L))
Chack far

updates

A Scalable Algorithm for Active Learning

Youguang Chen Zheyu Wen George Biros
University of Texas at Austin University of Texas at Austin University of Texas at Austin
Austin, USA Austin, USA Austin, USA

youguang @utexas.edu

Abstract—FIRAL is a recently proposed deterministic active
learning algorithm for multiclass classification using logistic
regression. It was shown to outperform the state-of-the-art in
terms of accuracy and robustness and comes with theoretical
performance guarantees. However, its scalability suffers when
dealing with datasets featuring a large number of points n,
dimensions d, and classes c, due to its O(c?d? + nc’d) storage
and O(c?(nd* 4 bd® + bn)) computational complexity where b is
the number of points to select in active learning. To address these
challenges, we propose an approximate algorithm with storage
requirements reduced to O(n(d + c) 4 cd*) and a computational
complexity of O(bncd?). Additionally, we present a parallel
implementation on GPUs. We demonstrate the accuracy and
scalability of our approach using MNIST, CIFAR-10, Caltech101,
and ImageNet. The accuracy tests reveal no deterioration in
accuracy compared to FIRAL. We report strong and weak scaling
tests on up to 12 GPUs, for three million point synthetic dataset.

Index Terms—Active learning, contrastive learning, GPU ac-
celeration, iterative solvers, randomized linear algebra, message
passing interface, performance analysis

I. INTRODUCTION

Let X, be a set of labeled points and X, a set of n
unlabeled points, both sets sampled from the same distribution.
We denote a labeled sample as a pair (z,y), where » € RY
is a point and y € {1,2,--- ¢} is its label, where c is the
number of classes. Our goal of active learning is to select b
points from X,, to label and use them along with pairs in X,
to train a multiclass logistic regression classifier.

Labeling data can be costly, but recent advancements in
unsupervised and representation learning [1] enable us to
leverage pre-existing feature embeddings combined with shal-
low learning techniques like logistic regression to develop
efficient classification methods [2], [3]. The question is how
to select training samples. Active learning addresses this
issue by focusing on sample selection [4]. Basic and popular
sample selection methods include random sampling and k-
means clustering. While these methods are scalable and easy to
implement, they can be suboptimal and exhibit high variability
due to their inherent randomness, particularly when the label-
ing budget is limited. We are seeking a method that is scalable,
has low variability, and provides accuracy guarantees.

We propose a method for solving this problem based on the
FIRAL algorithm (Fisher Information Ratio Active Learning)
that appeared in 2023 [5]. FIRAL is an active learning al-
gorithm with theoretical guarantees that outperforms the state
of the art in terms of accuracy. However, FIRAL has high

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 1EEE

zheyw @utexas.edu

gbiros@acm.org

complexity due to dense computations. Here we propose an
approximate algorithm that dramatically accelerates FIRAL.
We dub the new algorithm Approx-FIRAL. A cornerstone
in FIRAL is the Fisher information matrix, which is the
Hessian of a negative log-likelihood loss function. In Approx-
FIRAL we exploit the structure of the Hessian and we intro-
duce the following: a matrix-free matrix-vector multiplication
“matvec”, a preconditioner, randomized trace estimators, and
a modified regret minimization scheme. Overall the new com-
ponents dramatically improve the complexity of the scheme.
Combined with GPU and distributed memory parallelism
Approx-FIRAL enables active learning for datasets that were
intractable for FIRAL. Our contributions can be summarized
as follows:

e« We exploit structure, randomized linear algebra, and
iterative methods to accelerate FIRAL.

e Using Python and CuPy [6],and MPI [7], [8] we sup-
port multi-GPU acceleration. Our Python code is open-
sourced.

e We compare the accuracy of Approx-FIRAL with the
exact FIRAL algorithm as well as several other popular
active learning methods; and we test its scalability on
multi-GPU systems.

We further test the sensitivity of the method on different input
parameters like the dataset size and the number of classes.
Overall Approx-FIRAL is orders of magnitude faster that
FIRAL without any noticeable difference in accuracy. While
FIRAL is limited to datasets with a few thousands of points
and up to 50 classes we demonstrate scalability to ImageNet
1.3 million points and 1000 classes, as well as synthetic
datasets with several million points.

Related work: There is a substantial body of work on
active learning, including approaches such as uncertainty
estimation [9], sample diversity [10], [11], [12], Bayesian
inference [13], [14], and others. However, these methods lack
performance guarantees. FIRAL provides lower and upper
bounds of the generalization error for a multinomial logistic
regression classifier assuming that the input points follow a
sub-Gaussian distribution. It uses convex relaxation (RELAX
step), similar to compressed sensing, to first compute weights
for each point in X, and then uses regret minimization to
select b points (ROUND step). Regarding parallel algorithms
and GPU implementations, there are many implementations of
random sampling and k-means and related combinations but

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00057&domain=pdf&date_stamp=2024-11-17

nothing related to FIRAL-like algorithms.

Outline of the paper: We start with the formulation of
FIRAL in § II. We summarize the RELAX step in § II-B
and the ROUND step in § II-C. The storage and computa-
tional complexity of FIRAL are summarized in § I1I-D. We
introduce Approx-FIRAL in § III: the Hessian structure and
the accelerated RELAX step are described in § III-A; and the
ROUND solve is described in § IT1I-B. The HPC implementation
and complexity analysis are described in § III-C. We report
results from numerical experiments in § IV: accuracy and
comparisons with other active learning methods are reported
in § IV-A; and single and multi-GPU performance results are
reported in § IV-B and § I'V-C respectively.

II. THE EXACT FIRAL ALGORITHM
A. Formulation

A summary of the main notation used in the paper can
be found in Table I. We consider the batch active learning
problem with given initial labeled points X, and a pool of n
unlabeled points X,,. We denote a labeled sample as a pair
(z,y), where € R? is a data point, y € {1,2,---,c}
is its label, and ¢ is the number of classes. We use a
multiclass logistic regression model as our classifier. Given
x and classifier weights # € R4*(c=1) the likelihood of a
point x having label y is defined by

exp(a;rw)

1+Zl€[c—1] exp(Qle)? Yy € [C — 1] (1)

1
= C.
1+Zle[c—1] exp(0,' z)’ Y

We denote the vector of all class probabilities for point x by
h(x) € R, with h; = p(y = i|z). To simplify notation we
define d = d(c — 1). The weights 6 are found by minimizing
the negative log-likelihood: £, ,\(0) £ —logp(y|z,6). The
Hessian or Fisher information matrix at x is defined by H; :=
9ol (z,y) € R4 and for our classifier is given by

H; = [diag(h;) — hih]] ® (viz]). (2)

p(y|x, 0) =

Let H, be the summation of Hessians of the initial labeled
points, H, of the unlabeled points, and H, of weighted
unlabeled points with weights z € R", i.e.

H, 2> H, H,2) H;, H.2) zH. (3

i€X, i€X,, i€X,,

Then given a budget of b points to sample (from X,), an
optimal way would be to minimize the Fisher Information
Ratio [5]:

argmin (H,+H.)™ -H, 2 f(2). 4)
z€{0,1},||z||1=b

where “” represents the matrix inner product. Unfortunately,

this is an NP-hard combinatorial convex optimization problem.

