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Beyond inherent robustness: strong stability of
MPC despite plant-model mismatch

Steven J. Kuntz and James B. Rawlings , Fellow, IEEE

Abstract— In this article, we establish the asymptotic
stability of MPC under plant-model mismatch for problems
where the origin remains a steady state despite mismatch.
This class of problems includes, but is not limited to, inven-
tory management, path-planning, and control of systems
in deviation variables. Our results differ from prior results
on the inherent robustness of MPC, which guarantee only
convergence to a neighborhood of the origin, the size of
which scales with the magnitude of the mismatch. For MPC
with quadratic costs, continuous differentiability of the
system dynamics is sufficient to demonstrate exponential
stability of the closed-loop system despite mismatch. For
MPC with general costs, a joint comparison function bound
and scaling condition guarantee asymptotic stability de-
spite mismatch. The results are illustrated in numerical sim-
ulations, including the classic upright pendulum problem.
The tools developed to establish these results can address
the stability of offset-free MPC, an open and interesting
question in the MPC research literature.

Index Terms— Model predictive control (MPC), plant-
model mismatch, inherent robustness, optimal control, ro-
bust control.

I. INTRODUCTION

P
LANT-MODEL mismatch is an ever-present challenge in

model predictive control (MPC) practice. In industrial im-

plementations, the main driver of MPC performance is model

quality [1, 2]. There has been recent progress on improving

model quality and MPC performance through disturbance

modeling and estimator tuning [3, 4, 5], simultaneous state

and parameter estimation [6, 7, 8], and data-driven MPC

design and analysis [9, 10, 11, 12] to name a few methods.

However, there is not yet a sharp theoretical understanding of

the robustness of MPC to plant-model mismatch.

Before discussing MPC robustness, let us first define robust-

ness. In the stability literature, robust asymptotic stability has

been used to refer to both (i) input-to-state stability (ISS) [13]

and (ii) asymptotic stability despite disturbances [14]. To avoid

confusion, we reserve the term robust asymptotic stability for

This work was supported by the National Science Foundation (NSF)
under Grant 2138985. Corresponding author: Steven J. Kuntz.

Steven J. Kuntz was with the Department of Chemical Engineering,
University of California, Santa Barbara, CA 93106 USA. He is now
with Collaborative Systems Integration, Austin, TX 78704 USA (e-mail:
skuntz@ucsb.edu; steven.kuntz@csi-automation.com).

James B. Rawlings is with the Department of Chemical Engineer-
ing, University of California, Santa Barbara, CA 93106 USA (e-mail:
jbraw@ucsb.edu).

(i) and use strong asymptotic stability to refer to (ii).1 When

such properties are given by a nominal MPC,2 we call it

inherently robust or inherently strongly stabilizing. Robust and

strong exponential stability are defined similarly.

It is well-known that MPC is stabilizing under certain

assumptions on the terminal ingredients (cf. [17, Ch. 2]). To

achieve robust stability in the presence of parameter errors,

estimation errors, and exogenous perturbations, a disturbance

model can be included (cf. [17, Ch. 1, 3]). Even in the

absence of a disturbance model, a wide range of nominal MPC

designs are inherently robust to disturbances. Continuity of

the control law was first proven to be sufficient for inherent

robustness [18, 19]. Later, [20] proved continuity of the

optimal value function is sufficient for inherent robustness,

and stated MPC examples with discontinuous optimal value

functions that are nominally stable but otherwise not robust

to disturbances. A special class of time-varying terminal

constraints were proven to confer robust stability to nominal

MPC by [21], and to suboptimal MPC by [22]. In [23, 24], the

inherent robustness of optimal and suboptimal MPC, using a

class of time-invariant terminal constraints, was proven. The

inherent stochastic robustness (in probability, expectation, and

distribution) of nominal MPC was shown by [25, 26, 27].

Finally, direct data-driven MPC was shown to be inherently

robust to noisy data [11].

If the origin remains a steady state under mismatch, we

might expect strong asymptotic stability. While this assump-

tion may seem strong, it includes a wide class of problems,

including inventory management, path-planning, and control

of systems that can be recast in deviation variables. For linear

systems, unconstrained optimal control stabilizes the origin de-

spite bounded perturbations to the system gain [28, 29, 30]. In

the nonlinear setting, we might expect similar behavior under

such disturbances. To the best of our knowledge, the inherent

strong stability of nominal MPC to plant-model mismatch has

been discussed by only [31, 32]. For unconstrained systems

with a sufficiently small bound on the mismatch, nominal

MPC is shown to stabilize the plant to the origin. While exact

penalty functions are considered for handling constraints, there

is no guarantee of recursive feasibility.

In this article, we extend the work of [32] to include input

1The latter term is borrowed from the differential inclusion literature [15].
Some authors [13, 16] use the term uniform asymptotic stability to refer to
(ii), but we wish to avoid confusion with the time-varying case.

2Nominal MPC refers to MPC designed without a disturbance model.
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constraints and stabilizing terminal constraints. We show in

Theorem 8 that MPC with quadratic costs achieves strong

exponential stability given (i) a fixed steady state, (ii) a

mild differentiability condition, and (iii) standard stabilizing

terminal ingredients (cf. [24]). For MPC with general, positive

definite cost functions, a fixed steady state, and stabilizing

terminal ingredients, we show a joint K-function bound holds

on the increase in the optimal value function (Proposition 9),

but strong stability is implied only if this bound decays suffi-

ciently quickly near the origin (Theorem 7). A counterexample

(Section VI-A) shows this property does not hold in general.

The theory in this article can be extended to address the

open problem of offset-free MPC stability [33]. In offset-free

MPC, an integrating disturbance model is used to effectively

estimate the steady states as a function of the disturbances.

This guarantees (in the absence of estimation errors) the steady

state is uniform in the parameters, and strong stability can be

established (for quadratic costs and differentiable plants).

For brevity, complete proofs of Theorems 1 to 4, an

additional nondifferentiable example, and additional remarks

throughout are deferred to an extended technical report [34].

Notation: Let R≥0 := R≥0 ∪ {∞} denote the ex-

tended nonnegative reals. For any function V : Rn → R≥0

and finite ρ ≥ 0, we define the sublevel set levρV :=
{x ∈ R

n | V (x) ≤ ρ }. We say V : R
n → R≥0 is lower

semicontinuous (l.s.c.) if levρV is closed for each ρ ≥ 0.

We say a symmetric matrix P = P⊤ ∈ R
n×n is positive

definite if x⊤Px > 0 for all x ∈ R
n \ { 0 }. We define

the Euclidean and Q-weighted norms by |x| :=
√
x⊤x and

|x|Q :=
√

x⊤Qx for each x ∈ R
n, where Q is positive

definite. Moreover, | · |Q has the property σ(Q)|x|2 ≤ |x|2Q ≤
σ(Q)|x|2 for all x ∈ R

n, where σ(Q) and σ(Q) denote the

smallest and largest singular values of Q. For any signal a(k),
we denote both infinite and finite sequences in bold font as

a := (a(0), . . . , a(k)) and a := (a(0), a(1), . . .). We define

the infinite and length-k signal norm as ∥a∥ := supk≥0 |a(k)|
and ∥a∥0:k := max0≤i≤k |a(i)|. Let PD be the class of

functions α : R≥0 → R≥0 such that α(0) = 0 and α(s) > 0
for all s > 0. Let K be the class of PD-functions that

are continuous and strictly increasing. Let K∞ be the class

of K-functions that are unbounded. Let KL be the set of

functions β : R≥0 × I≥0 → R≥0 such that β(·, k) ∈ K,

β(r, ·) is nonincreasing, and limi→∞ β(r, i) = 0 for all

(r, k) ∈ R≥0 × I≥0.

