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Beyond inherent robustness: strong stability of
MPC despite plant-model mismatch

Steven J. Kuntz

Abstract—In this article, we establish the asymptotic
stability of MPC under plant-model mismatch for problems
where the origin remains a steady state despite mismatch.
This class of problems includes, but is not limited to, inven-
tory management, path-planning, and control of systems
in deviation variables. Our results differ from prior results
on the inherent robustness of MPC, which guarantee only
convergence to a neighborhood of the origin, the size of
which scales with the magnitude of the mismatch. For MPC
with quadratic costs, continuous differentiability of the
system dynamics is sufficient to demonstrate exponential
stability of the closed-loop system despite mismatch. For
MPC with general costs, a joint comparison function bound
and scaling condition guarantee asymptotic stability de-
spite mismatch. The results are illustrated in numerical sim-
ulations, including the classic upright pendulum problem.
The tools developed to establish these results can address
the stability of offset-free MPC, an open and interesting
question in the MPC research literature.

Index Terms—Model predictive control (MPC), plant-
model mismatch, inherent robustness, optimal control, ro-
bust control.

[. INTRODUCTION

LANT-MODEL mismatch is an ever-present challenge in

model predictive control (MPC) practice. In industrial im-
plementations, the main driver of MPC performance is model
quality [1, 2]. There has been recent progress on improving
model quality and MPC performance through disturbance
modeling and estimator tuning [3, 4, 5], simultaneous state
and parameter estimation [6, 7, 8], and data-driven MPC
design and analysis [9, 10, 11, 12] to name a few methods.
However, there is not yet a sharp theoretical understanding of
the robustness of MPC to plant-model mismatch.

Before discussing MPC robustness, let us first define robust-
ness. In the stability literature, robust asymptotic stability has
been used to refer to both (i) input-to-state stability (ISS) [13]
and (ii) asymptotic stability despite disturbances [14]. To avoid
confusion, we reserve the term robust asymptotic stability for
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(i) and use strong asymptotic stability to refer to (ii).! When
such properties are given by a nominal MPC,> we call it
inherently robust or inherently strongly stabilizing. Robust and
strong exponential stability are defined similarly.

It is well-known that MPC is stabilizing under certain
assumptions on the terminal ingredients (cf. [17, Ch. 2]). To
achieve robust stability in the presence of parameter errors,
estimation errors, and exogenous perturbations, a disturbance
model can be included (cf. [17, Ch. 1, 3]). Even in the
absence of a disturbance model, a wide range of nominal MPC
designs are inherently robust to disturbances. Continuity of
the control law was first proven to be sufficient for inherent
robustness [18, 19]. Later, [20] proved continuity of the
optimal value function is sufficient for inherent robustness,
and stated MPC examples with discontinuous optimal value
functions that are nominally stable but otherwise not robust
to disturbances. A special class of time-varying terminal
constraints were proven to confer robust stability to nominal
MPC by [21], and to suboptimal MPC by [22]. In [23, 24], the
inherent robustness of optimal and suboptimal MPC, using a
class of time-invariant terminal constraints, was proven. The
inherent stochastic robustness (in probability, expectation, and
distribution) of nominal MPC was shown by [25, 26, 27].
Finally, direct data-driven MPC was shown to be inherently
robust to noisy data [11].

If the origin remains a steady state under mismatch, we
might expect strong asymptotic stability. While this assump-
tion may seem strong, it includes a wide class of problems,
including inventory management, path-planning, and control
of systems that can be recast in deviation variables. For linear
systems, unconstrained optimal control stabilizes the origin de-
spite bounded perturbations to the system gain [28, 29, 30]. In
the nonlinear setting, we might expect similar behavior under
such disturbances. To the best of our knowledge, the inherent
strong stability of nominal MPC to plant-model mismatch has
been discussed by only [31, 32]. For unconstrained systems
with a sufficiently small bound on the mismatch, nominal
MPC is shown to stabilize the plant to the origin. While exact
penalty functions are considered for handling constraints, there
is no guarantee of recursive feasibility.

In this article, we extend the work of [32] to include input

I'The latter term is borrowed from the differential inclusion literature [15].
Some authors [13, 16] use the term uniform asymptotic stability to refer to
(ii), but we wish to avoid confusion with the time-varying case.

2Nominal MPC refers to MPC designed without a disturbance model.
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constraints and stabilizing terminal constraints. We show in
Theorem 8 that MPC with quadratic costs achieves strong
exponential stability given (i) a fixed steady state, (ii) a
mild differentiability condition, and (iii) standard stabilizing
terminal ingredients (cf. [24]). For MPC with general, positive
definite cost functions, a fixed steady state, and stabilizing
terminal ingredients, we show a joint K-function bound holds
on the increase in the optimal value function (Proposition 9),
but strong stability is implied only if this bound decays suffi-
ciently quickly near the origin (Theorem 7). A counterexample
(Section VI-A) shows this property does not hold in general.
The theory in this article can be extended to address the
open problem of offset-free MPC stability [33]. In offset-free
MPC, an integrating disturbance model is used to effectively
estimate the steady states as a function of the disturbances.
This guarantees (in the absence of estimation errors) the steady
state is uniform in the parameters, and strong stability can be
established (for quadratic costs and differentiable plants).
For brevity, complete proofs of Theorems 1 to 4, an
additional nondifferentiable example, and additional remarks
throughout are deferred to an extended technical report [34].
Notation: Let R>q := Rsq U {oo} denote the ex-
tended nonnegative reals. For any function V : R" — R
and finite p > 0, we define the sublevel set lev,V :=
{zeR"|V(z)<p} Wesay V : R* — Rsq is lower
semicontinuous (l.s.c.) if lev,V is closed for each p > 0.
We say a symmetric matrix P = PT € R™ " is positive
definite if TPz > 0 for all z € R™ \ {0}. We define
the Euclidean and Q-weighted norms by |z| := Va Tz and
|z|g = /2 TQx for each z € R", where @ is positive
definite. Moreover, | - | has the property o (Q)|z|* < |z[3, <
7(Q)|x|? for all x € R™, where o(Q) and (Q) denote the
smallest and largest singular values of Q). For any signal a(k),
we denote both infinite and finite sequences in bold font as
a := (a(0),...,a(k)) and a := (a(0),a(1),...). We define
the infinite and length-% signal norm as ||al| := supy~g |a(k)]
and ||alo.x = maxo<i<k |a(i)|. Let PD be the class of
functions a : R>9 — Rx>¢ such that «(0) = 0 and «(s) > 0
for all s > 0. Let K be the class of PD-functions that
are continuous and strictly increasing. Let ., be the class
of K-functions that are unbounded. Let KL be the set of
functions 5 : R>o x Isg — R such that 8(-, k) € K,

B(r,-) is nonincreasing, and lim; ., B(r,7) = 0 for all
(T,k) S RZO X Hzo.
Il. PROBLEM STATEMENT
Consider the following discrete-time plant:
vt = f(2,u,0) M

where x € R”™ is the plant state, v € R™ is the plant input,
and 6 € R™ is an unknown parameter vector. We denote the
parameter estimate by § € R™ and the modeled system by

T = f(a:,u,é). 2)

We assume the parameter estimate is time-invariant, while the
parameter vector itself may be time-varying. For simplicity,

let § = 0 and denote the model as
T = f(:L,u) = f(z,u,0). 3)

In this article, we study the behavior of an MPC designed
with the model (2), but applied to the plant (1). Under the
assumption 6 = 0, 0 takes the role of an estimate residual.
In the language of inherent robustness, the model (3) is the
nominal system, and the plant (1) is the uncertain system.