FIRAL proposed an algorithm to solve this problem with near-

optimal performance guarantees. The algorithm is composed

of two parts: a RELAX step of continuous convex relaxation

optimization followed by a ROUND step to select b points.

Table I Summary of notation.

Notation Description

d,c dimension of point, number of classes

d dc

b budget: number of points to select for labeling

n number of points in unlabeled pool

® matrix Kronecker product

® element-wise multiplication between two vectors

vec(+) vectorization of a matrix by stacking its columns

Xo, Xy index sets for initial labeled points and unlabeled
points

H; Fisher information matrix for point ¢z (Eq. (2))

H,,H, H. (weighted) sum of Hessians (Eq. (3))

3. sum of Hessians on selected points (Eq. (7))

f(z) objective function (Eq. (4))

i gradient of relaxed objective (Eq. (6))

B() block diagonal operation (Definition 1)

2o solution of relaxed problem (Eq. (5))

- matrix transformation (Eq. (8))

n learning rate in round solver

A, matrix in ROUND step (Eq. (10))

B: matrix used in Approx-FIRAL (Eq. (17))

B. FIRAL: RELAX step

The first step is to solve a continuous convex optimization
problem which is formed by relaxing the constraint for z in
Eq. (4):

%€ argmin (H,+H.) - H,. (5)

z€[0,1]™,[|z[l1=b
The gradient of the objective w.r.t z; is

of(2) 1 “1
;= =-H, X, "H,X ", 6
g 6Zi P ()
where we define
>.,=H,+H,. 7

FIRAL uses an entropic mirror descent algorithm to solve the
relaxed problem.

C. FIRAL: ROUND step

After the Eq. (5) step, FIRAL rounds z,, into a valid solution
to Eq. (4) via regret minimization. Let us denote 3, = H, +
H., and for any matrix H € R?*¢, we define H by

H2 s '"HD; 2 ®)
The round solve has b iterations and at each iteration ¢ € [b],
it selects the point 4; s.t.
iy € argmin Trace[(A; + %ﬁo + nﬁi)_1]7 9)
i€Xy
where 7 > 0 is a hyperparameters (the learning rate), and
A, € R¥? i5 a symmetric positive definite matrix defined by
the Follow-The-Regularized-Leader algorithm:

At:{\/glg t=1

~ , (10)
vI+nH;, 1 t>1

Algorithm 1 EXACT-FIRAL

1: RELAX step:

2: z=(1/n,1/n,---,1/n) € R™

3: {B¢}L_, : schedule of learning rate for relax solve
4: fort =1to T do

5: 3.+ H,+H,

6: gi — —Trace(H;S; 'H,27 1Y), Vie[n]
7: 2i < 24 e)ip(_ﬂtgi)

8: ze 2jen] %

9: 2o + bz

10: ROUND step:

11: X+ 0,3, + H, +H,,

12: Ay + VI H+0

13: for t =1 to b do

14: it « argmingcx Trace[(A¢ + 7 Ho + nH;) 1]
15: H+ H+iH, +H;,

16: VAVT « eigendecomposition of nﬁ

17: find vi41 s.t. Zje[«ﬂ (V41 + X)) 2 =1

18: Appr + V(epIz+A)VT

19: X +— X U{w;, }

where v; € R is the unique constant s.t. Trace(A;?) = 1,

and
B =1 N
H,_, = Z (bHO + Hil> .
1=1
The FIRAL algorithm is near-optimal [5] in solving the
optimization problem of Eq. (4):

(1)

Theorem 1. [Theorem 10 in [5]] Given ¢ € (0,1), let n =

8\/3/6, whenever b > 32d/e? + 16\/3/62, denote z as the
solution corresponding to the points selected by Algorithm 1,
then the algorithm is near-optimal: f(z) < (1 + €)f., where
[+« is the optimal value of the f in Eq. (4).

D. Complexity and scalability of FIRAL

Algorithm 1 summarizes FIRAL. Its storage complexity is
O(c?d? + nc?d) (Table 1I), which is prohibitively large for
large n, d or c. Furthermore, both relax and round solvers
involve calculating inverse matrix of size c¢d x cd. Thus, a
scalable algorithm of FIRAL is needed.

III. THE APPROX-FIRAL ALGORITHM
A. The Hessian structure and a fast RELAX step

The new RELAX solver has four components. First, we
replace the exact trace operator in line 6 of Algorithm 1
with a randomized trace estimator that only requires matvec
operations. Second, we replace the direct solvers with a
matrix-free conjugate gradients iterative method (CG). Third,
we devise an exact fast matvec approximation for the Hessians.
And fourth, we propose an effective preconditioner for the CG
scheme. Taken together these components result in a scalable
algorithm. We present the pseudo-code for our fast RELAX
step in Algorithm 2 and summarize its complexity in Table II.

We first develop an estimator for the gradient g; in Eq. (6)
that avoids constructing dense d-by-d matrices such as 3.,
H,, and 2;1. The main idea is to use the Hutchinson trace
estimator [15] to approximate the gradient: suppose that we
use s Rademacher random vectors {v; € R} je[s]» then g; can

be approximated by

g; ~ _é > o Hi(BTH,E).
JEls]
To calculate the vector ¥ H, ¥ 'v; in Eq. (12), we can
solve two linear systems using CG. Note that this term can
be shared for all 4 € X,, in gradient approximation formula.
Thus, we only need to calculate the vector once for each mirror
descent iteration step.

Fast matrix-free matvec. The trace estimator and CG
solvers require Hessian matvecs. The following Lemma gives
an exact closed form of the matvec without forming the
Hessian matrix explicitly.

(12)

Lemma 2 (Matrix-free Hessian matvec). For any given vector
v € R, let V € R¥*€ be the reshaped matrix from v such
that vec(V) = v. Denote the j-th column of V by v; € RY,

k-th component of h; by h¥. H; is given by Eq. (2). Then
(xf vy — 2] Vh)hlz; € R?
H;v = : € R

(x]ve —] Vhy)hSz; € R?

Proof.
Hv = [diag(h;) @ (ziz])]v — [(hih]) @ (w52)]v

= vec(z;z; Vdiag(h;)) — vec(z;z] Vh;h])

= 'U€C([(w;rvl)h}xzv Tty (l';rvc)hfxz])

— (z] Vhy)vec(z;h,),
where the second equality uses a property of the matrix
Kronecker product. O

According to Lemma 2, we can compute H;v in the
following steps: @ 7v; < V'x;, @ a; « ' h;, ® v; «
(vi — ;) ® h;, and ® H;v + vec(v; ® ;). It is worth
noting that the storage required for the first three steps is only
¢ + 1 elements, while the last step requires dc elements for
storing the result of the matvec operation. A comparison of
the complexity between our fast matvec algorithm and direct
matvec is provided in Table III.