II. PROBLEM STATEMENT

Consider the following discrete-time plant:

x+ = f(x, u, θ) (1)

where x ∈ R
n is the plant state, u ∈ R

m is the plant input,

and θ ∈ R
nθ is an unknown parameter vector. We denote the

parameter estimate by θ̂ ∈ R
nθ and the modeled system by

x+ = f(x, u, θ̂). (2)

We assume the parameter estimate is time-invariant, while the

parameter vector itself may be time-varying. For simplicity,

let θ̂ = 0 and denote the model as

x+ = f̂(x, u) := f(x, u, 0). (3)

In this article, we study the behavior of an MPC designed

with the model (2), but applied to the plant (1). Under the

assumption θ̂ = 0, θ takes the role of an estimate residual.

In the language of inherent robustness, the model (3) is the

nominal system, and the plant (1) is the uncertain system.

A. Nominal MPC and basic assumptions

We consider an MPC problem with control constraints u ∈
U ⊆ R

m, a horizon length of N ∈ I>0, a stage cost ℓ :
R

n × R
m → R≥0, a terminal constraint Xf ⊆ R

n, and a

terminal cost Vf : Rn → R≥0. For an initial state x ∈ R
n, we

define the set of admissible (x,u) pairs (4), admissible input

sequences (5), and admissible initial states (6) by

ZN := { (x,u) ∈ R
n × U

N | ϕ̂(N ;x,u) ∈ Xf } (4)

UN (x) := {u ∈ U
N | (x,u) ∈ ZN } (5)

XN := {x ∈ R
n | UN (x) is nonempty } (6)

where ϕ̂(k;x,u) denotes the solution to (3) at time k, given

an initial state x and a sufficiently long input sequence u. For

each (x,u) ∈ R
n+Nm, we define the MPC objective by

VN (x,u) :=

N−1∑

k=0

ℓ(ϕ̂(k;x,u), u(k)) + Vf (ϕ̂(N ;x,u)) (7)

and for each x ∈ XN , we define the MPC problem by

V 0
N (x) := min

u∈UN (x)
VN (x,u). (8)

Using the convention of [35] for infeasible problems, we take

V 0
N (x) := ∞ for all x ̸∈ XN .

Throughout, we use the standard assumptions for inherent

robustness of MPC from [24].

Assumption 1 (Continuity): The functions f : Rn × R
m ×

R
nθ → R

n, ℓ : Rn × R
m → R≥0, and Vf : Rn → R≥0 are

continuous and f̂(0, 0) = 0, ℓ(0, 0) = 0, and Vf (0) = 0.

Assumption 2 (Constraint properties): The set U is com-

pact and contains the origin. The set Xf is defined by Xf :=
levcfVf for some cf > 0.

Assumption 3 (Terminal control law): There exists a termi-

nal control law κf : Xf → U such that

Vf (f̂(x, κf (x))) ≤ Vf (x)− ℓ(x, κf (x)), ∀ x ∈ Xf .
Assumption 4 (Stage cost bound): There exists a function

α1 ∈ K∞ such that

ℓ(x, u) ≥ α1(|(x, u)|), ∀ (x, u) ∈ R
n × U. (9)

Remark 1: Assumptions 2 and 3 imply Vf (f̂(x, κf (x))) ≤
Vf (x) ≤ cf for all x ∈ Xf and therefore Xf is positive

invariant for x+ = f̂(x, κf (x)).
Under Assumptions 1 and 2, the existence of solutions to

(8) follows from [17, Prop. 2.4]. To ensure uniqueness, we

assume some selection rule has been applied and denote the

solution by u
0(x) = (u0(0;x), . . . , u0(N − 1;x)), denote

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3604662

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on October 13,2025 at 17:53:08 UTC from IEEE Xplore.  Restrictions apply. 





4 SUBMISSION TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Consider the scalar linear system

x+ = f(x, u, θ) := x+ (1 + θ)u. (12)

The plant (12) is a prototypical integrating system, such as

a storage tank or vehicle on a track, with an uncertain input

gain. As usual the system is modeled with θ̂ = 0,

x+ = f̂(x, u) := f(x, u, 0) = x+ u. (13)

We define a nominal MPC with U := [−1, 1], ℓ(x, u) :=
(1/2)(x2 + u2), Vf (x) := (1/2)x2, Xf := [−1, 1], and N :=
2. Notice that the terminal set can be reached in N = 2 moves

if and only if |x| ≤ 3, so we have the set of admissible initial

states X2 = [−3, 3]. Without the terminal constraint (i.e., Xf =
R), the optimal control sequence is

u
0(x) =

{

(−3x/5,−x/5), |x| ≤ 5/3

(−sgn(x),−x/2 + sgn(x)/2), 5/3 < |x| ≤ 3

and the control law is κ2(x) := −sat(3x/5) [17, p. 104].

However, the optimal input sequence gives

x̂0(2;x) =

{

x/5, |x| ≤ 5/3

x/2− sgn(x)/2, 5/3 < |x| ≤ 3

so the terminal constraint Xf = [−1, 1] is automatically

satisfied for all |x| ≤ 3. Therefore κ2(x) = −sat(3x/5) is also

the control law of the problem with the terminal constraint.

In Figure 1 we plot contours of the cost difference

∆V 0
2 (x, θ) := V 0

2 (f(x, κ2(x), θ)) − V 0
2 (x), and in Figure 2,

we plot closed-loop trajectories and the cost difference curve

∆V 0
2 (·, θ) for several values of θ. For −1 < θ < 7/3, we

have strong stability as ∆V 0
2 (·, θ) is negative definite. For

θ ≥ 7/3, the sign of ∆V 0
2 (·, θ) is ambiguous, and we have

robust stability. For θ < −1, the trajectories are unbounded

as ∆V 0
2 (·, θ) is positive definite. We point out the existing

literature on inherent robustness is not sufficient to predict

strong stability whenever −1 < θ < 7/3.

III. ROBUST AND STRONG STABILITY

Consider the closed-loop system

x+ = fc(x, θ) := f(x, κN (x), θ), θ ∈ Θ (14)

where Θ ⊆ R
nθ . Let ϕc(k;x,θ) denote solutions to (14) at

time k, given an initial state x ∈ XN and a sufficiently long

parameter sequence θ ∈ Θ. If Θ := { θ ∈ R
nθ | |θ| ≤ δ }, it is

convenient to write (14) as x+ = fc(x, θ), |θ| ≤ δ. We define

robustly positive invariant (RPI) sets for (14) as follows.

Definition 1 (Robust positive invariance): A set X ⊆ R
n

is robustly positive invariant for the system x+ = fc(x, θ), θ ∈
Θ if fc(x, θ) ∈ X for all x ∈ X and θ ∈ Θ.

In this section, we present stability definitions and results for

(14). For brevity, asymptotic and exponential definitions and

results are consolidated into the same statement. The main

difference between our definitions and results and existing

ones in the literature is the restriction of the state to the RPI

set X and the disturbance to the arbitrary set Θ.