A. Nominal MPC and basic assumptions

We consider an MPC problem with control constraints u €
U C R™, a horizon length of N € I, a stage cost ¢ :
R™ x R™ — Rx>¢, a terminal constraint Xy C R"”, and a
terminal cost V; : R™ — R>(. For an initial state x € R", we
define the set of admissible (z,u) pairs (4), admissible input
sequences (5), and admissible initial states (6) by

Zy ={(z,u) e R" xUY | §(N;z,u) € X;} (4
Uy (x) = {uecTU" | (z,u) € Zy} 5
Xy = {z € R" | Un(z) is nonempty } (6)

where gz@(k, x,u) denotes the solution to (3) at time k, given
an initial state  and a sufficiently long input sequence u. For
each (z,u) € R"™V™ we define the MPC objective by

N—-1
V(z,u) = > U(k;z,0), u(k)) + Vi((N;z, 1)) (7)
k=0

and for each x € X, we define the MPC problem by

Vi(z) ;= min Vy(z,u). (8)

ucly (x)
Using the convention of [35] for infeasible problems, we take
Vi (z) := oo for all x & X.

Throughout, we use the standard assumptions for inherent
robustness of MPC from [24].

Assumption 1 (Continuity): The functions f : R™ x R™ x
R™ — R™, £ : R" x R™ = R, and Vy : R® — R are
continuous and £(0,0) = 0, £(0,0) = 0, and V}(0) = 0.

Assumption 2 (Constraint properties): The set U is com-
pact and contains the origin. The set X; is defined by Xy :=
lev.,Vy for some cy > 0.

Assumption 3 (Terminal control law): There exists a termi-
nal control law k; : Xy — U such that

Vi@, kp(2))) < Vi(x) = Uz, rp(x)), VzeX;
Assumption 4 (Stage cost bound): There exists a function

a1 € Ko such that
Uz, u) > o (|(z, uw)]), YV (z,u) eR" xU. (9)
Remark 1: Assumptions 2 and 3 imply V;(f(z, s (x))) <
Vi(z) < ¢y for all z € Xy and therefore X; is positive
invariant for zt = f(x, s ().
Under Assumptions 1 and 2, the existence of solutions to
(8) follows from [17, Prop. 2.4]. To ensure uniqueness, we
assume some selection rule has been applied and denote the

solution by u’(z) = (u°(0;z),...,u’(N — 1;2)), denote
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the corresponding optimal state sequence by z°(k;x)
d(k; z,u’(x)) for each k € Io,, and define the MPC control
law kx @ Xy — U by sn(z) := u®(0;x). Note that the
subsequent analyses do not depend on the chosen selection
rule, so the results hold no matter what solutions are selected
at a particular time. It is also useful to define the following
suboptimal input sequence:

() = (u(L2),... ,u’(N = L2), k(20 (N5 2))).

Quadratic stage and terminal costs are of particular interest
in this work. Throughout, we call an MPC satisfying the
following assumption a guadratic cost MPC.

Assumption 5 (Quadratic cost): We have

Vi) = fof3,

for all (z,u) € R™ x R™ and positive definite (), R, and P;.
Consider the modeled closed-loop system

ot = fo(a) = f(x, k(@) (11)

From Assumptions 1 to 4, it can be shown zt = f ()
is asymptotically stable in X with the Lyapunov function
ng [17, Thm. 2.19]. Similarly, it is shown in [17, Sec. 2.5.5]
that, under Assumptions 1 to 3 and 5, the quadratic cost MPC
exponentially stabilizes the closed-loop system (11) on any
sublevel set of the optimal value function S := lev, V. These
facts are stated as special cases of the inherent robustness
results in Section IV.

To show strong stability of the MPC with mismatch, we
eventually require one or both of the following assumptions.

Assumption 6 (Steady state): The origin is a steady state,
uniformly in 6 € R™, i.e., f(0,0,0) =0 for all § € R™.

Assumption 7 (Differentiability): The derivative O, ., f ex-
ists and is continuous on R™ "o,

Remark 2: State constraints were not considered, as there
is no way to guarantee robust feasibility of state-constrained
nominal MPC [24]. Soft state constraints (cf. [32, 33]) are
compatible with our general cost MPC assumptions, but using
them in the quadratic cost MPC would require some modifi-
cations to our analysis.

Remark 3: Assumption 6 limits our results to problems
where the steady state is known and fixed (e.g., path-planning
and inventory problems). If the steady state depends on 6, i.e.,
x5(0) = f(xs(0),us(0),80), we can still work with deviation
variables (dx,d0u) (x — 245(0),u — ug()), but (i) we
have to estimate the steady-state pair (x4(0),us(0)) (e.g.,
via an integrating disturbance model [17, Ch. 1]), and (ii)
strong stability is only achieve when the steady-state map is
continuous, the parameters are asymptotically constant, and
the estimation errors converge [33].

Remark 4: Assumption 7 effectively requires the plant (1)
to be continuous in . Continuous differentiability of f is
sufficient, but not necessary, for guaranteeing Assumption 7.

Remark 5: The linear parameter-varying (LPV) system
xT = A(0)z + B(0)u, where (A, B) are continuous in 6,
is a simple example satisfying both Assumptions 6 and 7.
If (A, B) are known, one could treat § as a fitted parameter

Lz, u) = |T|é + |ul%, (10)
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Fig. 1. Contours of the cost difference as a function of the initial state

« and the parameter 6.

— 60 =0.00 6 = —1.00
6 = —0.50 — = 6 = —1.50

AV (z,0)

Fig. 2. For (left) positive and (right) negative values of 6, the (top)
closed-loop trajectories with initial state @ = 3, and (bottom) cost
differences as a function of «, along with the nominal values.

estimate, construct the MPp from the data-driven surrogate
model z+ = A(0)x + B(0)u, and use the theory herein to
demonstrate stability given sufficiently accurate estimates 6.

B. Motivating example

We close this section with a motivating example exhibiting
many types of stability under persistent mismatch. Recall from
the introduction we define robust stability as an ISS property
for parameter errors, and strong stability as convergence to the
origin despite mismatch. While precise definitions are given in
Section III, these informal definitions suffice for the example.
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Consider the scalar linear system

= f(z,u,0) := 2+ (1 + 0)u. (12)

The plant (12) is a prototypical integrating system, such as
a storage tank or vehicle on a track, with an uncertain input
gain. As usual the system is modeled with § = 0,

zt = f(:mu) = f(z,u,0) =z + u. (13)
We define a nominal MPC with U := [—1,1], {(z,u) :=
(1/2) (22 4+ u?), Vi(z) := (1/2)22, Xf :=[-1,1], and N :=

2. Notice that the terminal set can be reached in N = 2 moves
if and only if |z| < 3, so we have the set of admissible initial
states Xy = [—3, 3]. Without the terminal constraint (i.e., Xy =
R), the optimal control sequence is

uO(x) — (—31’/5,—1’/5),
(—sgn(z), —z/2 + sgn(x)/2),

and the control law is k2(x) := —sat(3z/5) [17, p. 104].
However, the optimal input sequence gives

|z < 5/3
5/3 < |z <3

lz| <5/3

x/2 —sgn(z)/2, 5/3<|x| <3

so the terminal constraint X; = [—1,1] is automatically
satisfied for all || < 3. Therefore ko(x) = —sat(3z/5) is also
the control law of the problem with the terminal constraint.

In Figure 1 we plot contours of the cost difference
AVD(x,0) := V(f(x,ka(x),0)) — V3 (), and in Figure 2,
we plot closed-loop trajectories and the cost difference curve
AVZ(-,0) for several values of §. For —1 < 6 < 7/3, we
have strong stability as AVY(-,0) is negative definite. For
6 > 7/3, the sign of AV (-,0) is ambiguous, and we have
robust stability. For § < —1, the trajectories are unbounded
as AVZ(-,0) is positive definite. We point out the existing
literature on inherent robustness is not sufficient to predict
strong stability whenever —1 < 6 < 7/3.

