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Abstract. We construct image-driven, mechanism-based biomarkers for
Alzheimer’s disease (AD). These markers are parameters and predictions
of a biophysical model of misfolded tau propagation, which is calibrated
using positron emission tomography (PET) data. An example of such a
model is the widely used single-species Fisher-Kolmogorov model (FK).
In this article, we reveal a qualitative inconsistency between tau obser-
vations and the FK model predictions: FK has a bias towards main-
taining the maximum misfolded tau to region of the initial misfolding,
which most clinicians and modelers consider it to be the entorhinal cor-
tex (EC). To partially address this EC bias, we introduce a simplified
Heterodimer Fisher-Kolmogorov model (HFK) that tracks the dynam-
ics of both abnormal and normal tau. To construct both FK and HFK
models, we use a coarse, graph-based representation where nodes rep-
resent brain regions and edges represent inter-region connectivity com-
puted using white matter tractography. The model parameters comprise
migration, proliferation and clearance rates, which are estimated using
a derivative-based optimization algorithm. We compare tau progression
predictions between the FK and HFK models and conduct experiments
using PET from 45 AD subjects. The HFK model achieved an average of
3.94% less relative fitting error compared to the FK model. Qualitatively,
FK model overestimates misfolded tau in EC while HFK does not.

Keywords: Alzheimer tau propagation · Inverse problem ·
Graph-based representation

1 Introduction

Two prevailing factors in the progression of AD are the progression of misfold-
ing of the amyloid-β and tau protein. Here, we just focus on the misfolded or
abnormal tau protein, which is particularly toxic, hindering the proper function
of the nervous system and leading to atrophy, necrosis, and ultimately causing
death [1,2]. Quantifying the spatio-temporal dynamics of misfolded tau holds
the promise of helping understand AD dynamics and generating biomarkers for
clinical management. Image-driven biophysical biomarkers have the potential to
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help with disease staging and subject stratification [10]. Misfolded tau spreading
depends on the initial brain misfolding locations and the rate at which the mis-
folding amplifies and spreads. Tau aggregates are believed to initiate misfolding
in the entorhinal cortex (EC), and primarily invade healthy proteins along neu-
ronal pathways [3,4]. Longitudinal PET scans using F-AV-1451 tracer (tauvid)
can image the spread of tau protein. The most commonly used mathematical
model for tau progression is the FK model [5,6,15,16]. This model requires the
initial state of tau protein and three parameters to describe the migration, prolif-
eration and clearance of tau. However, even qualitatively, the model predicts the
highest tau abnormality in regions other than the ones observed in PET scans.
This behavior is due to the monotonic property of FK model, which means that
the spatial location of the maximum tau does not change and remains the same
as the seeding location. This is inconsistent to observed data. We report this
inconsistency in Fig. 3 using clinical PET images from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) [7]. The maximum in the image is not in EC and
in some cases it is far from that region.

Contributions: We propose a two-species model, which we term Heterodimer
Fisher-Kolmogorov model (HFK) to represent the normal tau (healthy and non-
observable) and abnormal tau (observable) progression in AD patients. Our
model takes into account the migration, proliferation and clearance of abnormal
tau but also its coupling with the normal tau protein. In this context our con-
tributions are the following: (i) We show the monotonic property of FK model
both in a synthetic test and clinical results. (ii) We propose the HFK graph
model that considers both healthy and unhealthy tau protein. (iii) We propose
an inversion algorithm for reconstructing the model parameters. (iv) We test our
algorithm on all AD clinical tau PET scans and compare the FK model with
the HFK model.

Related Work: FK has been widely studied at different scales in studying protein
misfolding in the brain, from molecular level models [11,12] to kinetic equations
[9,13,14] and graph models like ours [15–18]. These studies integrated biophysi-
cal FK models with MRI and PET data (like us) and relate the initial misfolding
location (the seed) and different parameter values to different prion-like diseases,
including AD. In AD models, the standard tau seeding location is the EC region.
Once biophysical parameters are computed, they are combined with other imag-
ing features for downstream clinical tasks.