A. Robust stability

We define robust asymptotic stability (RAS) similarly to

input-to-state stability (ISS) from [13]. Likewise, we define

robust exponential stability (RES) similarly to input-to-state

exponential stability (ISES) from [36].

Definition 2 (Robust stability): A system x+ =
fc(x, θ), θ ∈ Θ is robustly asymptotically stable (in a

RPI set X ⊆ R
n) if there exists β ∈ KL and γ ∈ K such that

|ϕc(k;x,θ)| ≤ β(|x|, k) + γ(∥θ∥0:k−1) (15)

for all k ∈ I≥0, x ∈ X , and θ ∈ Θk. If, additionally,

β(s, k) = csλk for some c > 0 and λ ∈ (0, 1), we say

x+ = fc(x, θ), θ ∈ Θ is robustly exponentially stable (in X).

Definition 3 (ISS/ISES Lyapunov function): A function V :
X → R≥0 is an ISS Lyapunov function (in an RPI set X ⊆ R

n,

for the system x+ = fc(x, θ), θ ∈ Θ) if there exist functions

α1, α2, α3 ∈ K∞ and σ ∈ K such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (16a)

V (fc(x, θ)) ≤ V (x)− α3(|x|) + σ(|θ|). (16b)

for all x ∈ X and θ ∈ Θ. If, additionally, αi(·) := ai(·)b
for some ai, b > 0 and each i ∈ I1:3, we say V is an ISES

Lyapunov function (in X , for x+ = fc(x, θ), θ ∈ Θ).

The result below is a generalization of [24, Prop. 19] to

include arbitrary disturbance sets and the exponential case.

Theorem 1 (ISS/ISES Lyapunov theorem): The system

x+ = fc(x, θ), θ ∈ Θ is RAS (RES) in an RPI set X ⊆ R
n

if it admits an ISS (ISES) Lyapunov function in X .

Proof: While a self-contained proof can be found in [34],

we provide a sketch of the proof as follows.

As in [24], the asymptotic case follows identically to the

proof [13, Lem. 3.5], noting that it is unnecessary to invoke

continuity of fc and V , and, without loss of generality, we can

restrict the state and disturbance to X and Θ, respectively.

For the exponential case, we immediately have

a1|x(k)|b ≤ V (x(k)) ≤ λ0V (x(k − 1)) + σ(|θ(k − 1)|)

≤ λk
0V (x) +

k∑

i=1

λi−1
0 σ(θ(k − i))

≤ a2λ
k
0 |x|b +

σ(∥θ∥0:k−1)

1− λ0
(17)

for all k ∈ I≥0, x ∈ X , and θ ∈ Θk, where λ0 := 1 − a2

a3
∈

(0, 1) and x(j) := ϕc(k;x,θ) for all j ∈ I0:k. The desired

bound follows by applying the function ((·)/a1)1/b to both

sides and using the triangle inequality when b ≤ 1 and the

definition of convexity when b > 1, appropriately defining

c > 0 and λ ∈ (0, 1) for each case.

B. Strong stability

We take strong asymptotic stability (SAS) as a time-

invariant version of the conclusion of [16, Prop. 2.2]. Strong

exponential stability (SES) is defined similarly.
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Definition 4 (Strong stability): A system x+ =
fc(x, θ), θ ∈ Θ is strongly asymptotically stable (in a

RPI set X ⊆ R
n) if there exists β ∈ KL such that

|ϕc(k;x,θ)| ≤ β(|x|, k) (18)

for all k ∈ I≥0, x ∈ X , and θ ∈ Θk. If, additionally,

β(s, k) := csλk for all s ≥ 0 and k ∈ I≥0, and some c > 0
and λ ∈ (0, 1), we say x+ = fc(x, θ), θ ∈ Θ is strongly

exponentially stable (in X).

Definition 5 (Lyapunov function): A function V : X →
R≥0 is a Lyapunov function (in a RPI set X ⊆ R

n, for

the system x+ = f(x, θ), θ ∈ Θ), if there exist functions

α1, α2 ∈ K∞ and a continuous function α3 ∈ PD such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (19a)

V (fc(x, θ)) ≤ V (x)− α3(|x|) (19b)

for all x ∈ X and θ ∈ Θ. If, additionally, αi(·) := ai(·)b for

some ai, b > 0 and each i ∈ I1:3, we say V is an exponential

Lyapunov function (in X , for x+ = fc(x, θ), θ ∈ Θ).

The following theorem generalizes [24, Prop. 13] and [23,

Lem. 15] to include arbitrary disturbance sets.

Theorem 2: The system x+ = fc(x, θ), θ ∈ Θ is SAS

(SES) in a RPI set X ⊆ R
n if it admits a Lyapunov function

(an exponential Lyapunov function) in X .

Proof: See [34] for a self-contained version of the fol-

lowing proof sketch.

For the asymptotic case, since the proof of [16, Lem. 2.8]

still holds when parts relating to continuity of fc and V are

dropped (cf. [34, Prop. 12]), there exist functions α, ρ ∈ K∞

such that W (fc(x, θ)) ≤ W (x) − α(|x|) for all x ∈ X and

θ ∈ Θ, where W := ρ ◦ V . Moreover α̂1(|x|) ≤ W (x) ≤
α̂2(|x|) for all x ∈ X , where α̂i := ρ ◦ αi ∈ K∞, i ∈ I1:2. In

other words, W is a Lyapunov function on X for the system

(14), but with a K∞-function cost decrease. The rest of the

proof of the asymptotic part follows identically to the proof

of the relevant part of [16, Thm. 1(1)].

Following the proof of Theorem 1, the exponential case is

established by setting σ ≡ 0 in (17) and applying the function

((·)/a1)1/b to both sides.

IV. INHERENT ROBUSTNESS OF MPC

In this section, we review results on the inherent robustness

of nominal MPC. See [34] for direct proofs of the results

in this section. Theorem 3 follows as a special case of the

suboptimal MPC robustness result [24, Thm. 21].

Theorem 3: Suppose Assumptions 1 to 4 hold. Let ρ > 0
and S := levρV

0
N . Then there exist δ > 0, α2 ∈ K∞, and

σ ∈ K such that

α1(|x|) ≤ V 0
N (x) ≤ α2(|x|) (20a)

V 0
N (fc(x, θ)) ≤ V 0

N (x)− α1(|x|) + σ(|θ|) (20b)

for all x ∈ S and |θ| ≤ δ, and the system x+ = fc(x, θ), |θ| ≤
δ is RAS in the RPI set S .

A key step of the proof of Theorem 3 and the main results

is to establish the following robust descent property:

V 0
N (fc(x, θ)) ≤ V 0

N (x)− ℓ(x, κN (x))

+ VN (fc(x, θ), ũ(x))− VN (f̂c(x), ũ(x)). (21)

In fact, it is shown (21) can be achieved on any sublevel set of

V 0
N and a sufficiently small neighborhood |θ| ≤ δ. We restate

this intermediate result in the following proposition.

Proposition 1: Suppose Assumptions 1 to 4 hold. Let ρ > 0
and S := levρV

0
N . There exists δ > 0 such that (21) holds for

all x ∈ S and |θ| ≤ δ and S is RPI for x+ = fc(x, θ), |θ| ≤ δ.