I1l. ROBUST AND STRONG STABILITY

Consider the closed-loop system
= fo(x,0) = f(z,kn(x),0),

where © C R™. Let ¢.(k;x,0) denote solutions to (14) at
time k, given an initial state x € X and a sufficiently long
parameter sequence § € ©. If © := {0 e R™ | [§| < J},itis
convenient to write (14) as 27 = f.(z,0),]0] < §. We define
robustly positive invariant (RPI) sets for (14) as follows.

Definition 1 (Robust positive invariance): A set X C R"
is robustly positive invariant for the system z+ = f.(x,0),0 €
O if fo(r,0) € X forall z € X and 6 € O.

In this section, we present stability definitions and results for
(14). For brevity, asymptotic and exponential definitions and
results are consolidated into the same statement. The main
difference between our definitions and results and existing
ones in the literature is the restriction of the state to the RPI
set X and the disturbance to the arbitrary set ©.

0O (14)

A. Robust stability

We define robust asymptotic stability (RAS) similarly to
input-to-state stability (ISS) from [13]. Likewise, we define
robust exponential stability (RES) similarly to input-to-state
exponential stability (ISES) from [36].

Definition 2 (Robust stability): A system z
fe(x,0),0 € O is robustly asymptotically stable (in a
RPI set X C R"™) if there exists 8 € KL and v € K such that

|¢c(k; 2, 0)] < B(|z[, k) +v([I8]0:k-1)

for all k € Is0, * € X, and © € ©OF. If, additionally,
B(s,k) = csA* for some ¢ > 0 and A € (0,1), we say
2t = f.(x,0),0 € O is robustly exponentially stable (in X).

Definition 3 (ISS/ISES Lyapunov function): A function V :
X — Rxqis an ISS Lyapunov function (in an RPI set X C R",
for the system 2t = f.(x,0),0 € ©) if there exist functions
a1, 09,03 € Ko and o € K such that

+ =

5)

ay(lz]) < V(z) < as(|z])

V(fe(z,0)) < V(z) — as(lz]) + o (|0])-

(16a)
(16b)

for all z € X and 6 € ©. If, additionally, o;(-) := a;(-)"

for some a;,b > 0 and each i € I;.3, we say V is an ISES
Lyapunov function (in X, for 2+ = f.(x,0),0 € ©).

The result below is a generalization of [24, Prop. 19] to
include arbitrary disturbance sets and the exponential case.

Theorem 1 (ISS/ISES Lyapunov theorem): The system
xt = f.(x,0),0 € © is RAS (RES) in an RPI set X C R"
if it admits an ISS (ISES) Lyapunov function in X.

Proof: While a self-contained proof can be found in [34],
we provide a sketch of the proof as follows.

As in [24], the asymptotic case follows identically to the
proof [13, Lem. 3.5], noting that it is unnecessary to invoke
continuity of f. and V, and, without loss of generality, we can
restrict the state and disturbance to X and ©, respectively.

For the exponential case, we immediately have

arle(k)|” < V(2 (k) < MV (2(k — 1)) + o (6(k — 1))
k

<NV (@) + YN o0k — 1))
i=1

o(|[6llo:k—1)

Sag)\gmb-&- T
— Ao

a7)
for all k € I>9, 2 € X, and O € ©F, where N\ :== 1 — Z—i €
(0,1) and z(j) = ¢c(k;2,0) for all j € Ip.;. The desired
bound follows by applying the function ((-)/a;)'/* to both
sides and using the triangle inequality when b < 1 and the
definition of convexity when b > 1, appropriately defining
¢>0and X € (0,1) for each case. [

B. Strong stability

We take strong asymptotic stability (SAS) as a time-
invariant version of the conclusion of [16, Prop. 2.2]. Strong
exponential stability (SES) is defined similarly.
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Definition 4 (Strong stability): A system  z+ =
fe(x,0),0 € O is strongly asymptotically stable (in a

RPI set X C R™) if there exists 8 € KL such that

|pe(k; 2, 0) < B(|z], k)

for all k € Isg, * € X, and © € ©OF. If, additionally,
B(s, k) := csAk for all s > 0 and k € I>q, and some ¢ > 0
and A € (0,1), we say =+ = f.(z,0),0 € O is strongly
exponentially stable (in X).

Definition 5 (Lyapunov function): A function V : X —
R>o is a Lyapunov function (in a RPI set X C R", for
the system z+ = f(z,0),0 € ©), if there exist functions
a1, 0o € Ko and a continuous function «s € PD such that

(18)

ay(fz]) < V(2) < as(|z])
V(fe(x,0)) <V(z) — as(|z[)

for all z € X and 6 € ©. If, additionally, c;(-) := a;(-)" for
some a;,b > 0 and each i € I;.3, we say V is an exponential
Lyapunov function (in X, for x* = f.(z,0),0 € O).

The following theorem generalizes [24, Prop. 13] and [23,
Lem. 15] to include arbitrary disturbance sets.

Theorem 2: The system zt = f.(z,0),0 € © is SAS
(SES) in a RPI set X C R"™ if it admits a Lyapunov function
(an exponential Lyapunov function) in X.

Proof: See [34] for a self-contained version of the fol-
lowing proof sketch.

For the asymptotic case, since the proof of [16, Lem. 2.8]
still holds when parts relating to continuity of f. and V are
dropped (cf. [34, Prop. 12]), there exist functions a;, p € K
such that W (f.(z,0)) < W(z) — a(|z|) for all z € X and
0 € O, where W := p o V. Moreover &;(|z|) < W(x) <
as(|z|) for all x € X, where &; := poa; € Koo, € I1.5. In
other words, W is a Lyapunov function on X for the system
(14), but with a K,-function cost decrease. The rest of the
proof of the asymptotic part follows identically to the proof
of the relevant part of [16, Thm. 1(1)].

Following the proof of Theorem 1, the exponential case is
established by setting o = 0 in (17) and applying the function
((-)/a1)*® to both sides. [ ]

(19a)
(19b)

IV. INHERENT ROBUSTNESS OF MPC

In this section, we review results on the inherent robustness
of nominal MPC. See [34] for direct proofs of the results
in this section. Theorem 3 follows as a special case of the
suboptimal MPC robustness result [24, Thm. 21].

Theorem 3: Suppose Assumptions 1 to 4 hold. Let p > 0
and S = levpVI(\),. Then there exist § > 0, ay € Ko, and
o € K such that

ai(lz]) < V(@) < as(lz))
VN (fe(@,0)) < V(@) = ar(lz]) +o(10])

forall x € S and |6] < 4, and the system =+ = f.(z,0), 0] <
0 is RAS in the RPI set S.

(20a)
(20b)

A key step of the proof of Theorem 3 and the main results
is to establish the following robust descent property:

VN (fe(x,0)) < V(@) = £z, kv (z))
+ Vi (fe(2,6), 0(2)) = Vv (fe(2), a(x)).

In fact, it is shown (21) can be achieved on any sublevel set of
V4 and a sufficiently small neighborhood |0| < §. We restate
this intermediate result in the following proposition.

Proposition 1: Suppose Assumptions 1 to 4 hold. Let p > 0
and S := lev,Vy. There exists § > 0 such that (21) holds for
all z € Sand |0| <6 and S is RPI for 1 = f.(x,0),]0] < 4.

With quadratic costs (Assumption 5), Assumptions 1 to
3 also imply inherent exponential robustness of MPC. The-
orem 4 follows as a special case of the suboptimal MPC
robustness result [23, Thm. 18].