With the help of the matrix-free matvec, we can calculate
H,v by

Ziexu %‘1552’

H,v = (13)

Ziexu ’yz‘c Li,
where v¥ = (z/v; — 2] Vh;)hE for k € [c]. Based on the
previous analysis, the additional storage required is solely for
~y; for all unlabeled points X,,, amounting to 4n(c+1) memory
cost. We can use the similar calculation for the matvec of X v
within the CG iterations.

Preconditioned CG. To further accelerate the calculation,
we propose a simple but, as we will see, effective block
diagonal preconditioner for the CG solves. We first introduce
the block diagonal operation as follows.

Table II Comparison of algorithm complexity between FIRAL and Approx-FIRAL. Nyelax is the number of mirror descent iterations in relax
solver, nca is the number of CG iterations in each mirror descent step of the Approx-FIRAL relax solver.

Exact-FIRAL

Approx-FIRAL

Complexity
Relax Round Relax Round
Storage ‘ O(c2d? + nc?d) O(c?d? + ncd) ‘ O(n(d + sc) + cd?) O(n(d + ¢) + cd?)
Computation ‘ O (nrelaXnCS d2) 0] (bc3 (d3 + n)) ‘ (0] (nrelaxncd(d + nca s)) @ (Imcdz)

Table III Comparison of storage and computational complexity
between matrix-free matvec and direct matvec.

method ‘ storage ‘ computation
direct MatVec | O(d2c?) | O(d?c?)
fast MatVec | O(dc) O(dc)
CIFAR-10 CG ImageNet-1k CG

10° — wio b 0 — .
= w/o precondi = 10' wl/o precondi
s —— w/ preca s —— Wi preco
2 2
5 5
o~ o~
0 1073 o107’
o) o)
>4 2

0 20 40 0 200 400 600

CG step

Figure 1 The impact of preconditioner on CG iterations. The exper-
imental setup is detailed in § IV-A. We showcase the convergence of
CG in the initial mirror descent iteration (i.e., Line 6 of Algorithm 2).

Definition 1 (Block diagonal operation B(-)). For any matrix
H c R4 define B(H) € R4 as the matrix comprising
d x d block diagonals of H; denote the k-th block diagonal
matrix by By, (H) € R4*4,

Then, for every Hessian matrix H; in Eq. (2), we have its
block diagonal as

B(H,) = [diag(h; © (1 = hi))] ® (ziz,"), (14)
and its k-th matrix diagonal as
By, (H;) = hi(1 = hf) - wz] . (15)

We employ B(X,)~! as the preconditioner for CG to solve
the linear system required for gradient estimation in Eq. (12).
We illustrate the effectiveness of the CG preconditioner for
two datasets in Fig. 1. Using B(X,)~! as preconditioner
accelerates CG convergence due to several factors. Firstly, it
improves the conditioning of the matrix. For instance, in the
CIFAR-10 test, the condition number of X, is 198, while
the condition number of B(X,) !X, is 72. Additionally,
the majority of eigenvalues of the preconditioned matrix are
clustered into small intervals.

B. The new ROUND step

The difficulty of the ROUND step lies in computing the
objective value in Eq. (9) for each point ¢ € X, at each round
t € [b]. Even when employing CG with the fast matrix-free
matvec introduced in the preceding section, the computational
complexity for estimating the objective is O(bncan?eds),
which is prohibitively large for large-scale problems.

Motivated by the effectiveness of the preconditioner in the
RELAX, it is natural to consider some approximation. Notice

Algorithm 2 FAST RELAX SOLVE

1: 2z=1/n,1/n,---,1/n) € R™

2: {B+}L_, : schedule of learning rate for relax solve

3: fort =1to T do

4: V = [vi,v2, - ,vs] € R4cXs: matrix of s Rademacher random
vectors.

5 {Bk(EZ)_l}ke[C] <—preconditioner for CG solve
6: W « 271V by preconditioned CG

7. W<« HW

8: W « X 'W by preconditioned CG
9 git =1 e vy Hiwg, VieXy
0 zi 4= zi exp(—=Btgi)

1 Zi 72;’6[71] z;

12: zo < bz

Algorithm 3 APPROX-FIRAL

1: zo < solution of RELAX step from Algorithm 2
: Diagonal ROUND step:
: X 0, form {(Zo) € RdXd}ke[c]

2
3

4 {(B1);" « VAo + FH) '}y
5: {(H), + o}ke[c]
6
7
8
9

:fort =1to bdo
is « Bq. (17)
{(H)y, (H)), + §(Ho)y + h¥ (1 - hft)fif,xT}ke[c]

it

: {P‘k,j]?=1 < eigenvalues of (ﬁ)k’}ke[c]
10: find vi41 st Zke[c] Zje[d](VtJfl + n)\k7j)*2 =1
1 {Beyn)y !+ [(Bo)r + n(H)p + F(Ho)el ' }c iy
122 X« X U{z;,}

that the ROUND step becomes much easier when considering
only the block diagonals of all Hessian matrices. Specifically,
we assume that each Hessian matrix H; retains only its block
diagonal parts, as expressed in Eq. (14). Consequently, all
matrices with a size of d x d in the ROUND step are block
diagonal. This assumption not only reduces storage require-
ments but also simplifies calculations. Firstly, we introduce
a Sherman-Morrison-like formula for the low-rank updates
for the inverse of a block diagonal matrix in Lemma 3.
Subsequently, we present a simple yet equivalent objective to
the original exact ROUND step in Proposition 4. We outline the
pseudo-code in Algorithm 3 and summarize the complexity of
the new ROUND step in Table II.

Lemma 3. Let A € R%* be a block diagonal positive definite
matrix with ¢ block diagonals of d x d matrices, v € R? and
v € RE be vectors. If A+diag(y)® (xa ") is positive definite,
then (A+diag(y)®(zz ")) is a block diagonal matrix with
its k-th block having the following form:
fykAlzlxxTAlzl
L+yzTA e’
(16)

(A + diag(y) ® (IIT));l = A;l _

where A;l is the inverse of k-th diagonal of A, ~y;, is the k-th
component of .

Proposition 4. If all Fisher information matrices H; only

preserve the block diagonals of d x d matrices, then at each

iteration of the ROUND step, the objective defined in Eq. (9)

is equivalent to the following:

] (Be) ! (Bo)y ' (By)y '

L (1~ W) (B '
17

iy € argmax Y hF(1 —hF)-
g) Hi1 =R
where B; = £3/° A, 23/ + 1H,,.