With quadratic costs (Assumption 5), Assumptions 1 to

3 also imply inherent exponential robustness of MPC. The-

orem 4 follows as a special case of the suboptimal MPC

robustness result [23, Thm. 18].

Theorem 4: Suppose Assumptions 1 to 3 and 5 hold. Let

ρ > 0 and S := levρV
0
N . There exist δ, c2 > 0 and σ ∈ K

such that

c1|x|2 ≤ V 0
N (x) ≤ c2|x|2 (22a)

V 0
N (fc(x, θ)) ≤ V 0

N (x)− c1|x|2 + σ(|θ|) (22b)

for all x ∈ S and |θ| ≤ δ, where c1 := σ(Q), and the system

x+ = fc(x, θ), |θ| ≤ δ is RES in the RPI set S .

V. STABILITY OF MPC DESPITE MISMATCH

In this section, we investigate two approaches to guarantee

strong stability of the closed-loop system (14). First, we

take a direct approach and assume the existence of an ISS

Lyapunov function that achieves a certain maximum increase

due to mismatch. In general, an additional scaling condition

is required for the mismatch term, although it is automatically

satisfied for quadratic cost MPC. While these new Lyapunov

assumptions are difficult to check, we can easily construct

error bounds that imply the maximum Lyapunov increase for

V 0
N via the standard MPC assumptions (Assumptions 1 to 5)

and one or both of Assumptions 6 and 7.

A. Maximum Lyapunov increase

We begin with the direct approach. The goal here is not

(necessarily) to provide the means to check if a given MPC

is strongly stabilizing, but to (i) identify a set of conditions

for which an ISS Lyapunov function also guarantees strong

stability (not only for the closed-loop MPC but for a general

class of systems) and (ii) provide a path towards proving

certain classes of nominal MPCs are strongly stabilizing.

1) Asymptotic case: For inherent robustness, a maximum

increase of the form (20b) is proven for the optimal value

function V 0
N . However, since the perturbation term σ(|θ|) is

uniform in |x|, strong stability is not demonstrated for nonzero

θ. Under Assumption 6, we might assume the perturbation

vanishes in either of the limits |x| → 0 or |θ| → 0. In this

sense, the perturbation should be class-K in |x| whenever |θ| is

fixed, and vice versa. We call these functions joint K-functions

or K2-functions and define them as follows.
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Definition 6 (Class K2): The class of joint K-functions, de-

noted K2 is the class of continuous functions γ : R2
≥0 → R≥0

such that γ(s, ·), γ(·, s) ∈ K for all s > 0.

To achieve strong stability, we assume the existence of

an ISS Lyapunov function with a K2-function perturbation

term, rather than the standard K-function perturbation term.

Moreover, we require the perturbation to decay faster than the

nominal cost decrease in the limit |x| → 0 so that the descent

property of Definition 5 is achieved for sufficiently small θ.

Assumption 8: There exists a l.s.c. function V : Rn → R≥0

such that, for each ρ > 0, there exist δ0 > 0, α1, α2, α3 ∈ K∞,

and γV ∈ K2 satisfying the following:

(a) S := levρV ⊆ XN ,

(b) for each x ∈ S and |θ| ≤ δ0, we have

α1(|x|) ≤ V (x) ≤ α2(|x|) (23a)

V (fc(x, θ)) ≤ V (x)− α3(|x|) + γV (|x|, |θ|); (23b)

(c) and there exists τ > 0 such that

lim sup
s→0+

γV (s, τ)

α3(s)
< 1. (24)

Remark 6: We assume V is l.s.c. to ensure S is closed and

can be used as a domain of attraction. Note l.s.c. of V 0
N is

compatible with the jump to V 0
N (x) = ∞ when x ̸∈ XN .

With Assumption 8, we have our first main result.

Theorem 5: Suppose Assumption 8 holds with V : Rn →
R≥0. For each ρ > 0, there exists δ > 0 for which x+ =
fc(x, θ), |θ| ≤ δ is SAS in the RPI set S := levρV .

To prove Theorem 5, we require a preliminary result related

to the ability of a given K2-function to lower bound another

given K-function (see Appendix A for proof).

Proposition 2: Let α ∈ K∞ and γ ∈ K2. If there exists

τ > 0 such that lim sups→0+ γ(s, τ)/α(s) < 1, then, for each

ρ > 0, there exists δ > 0 such that γ(s, t) < α(s) for all

s ∈ (0, ρ] and t ∈ [0, δ].
Finally, we prove Theorem 5.

Proof of Theorem 5: By Assumption 8(a,b) there exists

δ0 > 0, α1, α2, α3 ∈ K∞, and γV ∈ K2 such that S ⊆ XN

and (23) holds for each x ∈ S and |θ| ≤ δ0. Let ε0 :=
supx∈S |x| > 0.3 By Assumption 8(c) and Proposition 2, there

exists δ1 > 0 such that α3(s) > γV (s, t) for all s ∈ (0, ε0]
and t ∈ [0, δ1]. With δ := min { δ0, δ1 }, the function

σ(s) :=

{

α3(s)− γV (s, δ), 0 ≤ s ≤ ε0

α3(ε0)− γV (ε0, δ), s > ε0

is both class-PD and continuous. By (23b), we have

V (fc(x, θ))− V (x) ≤ −α3(|x|) + γV (|x|, δ) = −σ(|x|)
for all x ∈ S and |θ| ≤ δ. Moreover, V (x) ≤ ρ implies

V (fc(x, θ)) ≤ V (x)− σ(|x|) ≤ ρ

so S = levρV must be RPI. Finally, x+ = fc(x, θ), |θ| ≤ δ is

SAS in S by Theorem 2.

3If S = { 0 }, the conclusion would hold trivially, so we can assume
S ̸= { 0 } without loss of generality.

Remark 7: One might naı̈vely assume that the closed-loop

system (14) is SAS under only Assumption 8(a,b). However,

if the scaling condition Assumption 8(c) does not hold, then

it may be the case that we cannot shrink t small enough to

make α3(·) − γV (·, t) positive definite in a sufficiently large

neighborhood of the origin, let alone any neighborhood at all.

Thus Assumption 8(a,b) alone are insufficient to show V is

a Lyapunov function for the closed-loop system (14). This is

illustrated in the example of Section VI-A.

Remark 8: To achieve Assumption 8(a), it is necessary to

have V (x) = ∞ for all x ̸∈ XN . Under Assumptions 1 to 4,

this is automatically achieved by the optimal value function

V 0
N , since, according to the convention of [35], we have

V 0
N (x) = ∞ for infeasible problems.

2) Exponential case: To achieve strong exponential stability,

Assumption 8 is strengthened to require power law versions of

the bounds in (23). Since identical exponents are required, the

scaling condition Assumption 8(c) is automatically satisfied.

Assumption 9: There exists a l.s.c. function V : Rn → R≥0

such that, for each ρ > 0, there exist δ0, a1, a2, a3, b > 0 and

σV ∈ K∞ satisfying the following:

(a) S := levρV ⊆ XN ; and

(b) for each x ∈ S and |θ| ≤ δ0, we have

a1|x|b ≤ V (x) ≤ a2|x|b (25a)

V (fc(x, θ)) ≤ V (x)− a3|x|b + σV (|θ|)|x|b. (25b)

With Assumption 9, we have our second main result.

Theorem 6: Suppose Assumption 9 holds with V : Rn →
R≥0. For each ρ > 0, there exists δ > 0 for which x+ =
fc(x, θ), |θ| ≤ δ is SES in the RPI set S := levρV .