Theorem 4: Suppose Assumptions 1 to 3 and 5 hold. Let
p >0 and S := lev,Vy. There exist §,c; > 0 and 0 € K
such that

2n

crfa]* < Vy(2) < eolf?
Va(fe(@,0)) < VN (@) = erlzf* + o(10])

for all z € S and |0| < §, where ¢; := o(Q), and the system
xt = fo(x,0),]0] <4 is RES in the RPI set S.

(22a)
(22b)

V. STABILITY OF MPC DESPITE MISMATCH

In this section, we investigate two approaches to guarantee
strong stability of the closed-loop system (14). First, we
take a direct approach and assume the existence of an ISS
Lyapunov function that achieves a certain maximum increase
due to mismatch. In general, an additional scaling condition
is required for the mismatch term, although it is automatically
satisfied for quadratic cost MPC. While these new Lyapunov
assumptions are difficult to check, we can easily construct
error bounds that imply the maximum Lyapunov increase for
V4 via the standard MPC assumptions (Assumptions 1 to 5)
and one or both of Assumptions 6 and 7.

A. Maximum Lyapunov increase

We begin with the direct approach. The goal here is not
(necessarily) to provide the means to check if a given MPC
is strongly stabilizing, but to (i) identify a set of conditions
for which an ISS Lyapunov function also guarantees strong
stability (not only for the closed-loop MPC but for a general
class of systems) and (ii) provide a path towards proving
certain classes of nominal MPCs are strongly stabilizing.

1) Asymptotic case: For inherent robustness, a maximum
increase of the form (20b) is proven for the optimal value
function V. However, since the perturbation term o (|6]) is
uniform in |x|, strong stability is not demonstrated for nonzero
f. Under Assumption 6, we might assume the perturbation
vanishes in either of the limits |x| — 0 or |#] — 0. In this
sense, the perturbation should be class-K in |z| whenever |6 is
fixed, and vice versa. We call these functions joint K-functions
or K2-functions and define them as follows.
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Definition 6 (Class K?): The class of joint KC-functions, de-
noted K? is the class of continuous functions v : R, — R>g
such that (s, -),v(-, s) € K for all s > 0. -

To achieve strong stability, we assume the existence of
an ISS Lyapunov function with a X2-function perturbation
term, rather than the standard /C-function perturbation term.
Moreover, we require the perturbation to decay faster than the
nominal cost decrease in the limit || — 0 so that the descent
property of Definition 5 is achieved for sufficiently small 6.

Assumption 8: There exists a Ls.c. function V : R" — Rx
such that, for each p > 0, there exist dg > 0, a1, a2, a3z € Koo,
and vy € K? satisfying the following:

(a) S:=1lev,V C Ay,
(b) for each z € S and |0| < §p, we have

ar(|z]) < V(z) < ax(lz) (23a)
V(fe(x,0)) < V(z) — as(|z]) +yv (], |0]);  (23b)

(c) and there exists 7 > 0 such that
lim sup m < 1. 24)

s—0Tt 043(5)

Remark 6: We assume V is Ls.c. to ensure S is closed and
can be used as a domain of attraction. Note l.s.c. of V is
compatible with the jump to VJ(z) = co when z ¢ Xy.

With Assumption 8, we have our first main result.

Theorem 5: Suppose Assumption 8 holds with V : R” —
EZO. For each p > 0, there exists 6 > 0 for which zt =
fe(z,0),]0] < 6 is SAS in the RPI set S :=lev, V.

To prove Theorem 5, we require a preliminary result related
to the ability of a given K2-function to lower bound another
given KC-function (see Appendix A for proof).

Proposition 2: Let a € Ko, and v € K2. If there exists
7 > 0 such that limsup,_,o+ (s, 7)/a(s) < 1, then, for each
p > 0, there exists § > 0 such that v(s,t) < a(s) for all
s € (0,p] and t € [0,0].

Finally, we prove Theorem 5.

Proof of Theorem 5: By Assumption 8(a,b) there exists
do > 0, a1, 9,3 € Koo, and vy € K2 such that S C Xy
and (23) holds for each x € S and || < dg. Let g9 :=
sup,cs || > 0.3 By Assumption 8(c) and Proposition 2, there
exists 91 > 0 such that az(s) > vy (s,t) for all s € (0, eg]
and t € [0,41]. With § := min { o, 61 }, the function

o(s) i {a3<s> —v(s9),

az(eo) — Y (€0,9),

0<s<e¢g
S > €p

is both class-PD and continuous. By (23b), we have
V(fe(®,0)) = V(z) < —as(|z]) + (=], 0) = —o(|z|)
for all z € S and |0] < §. Moreover, V(z) < p implies
V(fe(z,0)) <V(z) —o(lz]) <p

so & = lev,V must be RPL Finally, z* = f.(,0),|6] < ¢ is
SAS in § by Theorem 2. ]

3If S = {0}, the conclusion would hold trivially, so we can assume
S # {0} without loss of generality.

Remark 7: One might naively assume that the closed-loop
system (14) is SAS under only Assumption 8(a,b). However,
if the scaling condition Assumption 8(c) does not hold, then
it may be the case that we cannot shrink ¢ small enough to
make as(-) — vy (-, ¢) positive definite in a sufficiently large
neighborhood of the origin, let alone any neighborhood at all.
Thus Assumption 8(a,b) alone are insufficient to show V is
a Lyapunov function for the closed-loop system (14). This is
illustrated in the example of Section VI-A.

Remark 8: To achieve Assumption 8(a), it is necessary to
have V(z) = oo for all x ¢ X. Under Assumptions 1 to 4,
this is automatically achieved by the optimal value function
V]Q,, since, according to the convention of [35], we have
VY (z) = oo for infeasible problems.

2) Exponential case: To achieve strong exponential stability,
Assumption 8 is strengthened to require power law versions of
the bounds in (23). Since identical exponents are required, the
scaling condition Assumption 8(c) is automatically satisfied.

Assumption 9: There exists a L.s.c. function V : R™ — Rx
such that, for each p > 0, there exist dg, a1, a2, as,b > 0 and
oy € K4 satisfying the following:

(a) S:=1lev,V C X; and
(b) for each x € S and |0| < §y, we have

a1|m|b <V(z) < a2|x|b (25a)

V(fe(x,0)) < V(z) = agla|” + ov (|0])|2|".

With Assumption 9, we have our second main result.

Theorem 6: Suppose Assumption 9 holds with V : R" —

@20. For each p > 0, there exists 6 > 0 for which zt =
fe(z,0),|0] <6 is SES in the RPI set S :=lev,V.

Proof: Assumption 9 gives g, a1, as,as,b > 0 such that

S C Xy and (25) holds for each z € S and |0] < dg. Let

&1 € (0,0y,"(a3)) and & := min { 5y, d; } > 0. Then, by (25b),

V(fe(x,0) = V(2) < ~[as — ov(8)]|]" = —ay|z|’

for all z € S and |0| < 6, where a4 := a3 — oy (§) > a3 —
oy (1) > 0. But this means that V(z) < p implies

V(fe(x,0)) <V(x) - a4|z|b <p

so § = lev,V must be RPL Finally, T = f.(,0), 0] < ¢ is
SES in S by Theorem 2. ]

(25b)

B. Error bounds

While the maximum Lyapunov increases (23b) and (25b)
are difficult to verify directly, they are in fact satisfied for the
optimal value function (i.e., V := V) under fairly general
conditions, as we show in Section V-C. First, however, we
require bounds on the error due to mismatch.

