, 23, 18.
(18) Laird, E.; Madushanka, A.; Kraka, E.; Clark, C. XInsight:
Revealing Model Insights for GNNs with Flow-Based Explanations.
Explainable Artificial Intelligence; Springer: Cham, 2023; 303−320.
(19) Saeed, W.; Omlin, C. Explainable AI (XAI): A systematic meta-
survey of current challenges and future opportunities. Knowledge-
Based Systems 2023, 263, No. 110273.
(20) Harren, T.; Matter, H.; Hessler, G.; Rarey, M.; Grebner, C.
Interpretation of structure−activity relationships in real-world drug
design data sets using explainable artificial intelligence. J. Chem. Inf.
Model. 2022, 62, 447−462.
(21) Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; Zhu, J.
Explainable AI: A brief survey on history, research areas, approaches
and challenges. Natural Language Processing and Chinese Computing:
8th CCF International Conference, NLPCC 2019, Dunhuang, China,
October 9−14, 2019, Proceedings, Part II 8. 2019; 563−574.
(22) Ponzoni, I.; Páez Prosper, J. A.; Campillo, N. E. Explainable
artificial intelligence: A taxonomy and guidelines for its application to
drug discovery. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2023, 13,
No. e1681.
(23) Laird, E.; Madushanka, A.; Kraka, E.; Clark, C. XInsight:
Revealing Model Insights for GNNs with Flow-Based Explanations.
World Conference on Explainable Artificial Intelligence; Springer: Cham,
2023; 303−320.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00720
J. Chem. Inf. Model. 2024, 64, 6799−6813

6810

https://github.com/SMU-CATCO/SmartCADD
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.4c00720/suppl_file/ci4c00720_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Elfi+Kraka%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9658-5626
https://orcid.org/0000-0002-9658-5626
mailto:amahamadakalapuwage@smu.edu
mailto:ejlaird@smu.edu
mailto:ejlaird@smu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Ayesh+Madushanka%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Eli+Laird%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0668-8745
https://orcid.org/0000-0002-0668-8745
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=%22Corey+Clark%22&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00720?ref=pdf
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.3322/caac.21597
https://doi.org/10.1021/acs.macromol.0c01273?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.macromol.0c01273?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.0c00699?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.0c00699?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01496?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c01496?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0055094
https://doi.org/10.1063/5.0055094
https://doi.org/10.1093/bioinformatics/btac192
https://doi.org/10.1093/bioinformatics/btac192
https://doi.org/10.1093/bioinformatics/btac192
https://doi.org/10.1007/s00894-022-05373-8
https://doi.org/10.1007/s00894-022-05373-8
https://doi.org/10.3389/fchem.2020.00343
https://doi.org/10.3389/fchem.2020.00343
https://doi.org/10.1093/bib/bbaa422
https://doi.org/10.1093/bib/bbaa422
https://doi.org/10.3390/ijms22031392
https://doi.org/10.3390/ijms22031392
https://doi.org/10.1021/acs.jcim.3c01586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c01586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.3c01586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.eng.2022.04.021
https://doi.org/10.1016/j.eng.2022.04.021
https://doi.org/10.1021/acs.jcim.1c01074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01074?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1016/j.drudis.2020.12.009
https://doi.org/10.1016/j.drudis.2020.12.009
https://doi.org/10.1016/j.drudis.2020.12.009
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://doi.org/10.1016/j.knosys.2023.110273
https://doi.org/10.1016/j.knosys.2023.110273
https://doi.org/10.1021/acs.jcim.1c01263?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.1c01263?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/wcms.1681
https://doi.org/10.1002/wcms.1681
https://doi.org/10.1002/wcms.1681
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00720?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(24) Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery
with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2, 573−
584.
(25) Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. M. Design
Patterns: Elements of Reusable Object-Oriented Software, 1st ed.;
Addison-Wesley Professional, 1994; 1−366.
(26) Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons
learned in empirical scoring with smina from the CSAR 2011
benchmarking exercise. J. Chem. Inf. Model. 2013, 53, 1893−1904.