Proof. We denote the objective for point ¢ € X, in round
problem Eq. (9) by r;, then

r; = Trace[(A: + %ﬁo +nH;) 7Y

:Trace[72 <1>/2At2<1>/2+%Ho+77Hi)_1 i/z}

4B,

= Trace (B, + yH;) ™' 5. (18)
Since B; and H; are both blockldiagonal, by Lemma 3, k-th
block diagonal of (Bt + nHi)_ has the following form:

k(1 —nk =1 0T —1
(Bt +T]Hl);1 — (Bt>;1 _ nhl (1 hl)(Bt)k ‘Tlxl (Bt)k

L+ nhf(1—h¥)z! (By)y 'z
(19)
Substitute Eq. (19) into Eq. (18), we have
r; = Trace[B; '3,
- 2] (Bo)y (Zo)y (Be)y s
_nzhf(l_hf)l hkkl hickTkal)
k=1 +nhi (1= hi)z; (B
(20)
which leads to Eq. (17). L]

C. HPC implementation and complexity analysis

Our HPC implementation of Approx-FIRAL, as outlined
in Algorithms 2 and 3, is GPU-based. We employ cupy [6]
for computation and mpidpy [8] for communication within
GPUs. To utilize a GPU-aware Message Passing Interface
(MPI), we utilize MVAPICH2-GDR [16]. Our implementation
employs single-precision floating point for both storage and
computation. Let p be the number of GPUs, we start the
parallel implementation by evenly distributing h; and x; of
n points in X,, across p GPUs.

Regarding computation, we utilize the built-in functions of
the linear algebra routines available in cupy. We provide a
summary of some of the key functions as follows:

e cupy.einsum: In the RELAX step outlined in Algo-
rithm 2, we utilize Einstein summation to construct the
block diagonal matrix as a preconditioner in Line 5. In
Lines 6-8, we employ Einstein summation for the fast
matrix-free matvec developed in § III-A for matrices X,
and H,,. For the ROUND step in Algorithm 3, we use this
function mainly for the objective calculation in Eq. (17)
(Line 7).

e cupy.linalg.eigvalsh: In the ROUND step, this
function is employed to compute the eigenvalues of the
block diagonals of H in a batch-wise manner in Line 9 of
Algorithm 3. In our implementation, we evenly distribute
the computation of eigenvalues for ¢ block diagonals
among p GPUs.

e cupy.linalg.inv: This function is utilized to calcu-
late the inverse of block diagonal matrices in Line 5 of
Algorithm 2 and Lines 4 and 11 of Algorithm 3.

As for communication among GPUs, we outline the primary

collective communication operations utilized as follows:

e MPI_Allreduce: For RELAX step in Algorithm 2, we
need this operation for summation of the block diagonals
in Line 5. In Lines 6-8, it is necessary for the summation
of the results from the matvec operation. For ROUND step
in Algorithm 3, we use MPI_Allreduce in Line 7 to
find the point with the global maximum objective value
across all GPUs.

e MPI_Allgather: This operation is employed to collect
all eigenvalues in the ROUND step (Line 9 of Algo-
rithm 3).

e MPI_Bcast: In Lines 6-8 of Algorithm 2, we distribute
W to each GPU. In Line 11 of Algorithm 3, we utilize
this operation to transmit h;, and x;, to all GPUs.

In Table IV, we summarize the complexity of storage,
computation and communication for our HPC implementation
of Approx-FIRAL. The details are outlined as follows. To
estimate the cost of collective communications, we rely on
the results presented in [17]. We assume that the time used to
send a message between two processes is ts + mt,,, where
ts is the latency, ¢, is the transfer time per byte, and m
denotes the number of bytes transferred. Additionally, we
denote the computation cost per byte by ¢, for performing
the reduction operation locally on any process. The costs
associated with the three MPI operations we utilized are as fol-
lows: @ MPI_Allreduce: employing the recursive doubling
algorithm, the time complexity is logp(ts + m(t, +t.)). @
MPI_Allgather: utilizing the recursive doubling algorithm,
the time complexity is logpts + pp%lmtw. ® MPI_Bcast:
using the binomial tree algorithm, the time complexity is
log p(ts + mty,).

RELAX step. In terms of storage, the parallel implemen-
tation of Algorithm 2 requires storing Rademacher random
vectors V (Line 4), the intermediate matrix W (Lines 6-
8), and the inverses of ¢ block-diagonal matrices (Line
5). Hence, the total storage for each GPU amounts to
@) (%(d +¢) +cds + cd2) including the storage of x; and h;
for % points.

For building the preconditioner of CG (Line 5), each GPU
initially computes the block diagonal matrices {B(3.) }re|q
with a complexity of O(%ch). The MPI_Allreduce oper-
ation for aggregation of these matrices across all GPUs incur
a communication cost of O (logp(ts + cd?(t, + tc)). Then
each GPU calculates the inverse of the block diagonal matrices
as the preconditioner, which has a computational complexity

Table IV Storage, computation and communication complexity of parallel implementation of Approx-FIRAL (Algorithm 3). The detailed
derivations are presented in § III-C. nyelax represents the number of mirror descent iteration in Algorithm 2, ncg represents the number of

CG iterations.

Complexity ‘ Storage ‘ Computation ‘ Communication
RELAX step ‘ (’)(%(d +c¢)+cds + cd2) ‘O (nrelaxcd(%(d—i- negs) +d2))‘ O(nrelax logp(ncgts + cd(ncas + d)(tw + tc))>
RouNDstep | O(2(d+0)+cd) | O (bed?(2 +d)) | O(blogp(ts + @+)tu +1c))

of O(cd?). In summary, the computational and communication
time required to construct the preconditioner are as follows:

TEomP :O(cd2(g+d)), @1
T = O(logp(ts + ed®(ty +to)). (22)

Within each preconditioned CG iteration (Lines 6 and 8), the
primary time consumption arises from the matvec calculations
of ¥,V and B(X.)V. According to the complexity outlined in
our fast matvec algorithm in Table III, computation of matvec
has a complexity of O (%cds). Subsequently, the summation
of these vectors requires an MPI_Allreduce operation with
a communication cost of O (logp(ts + cds(ty +tc)). The
computation of B(X,)V solely demands a computational cost
of O(cd?s). Let ncg be the CG iteration number, we have

T — O(ncggcds), (23)

TEOm™ — O (nCG log p(ts + cds(ty + tc))). (24)

Regarding other components of the relax solver, Line 7 of
the matvec operation has a complexity similar to one step
of CG. The computation of the gradient g; (Line 9) and
the updating of z (Lines 10-11) necessitate a complexity of
@ (%cds).

ROUND step. Regarding storage, all matrices utilized in
Algorithm 3 are block diagonal matrices, resulting in a storage
requirement of O(cd?). Furthermore, to compute the objec-
tive for each point in Line 7, additional storage of O(nc)
is necessary. As a result, the total storage requirement is
O(n(c+d) + cd?).

During each iteration of the ROUND step, computing the
objective function for each point in Line 7 (Eq. (17)) needs
a computational complexity of O(%cdz). Subsequently, to
select the point with the maximum objective, we utilize
MPI_Allreduce to gather and compare the maximum ob-
jective across local processes, resulting in a communication
cost of O(log p(ts + tu + tc)).

To update {(H)p}pcq (Line 8), the process owning
1; broadcasts x;, and h;, to other processes using an
MPI_Bcast operation with a size of O(c+d). In Line 9, we
first compute eigenvalues for 19) matrices for each process, fol-
lowed by collecting all eigenvalues using MPI_Allgather.
The computational complexity of this step is O(%d3), and
the communication cost is O(log pts + ~tw). As for Line 11,
computing the inverse matrices requires a computational com-
plexity of O(cd?). The total computation and communication
complexity for the ROUND step are summarized in Table IV.