1) Model error bounds: Stability of MPC under mismatch
was first investigated by [31, 32], who considered, for a fixed
parameter § € R"?, the following power law bound:

|f (@, u,0) = f(z,u)] < cla|
for some ¢ > 0 and all (x,u) € R™ xRR™. However, the bound
(26) does not account for changing or unknown 6 € R™® and
is uniform in v € R™, thus ruling out the motivating example

(26)
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from Section II-B. To handle the former issue, we can take
¢ = 04(]0]) for some o € K. For the latter issue, it suffices

to either replace |x| with |(z,u)|, i.e.,
[f (. 0) = fla,u)| < op(10])] (2, u)] @27)
or consider a bound on the closed-loop error, i.e.,
[felw, 0) = fe(x)| < &4 (16])]al (28)

forall z € S, w € U, and 0 € R, where 0,57 € K and
S C R” is an appropriately chosen compact set.

In the following propositions, we derive the bounds (27)
and (28) using Taylor’s theorem and Assumptions 1 to 3 and
5 to 7 (see Appendices B and C for proofs).

Proposition 3: Suppose Assumptions 1, 2, 6, and 7 hold.
For each compact set S C R", there exists 05 € Ko such
that (27) holds for all x € S, u € U, and # € R"¢.

Proposition 4: Suppose Assumptions 1 to 3 and 5 to 7 hold.
For each compact set S C Xy, there exists 6y € Ko such
that (28) holds for all x € S and 6 € R™.

More generally, we could consider KC2-function bounds,

|f (@, u,8) = fz,u)] < p(l(2,w)], 16])
|fe(w,6) = fe(@)] < F5(a],16])

for all z € S and € O, where 75,7 € K2, and S C R
and © C R™ are appropriately chosen compact sets. In the
following propositions, we derive the bounds (29) and (30)
using Assumptions 1 to 3, 5, and 6 (see Appendices D and E
for proofs).

Proposition 5: Suppose Assumptions 1, 2, and 6 hold. For
any compact sets S C R"™ and © C R"?, there exists vy € K2
satisfying (29) for all x € S, u € U, and 0 € O.

Proposition 6: Suppose Assumptions 1 to 4 and 6 hold. For
any compact sets S € Xy and © C R"?, there exists 77 € K2
satisfying (30) for all x € S and 6 € ©.

2) Suboptimal cost error bounds: Ultimately, we require a
maximum Lyapunov increase of the form (23b) or (25b).
The robust descent property (21) suggests a path through
imposing an error bound on the suboptimal cost function
Vn(fe(z,0),0(x)), ie.,

Vi (fe(@,8), a(x)) = Vv (fe(@), 0(2))] < ov(l6])]z* G

(29)
(30)

where oy € K. In Proposition 7, we establish (31) under
Assumptions 1 to 3 and 5 to 7 (see Appendix F for proof).

Proposition 7: Suppose Assumptions 1 to 3 and 5 to 7 hold
and let S C Xy be compact. Then there exists oy € K such
that (31) holds for all x € S and 6 € R™.

Similarly, we can derive a C?-function version of (31) under
Assumptions 1 to 4 and 6 (see Appendix G for proof).

Proposition 8: Suppose Assumptions 1 to 4 and 6 hold. Let
S C Xy and © C R™ be compact. Then there exists vy € K2
such that, for each z € S and 6 € ©,

VN (fe(,0), u(z)) — Vi (fe(z), ()] < v (|x], |0]). (32)

C. Stability despite mismatch

1) General costs: Finally, we are in a position to construct
a maximum Lyapunov increase (23b) or (25b). For general
costs, this is accomplished in the following proposition.

Proposition 9: Suppose Assumptions 1 to 4 and 6 hold.
Then Assumption 8(a,b) hold with V' := VI(\),.

Proof: Let p > 0, S := lev,Vy, and V := V. Then
S C Xy trivially. Since VJ{), is Ls.c. [37, Lem. 7.18], S is
closed. By Theorem 3, there exists as € Ko satisfying (23a)
forall 2 € S. Then |z| < a7 '(V(z)) < ay*(p) forallz € S,
so S is compact.

By Proposition 1, there exists do > O such that S is RPI
for 2T = f.(x,0),]0] < &y and (21) holds for all 2 € S and
|6] < . Moreover, for each x € S and |0| < 4y, (32) holds
for some vy € K? by Proposition 8. Finally, combining (9),
(21), and (32) gives (23b) with as := 3. |

Assumption 8(a,b) alone do not guarantee strong stability.
However, we can strengthen the hypothesis of Proposition 9
with a scaling requirement to guarantee strong stability.

Theorem 7: Suppose Assumptions 1 to 4 and 6 hold. Let
p > 0and S :=lev,Vy. Then (23) holds for all z € S and
|6] < 6o with V := V) and some &y > 0, a1, as, a3 € Ko,
and vy € K2. If, additionally, there exists 7 > 0 satisfying
(24), then there exists 6 > 0 such that z+ = f.(x,0),]0] < ¢
is SAS in the RPI set S.

Proof: The first part follows from Proposition 9, and the
second part follows from Theorem 5. [ ]

2) Quadratic costs: For quadratic costs, we construct (25b)
in the following proposition.

Proposition 10: Suppose Assumptions 1 to 3 and 5 to 7
hold. Then Assumption 9 holds with b := 2 and V := V.

Proof: Let p > 0, V := V3, and S := lev,V. Since
Assumption 5 implies Assumption 4, we have from the first
paragraph of the proof of Proposition 9 that S is compact.

Theorem 4 also implies (25a) holds for all z € S, with
ai,az > 0 and b := 2. By Proposition 1, there exists dp > 0
such that S is RPI for 1 = f.(x,0),]0] < &y and (21) holds
for all x € S and |0 < dp. Moreover, for each x € S and
|0] < &, (31) holds for some oy € K by Proposition 8, and
combining (21) and (32) gives (25b). |

Our third and final main result follows immediately from
Theorem 5 and Proposition 10.

Theorem 8: Suppose Assumptions 1 to 3 and 5 to 7 holds.
For each p > 0, there exists § > 0 for which z7 =
fe(x,0),10] <6 is SES in the RPI set S :=lev, V.

Proof: By Proposition 10, Assumption 9 holds with V' :=
VJE’,, and by Theorem 6, there exists & > 0 for which S is RPI
and zt = f.(x,0),]0| < ¢ is SES in S. [

VI. EXAMPLES

In this section, we illustrate the results through several
examples. First, we consider a non-differentiable system that
satisfies Assumption 8(a,b) but not Assumption 8(c), and is
not SAS. Finally, we consider the inverted pendulum system
to showcase how the nominal MPC handles different types
of mismatch. Notably, we consider (i) discretization errors,
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Fig. 3. Contours of the cost difference for the MPC of (33).
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Fig. 4. For (left) nonnegative and (right) nonpositive values of 6, the
(top) closed-loop trajectories for the MPC of (33) with initial state x = 2,
and (bottom) cost differences of the same MPC as a function of «.

(i1) unmodeled dynamics, and (iii) incorrectly estimated input
gains. See [34] for an example of a non-differentiable system
that nonetheless satisfies Assumption 9 and is therefore SES.

A. Strong asymptotic stability counterexample
Consider the scalar system

= f(z,u,0) ;== o(x + (1 + O)u)

where o i% the signed square root defined as o(y) :=
sgn(y)+/|y| for each y € R. We define a nominal MPC

with U := [ 1), Uz, u) 22 4+ u?, Vi(x) = 4a?,
Xy =[-1,1], andN =1.

(33)

In Appendix H, it is shown the closed-loop system z+ =
f(z,k1(x),0),]0) < 3 is RES on &} [—2,2] with the
nominal control law k;(z) := —sat(x). Additionally, it is
shown Assumption 8(a,b) is satisfied with V := V?, and (23b)
holds for all z € § := levoV? = [—1,1] and |0] < §p := 3
with a3(s) = 2s2, and vy (s,t) := st + 4y/st. But this
implies lim, o+ Yy (s,t)/as(s) = oo for each ¢ > 0, so
Assumption 8(c) is not satisfied.