Proof: Assumption 9 gives δ0, a1, a2, a3, b > 0 such that

S ⊆ XN and (25) holds for each x ∈ S and |θ| ≤ δ0. Let

δ1 ∈ (0, σ−1
V (a3)) and δ := min { δ0, δ1 } > 0. Then, by (25b),

V (fc(x, θ))− V (x) ≤ −[a3 − σV (δ)]|x|b = −a4|x|b

for all x ∈ S and |θ| ≤ δ, where a4 := a3 − σV (δ) ≥ a3 −
σV (δ1) > 0. But this means that V (x) ≤ ρ implies

V (fc(x, θ)) ≤ V (x)− a4|x|b ≤ ρ

so S = levρV must be RPI. Finally, x+ = fc(x, θ), |θ| ≤ δ is

SES in S by Theorem 2.

B. Error bounds

While the maximum Lyapunov increases (23b) and (25b)

are difficult to verify directly, they are in fact satisfied for the

optimal value function (i.e., V := V 0
N ) under fairly general

conditions, as we show in Section V-C. First, however, we

require bounds on the error due to mismatch.

1) Model error bounds: Stability of MPC under mismatch

was first investigated by [31, 32], who considered, for a fixed

parameter θ ∈ R
nθ , the following power law bound:

|f(x, u, θ)− f̂(x, u)| ≤ c|x| (26)

for some c > 0 and all (x, u) ∈ R
n×R

m. However, the bound

(26) does not account for changing or unknown θ ∈ R
nθ and

is uniform in u ∈ R
m, thus ruling out the motivating example
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from Section II-B. To handle the former issue, we can take

c = σf (|θ|) for some σf ∈ K∞. For the latter issue, it suffices

to either replace |x| with |(x, u)|, i.e.,

|f(x, u, θ)− f̂(x, u)| ≤ σf (|θ|)|(x, u)| (27)

or consider a bound on the closed-loop error, i.e.,

|fc(x, θ)− f̂c(x)| ≤ σ̃f (|θ|)|x| (28)

for all x ∈ S , u ∈ U, and θ ∈ R
nθ , where σf , σ̃f ∈ K∞ and

S ⊆ R
n is an appropriately chosen compact set.

In the following propositions, we derive the bounds (27)

and (28) using Taylor’s theorem and Assumptions 1 to 3 and

5 to 7 (see Appendices B and C for proofs).

Proposition 3: Suppose Assumptions 1, 2, 6, and 7 hold.

For each compact set S ⊆ R
n, there exists σf ∈ K∞ such

that (27) holds for all x ∈ S , u ∈ U, and θ ∈ R
nθ .

Proposition 4: Suppose Assumptions 1 to 3 and 5 to 7 hold.

For each compact set S ⊆ XN , there exists σ̃f ∈ K∞ such

that (28) holds for all x ∈ S and θ ∈ R
nθ .

More generally, we could consider K2-function bounds,

|f(x, u, θ)− f̂(x, u)| ≤ γf (|(x, u)|, |θ|) (29)

|fc(x, θ)− f̂c(x)| ≤ γ̃f (|x|, |θ|) (30)

for all x ∈ S and θ ∈ Θ, where γf , γ̃f ∈ K2, and S ⊆ R
n

and Θ ⊆ R
nθ are appropriately chosen compact sets. In the

following propositions, we derive the bounds (29) and (30)

using Assumptions 1 to 3, 5, and 6 (see Appendices D and E

for proofs).

Proposition 5: Suppose Assumptions 1, 2, and 6 hold. For

any compact sets S ⊆ R
n and Θ ⊆ R

nθ , there exists γf ∈ K2

satisfying (29) for all x ∈ S , u ∈ U, and θ ∈ Θ.

Proposition 6: Suppose Assumptions 1 to 4 and 6 hold. For

any compact sets S ⊆ XN and Θ ⊆ R
nθ , there exists γ̃f ∈ K2

satisfying (30) for all x ∈ S and θ ∈ Θ.

2) Suboptimal cost error bounds: Ultimately, we require a

maximum Lyapunov increase of the form (23b) or (25b).

The robust descent property (21) suggests a path through

imposing an error bound on the suboptimal cost function

VN (fc(x, θ), ũ(x)), i.e.,

|VN (fc(x, θ), ũ(x))− VN (f̂c(x), ũ(x))| ≤ σV (|θ|)|x|2 (31)

where σV ∈ K∞. In Proposition 7, we establish (31) under

Assumptions 1 to 3 and 5 to 7 (see Appendix F for proof).

Proposition 7: Suppose Assumptions 1 to 3 and 5 to 7 hold

and let S ⊆ XN be compact. Then there exists σV ∈ K∞ such

that (31) holds for all x ∈ S and θ ∈ R
nθ .

Similarly, we can derive a K2-function version of (31) under

Assumptions 1 to 4 and 6 (see Appendix G for proof).

Proposition 8: Suppose Assumptions 1 to 4 and 6 hold. Let

S ⊆ XN and Θ ⊆ R
nθ be compact. Then there exists γV ∈ K2

such that, for each x ∈ S and θ ∈ Θ,

|VN (fc(x, θ), ũ(x))− VN (f̂c(x), ũ(x))| ≤ γV (|x|, |θ|). (32)

C. Stability despite mismatch

1) General costs: Finally, we are in a position to construct

a maximum Lyapunov increase (23b) or (25b). For general

costs, this is accomplished in the following proposition.

Proposition 9: Suppose Assumptions 1 to 4 and 6 hold.

Then Assumption 8(a,b) hold with V := V 0
N .

Proof: Let ρ > 0, S := levρV
0
N , and V := V 0

N . Then

S ⊆ XN trivially. Since V 0
N is l.s.c. [37, Lem. 7.18], S is

closed. By Theorem 3, there exists α2 ∈ K∞ satisfying (23a)

for all x ∈ S . Then |x| ≤ α−1
1 (V (x)) ≤ α−1

1 (ρ) for all x ∈ S ,

so S is compact.

By Proposition 1, there exists δ0 > 0 such that S is RPI

for x+ = fc(x, θ), |θ| ≤ δ0 and (21) holds for all x ∈ S and

|θ| ≤ δ0. Moreover, for each x ∈ S and |θ| ≤ δ0, (32) holds

for some γV ∈ K2 by Proposition 8. Finally, combining (9),

(21), and (32) gives (23b) with α3 := α1.

Assumption 8(a,b) alone do not guarantee strong stability.

However, we can strengthen the hypothesis of Proposition 9

with a scaling requirement to guarantee strong stability.

Theorem 7: Suppose Assumptions 1 to 4 and 6 hold. Let

ρ > 0 and S := levρV
0
N . Then (23) holds for all x ∈ S and

|θ| ≤ δ0 with V := V 0
N and some δ0 > 0, α1, α2, α3 ∈ K∞,

and γV ∈ K2. If, additionally, there exists τ > 0 satisfying

(24), then there exists δ > 0 such that x+ = fc(x, θ), |θ| ≤ δ
is SAS in the RPI set S .

Proof: The first part follows from Proposition 9, and the

second part follows from Theorem 5.

2) Quadratic costs: For quadratic costs, we construct (25b)

in the following proposition.