(27) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew,
R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4:
Automated docking with selective receptor flexibility. J. Comput.
Chem. 2009, 30, 2785−2791.
(28) Laird, E.; Madushanka, A. SmartCADD: An AI-Integrated Drug
Designing Platform, 2024 https://github.com/SMU-CATCO/
SmartCADD; urldate: (June 08 2024).
(29) RDKit, RDKit: Open-source cheminformatics. 2023; http://www.
rdkit.org, urldate: (Aug 18 2023).
(30) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.;
Vandermeersch, T.; Hutchison, G. R. Open Babel: An open chemical
toolbox. J. Cheminform. 2011, 3, 33.
(31) Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse,
C.; Pappu, A. S.; Leswing, K.; Pande, V. MoleculeNet: a benchmark
for molecular machine learning. Chem. Sci. 2018, 9, 513−530.
(32) Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.;
Coleman, R. G. ZINC: a free tool to discover chemistry for biology. J.
Chem. Inf. Model. 2012, 52, 1757−1768.
(33) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.;
Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani,
B.; et al. ChEMBL: a large-scale bioactivity database for drug
discovery. Nucleic acids res. 2012, 40, D1100−D1107.
(34) Li, Q.; Cheng, T.; Wang, Y.; Bryant, S. H. PubChem as a public
resource for drug discovery. Drug Discovery Today 2010, 15, 1052−
1057.
(35) Fey, M.; Lenssen, J. E. Fast Graph Representation Learning
with PyTorch Geometric. ICLR Workshop on Representation Learning
on Graphs and Manifolds. 2019; 1−9.
(36) Ramsundar, B.; Eastman, P.; Walters, P.; Pande, V.; Leswing,
K.; Wu, Z. Deep Learning for the Life Sciences; O’Reilly Media, 2019;
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/
dp/1492039837.
(37) Ying, Z.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, J.
Gnnexplainer: Generating explanations for graph neural networks.
Adv. Neural Inf. Process. Syst. 2019, 32, 9240−9251.
(38) Vu, M.; Thai, M. T. Pgm-explainer: Probabilistic graphical
model explanations for graph neural networks. Adv. Neural Inf. Process.
Syst. 2020, 33, 12225−12235.
(39) Yuan, H.; Yu, H.; Wang, J.; Li, K.; Ji, S.On explainability of
graph neural networks via subgraph explorations. International
conference on machine learning, 2021, 1224112252 .
(40) Yuan, H.; Tang, J.; Hu, X.; Ji, S. XGNN: Towards Model-Level
Explanations of Graph NeuralNetworks. Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining; Virtual Event: CA USA, 2020; 430−438.
(41) Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.;
Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: an integrated online
platform for accurate and comprehensive predictions of ADMET
properties. Nucleic Acids Res. 2021, 49, W5−W14.
(42) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug
Delivery Rev. 1997, 23, 3−25.
(43) Zhang, M.-Q.; Wilkinson, B. Drug discovery beyond the ‘rule-
of-five’. Curr. Opin. Biotechnol. 2007, 18, 478−488.
(44) Lipinski, C. A. Rule of five in 2015 and beyond: Target and
ligand structural limitations, ligand chemistry structure and drug
discovery project decisions. Adv. Drug Delivery Rev. 2016, 101, 34−41.
(45) Hartung, I. V.; Huck, B. R.; Crespo, A. Rules were made to be
broken. Nat. Rev. Chem. 2023, 7, 3−4.

(46) Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward,
K. W.; Kopple, K. D. Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615−
2623.
(47) Protti, I.́ F.; Rodrigues, D. R.; Fonseca, S. K.; Alves, R. J.; de
Oliveira, R. B.; Maltarollo, V. G. Do Drug-likeness Rules Apply to
Oral Prodrugs? ChemMedChem. 2021, 16, 1446−1456.
(48) Ritchie, T. J.; Macdonald, S. J. The impact of aromatic ring
count on compound developability−are too many aromatic rings a
liability in drug design? Drug Discovery Today 2009, 14, 1011−1020.