However, Assumption 8 is only sufficient, not necessary, for
establishing strong stability. But we have V’(x) = 222 and

AV (@,0) = VP (f (2, k1 (), 0)) — V/(x)
= 2[0(0x)]? — 22% = 2(|0] — |=|)|z| > 0.

for each 0 < |z| < |0] < 1, so the state always gets pushed
out of (—0|,|0|) unless it starts at the origin or # = 0. In
other words, the MPC only provides inherent robustness, not
strong stability, even though Assumption 8(a,b) is satisfied.

In Figure 3, we plot contours of the cost difference
AV (x,0), and in Figure 4 we plot closed-loop trajectories
and the cost difference curve AV (-, ) for several values of
f. Only with § = 0 does the trajectory converge to the origin
and the cost difference curve remain negative definite. For each
0 # 0, the cost difference is positive definite near the origin,
and the trajectory does not converge to the origin.

B. Upright pendulum
Consider the nondimensionalized pendulum system

€2
sinz; — 025 + (]; + 02)u
where z1,7o € R are the angle and angular velocity, u €
[—1,1] is the (signed and normalized) motor voltage, §; € R
is an air resistance factor, k > 0 is the estimated gain of the
motor, and 85 € R is the error in the motor gain estimate. Let
¥(t;x,u,0) denote the solution to the differential equation
(34) at time ¢ > 0 given an initial condition x(0) = w,

constant input signal u(t) = u, and parameters . We model
the continuous-time system (34) as

T = F(x,u,0) := (34)

ot = f(z,u,0) =z + AF(z,u,0) + 03r(x,u,0) (35

where r is a residual function given by

A
r(x,u,0) ::/U [F((t; x,u,0),u,0) — F(zx,u,0)]dt.

Assuming a zero-order hold on the input u, the system (34)

is discretized (exactly) as (35) with 63 = 1. Since we model
the system with § = 0 as

ot = f(z,u) = f(z,u,0) =+ A Lin :r/:f2+ ku] (0

we do not need access to r to design the nominal MPC.
For the following simulations, let the model gain be k& =
5 rad/ s2, the sample time be A = 0.1 s, and define a nominal
MPC with N := 20, U := [-1,1], {(z,u) := |z|> + v
Vi(z) := |2[p,, Xy := lev, Vy, and ¢y := a(Pr)/8, where

Py = [34133-- 10-196--1 is shown, in Appendix I, to satisfy
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— 0=1[0,0,1] - 6 =[2,0,1] — 6=100,0,1] - 6 =[0,6,1] — 0 =1[0,-0,1] - 6 = [0, —3,1]
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(a) Unmodeled dynamics

(b) Underestimated gain

3 4 5
Time (s)

(c) Overestimated gain

Fig. 5. Simulated closed-loop trajectories for the MPC of (34) from the resting position (0) = (=, 0) to the upright position s = (0, 0) for

various values of (61, 62) € R2.

Assumption 3 with the terminal law kf(z) := —2x; — 229.
Assumptions 1, 2, 5, and 6 are satisfied trivially, and As-
sumption 7 is satisfied since continuous differentiability of F'
implies continuous differentiability of ¢/ (and therefore also
r and f) [38, Thm. 3.3]. Thus, the conclusion of Theorem 8
holds for some 6 > 0, and if we can take § > 1, the nominal
MPC is inherently strongly stabilizing with (61,60;) € R?
sufficiently small.

In Figure 5, we simulate the closed-loop system z©T =
f(x, kao(x),0) for some fixed (01,02,1) € R3. Note that all
of these simulations include discretization errors. Figure Sa
showecases the ability of MPC to handle unmodeled dynamics
(i.e., a missing air resistance term). In Figure 5b, the gain of
the motor is increased until the nominal controller is severely
underdamped. In Figure 5c, the gain of the motor is decreased
until the motor cannot overcome the force of gravity and strong
stability is not achieved.

VIlI. CONCLUSION

We establish conditions under which MPC is strongly
stabilizing despite plant-model mismatch in the form of pa-
rameter errors. Namely, it suffices to assume the existence
of a Lyapunov function with a maximum increase, suitably
bounded level sets, and a scaling condition (Assumptions 8
and 9). While we are not able to show the assumptions hold
in general, when the MPC has quadratic costs it is possible to
show that continuous differentiability of the dynamics implies
strong stability (Theorem 6). When the K2-function bound
is not properly scaled, the MPC may not be stabilizing, as
illustrated in the examples. In this sense, while MPC is not
inherently stabilizing under mismatch in general, there is a
common class of cost functions (quadratic costs) for which
nominal MPC is inherently stabilizing under mismatch.

Several questions about the strong stability of MPC remain
unanswered. While quadratic costs are used in many control
problems, it may be possible to generalize Theorem 8 to
other useful classes of stage costs, such as g-norm costs, or

costs with exact penalty functions for soft state constraints
(cf. [32, 33]). We propose the direct approach to strong
exponential stability (Assumption 9 and Theorem 6) provides
a path to generalizing Theorem 8 to other classes of stage
costs, output feedback, or semidefinite costs. Nonlinear MPC
is computationally difficult to implement online. Therefore it
would be worth extending this work to include the suboptimal
MPC algorithm from [24] using the approach therein. Finally,
while our analysis only considers discrete-time MPC and
an effective zero-order hold on the parameter variations, the
continuous-time extensions (both continuous-time MPC are
discrete-time MPC with continuously varying ) are worthy
pursuits.

While systems with fixed and known setpoints are a use-
ful and interesting class of problems, many systems have
parameter-dependent, time-varying setpoints. To track set-
points under mismatch, offset-free MPC can be used. Theory
on nonlinear offset-free MPC is limited, typically relying
on stability of the closed-loop system to guarantee offset-
free performance [39]. In [33], we extend the theory in this
article to consider offset-free MPC with quadratic costs, and
we establish sufficient conditions for closed-loop stability
and guaranteed offset-free performance for a general class
of differentiable systems subject to time-varying setpoints,
persistent disturbances, and plant-model mismatch. However,
many issues in offset-free MPC theory, including necessary
conditions for offset-free performance, nonquadratic costs, and
nondifferentiable systems, are not yet well understood.

APPENDIX

The following preliminary results are required throughout.

Proposition 11 (Prop. 20 of [24]): Let C' C D C R"™, with
C compact, D closed, and f : D — R™ continuous. Then
there exists o € K such that | f(x) — f(y)| < a(|z —y|) for
all x € C and y € D.

Proposition 12: Suppose Assumptions 1 to 3 and 5 hold.
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Let p>0and S := levpVJQ,. There exist c,, c, > 0 such that

#0(k; )| < eelz|,  VazeS, kelnn. 37)

Wl (ks )| < eylzl, VreS, keln_1. (38)
Proof: By Theorem 4, we have the upper bound (22a)

for all x € S and some ¢y > 0. Moreover, since (), R, Py are
positive definite, we can write, for each x € Sand k € [.ny_1,

a(Q)I2°(k; 2)|* < [2°(k; 2)|g < Vy(2) < eafaf?
a(Pp)|i° (N 2)|* < [2°(N; 2)[, < Vi(2) < eozf?

a(R)[u’(k;2)|* < Ju (k; 2)[f < V(@) < cafa]”.