Proposition 10: Suppose Assumptions 1 to 3 and 5 to 7

hold. Then Assumption 9 holds with b := 2 and V := V 0
N .

Proof: Let ρ > 0, V := V 0
N , and S := levρV . Since

Assumption 5 implies Assumption 4, we have from the first

paragraph of the proof of Proposition 9 that S is compact.

Theorem 4 also implies (25a) holds for all x ∈ S , with

a1, a2 > 0 and b := 2. By Proposition 1, there exists δ0 > 0
such that S is RPI for x+ = fc(x, θ), |θ| ≤ δ0 and (21) holds

for all x ∈ S and |θ| ≤ δ0. Moreover, for each x ∈ S and

|θ| ≤ δ0, (31) holds for some σV ∈ K∞ by Proposition 8, and

combining (21) and (32) gives (25b).

Our third and final main result follows immediately from

Theorem 5 and Proposition 10.

Theorem 8: Suppose Assumptions 1 to 3 and 5 to 7 holds.

For each ρ > 0, there exists δ > 0 for which x+ =
fc(x, θ), |θ| ≤ δ is SES in the RPI set S := levρV

0
N .

Proof: By Proposition 10, Assumption 9 holds with V :=
V 0
N , and by Theorem 6, there exists δ > 0 for which S is RPI

and x+ = fc(x, θ), |θ| ≤ δ is SES in S .

VI. EXAMPLES

In this section, we illustrate the results through several

examples. First, we consider a non-differentiable system that

satisfies Assumption 8(a,b) but not Assumption 8(c), and is

not SAS. Finally, we consider the inverted pendulum system

to showcase how the nominal MPC handles different types

of mismatch. Notably, we consider (i) discretization errors,
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Let ρ > 0 and S := levρV
0
N . There exist cx, cu > 0 such that

|x̂0(k;x)| ≤ cx|x|, ∀x ∈ S, k ∈ I0:N . (37)

|u0(k;x)| ≤ cu|x|, ∀x ∈ S, k ∈ I0:N−1. (38)

Proof: By Theorem 4, we have the upper bound (22a)

for all x ∈ S and some c2 > 0. Moreover, since Q,R, Pf are

positive definite, we can write, for each x ∈ S and k ∈ I0:N−1,

σ(Q)|x̂0(k;x)|2 ≤ |x̂0(k;x)|2Q ≤ V 0
N (x) ≤ c2|x|2

σ(Pf )|x̂0(N ;x)|2 ≤ |x̂0(N ;x)|2Pf
≤ V 0

N (x) ≤ c2|x|2

σ(R)|u0(k;x)|2 ≤ |u0(k;x)|2R ≤ V 0
N (x) ≤ c2|x|2.

Thus, with cx := max {
√

c2/σ(Q),
√

c2/σ(Pf ) } and cu :=
√

c2/σ(R), we have (37) and (38).

Proposition 13: For each α ∈ K and γ ∈ K2, let γ1(s, t) :=
α(γ(s, t)), γ2(s, t) := γ(α(s), t), and γ3(s, t) := γ(s, α(t))
for each s, t ≥ 0. Then γ1, γ2, γ3 ∈ K2.

Proof: These facts follow directly from the closure of

K under composition [40]. For example, for each s ≥ 0, we

have γ2(·, s) = γ(α(·), s) ∈ K by closure under composition,

γ2(s, ·) = γ(α(s), ·) ∈ K trivially, and γ2 is continuous as it

is a composition of continuous functions.

A. Proof of Proposition 2

Let α ∈ K∞, γ ∈ K2, and τ > 0. Define γ̃(s, t) :=
sups̃∈(0,s) γ(s̃, t)/α(s̃) for each s, t > 0, so that L :=
lim sups→0+ γ(s, τ)/α(s) = lims→0+ γ̃(s, τ). Suppose the

hypothesis holds, i.e., L < 1. Then there exists ρ0 > 0 such

that |γ̃(s, τ)− L| < 1− L for all s ∈ (0, ρ0]. But γ̃(s, t) ≥ 0
and L ≥ 0 for all s, t > 0, so γ̃(s, τ) < 1 for all s ∈ (0, ρ0]
by the reverse triangle inequality. Therefore

γ(s, t)

α(s)
≤ γ(s, τ)

α(s)
≤ γ̃(s, τ) < 1

and γ(s, t) < α(s) for all s ∈ (0, ρ0] and t ∈ [0, τ ].

Fix ρ > 0. If ρ ≤ ρ0, the proof is complete with δ := τ .

Otherwise, we must enlarge the interval in s by shrinking the

interval in t. For each t ∈ (0, τ ], let

γ0(t) := inf { s > 0 | γ(s, t) ≥ α(s) } .

Since γ(s, t) < α(s) for each s ∈ (0, ρ0] and t ∈ [0, τ ], we

have γ0(t) > 0 for all t ∈ (0, τ ]. Then, by continuity of α
and γ, the first nonzero point at which α and γ intersect, if

it exists, must be equal to γ0(t). Otherwise, γ0(t) is infinite.

Note that γ0 is a strictly decreasing function on (0, τ ] since, for

any t ∈ (0, τ ], we have γ(γ0(t), t
′) < γ(γ0(t), t) = α(γ0(t))

for all t′ ∈ (0, t). Moreover, limt→0+ γ0(t) = ∞ since, if γ0
was upper bounded by some γ > 0, we could take γ(γ, t) ≥
α(γ) > 0 for all t ∈ (0, τ ], a contradiction of the fact that

γ(s, ·) ∈ K for all s > 0. Then there must exist δ ∈ (0, τ ]
such that γ0(δ) > ρ, which implies γ(s, t) < α(s) for all

s ∈ (0, ρ] and t ∈ [0, δ].

B. Proof of Proposition 3

Suppose Assumptions 1, 2, 6, and 7 hold, let S ⊆ R
n be

compact, and define z := (x, u). By Proposition 11, for each

i ∈ I1:n, there exists σi ∈ K∞ such that

|∂zfi(z, θ)− ∂z f̂i(z̃)| ≤ σi(|(z − z̃, θ)|) (39)

for all z, z̃ ∈ S × U and θ ∈ R
nθ . Next, let Z denote the

convex hull of S×U. Then tz ∈ Z for all t ∈ [0, 1] and z ∈ Z .

By Taylor’s theorem [41, Thm. 12.14], for each i ∈ I1:n and

(z, θ) ∈ Z ×Θ, there exists ti(z, θ) ∈ (0, 1) such that

fi(z, θ)−f̂i(z) = [∂zfi(ti(z, θ)z, θ)−∂z f̂i(ti(z, θ)z)]z. (40)

Combining (39) and (40) gives, for each (z, θ) ∈ S×U×R
nθ ,

|f(z, θ)− f̂(z)| ≤
n∑

i=1

|fi(z, θ)− f̂i(z)| ≤
n∑

i=1

σi(|θ|)|z|

and therefore (27) holds with σf :=
∑n

i=1 σi.

C. Proof of Proposition 4

Suppose Assumptions 1 to 3 and 5 to 7 hold. Let S ⊆ XN

be compact. By Proposition 12, there exists cu > 0 such that

|κN (x)| = |u0(0;x)| ≤ cu|x|, and therefore |(x, κN (x))| ≤
|x| + |κN (x)| ≤ (1 + cu)|x|, for all x ∈ S . Moreover, by

Proposition 3, there exists σf ∈ K∞ such that

|fc(x, θ)− f̂c(x)| ≤ σf (|θ|)|(x, κN (x))| ≤ σ̃f (|θ|)|x|
for all x ∈ S and θ ∈ R

nθ , where σ̃f := σf (1 + cu).