IV. NUMERICAL EXPERIMENTS

We test the classification accuracy in § IV-A, single node
performance in § IV-B and parallel computing performance in
§ IV-C on the Lonestar6 A100 nodes in the Texas Advanced
Computing Center (TACC). Lonestar6 A100 nodes are inter-
connected with IB HDR (200 Gbps) and have three A100
NVIDIA GPUs per node.

A. Active learning performance

In our accuracy experiments, we attempt to answer the
following questions regarding Approx-FIRAL. How does the
performance of Approx-FIRAL in active learning tests com-
pare to Exact-FIRAL? How does Approx-FIRAL compare
to other active learning methods? Considering we utilize the
Hutchinson trace estimator and CG for gradient estimation
in RELAX, what impact do variations in the number of
Rademacher random vectors and CG termination criteria have
on the convergence of RELAX?

Datasets. We demonstrate the effectiveness of Approx-FIRAL
using the following real-world datasets: MNIST [18], CIFAR-
10 [19], Caltech-101 [20] and ImageNet [21]. First we use
unsupervised learning to extract features and then apply active
learning to the feature space, that is, we do not use any label
information in our pre-processing. For MNIST, we calculate
the normalized Laplacian of the training data and use the
spectral subspace of the 20 smallest eigenvalues. For CIFAR-
10, we use a contrastive learning SimCLR model [2] to
extract feature; then we compute the normalized Laplacian
and select the subspace of the 20 smallest eigenvalues. For
Caltech-101 and ImageNet-1k, we use state-of-the-art self-
supervised learning model DINOv2 [22] to extract features.
We additionally select 50 classes randomly from ImageNet-
1k and construct dataset ImageNet-50.

We construct 7 datasets for the active learning tests. A
summary of the datasets is outlined in Table V. For the initial
labeled set X, we randomly pick two samples per class for
ImageNet-1k and one per class for all other datasets. To form
the unlabeled pool X, in MNIST, CIFAR-10, ImageNet-50,
and ImageNet-1k, we evenly select points from each class
randomly. To simulate a non-i.i.d. scenario, we assemble X,,
in an imbalanced manner for imb-CIFAR-10, imb-ImageNet-
50, and Caltech-101. In imb-CIFAR-10 and Caltech-101, the
maximum ratio of points between two classes is 10. In
imb-ImageNet-50, the maximum ratio of points between two
classes is eight. We use the points from the whole training
dataset for evaluation.

Table V Summary of datasets for active learning experiments.

Name Type # classes ‘ dimension ‘ Xo ‘ X ‘ # rounds | budget/round | # evaluation points
MNIST balanced 10 20 10 3,000 3 10 60,000
_ CIFAR-I0) ‘balanced 10 20 10| 3,000 3 10 50,000
imb-CIFAR-10 | imbalanced
 ImageNet-50 | balanced 50 50 50 | 5,000 6 50 64,273
imb-ImageNet-50 | imbalanced
Caltech-101 imbalanced 101 100 101 | 1,715 6 101 8,677
ImageNet-1k balanced 1,000 383 2,000 | 50,000 5 200 1,281,167
== Random K-Means Entropy ~— Exact-FIRAL == Approx-FIRAL
(A MNIST (B) CIFAR-10 © imb-CIFAR-10 D) ImageNet-50 (E) imb-ImageNet-50
95: 95

Classification Accuracy (%

a9 9
S % &

90- 90-

85 85
80-

75

70

40 10 40 10

20 30
Number of Labeled Samples

CIFAR-10 (H)

20 30
Number of Labeled Samples

MNIST (S))

==
]
N~

R S

20 30
Number of Labeled Samples

imb-CIFAR-10 0

4 50 100 150 200 250 300 350 50 100 150 200 250 300 350
Number of Labeled Samples Number of Labeled Samples

ImageNet-50 J) imb-ImageNet-50

95 95

=3

3 8

Classification Accuracy (%)
o

90 90

85 =

80 80

75 75

70- 70

o =
3

20 30 40 10 20 30 20 %0
Number of Labeled Samples Number of Labeled Samples

20 30
Number of Labeled Samples

40 50 100 150 200 250 300 350 50 100 150 200 250 300 350
Number of Labeled Samples Number of Labeled Samples

Figure 2 Classification accuracy for active learning experiments conducted on MNIST, CIFAR-10, imb-CIFAR-10, ImageNet-50, and imb-
ImageNet-50 on MNIST, CIFAR-10, imb-CIFAR-10, ImageNet-50 and imb-ImageNet-50. The upper row ((A)-(E)) are plots of pool accuracy
on the unlabeled pool X, the lower row ((F)-(J)) are plots of evaluation accuracy on the evaluation data.

Table VI Time comparison between Exact-FIRAL and Approx-FIRAL
on a single A100 GPU. The time reported in the table is in seconds.

Exact-FIRAL Approx-FIRAL

ImageNet-50

RELAX 33.6 1.3

ROUND 34.8 1.1
Caltech-101

RELAX 172.3 1.9

ROUND 945.3 4.4

Experimental setup. We compare our proposed Approx-
FIRAL with four methods: (1) Random selection, (2) K-means
where k = b (b is the budget of the active learning selection
per round), (3) Entropy: select top-b points that minimize
>.p(y = clx)logp(y = c|z), (4) Exact-FIRAL: the original
implementation of Algorithm 1. For tests involving larger
dimension and number of classes, such as Caltech-101 and
ImageNet-1k, we do not conduct tests on Exact-FIRAL due
to its demanding storage and computational requirements.

For each of our active learning tests, we use a fixed budget
number for selecting points across 3 to 6 rounds. The details
are outlined in Table V. We report the average and standard
deviation for Random and K-means based on 10 trials.

Regarding the hyperparameters in RELAX, we fix the num-
ber of Rademacher vectors at 10, and terminate the CG iter-
ation when the relative residual falls below 0.1. Additionally,

we conclude the mirror descent iteration when the relative
change of the objective is less than 1.0E—4. In all of our tests
in Table V, this criterion is met within fewer than 100 mirror
descent iterations.

The ROUND step requires only one hyperparameter, 7.
We determine the value of n following the same approach
as Exact-FIRAL [5]: we execute the ROUND step with dif-
ferent 1 values, and then select the one that maximizes
minge(e) Amin(H)z, where H represents the summation of
Hessian of the selected b points (Algorithm 3).

We utilize the logistic regression implementation of
scikit—-learn [23] as our classifier, and we keep the
parameters fixed during active learning.

We present the classification accuracy results for both
pool accuracy and evaluation accuracy on MNIST, CIFAR-
10, imb-CIFAR-10, ImageNet-50 and imb-ImageNet-50 in
Fig. 2. Here, pool accuracy refers the accuracy of classifier
on the unlabeled pool points X,,, while evaluation accuracy
represents the accuracy on the evaluation data (the respective
quantities are detailed in Table V). In Fig. 3, we plot the
accuracy results obtained from active learning tests conducted
on Caltech-101 and ImageNet-1k.