There is also work with more complex multi-species AD models [10,19,31]
that are similar to our HFK model. In [19], the authors formulate the AD mod-
eling using a two-species framework, and in [10], the authors assume that the
healthy tau values are much higher than the abnormal tau and derive the single-
species FK model. In all multi-species studies analyze the problem qualitatively
and, to our knowledge, they have not fitted these multispecies models to clinical
data. Our work aims to provide a first study that does so and compares it with
the popular single-species FK model.
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2 Methodology

Let B ⊂ R3 be the brain domain and let x ∈ B denote a point. Let ca(x, t)
denote the abnormal tau, where t represents time from the onset of the disease.
To model the spread of abnormal tau in the brain, we first coarsen in space and
adopt a graph-based approach that has been widely used in literature [15,16,18].
Specifically, we define a graph G using a standard parcellation of B. The graph
is composed of a set of N vertices, which represents a collection of N regions
of interest (ROI) defined in an atlas. Each vertex corresponds to a parcel. The
edges between vertices are undirected and their weights w indicate the white-
matter connectivity strength between parcels, from tractography and diffusion
tensor imaging. Given the tractography-computed parcel connectivity matrix D
[30], the Laplacian L is defined by L = diag

(∑N
j=1[D(w)]ij

)
− D(w) [20]. We

define the set of abnormal tau for all the nodes as ca(t) where cia(t) ∈ [0, 1]
represents the abnormal tau at the ith parcel. In order to quantify the level of
tau abnormality, we compare the statistical distribution of Tau-PET intensity
in gray matter regions with distribution in the cerebellum. To compare these
distributions, we employ the Maximum Mean Discrepancy (MMD) metric [24],
where we denote µi as the MMD score for the ith parcel. Additionally, we nor-
malize the MMD score by defining cia = 1−e−µiσ, where σ is a hyperparameter;
we select σ = 0.3 that give the best fit in the inversion. FK and HFK model the
tau dynamics at the parcel resolution. They’re defined as follows.

Single-species FK Model: The Fisher-Kolmogorov model [5,6,32] is given by

∂ca
∂t

= −κLca + ρca $ (1 − ca) − γca, (1a)

ca(0) = p0. (1b)

FK involves three terms: diffusion, reaction and clearance. The diffusion term
is defined by −κLca and κ ∈ R+ is the diffusion coefficient or migration rate.
It captures the spatial spreading. The reaction term is defined by ρca $ (1 −
ca) where $ is the Hadamard elementwise vector product, and ρ ∈ R+ is the
proliferation coefficient. Reaction represents growth of abnormal tau within the
region. Finally, we define a clearance term as −γca to describe the abnormal
protein removal, and γ ∈ R+ is a clearance coefficient. p0 is the parametrization
of the initial condition ca(0). Here, following the current clinical consensus, we fix
it at the EC region to be one and zero elsewhere. The time horizon for Eq. (1)
is set to one. Using non-dimensional analysis, the change of the time horizon
corresponds to just scaling of the model parameters [8]. As we discussed, the
FK model is widely used in describing tau propagation but it does not allow the
location of maximum tau to change.

Two-species HFK Model: To address this FK limitation, we introduce
dynamics for the normal tau protein cn and we modify the reaction term in
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Eq. (1). The HFK model is given by the following ODE system.

∂ca
∂t

= −κLca + ρca $ cn − γca, (2a)

∂cn
∂t

= −ρca $ cn, (2b)

ca(0) = p0, cn(0) = 1 − p0. (2c)

Here κ, ρ, γ,p0 are defined as in Eq. (1). The time horizon is set to one. Again
p0 is fixed to be one at EC and zero elsewhere. We assume there is no diffusion
and clearance for normal tau. Notice that since cn = 0 at EC at all times, ca
at EC can only spread and never grow. This minimal change allows the location
of maximum tau to temporally change, without introducing any new model
parameters.

Parameter Estimation: We aim to estimate the migration κ, proliferation ρ
and clearance γ coefficients given the PET data d (normalized MMD scores).
The optimization problem, for the HFK case, is given by

min
κ,ρ,γ

J :=
1
2

‖ca(1) − d‖22

subject to






∂ca
∂t = −κLca + ρca $ cn − γca,

∂cn
∂t = −ρca $ cn,
ca(0) = p0,

cn(0) = 1 − p0,

κ, ρ, γ ≥ 0.

(3)

where d is the PET subject tau abnormality for all parcels. To solve this
constrained optimization problem, we introduce adjoint variables aa and an
and form the Lagrangian L [33]. Taking variations w.r.t the adjoints recovers
Eq. (2). Taking variations w.r.t to ca and cn leads to the adjoint equations
∂aa
∂t = κLᵀaa+ρcn $ (an −aa)+γaa, ∂an

∂t = ρca $ (an −aa), aa(1) = d−ca(1),
an(1) = 0. Taking variations w.r.t the model parameters give the gradient equa-
tions ∂L

∂κ =
∫ 1
0 aᵀ

a(Lca)dt,
∂L
∂ρ =

∫ 1
0 (an − aa)ᵀca $ cndt and ∂L

∂γ =
∫ 1
0 aᵀ

acadt. To
evaluate the derivative of J w.r.t the parameters, we first solve Eq. (2) to get
ca(t), cn(t), then we solve the adjoint equations backward in time for an(t),aa(t),
and finally we plug these values to the gradient.