D. Proof of Proposition 5

Suppose Assumptions 1, 2, and 6 hold. Let S ⊆ R
n and

Θ ⊆ R
nθ be compact. Without loss of generality, assume S

and Θ contain the origin. Then C := S × U×Θ is compact,

and by Proposition 11, there exists σf ∈ K∞ such that

|f(x, u, θ)− f(x̃, ũ, θ̃)| ≤ σf (|(x, u, θ)− (x̃, ũ, θ̃)|) (41)

for all (x, u, θ), (x̃, ũ, θ̃) ∈ C. Specializing (41) to (x̃, ũ, θ̃) =
(x, u, 0) ∈ C gives

|f(x, u, θ)− f̂(x, u)| ≤ σf (|θ|) (42)

for all (x, u, θ) ∈ C. On the other hand, specializing (41) to

(x̃, ũ, θ̃) = (0, 0, θ) ∈ C gives

|f(x, u, θ)| = |f(x, u, θ)− f(0, 0, θ)| ≤ σf (|(x, u)|)
and therefore

|f(x, u, θ)− f̂(x, u)| ≤ |f(x, u, θ)|+ |f̂(x, u)|

≤ 2σf (|(x, u)|) (43)

for all (x, u, θ) ∈ C. Combining (42) and (43) gives

|f(x, u, θ)− f̂(x, u)| ≤ min{2σf (|(x, u)|), σf (|θ|)}
for all (x, u, θ) ∈ C, which is an upper bound that is

clearly continuous, nondecreasing in each |x| and |θ|, and

zero if either |x| or |θ| is zero. To make the upper bound

strictly increasing, pick any σ1, σ2 ∈ K and let γf (s, t) :=
min { 2σf (s), σf (t) } + σ1(s)σ2(t) for each s, t ≥ 0. Then

γf ∈ K2 satisfies (29) for all (x, u, θ) ∈ C.
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E. Proof of Proposition 6

Suppose Assumptions 1 to 4 and 6 hold. Let S ⊆ XN and

Θ ⊆ R
nθ be compact. Using the bounds (9) and (20a) with

u = κN (x), we have, for each x ∈ XN ,

α1(|κN (x)|) ≤ ℓ(x, κN (x)) ≤ V 0
N (x) ≤ α2(|x|).

Thus, |(x, κN (x))| ≤ |x|+ |κN (x)| ≤ α(|x|) for all x ∈ XN ,

where α(·) := (·) + α−1
1 (α2(·)) ∈ K∞. By Proposition 5,

there exists γf ∈ K2 such that, for all x ∈ S and θ ∈ Θ,

|fc(x, θ)− f̂c(x)| ≤ γf (|(x, κN (x))|, |θ|)

≤ γf (α(|x|), |θ|) =: γ̃f (|x|, |θ|)
where γ̃f ∈ K2 by Proposition 13.

F. Proof of Proposition 7

Suppose Assumptions 1 to 3 and 5 to 7 hold and let S ⊆ XN

be compact. Throughout, we fix x ∈ S and θ ∈ Θ, making

any constructions independently of x and θ. For brevity, let

x̂+ := f̂c(x), x
+ := fc(x, θ), x̂

+(k) := ϕ̂(k; x̂+, ũ(x)), and

x+(k) := ϕ̂(k;x+, ũ(x)). First, we can write

e+VN
:= VN (x+, ũ(x))− VN (x̂+, ũ(x))

= e+Vf
+

N−1∑

k=0

2[e+x (k)]
⊤Qx̂+(k) + |e+x (k)|2Q (44)

e+Vf
:= Vf (x

+(N))− Vf (x̂
+(N))

= 2[e+x (N)]⊤Pf x̂
+(N) + |e+x (N)|2Pf

(45)

where e+x (k) := x+(k)− x̂+(k).
Next, we establish bounds on the individual terms in (44)

and (45). By Proposition 12, there exists cx > 0 such that, for

each k ∈ I0:N−1, we have

|x̂+(k)| = |x̂0(k + 1;x)| ≤ cx|x|. (46)

By Assumptions 3 and 5, whenever x ∈ Xf we have

σ(Pf )|f̂(x, κf (x))|2 ≤ Vf (f̂(x, κf (x)))

≤ Vf (x)− σ(Q)|x|2 ≤ [σ(Pf )− σ(Q)]|x|2

and therefore |f̂(x, κf (x))| ≤ γf |x| where γf :=
√

[σ(Pf )− σ(Q)]/σ(Pf ). Then x̂0(N ;x) ∈ Xf gives

|x̂+(N)| = |f̂(x̂0(N ;x), κf (x̂
0(N ;x)))|

≤ γf |x̂0(N ;x)| ≤ γfcx|x|. (47)

Since (S,U,Θ) are each compact and f is continuous, S0 :=
f(S,U,Θ) and Sk+1 := f̂(Sk,U) are compact for all k ∈ I≥0

(by induction). Then S :=
⋃N

k=0 Sk is compact, and, since f̂
is Lipschitz continuous on bounded sets, there exists Lf > 0
such that |f̂(x1, u1)− f̂(x2, u2)| ≤ Lf |(x1, u1)−(x2, u2)| for

all x1, x2 ∈ S and u1, u2 ∈ U. Then |e+x (k+1)| ≤ Lf |e+x (k)|
for each k ∈ I0:N−1, and, for each k ∈ I0:N , we have

|e+x (k)| ≤ Lk
f |x+ − x̂+|. (48)

Combining (45), (47), and (48) gives

|e+Vf
| ≤ ca,1|x||x+ − x̂+|+ ca,2|x+ − x̂+|2. (49)

with ca,1 := 2LN
f γfcxσ(Pf ) and ca,2 := L2N

f σ(Pf ). Com-

bining (44), (46), (48), and (49) gives

|e+VN
| ≤ cb,1|x||x+ − x̂+|+ cb,2|x+ − x̂+|2 (50)

with cb,1 := ca,1 + 2σ(Q)
∑N−1

k=0 Lk
fcx and cb,2 := ca,2 +

σ(Q)
∑N−1

k=0 L2k
f . By Proposition 3, there exists σ̃f ∈ K∞

such that |x+− x̂+| ≤ σ̃f (|θ|)|x|, and combining this inequal-

ity with (50), we have (31) with σV := cb,1σ̃f + cb,2σ̃
2
f .

G. Proof of Proposition 8

Suppose Assumptions 1 to 4 and 6 hold. Let S ⊆ XN

and Θ ⊆ R
nθ be compact. By Proposition 11, there exists

αb ∈ K∞ such that

VN (x1,u1)− VN (x2,u2) ≤ αb(|(x1,u1)− (x2,u2)|) (51)

for all (x1,u1), (x2,u2) ∈ f(S,U,Θ)×U
N . Specializing (51)

to x1 = x+ := fc(x, θ), x2 = x̂+ := fc(x), and u1 = u2 =
ũ(x) gives

|VN (x+, ũ(x))− VN (x̂+, ũ(x))| ≤ αb(|x+ − x̂+|) (52)

for each x ∈ S and θ ∈ Θ. By Proposition 6 there exists γ̃f ∈
K2 satisfying (30) for all x ∈ S and θ ∈ Θ. Finally, combining

(30) and (52) gives (32) with γV (s, t) := αb(γ̃f (s, t)) for all

s, t ≥ 0, where γV ∈ K2 by Proposition 13.