Thus, with ¢, := max { \/c2/0(Q), \/c2/a(Pf) } and ¢, =
\/c2/o(R), we have (37) and (38). [ ]
Proposition 13: Foreach o € K and y € K2, let v (s, t) :=
a(v(s,1)), 12(s,t) = v(a(s),t), and 3(s,t) := (s, a(t))
for each s,t > 0. Then 1,72, 73 € K2.
Proof: These facts follow directly from the closure of
K under composition [40]. For example, for each s > 0, we
have v2(+, s) = y(a(+), s) € K by closure under composition,
va(s,-) = y(a(s),-) € K trivially, and 2 is continuous as it
is a composition of continuous functions. ]

A. Proof of Proposition 2

Let @ € Koo, v € K2, and 7 > 0. Define 7(s,t) :=
SUDze(0,5) V(5,t)/(3) for each s,t > 0, so that L :=
limsup,_,o+ v(s,7)/a(s) = lim, o+ J(s,7). Suppose the
hypothesis holds, i.e., L < 1. Then there exists pg > 0 such
that |3(s,7) — L| <1 — L for all s € (0, pg]. But F(s,t) >0
and L > 0 for all s,t > 0, so (s,7) < 1 for all s € (0, po]
by the reverse triangle inequality. Therefore

V(s t) _ (s T)
a(s) = als)

and y(s,t) < a(s) for all s € (0,po] and ¢ € [0, 7].

Fix p > 0. If p < po, the proof is complete with § := 7.
Otherwise, we must enlarge the interval in s by shrinking the
interval in ¢. For each t € (0, 7], let

<A(s,7) <1

Yo(t) :==inf {s>0|~(s,t) > a(s) }.

Since v(s,t) < a(s) for each s € (0, po] and ¢ € [0, 7], we
have ~o(t) > 0 for all ¢ € (0,7]. Then, by continuity of «
and ~, the first nonzero point at which « and + intersect, if
it exists, must be equal to vo(t). Otherwise, () is infinite.
Note that g is a strictly decreasing function on (0, 7] since, for
any t € (0,7], we have v(70(t), ') < v(v0(t),t) = a(y0(t))
for all ¢ € (0,t). Moreover, lim;_,q+ Y0(t) = oo since, if o
was upper bounded by some 7 > 0, we could take v(7,t) >
a(¥) > 0 for all t € (0,7], a contradiction of the fact that
v(s,-) € K for all s > 0. Then there must exist 6 € (0, 7]
such that vy(d) > p, which implies v(s,t) < «(s) for all
s € (0,p] and t € [0, 9]. [

B. Proof of Proposition 3

Suppose Assumptions 1, 2, 6, and 7 hold, let S C R™ be
compact, and define z := (x,u). By Proposition 11, for each
i € 1., there exists o; € K4 such that

for all z,Z € S x U and 6 € R™. Next, let Z denote the
convex hull of SxU. Then tz € Z forallt € [0,1] and z € Z.
By Taylor’s theorem [41, Thm. 12.14], for each ¢ € I;.,, and
(2,0) € Z x O, there exists t;(z,60) € (0,1) such that

fi(2,0) = fi(2) = [0:£i(t:(2,0)2,0) =0 fi(ti(2,0)2)]z. (40)
Combining (39) and (40) gives, for each (z,0) € S xUxR"™,

11(2,0) = F(2)| <D 1fil2,0) = fi(2)] <D ou(l6])]2]
=1 i=1
and therefore (27) holds with oy := """, o;. [}

C. Proof of Proposition 4

Suppose Assumptions 1 to 3 and 5 to 7 hold. Let S C X
be compact. By Proposition 12, there exists ¢, > 0 such that
lkn(z)] = [u®(0;2)] < cylz|, and therefore |(z,ky(z))| <
lz| + |kn(2)] < (14 ¢y)lx|, for all z € S. Moreover, by
Proposition 3, there exists 0 € K such that

|fel@,0) = fe(@)| < o (10)|(2, mn(@))] < 54(16])]|]
for all x € S and 6 € R, where 65 := of(1 + c,). [ |

D. Proof of Proposition 5

Suppose Assumptions 1, 2, and 6 hold. Let S C R"™ and
© C R™ be compact. Without loss of generality, assume S
and © contain the origin. Then C' :=S§ x U x © is compact,
and by Proposition 11, there exists oy € Ko, such that

‘f(xau79) - f(j,ﬂ,é” < Uf(|(x’u79) - (,f,ﬂ,é”) 41)

for all (z,u,9), (Z,q, 9~) € C. Specializing (41) to (Z, 4, é) =
(z,u,0) € C gives

| (2, u,8) = f(z,u)] < op(16]) (42)
for all (z,u,0) € C. On the other hand, specializing (41) to
(z,a,0) = (0,0,0) € C gives

|f (@, u,0)] = [ f (2, u,0) = f(0,0,0)] < of(|(z,u)])

and therefore

Fla,w)] < | f(@,u,0)] + | f(z,u)]
< 204 (|(z, u)l)
for all (z,u,0) € C. Combining (42) and (43) gives

(2,0, 0) = f(z,u)| < min{20(|(z,w)]), o7 (0]}
for all (z,u,f) € C, which is an upper bound that is
clearly continuous, nondecreasing in each |z| and |0, and
zero if either |x| or |f| is zero. To make the upper bound
strictly increasing, pick any 01,02 € K and let v;(s,t) =
min { 20(s),0¢(t) } + o1(s)oa(t) for each s,t > 0. Then
v € K? satisfies (29) for all (z,u,0) € C. [ |

|f(JJ, Uu, 0) -
(43)
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E. Proof of Proposition 6

Suppose Assumptions 1 to 4 and 6 hold. Let S C Xy and
© C R™ be compact. Using the bounds (9) and (20a) with
u = ky(x), we have, for each x € Xy,

ar(|rn()]) < U, mn (@) < V() < as(lz)).

Thus, |(z, kn(2))| < |z| + |kn(z)] < a|z|) for all z € X,
where a(-) := (-) + a; *(aa(:)) € Ko. By Proposition 5,
there exists vy € K2 such that, for all z € S and 6 € O,

[fe(,0) = fe(@)] < 7 (|(2, kn ()], 16])
< vplelz)), [01) =: 3¢ (=], 6])
where 75 € K? by Proposition 13. [ ]

F. Proof of Proposition 7

Suppose Assumptions 1 to 3 and 5 to 7 hold and let S C X'y
be compact. Throughout, we fix x € & and 6 € O, making
any constructions independently of = and 6. For brevity, let

it = fo(2), @t = fo(x,0), 3T (k) = ¢(k; 2T, 0(x)), and
x T (k) := ¢(k;zT,u(zx)). First, we can write
e{ﬁN = Vn(zT,a(z)) — Vy (@1, a(z))
N-1
=ef + ) 20l (R)TQET (k) + et (k)G @44
k=0
ey, = Vi(z"(N)) = Vy (@ (N))
=20el (N)]" Ppi* (N) + [ef (N)[3, (45)
where ef (k) :== xT (k) — 21 (k).