(49) Baell, J. B.; Holloway, G. A. New substructure filters for
removal of pan assay interference compounds (PAINS) from
screening libraries and for their exclusion in bioassays. J. Med.
Chem. 2010, 53, 2719−2740.
(50) Walters, P. rd filters, 2017 https://github.com/PatWalters/rd_
filters; urldate: (May 12 2024).
(51) Guuner, O. F.; Bowen, J. P. Setting the record straight: The
origin of the pharmacophore concept. J. Chem. Inf. Model. 2014, 54,
1269−1283.
(52) Horvath, D.; Mao, B.; Gozalbes, R.; Barbosa, F.; Rogalski, S. L.
Strengths and Limitations of Pharmacophore-Based Virtual Screening.
Chemoinformatics in Drug DiscoVery 2005, 117−137.
(53) Stromgaard, K.; Krogsgaard-Larsen, P.; Madsen, U. Textbook of
drug design and discovery; CRC press, 2009; 1−222.
(54) Muhammed, M. T.; Akı-yalcın, E. Pharmacophore modeling in
drug discovery: methodology and current status. Journal of the Turkish
Chemical Society Section A: Chemistry 2021, 8, 749−762.
(55) Fernández-de Gortari, E.; García-Jacas, C. R.; Martinez-
Mayorga, K.; Medina-Franco, J. L. Database fingerprint (DFP): an
approach to represent molecular databases. J. Cheminform. 2017, 9, 9.
(56) Duan, J.; Dixon, S. L.; Lowrie, J. F.; Sherman, W. Analysis and
comparison of 2D fingerprints: insights into database screening
performance using eight fingerprint methods. J. Mol. Graph. Model
2010, 29, 157−170.
(57) Pattanaik, L.; Coley, C. W. Molecular representation: going
long on fingerprints. Chem. 2020, 6, 1204−1207.
(58) Zhong, S.; Guan, X. Count-based morgan fingerprint: A more
efficient and interpretable molecular representation in developing
machine learning-based predictive regression models for water
contaminants’ activities and properties. Environ. Sci. Technol. 2023,
57, 18193−18202.
(59) Cereto-Massagué, A.; Ojeda, M. J.; Valls, C.; Mulero, M.;
Garcia-Vallvé, S.; Pujadas, G. Molecular fingerprint similarity search
in virtual screening. Methods 2015, 71, 58−63.
(60) Stiefl, N.; Watson, I. A.; Baumann, K.; Zaliani, A. ErG: 2D
pharmacophore descriptions for scaffold hopping. J. Chem. Inf. Model.
2006, 46, 208−220.
(61) Abu Hammad, A. M.; Taha, M. O. Pharmacophore modeling,
quantitative structure- activity relationship analysis, and shape-
complemented in silico screening allow access to novel influenza
neuraminidase inhibitors. J. Chem. Inf. Model. 2009, 49, 978−996.
(62) Ward, S. E.; Beswick, P. What does the aromatic ring number
mean for drug design? Expert Opin. Drug Discovery 2014, 9, 995−
1003.
(63) Ritchie, T. J.; Macdonald, S. J. Physicochemical descriptors of
aromatic character and their use in drug discovery: miniperspective. J.
Med. Chem. 2014, 57, 7206−7215.
(64) Yan, M.; Xu, L.; Wang, Y.; Wan, J.; Liu, T.; Liu, W.; Wan, Y.;
Zhang, B.; Wang, R.; Li, Q. Opportunities and challenges of using
five-membered ring compounds as promising antitubercular agents.
Drug Dev. Res. 2020, 81, 402−418.
(65) Taylor, A. P.; Robinson, R. P.; Fobian, Y. M.; Blakemore, D. C.;
Jones, L. H.; Fadeyi, O. Modern advances in heterocyclic chemistry in
drug discovery. Org. Biomol. Chem. 2016, 14, 6611−6637.
(66) Li, J. J. Heterocyclic chemistry in drug discovery; John Wiley &
Sons, 2013; 1−116.