Approx-FIRAL vs. Exact-FIRAL. From the results depicted
in Fig. 2, we can observe a very close resemblance in
the performance of Approx-FIRAL and Exact-FIRAL. The
discrepancies between these two methods are only visible

in a few instances. For example, in the initial round of the
CIFAR-10 test (where the number of labeled points is 20
in Fig. 2(B) and (G)), Exact-FIRAL exhibits slightly better
performance than Approx-FIRAL. However, Approx-FIRAL
surpasses Exact-FIRAL slightly in the imb-ImageNet-50 test
(Fig. 2(E) and (J)), as well as in the final round of the MNIST
test (Fig. 2(A) and (F)).

In Table VI, we illustrate the time comparison between
Exact-FIRAL and Approx-FIRAL for the initial round of
ImageNet-50 and Caltech-101 on a single A100 GPU. For
ImageNet-50, Approx-FIRAL demonstrates approximately 29
times faster performance than Exact-FIRAL. In the case of
Caltech-101, Approx-FIRAL is about 177 times faster com-
pared to Exact-FIRAL.

Approx-FIRAL vs. other methods. It is evident that Approx-
FIRAL outperforms other methods in the active learning
test results presented in Figs. 2 and 3. Notably, methods
such as Random, K-means, and Entropy exhibit an obvious
decrease in evaluation accuracy from the balanced CIFAR-10
test (Fig. 2(G)) to the imbalanced CIFAR-10 test (Fig. 2(H)).
However, FIRAL maintains a consistent performance level
across both CIFAR-10 and imb-CIFAR-10 tests. Further ob-
servations include: K-means outperforms Random in all the
active learning tests presented in Fig. 2, shows comparable
accuracy results to Random in Caltech-101 (Fig. 3(A) and
(B)), and exhibits inferior performance compared to Random
in ImageNet-1k (Fig. 3(C) and (D)). Additionally, in scenarios
where the number of labeled samples is limited (such as in
tests on MNIST, CIFAR-10, or the initial rounds of ImageNet-
50 in Fig. 2), Random and K-means display considerable vari-
ance, and uncertainty-based method such as Entropy performs
the poorest.

Parameters in RELAX step. To explore the influence of the
number of Rademacher random vectors (s) and the termination
tolerance of CG (cg_tol) on RELAX, we analyze the initial
round of the active learning test on CIFAR-10 and ImageNet-
50. We plot the objective function value Eq. (5) of RELAX
against the iteration number of mirror descent in Fig. 4,
varying the values of s or cg_tol. Notably, we observe that
RELAX does not demonstrate sensitivity to either s or cg_tol.

B. Single-GPU performance

We now turn our attention to the HPC performance evalua-
tion. We start with discussing the performance of our algorithm
on a single GPU. We study the performance sensitivity to
feature size d and number of class ¢ in ImageNet dataset for
both RELAX step and ROUND step. We provide estimates for
the theoretical peak time of each major computational compo-
nent, assuming an ideal peak performance of 19.5TFLOPS for
Float32 computation on the GPU A100 [24]. The computation
of RELAX solve is broken down into four major components:
setting up preconditioner B(X,)~!, performing the conjugate
gradient (CG), evaluating the gradient and other related tasks.
For ROUND solve, we focus on three components: computing

== Random K-Means —4— Approx-FIRAL

Caltech-101

Entropy
B) &

=N 95

(A) = Caltech-101

kS

o0
7

85

,‘ //77

=
a3

Classification Accuracy
2 ES

Classification Accuracy

1 202 303 404 505 606 707
Number of Labeled Samples

ImageNet-1K (D)

)1 202 303 404 505 606 707
Number of Labeled Samples

(O)S

ImageNet-1K

=
5

&

=
5

Classification Accuracy (%)
5 &

Classification Accuracy (%)
&

=

2

) 4&(00 2200 2400 2600 2800 3000
Number of Labeled Samples

00 2200 2400 2600 2800 3000
Number of Labeled Samples

Figure 3 Classification accuracy for active learning experiments
on Caltech-101 and ImageNet-1k. Both (A) and (B) represent the
accuracy on evaluation data for Caltech-101. In (A), the accuracy
is averaged with each point having the same weight, while in (B),
the accuracy is averaged with each class having the same weight.
(C) presents the pool accuracy for ImageNet-1k, and (D) presents
the evaluation accuracy for ImageNet-1k.

. CIFAR-10 ImageNet-50
— Exact 34 — Exact
13 —— Approx: cgi = 0.5 32 ——— Approx: cg, = 0.5
11 Approx: ¢gror = 0.1 30 Approx: ¢gior = 0-1
~ \ Approx: cgqo = 0.01 o8 Approx: cgo = 0.01

Approx: cgio = 0.001 Approx: cgior = 0.001

70 10 20 30 40 0 10 20 30 40
iteration iteration

. CIFAR-10 ImageNet-50

— Exact 34 — Exact
13 —— Approx: s = 10 32 —— Approx: s =10
11 Approx: s =20 30 Approx: s =20

S~ Approx: s = 100 Sog \'\ Approx: s = 100
9 \ \
\L 26 \
N N
7 S~—— 24 \
3 0 10 20 30 40 2 0 10 20 30 40
itr # iteration

Figure 4 Effect of the number of Rademacher random vectors
(top) and CG termination criteria (bottom) on RELAX step (i.e.,
Algorithm 2). “Exact” refers to the precise RELAX solver utilized
in Exact-FIRAL, while “Approx” denotes the fast RELAX solver em-
ployed in Approx-FIRAL. Here, s denotes the number of Rademacher
random vectors, and cg.o1 signifies the relative residual termination
tolerance used in the CG solves.

eigenvalues that is invoked at line 9 of Algorithm 3, evaluating
the objective function, and other related tasks.

Sensitivity to feature size d. As we saw, the
computational complexity of the RELAX solve is
O(cd3+ncd2+ncgncsd), where ngg is the number
of CG iterations. The major cost lies in the construction of
preconditioner {Bk’<22_1)}ke[c] and CG solving I, W = V.
The construction of {B(X1)}, crg takes cd® + 2cend?
time. The CG solve involves ncg evaluations of X,V.
According to Lemma 2, the time complexity of CG is
dominated by 4ncgnesd. Time complexity of ROUND solve
is O(cd?+ncd?). The major cost lies in line 9 in Algorithm 3,
and evaluation of objective function in Eq. (17). We use

RELAX solve, ImageNet-1K, single-node ROUND solve, ImageNet-1K, single-node
I Setup #(X.)"" (experiment) [CG (experiment) EHEN gradient (experiment) [other (experiment) [ZZ7 compute eigenvalues (experiment) 227 objective function (experiment) 271 other (experiment)

B Setup Z(2.)"! (theoretical) 0 CG (theoretical) [N gradient (theoretical) HEN other (theoretical) [0 compute eigenvalues (theoretical) ~ ["1 objective function (theoretical) [other (theoretical)

), (D),
30
25 60

@ «

=R 3

8 15 &

2 2
5 /

1022 383 766 1022 100 200 400 800 1000
d c

Figure 5 Wall-clock time dependence of the RELAX and ROUND solves to the number of features d and the number of classes c using
ImageNet-1K. In the run for the d scaling, we fix the number of data points n = 1.0E5 and the number of classes ¢ = 1000. We set the
number of random vectors to s = 10. For each value of d, we run one gradient and fix the number of CG iterations to ncc = 50, and the
left column represents theoretical time and the right column represents experimental time. In the run to test the algorithmics scalability in
¢, we fix n = 1.3E6, d = 383 and vary c as [100, 200,400,800, 1000] . The remaining parameters of the algorithm are fixed. We report
the results as follows(A) RELAX run for d scaling. (B) RELAX run for c scaling. (C) ROUND solve for d scaling. (D) ROUND solve for c
scaling.