Numerical Scheme: We use the LSODA ODE solver [26]. The parameters
κ, ρ, γ ∈ [0,∞]. We set the initial guess κ = 0, ρ = 0, γ = 0. The opti-
mization problem is solved using a reduced gradient L-BFGS solver [21]. The
optimizer stops when the gradients are below tolerance 1E−3. It turns out that
the inversion is not sensitive to the initial guess.
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3 Results

We evaluate the new model by answering the following two questions:

(Q1) How do the dynamics of the HFK and FK differ?
(Q2) How well can HFK and FK fit clinical scans?

We discuss the first point using synthetic simulations. We provide preliminary
results for the second question using all AD scans from ADNI. We evaluate our
results both qualitatively and quantitatively.

Fig. 1. Spatiotemporal progression of tau using HFK and FK models. Given the same
initial tau seed and model parameters for both models, we show the propagation of tau
over time (from left to right). The top row are results from HFK model. Results from
FK are shown in the bottom row. The EC parcel is highlighted by blue solid contour
lines. (Color figure online)

Fig. 2. Average spatio-temporal dynamics of tau propagation for HFK and FK forward
model. Given the same initial seed located at the EC parcel, we feed the HFK and FK
model with 1000 sets of parameters, and average the ODE solution at t ∈ [0, T ] across
all parameter sets. X-axis represents parcels in the brain under MUSE template (space
information), and Y-axis presents 50 uniformly-spaced time points in t ∈ [0, 1]. The
two bright lines correspond to the EC parcels. HFK and FK perform qualitatively
differently, as in the majority of cases the maximum misfolding is in the EC region for
FK; but not for HFK.

(Q1) Synthetic Simulations: To illustrate the model differences, we generate
data using Eq. (1) and Eq. (2) and κ = 4, ρ = 5, γ = 1. The initial misfolding
is placed at the left and right EC parcels. The simulation time horizon is set to
one and we sample five time snapshots at t = 0, 0.25, 0.5, 0.75, 1. We show
the results in Fig. 1. Notice the significant differences in EC ca(t) for t ≥ 0.5.
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The FK model maintains the EC to be the maximum whereas HFK does not.
Again, at time t = 1, EC remains the region with maximum ca in FK whereas
in HFK other regions have higher ca. Qualitatively, the HFK dynamics better
align with the clinical Tau-PET data.

We repeat these simulations for 1000 sets of parameters, and record the
average spatio-temporal dynamics for both models over all sets of parameters.
We sample uniformly from κ ∈ [0, 10], ρ ∈ [0, 20] and γ ∈ [0, 5] for both models.
The range of parameters are chosen since the ODE solution from them represent
the patterns observed in clinical data. In addition, the inverted parameters lies
in these ranges, which makes the choice reasonable. The FK-maximum remains
at the EC parcels (the two bright lines in Fig. 1), whereas this is not the case
for the HFK model.

Fig. 3. Model calibration for four AD subjects from ADNI. Each row corresponds to
a subject. From left to right in each panel we show the PET abnormal tau, processed
regional abnormal tau MMD, the HFK fit, and the FK fit. The 1D curves show the
HFK and FK fits as a function of the parcel id (ROI Index). In the 2D images, the EC
region is highlighted by a solid contour line.

Table 1. Inversion results for four ADNI subjects using the FK and HFK models.
ed,!1 and ed,!2 (or

√
2J/ ‖d‖2 from Eq. (3)) are relative fitting errors in !1 and !2

norms separately. κ, ρ and γ are estimated parameters from each model. For each
subject, better fitting with lower errors are in bold.

SubjectId HFK FK

ed,!2 ed,!1 κ ρ γ ed,!2 ed,!1 κ ρ γ

032 S 6602 3.39E−1 2.83E−1 9.86 9.34 3.63 6.78E−1 6.21E−1 4.06 3.68 2.34E−1

011 S 6303 6.88E−1 6.54E−1 5.58 2.06 1.29E−1 9.10E−1 8.44E−1 2.10 1.94 7.52E−1

116 S 6100 5.69E−1 5.59E−1 6.72 8.71 4.55 6.31E−1 6.23E−1 5.36 2.93 3.79E−1

006 S 6689 6.96E−1 6.00E−1 2.40 1.01 0 6.94E−1 6.29E−1 3.10 1.30 2.64E−1
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Fig. 4. Evaluation on 45 ADNI AD subjects. (A) !2 misfit error for FK and HFK
(two-subject moving average). The subjects are sorted by total MMD scores (sum over
regions). HFK does slightly better but both models struggle especially for subjects
with high MMD. (B) Over- and underestimated regions for HFK and FK models. We
average the fitting result for each region over all subjects and compare with averaged
MMD data. The over- or underestimation for each region is determined by the relative
difference between fitting and observation. FK model consistently overestimates the
EC region while HFK not