(67) Kontoyianni, M. Docking and virtual screening in drug
discovery. Proteomics for drug discovery: Methods and protocols 2017,
1647, 255−266.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c00720
J. Chem. Inf. Model. 2024, 64, 6799−6813

6811

https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1021/ci300604z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci300604z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci300604z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://github.com/SMU-CATCO/SmartCADD
https://github.com/SMU-CATCO/SmartCADD
http://www.rdkit.org
http://www.rdkit.org
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1021/ci3001277?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1093/nar/gkr777
https://doi.org/10.1016/j.drudis.2010.10.003
https://doi.org/10.1016/j.drudis.2010.10.003
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1016/j.copbio.2007.10.005
https://doi.org/10.1016/j.copbio.2007.10.005
https://doi.org/10.1016/j.addr.2016.04.029
https://doi.org/10.1016/j.addr.2016.04.029
https://doi.org/10.1016/j.addr.2016.04.029
https://doi.org/10.1038/s41570-022-00451-0
https://doi.org/10.1038/s41570-022-00451-0
https://doi.org/10.1021/jm020017n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm020017n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cmdc.202000805
https://doi.org/10.1002/cmdc.202000805
https://doi.org/10.1016/j.drudis.2009.07.014
https://doi.org/10.1016/j.drudis.2009.07.014
https://doi.org/10.1016/j.drudis.2009.07.014
https://doi.org/10.1021/jm901137j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm901137j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm901137j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/PatWalters/rd_filters
https://github.com/PatWalters/rd_filters
https://doi.org/10.1021/ci5000533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci5000533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/3527603743.ch5
https://doi.org/10.18596/jotcsa.927426
https://doi.org/10.18596/jotcsa.927426
https://doi.org/10.1186/s13321-017-0195-1
https://doi.org/10.1186/s13321-017-0195-1
https://doi.org/10.1016/j.jmgm.2010.05.008
https://doi.org/10.1016/j.jmgm.2010.05.008
https://doi.org/10.1016/j.jmgm.2010.05.008
https://doi.org/10.1016/j.chempr.2020.05.002
https://doi.org/10.1016/j.chempr.2020.05.002
https://doi.org/10.1021/acs.est.3c02198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c02198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c02198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.3c02198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1021/ci050457y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci050457y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci8003682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci8003682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci8003682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci8003682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1517/17460441.2014.932346
https://doi.org/10.1517/17460441.2014.932346
https://doi.org/10.1021/jm500515d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm500515d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/ddr.21638
https://doi.org/10.1002/ddr.21638
https://doi.org/10.1039/C6OB00936K
https://doi.org/10.1039/C6OB00936K
https://doi.org/10.1007/978-1-4939-7201-2_18
https://doi.org/10.1007/978-1-4939-7201-2_18
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00720?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(68) Forli, S.; Huey, R.; Pique, M. E.; Sanner, M. F.; Goodsell, D. S.;
Olson, A. J. Computational protein−ligand docking and virtual drug
screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905−919.
(69) Gupta, M.; Sharma, R.; Kumar, A. Docking techniques in
pharmacology: How much promising? Comput. Biol. Chem. 2018, 76,
210−217.
(70) Chen, Y.-C. Beware of docking! Trends Pharmacol. Sci. 2015,
36, 78−95.
(71) Bolcato, G.; Heid, E.; Bostroom, J. On the value of using 3D
shape and electrostatic similarities in deep generative methods. J.
Chem. Inf. Model. 2022, 62, 1388−1398.
(72) Hua, Y.; Huang, D.; Liang, L.; Qian, X.; Dai, X.; Xu, Y.; Qiu,
H.; Lu, T.; Liu, H.; Chen, Y.; Zhang, Y.; et al. FSDscore: An Effective
Target-focused Scoring Criterion for Virtual Screening. Mol. Inform.
2023, 42, No. 2200039.
(73) Tosco, P.; Balle, T.; Shiri, F. Open3DALIGN: an open-source
software aimed at unsupervised ligand alignment. J. Comput. Aided
Mol. Des. 2011, 25, 777−783.
(74) Baraque de Freitas Rodrigues, S.; Santos Aquino de Arauj́o, R.;
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