[0 Setup {}?(Zz)’l (experiment) [Z27 CG (experiment) EEEH gradient (experiment) EEEE MPI communication (experiment) — EZEH other (experiment)
B Setup A(x.)! (theoretical) 0 CG (theoretical) BB gradient (theoretical) Ml MPI communication (theoretical) S other (theoretical)

(A)1 strong scaling (full ImageNet-1k) (B)1 weak scaling (ImageNet-1k) © strong scaling (extended CIFAR-10) (D)O weak scaling (CIFAR-10)

0254

£ 0.204
k=]

g
0015’
It
<0109
005
12 T s T e T

GPUs

seconds
[
1
N
[]
NN |
|]

seconds

1 2 6 12 1 2

3
GPUs
Figure 6 Strong and weak scaling of the RELAX step on CIFAR-10 and ImageNet-1K. The dashed lines indicate ideal scaling performance.
(A) Strong scaling on the full ImageNet-1K dataset (1.3E6 points). (B) Weak scaling on ImageNet-1K (1.0E5 points per rank). (C) Strong
scaling on the extended CIFAR-10 dataset (3.0E6 points). (D) Weak scaling on CIFAR-10 (5.0E4 points per rank).

3
GPUs

770 compute eigenvalues (experiment) objective function (experiment) 71 other (experiment)
[compute eigenvalues (theoretical) [objective function (theoretical) [1 other (theoretical)

(A) strong scaling (full ImageNet-1k) B) weak scaling (ImageNet-1k) (C)3 strong scaling (extended CIFAR-10) (D)O weak scaling (CIFAR-10)
© Y . 259 — 0.08 o
A » @ 204 S 2] Z
é \\\ =] 0 \\ 006 7
o 40 . o4 o 154 N =}
3 7. 3 E g oo
2 6 12 1 2 6 12 1 2 6 12 1 2 6 12

3 3 3 3
GPUs GPUs GPUs GPUs

Figure 7 Strong and weak scaling of the ROUND step on CIFAR-10 and ImageNet-1K. The dashed lines indicate ideal scaling performance.
(A) Strong scaling on the full ImageNet-1K dataset (1.3E6 points). (B) Weak scaling on ImageNet-1K (1.0Eb points per rank). (C) Strong
scaling on the extended CIFAR-10 dataset (3.0E6 points). (D) Weak scaling on CIFAR-10 (5.0E4 points per rank).

the cupy.linalg.eigvalsh to compute eigenvalues time. Specifically, Fig. 5 (A) presents the results for the
which takes O(cd?®). We fit the prefactor to 300 doing a RELAX step. We conduct the RELAX step for one mirror
few experiments isolated to this function. The evaluation descent iteration while keeping the number of CG iterations
of Eq. (17) has time complexity 3cd® + 4ncd®. We utilize fixed at ncg = 50. Increasing d from 383 to 766 leads
features from ImageNet-1K extracted using the pretrained to a 4.72x increase in the wall time of the preconditioner
self-supervised ViT models DINOv2 [22] with varying {Bk(Egl)}ke[c], while the CG time increases by 1.7x.
dimensions. Specifically, we explore feature dimensions d When d increases from 766 to 1022, the wall time of the
of 383, 766, and 1022. The number of classes is fixed at preconditioner increases by 1.66x, and the CG time increases
¢ = 1000, and we maintain a consistent number of points at by 1.26x.

500,000. We set the number of random vectors s = 10 in V.
Fig. 5(A)(C) show the sensitivity results for both RELAX and
ROUND steps. Each d value is represented by two adjacent
columns. The left column displays the theoretical peak time
for each d, while the right column shows the actual test

In the ROUND step, we conduct one iteration and showcase
the results in Fig. 5(C). Increasing d from 383 to 766 results in
a 6.6 increase in eigenvalue computation time. Additionally,
the evaluation time for the objective function increases by
3.65x. Upon further increasing d from 766 to 1022, the time

required for eigenvalue decomposition increases by 2.08x,
while the evaluation time for the objective function rises by
1.79x%.

Sensitivity to class number c. Similarly, we examine the algo-
rithm’s sensitivity to the number of classes, c. As observed, the
complexity of the RELAX step scales linearly with the number
of classes, as does the construction of the preconditioner.
Similarly, the two primary components of the ROUND step,
namely, computing eigenvalues (line 9 in Algorithm 3) and
evaluating the objective function (line 7 in Algorithm 3),
also show linear scale to the number of classes. We conduct
tests on the ImageNet dataset with 1.3 million points and
a feature dimension of d = 383. The number of classes
¢ varies from 100, 200,400, 800, 1000. Fig. 5 (B) illustrates
the results of the RELAX step. When c increases from 100
to 200, the preconditioner cost increases by 2x, and the
CG time increases by 1.79x. Conversely, for the scenario
where c increases from 100 to 1000, the preconditioner time
increases by 10.6x, and the CG time increases by 8.3x.
In the ROUND step, we execute one iteration and present
the results in Fig. 5 (D). As c increases from 100 to 200,
the eigenvalue decomposition time increases by 2.08x, and
the time for evaluating the objective function increases by
1.99x. Conversely, when c¢ increases from 100 to 1000, the
eigenvalue decomposition time increases by 10, and the time
for evaluating the objective function increases by 10.37x.
Overall, the solver exhibits the expected scaling behavior.

C. Parallel scalability

We perform strong and weak scaling tests on our paral-
lel implementation of Approx-FIRAL using two datasets. @
ImageNet-1K: the dimension of points is d = 383, and the
number of classes is ¢ = 1000. For the strong scaling test, we
use the entire ImageNet-1K dataset with an unlabeled pool
X, containing n = 1.3 million points. In the weak scaling
test, we allocate 0.1 million points to each GPU. ® CIFAR-
10: the dataset has points with dimension of d = 512 and
number of classes ¢ = 10 . In the strong scaling test, we
expand CIFAR-10 by introducing random noise from ~50K
to 3 million points. For the weak scaling test, we allocate
50,000 points to each GPU.