Next, we establish bounds on the individual terms in (44)
and (45). By Proposition 12, there exists ¢, > 0 such that, for
each k € Iy.y_1, we have

|2 (k)| = |2°

By Assumptions 3 and 5, whenever x € Xy we have

(k+1;2)| < el (46)

a(Pp)|f(z,kp(@))]* < Vi(f (2,54 ()

< Vi(2) - o(Q)laf* < [F(Py) — o(Q)]|/*
and therefore |f(x,k;(z))] < ~slx| where ;5 =
V[e(Pr) — a(Q)]/a(Ps). Then 2°(N; z) € X gives

kp(2°(N; )]

< 7l (V;2)| < ypeslal.

|+ (N)] = |f(@°(N;2),
(47)

Since (S, U, ©) are each compact and f is continuous, Sp :=
f(S8,U,0) and Sk41 := f(S;€7 U) are compact for all k € ]I>0
(by induction). Then S := Uk o Sk is compact, and, since f
is LlpSChltZA contmuousA on bounded sets, there exists Ly > 0
such that |f(z1,u1) — f(22, u2)| < Ly|(w1,u1) — (22, uz)| for
all 1,22 € S and uy, us € U. Then |e} (k+1)| < Lslef (k)]
for each k € Ip.n_1, and, for each k € Iy., we have

lef (k)| < Lot — 27, (48)

Combining (45), (47), and (48) gives

|e{;f| < canlzllrT — 2T +canlzt — 2R (49)

with ¢, = ZL}nyfcmE(Pf) and cq 0 1= LZNO'(Pf) Com-
bining (44), (46), (48), and (49) gives
+|2

e | < cpalallzt — 2+ epolat — 2 (50)

with ¢, 1 1= ¢41 + 26(Q)
7(Q) N:_Ol L?ck. By Proposition 3, there exists 6; € K
such that [+ —2%| < 57(]0])|x|, and combining this inequal-
ity with (50), we have (31) with oy := ¢, 16 + 05725?. |

N-1
o Lice and cpo = cao +

G. Proof of Proposition 8

Suppose Assumptions 1 to 4 and 6 hold. Let S C Ay
and © C R™ be compact. By Proposition 11, there exists
ap € Koo such that

(z2,u2)]) (S1)
for all (z1,u1), (r2,u2) € f(S,U,0) xUN. Specializing (51)

to z1 =27 := f.(x,0), 12 = 2T = f.(x), and uy = uy =
u(x) gives

[V (2™, 0(z) — Vv (@™, 8(2))] < ap(la™
for each x € S and 6 € ©. By Proposition 6 there exists ¥y €
K2 satisfying (30) for all x € S and § € ©. Finally, combining

(30) and (52) gives (32) with vy (s,t) := ap(§¢(s,t)) for all
s,t > 0, where vy € K2 by Proposition 13. [ ]

Vn(z1,m1) — Vv (z2,u2) < ap(|(z1,11) —

—&*]) (52

H. Strong asymptotic stability counterexample

Consider the plant (33) and MPC defined in Sec-
tion VI-A. We aim to show the closed-loop system zt =
f(z,k1(x),0),]0) < d is RES with § = 3, but not inherently
strongly stabilizing for any § > 0. By Lipschitz continuity of
22 on bounded sets and 1/2-Hélder continuity of \/m ,

|ﬁ—yﬂsax—m, Vr,ye[-2,2], (53)

lo(z) Y| <24/ |z — vy

First, we derive the control law. The terminal set can be
reached in a single move if and only if || < 2, so we have
the steerable set X3 = [—2,2]. Consider the problem without
the terminal constraint. The objective is

Vz,yeR. 54)

Vi(z,u) = 2% + u® + 4|z + ul

which is increasing in u if £ > 1 and |u| < 1, and decreasing
inwif z < —1 and |u| < 1. Thus V3 (z, ) is minimized (over
lu| < 1) by u’(x) = —sgn(x) for all ¢ [—1,1]. On the
other hand, if |x| < 1, then Vi (x, -) is decreasing on [—1, —z)
and increasing on (—x, 1]. Thus Vi(x,-) is minimized (over

|u| < 1) by u’(x) = —x so long as |z| < 1. In summary, we
have the control law x4 (z) := —sat(x). But
<1
)] = o
\xfsgn<x>|:|x\—1, 0< ol <2
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so u = k1 (x) drives each state in X} = [—2, 2] to the terminal
constraint X; = [—1, 1]. Therefore k; is also the control law
of the problem with the terminal constraint.

It is easy to check that Assumptions 1 to 4 hold, so by
Theorem 3, the closed-loop system 2z = f(z, r1(x),0),[0] <
§ is RAS on &y = [—2,2] with ISS Lyapunov function V7
for some § > 0. Our next goal is to find such a 6 > 0.

For robust positive invariance, let |z] < 2, § € R, 2T :=

flz,k1(2),0), 27 := f(x,k1(x)) and note that
jat] < V]at [ + [0]]sat(z)] < /1 +16].

Then |z*| < 2 s0 long as || < 3, so X} = [—2,2] is RPI for
xt = f(z,k1(x),0),0) < 3.

By continuity of f, Vlo, and k1 and Proposition 11, there
exists 0 € Ko such that |VP(zT) — V2(2F)] < o(|0])
and therefore V?(z7) < VP(@F) + |[V2(2T) — VP(@1)| <
V2(x) — 22 4+ o(|]) for all |x| < 2 and |§] < 3, where
at = f(x,k1(x),0) and &t = f(x,k(z)). Therefore
xt = f(x,k1(x),0),]0] < 3 is not only RAS, but RES on
X, by Theorem 1.

We now aim to show strong stability is not achieved. For

simplicity, we consider S := levoV = [-1,1] = X; as
the candidate basin of attraction. Let |z| < 1, [] < 3,
xt = f(z,k1(x),0), and 2T := f(z,K1(x)). Moreover,

Uz, k1(x)) > 2|x|? =: as(|z|). Next, we have k1 (z) = —,
2t = o(x0), and #+ = 0. Therefore

Vi(a" () - Vi(@", a())|
= (@) +4la™|| < [ + 4]27

< [a]0] + 4/ |2(10] = yv (], 10])
where vy € K2. For each t > 0, we have vy (s,t)/as(s) =
t/(2s) + 2v/t/s%/2, so lim,_,0+ v (s,t)/as(s) = oo for all
t > 0, and (24) is not satisfied.
As mentioned in the main text, (24) is sufficient but not
necessary. The cost difference curve is positive definite, as

AV (x,8) = 2o (02)]? — 222 = 2(|6] — |z])|z| > 0

for any 0 < |z| < |6] < 1. In other words, 6 can be arbitrarily
small but nonzero, and the cost difference curve will remain
positive definite near the origin.

1. Upright pendulum

Consider the plant (35) and MPC defined in Section VI-B. It
is noted in the main text that Assumptions 1, 2, and 5 to 7 are
automatically satisfied. To design Py and show Assumption 3
holds, consider the linearization

N
“lo1 1 5
——— ~—~

—:A =:B

and the feedback gain K := [2 2|, which stabilizes (55)
because A := A— BK = [ _§ ¢ %] has eigenvalues of 0.9
and 0.1. Numerically solving the Lyapunov equation

AfPiAg — Pr = —2Qk

(55)

where Qr := Q+ K " RK = [} ], we have a unique positive

definite solution Py := [$3-133- 10-196---] Using the inequality

|sinxy — 1| < (1/6)|z1|? for all z; € R, we have

Vi (f (2, —Kx)) = Vi (Ag)]

0

o T AT
= 2w APy {A(sinxl — 1)

:| + [Pf]QzAQ(Sinml — x1)2

< blz|* + alz|®

for all x € R?, where a = [Pf|220A%/36 = 2.8643... x
1072 and b := A|ALP¢[9]|/3 = 0.045675. ... Moreover,

a(Qk) =1, s0
Vi(f(x, -~ Kz)) = Vi(z) + l(z, - Kx)
< —[1—blzf* — alz|"]|2[?

for all 2 € R%. The polynomial inside the brackets has roots
at z, = —1.0231... and =" = 0.9774... and is positive in
between. Recall ¢ := g(Py)/8. Then o(Py)|z|* < Vi(z) <
cy = a(Py)/8 implies |z| < 1/(2v/2) < x* and |u| = |Kz| =
2(|z1|+|22]) < 2v2|z| < 1, so Assumption 3 is satisfied with
kf(x) = —Kx = —2x1 — 225, and Py and Xy as defined.
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