(Q2) Clinical PET Data: We use preprocessed MRI and PET images down-
loaded from ADNI [7]. Although many subjects have several PET time snapshots
available, in this study we only use one of them. (Using more time snapshots is
part of ongoing work.) In total, we have 45 AD subjects, 19 of them are female
and 26 are male with age mean(std) is 74.95(8.87). The acquisition time spans
from 09/07/2017 to 05/17/2022. We follow the preprocessing workflow from [16].
For each subject, affine registration is performed for the T1 image of each subject
to healthy brain template using FSL [22]. The subject’s image is then parcel-
lated using the MUSE template [23]. PET images are intensity-normalized by
the median in the gray matter of cerebellum, which results in Standard Uptake
Value Ratio (SUVR). The SUVR values are quite noisy. As discussed above, we
define the regional tau abnormality with MMD [24]. As most ADNI patients
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don’t have DTI data, we use 20 Diffusion Tensor Imaging (DTI) scans obtained
from the Harvard Aging Brain Study (HABS) [25] to generate 20 connectiv-
ity matrices D using the MRtrix3 software [30]. Throughout all experiments,
we consistently utilize the same connectivity matrix, which is obtained by first
averaging the connectivity matrices from the 20 DTI images from HABS and
then forming the graph Laplacian.

We present our algorithm’s performance qualitatively on four clinical scans
and quantitatively on all AD subjects from the ADNI dataset. The regional
(or per parcel) observed abnormal tau d is computed by the Tau-PET images
described above. We aim to estimate migration, proliferation and clearance coef-
ficients for both models separately. Qualitative evaluations are present in Fig. 3.
For each patient, the figure shows its Tau-PET image, parcellated tau MMD
data, and inversion results from HFK and FK models. The Tau-PET scans and
observations in the first three subjects do not have high tau values in EC. The
FK model tries to fit the observed data but it is qualitatively off. Both models
do well in the last patient as the highest ca value is at the EC parcel. This illus-
trates that HFK is also capable to maintain a high EC tau value if needed. (See
supplementary for tau progression videos.) We report the fit errors in Table 1.
The HFK model performs slightly better but both models struggle. The results
point to the need for a richer parametrization or different models. For example,
what if the widely accepted assumption of the EC region being the tau misfold-
ing origination is not correct? Previous studies in the literature have identified
the necessity to address this [34].

The aforementioned phenomenon exists consistently in the AD dataset.
Figure 4(A) shows the overall performance across all AD patients data. The
patients are sorted by their summation of MMD in all regions, lower to higher.
In this sense the tau abnormality signal is stronger from left to right. For each
subject we report the relative '2 norm error. HFK achieves 3.94% better relative
error in '2 norm over FK. Furthermore, to visualize the estimation error of FK
model on EC region, we present a qualitative evaluation in Fig. 4(B). We aver-
age the fitting results for each parcel over patients, and compare with averaged
observation MMD data. The under- or overestimation is computed according
to the relative difference between regional fitting and regional MMD data. The
significant difference lies in EC region between HFK and FK models.

4 Conclusions

We presented HFK, a simple model (in terms of number of free parameters) to
describe the abnormal tau propagation in the brain. Our main point is that the
commonly used FK model is inconsistent with the observed tau data. Similarly to
FK, HFK captures migration, proliferation, and clearance of the abnormal tau in
a graph model, but in addition introduces dynamics for the normal tau. The HFK
has a a qualitatively different behavior and matches the observed data better. We
also presented an observation model using MMD and a reconstruction algorithm
to estimate migration, proliferation and clearance coefficients of the model based
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on the observation. We tested the two models on both synthetic and clinical
data. From the performance averaged over all AD patients, FK consistently
overestimates EC regions. Without increasing the number of model parameters,
we improved the model performance. Specifically, when the maximum signal in
PET does not lie in EC region, the HFK model outperforms the FK one.

The results however show that both models struggle to fit the data. A possible
reason that our assumption of placing the tau abnormality origination at the
entorhinal cortex. A potential solution may take initial condition as an additional
variable to optimize and apply '0 or '1 constraints. Future work includes relaxing
this assumption and inverting for the initial condition in Eq. (2), as well as
conducting sensitivity studies on the parcellation and tractography algorithms.
In the supplementary material, we provide a video demonstrating the fitting
results obtained using the exhaustively searched IC. Two other directions in
increasing the biophysical model fidelity is coupling to the gray matter atrophy
and to amyloid-β dynamics.
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