H. Strong asymptotic stability counterexample

Consider the plant (33) and MPC defined in Sec-

tion VI-A. We aim to show the closed-loop system x+ =
f(x, κ1(x), θ), |θ| ≤ δ is RES with δ = 3, but not inherently

strongly stabilizing for any δ > 0. By Lipschitz continuity of

x2 on bounded sets and 1/2-Hölder continuity of
√

|x|,

|x2 − y2| ≤ 4|x− y|, ∀ x, y ∈ [−2, 2], (53)

|σ(x)− σ(y)| ≤ 2
√

|x− y|, ∀ x, y ∈ R. (54)

First, we derive the control law. The terminal set can be

reached in a single move if and only if |x| ≤ 2, so we have

the steerable set X1 = [−2, 2]. Consider the problem without

the terminal constraint. The objective is

V1(x, u) = x2 + u2 + 4|x+ u|

which is increasing in u if x > 1 and |u| ≤ 1, and decreasing

in u if x < −1 and |u| ≤ 1. Thus V1(x, ·) is minimized (over

|u| ≤ 1) by u
0(x) = −sgn(x) for all x ̸∈ [−1, 1]. On the

other hand, if |x| ≤ 1, then V1(x, ·) is decreasing on [−1,−x)
and increasing on (−x, 1]. Thus V1(x, ·) is minimized (over

|u| ≤ 1) by u
0(x) = −x so long as |x| ≤ 1. In summary, we

have the control law κ1(x) := −sat(x). But

|f̂(x, κ1(x))| =
{

0, |x| ≤ 1

|x− sgn(x)| = |x| − 1, 0 < |x| ≤ 2
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so u = κ1(x) drives each state in X1 = [−2, 2] to the terminal

constraint Xf = [−1, 1]. Therefore κ1 is also the control law

of the problem with the terminal constraint.

It is easy to check that Assumptions 1 to 4 hold, so by

Theorem 3, the closed-loop system x+ = f(x, κ1(x), θ), |θ| ≤
δ is RAS on X1 = [−2, 2] with ISS Lyapunov function V 0

1

for some δ > 0. Our next goal is to find such a δ > 0.

For robust positive invariance, let |x| ≤ 2, θ ∈ R, x+ :=
f(x, κ1(x), θ), x̂

+ := f̂(x, κ1(x)) and note that

|x+| ≤
√

|x̂+|2 + |θ||sat(x)| ≤
√

1 + |θ|.

Then |x+| ≤ 2 so long as |δ| ≤ 3, so X1 = [−2, 2] is RPI for

x+ = f(x, κ1(x), θ), |θ| ≤ 3.

By continuity of f , V 0
1 , and κ1 and Proposition 11, there

exists σ ∈ K∞ such that |V 0
1 (x

+) − V 0
1 (x̂

+)| ≤ σ(|θ|)
and therefore V 0

1 (x
+) ≤ V 0

1 (x̂
+) + |V 0

1 (x
+) − V 0

1 (x̂
+)| ≤

V 0
1 (x) − x2 + σ(|θ|) for all |x| ≤ 2 and |θ| ≤ 3, where

x+ := f(x, κ1(x), θ) and x̂+ := f̂(x, κ1(x)). Therefore

x+ = f(x, κ1(x), θ), |θ| ≤ 3 is not only RAS, but RES on

X1 by Theorem 1.

We now aim to show strong stability is not achieved. For

simplicity, we consider S := lev2V
0
1 = [−1, 1] = Xf as

the candidate basin of attraction. Let |x| ≤ 1, |θ| ≤ 3,

x+ := f(x, κ1(x), θ), and x̂+ := f̂(x, κ1(x)). Moreover,

ℓ(x, κ1(x)) ≥ 2|x|2 =: α3(|x|). Next, we have κ1(x) = −x,

x+ = σ(xθ), and x̂+ = 0. Therefore

|V1(x
+, ũ(x))− V1(x̂

+, ũ(x))|

= |(x+)2 + 4|x+|| ≤ |x+|2 + 4|x+|

≤ |x||θ|+ 4
√

|x||θ| =: γV (|x|, |θ|)

where γV ∈ K2. For each t > 0, we have γV (s, t)/α3(s) =
t/(2s) + 2

√
t/s3/2, so lims→0+ γV (s, t)/α3(s) = ∞ for all

t > 0, and (24) is not satisfied.

As mentioned in the main text, (24) is sufficient but not

necessary. The cost difference curve is positive definite, as

∆V 0
1 (x, θ) = 2[σ(θx)]2 − 2x2 = 2(|θ| − |x|)|x| > 0

for any 0 < |x| < |θ| ≤ 1. In other words, θ can be arbitrarily

small but nonzero, and the cost difference curve will remain

positive definite near the origin.

I. Upright pendulum

Consider the plant (35) and MPC defined in Section VI-B. It

is noted in the main text that Assumptions 1, 2, and 5 to 7 are

automatically satisfied. To design Pf and show Assumption 3

holds, consider the linearization

x+ =

[
1 0.1
0.1 1

]

︸ ︷︷ ︸

=:A

x+

[
0
5

]

︸︷︷︸

=:B

u (55)

and the feedback gain K :=
[
2 2

]
, which stabilizes (55)

because AK := A−BK =
[

1 0.1
−0.9 0

]
has eigenvalues of 0.9

and 0.1. Numerically solving the Lyapunov equation

A⊤
KPfAK − Pf = −2QK

where QK := Q+K⊤RK = [ 5 4
4 5 ], we have a unique positive

definite solution Pf := [ 31.133... 10.196...10.196... 10.311... ]. Using the inequality

| sinx1 − x1| ≤ (1/6)|x1|3 for all x1 ∈ R, we have

|Vf (f̂(x,−Kx))− Vf (AKx)|

= 2x⊤A⊤
KPf

[
0

∆(sinx1 − x1)

]

+ [Pf ]22∆
2(sinx1 − x1)

2

≤ b|x|4 + a|x|6

for all x ∈ R
2, where a := [Pf ]22∆

2/36 = 2.8643 . . . ×
10−3 and b := ∆|A⊤

KPf [ 01 ]|/3 = 0.045675 . . .. Moreover,

σ(QK) = 1, so

Vf (f̂(x,−Kx))− Vf (x) + ℓ(x,−Kx)

≤ −[1− b|x|2 − a|x|4]|x|2

for all x ∈ R
2. The polynomial inside the brackets has roots

at x∗ = −1.0231 . . . and x∗ = 0.9774 . . . and is positive in

between. Recall cf := σ(Pf )/8. Then σ(Pf )|x|2 ≤ Vf (x) ≤
cf = σ(Pf )/8 implies |x| ≤ 1/(2

√
2) < x∗ and |u| = |Kx| =

2(|x1|+|x2|) ≤ 2
√
2|x| ≤ 1, so Assumption 3 is satisfied with

κf (x) := −Kx = −2x1 − 2x2, and Pf and Xf as defined.
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allelizable Parametric Nonlinear System Identification via tuning of a
Moving Horizon State Estimator,” 2024, arXiv:2403.17858 [math].
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