We present strong and weak scaling results for the RELAX
steps in Fig. 6 and the ROUND step in Fig. 7, employing up
to 12 GPUs for both tests. In the RELAX step, we present the
time for one mirror descent iteration. For the ROUND step,
we report the time for selecting one point. For estimating
the theoretical collective communication time costs for MPI
operations, we assume a latency of ¢, = 1.0E—4s, a bandwidth
of 1/t,, = 2.0E10 byte/s, and a computation cost per byte of
t. = 1.0E—10 s/byte. Additionally, for computation estima-
tion, we maintain the use of 19.5TFLOPS peak performance
of GPU A100 as in the previous section.

Scalability of RELAX step. The main computational cost
in the RELAX step stem from the preconditioner setup and
the CG solve. Regarding strong scaling results presented in

Fig. 6(A) for ImageNet-1K and (C) for CIFAR-10, utilizing 12
GPUs leads to a speedup of 10.9x for the preconditioner setup
and 11.3x for the CG solve in the case of ImageNet-1K. For
CIFAR-10, the speedup for the preconditioner is 6.7, while
for CG, it reaches 8 when employing 12 GPUs. As for the
weak scaling, with the number of GPUs raised to 12, the time
increases by less than 10% for ImageNet-1K (Fig. 6(B)), and
within 20% for CIFAR-10 (Fig. 6(D)). The primary increases
in time are attributed to MPI communications. We present
the ideal speedup as dashed lines in Fig. 6, with negligible
variance in performance.

Scalability of ROUND step. In the ROUND step, commu-
nication costs are negligible, so we include the time in the
“other” category in the plots of Fig. 7. In the strong scaling
tests, employing 12 GPUs results in an 11.4x speedup for
ImageNet-1K, as shown in Fig. 7(A), and achieves an 11.1x
speedup for CIFAR-10, as seen in Fig. 7(C). Regarding weak
scaling, the time slightly decreases when we increase the
number of GPUs. This occurs because we evenly distribute the
eigenvalue calculations across all GPUs. This effect is more
pronounced in the case of ImageNet-1K, as shown in Fig. 7(B),
compared to CIFAR-10 (Fig. 7(D)), since ImageNet-1K has
1000 classes while CIFAR-10 has only 10 classes. Similarly,
we present the ideal speedup as dashed lines in Fig. 7, with
negligible variance in performance.

Regarding the discrepancy between theoretical and exper-
imental performance shown in Figs. 6 and 7, one cause
is the performance of cupy.einsum, which is impacted
by memory management and suboptimal kernel performance
for certain input sizes. Additionally, the theoretical analysis
includes certain constants related to specific kernels that have
not been calibrated, such as the prefactors in the eigenvalue
solvers, contributing to the gap.

V. CONCLUSIONS

We presented Approx-FIRAL, a new algorithm that is
orders of magnitude faster than FIRAL. This improvement is
achieved by replacing FIRAL’s exact solutions with inexact
iterative methods or block diagonal approximations, using
randomized approximations for matrix traces, and approximat-
ing eigenvalue solves with block diagonal methods. Empirical
results show that these approximations have minimal impact
on sample selection effectiveness, as demonstrated by test
accuracy across seven diverse datasets, including those with
class imbalances. Furthermore, our muli-GPU implementation
allows efficient scaling to large datasets such as ImageNet. Our
open-source Python implementation allows interoperability
with existing machine learning workflows.

Our approach has several limitations. First, we still use
direct solvers in some parts of the code. Specifically, eigen-
value solves in the ROUND step and block factorization
for our Hessian preconditioner are performed exactly. These
methods are not scalable for certain parameters and could
be replaced with sparsely preconditioned iterative solvers to
enhance both performance and scalability of Approx-FIRAL.
We aim to incorporate these improvements in future versions

of the algorithm. Second, we have not extended the theoretical
results of FIRAL to the approximate version. While most
of the matrices involved are symmetric positive definite and
our approximations are stable perturbations, deriving precise
error bounds requires detailed estimates of the approximation
error.Third, despite its efficiency, Approx-FIRAL is still more
resource-intensive compared to other methods. It performs best
when the number of classes is relatively small, the feature
embeddings are excellent, and only a few examples are needed
for classification. As the number of classes grows, simpler
methods may be more appropriate. Fourth, our testing has been
limited to NVIDIA GPUs. Although the code is theoretically
portable—CuPy supports AMD GPUs and it can be adapted
for CPUs using NumPy—these alternative implementations
have not yet been carried out.

A final, more fundamental limitation of the generic FIRAL
approach is its inability to accommodate changes in the
feature embedding as new examples are introduced. Typically,
empirical methods address this by retraining or fine-tuning the
embedding whenever new labels are obtained. In such cases,
since the embedding evolves with new data, the data points
themselves change, rendering the FIRAL theory inapplicable.
Active learning with theoretical guarantees for such setups
remains an open problem that probably requires an entirely
different approach.

ACKNOWLEDGEMENTS

This material is based upon work supported by NSF award
OAC 2204226; by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
Applied Mathematics program, Mathematical Multifaceted In-
tegrated Capability Centers (MMICCS) program, under award
number DE-SC0023171; by the U.S. Department of Energy,
National Nuclear Security Administration Award Number DE-
NAO0003969; and by the U.S. National Institute on Aging under
award number R21AG074276-01. Any opinions, findings, and
conclusions or recommendations expressed herein are those
of the authors and do not necessarily reflect the views of the
DOE, NIH, and NSF. Computing time on the Texas Advanced
Computing Centers Stampede system was provided by an
allocation from TACC and the NSF.

REFERENCES

[11 Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” [EEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798-1828, 2013.

[2] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” 2020.
[Online]. Available: https://arxiv.org/abs/2002.05709

[3] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43-76, 2020.

[4] P.Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and
X. Wang, “A survey of deep active learning,” ACM computing surveys
(CSUR), vol. 54, no. 9, pp. 1-40, 2021.

[5] Y. Chen and G. Biros, “Firal: An active learning algorithm for multi-
nomial logistic regression,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[6] R. Nishino and S. H. C. Loomis, “CuPy: A numpy-compatible library

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

for NVIDIA GPU calculations,” 31st conference on neural information
processing systems, vol. 151, no. 7, 2017.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface. ~MIT press, 1999,
vol. 1.

L. Dalcin and Y.-L. L. Fang, “mpi4py: Status update after 12 years of
development,” Computing in Science & Engineering, vol. 23, no. 4, pp.
47-54, 2021.

X. Li and Y. Guo, “Adaptive active learning for image classification,”
in 2013 IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 859-866.

O. Sener and S. Savarese, “Active learning for convolutional neural
networks: A core-set approach,” arXiv preprint arXiv:1708.00489, 2017.
D. Gissin and S. Shalev-Shwartz, “Discriminative active learning,” arXiv
preprint arXiv:1907.06347, 2019.

G. Citovsky, G. DeSalvo, C. Gentile, L. Karydas, A. Rajagopalan,
A. Rostamizadeh, and S. Kumar, “Batch active learning at scale,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 11933—
11944, 2021.

Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” in International conference on machine learning.
PMLR, 2017, pp. 1183-1192.

R. Pinsler, J. Gordon, E. Nalisnick, and J. M. Hernandez-Lobato,
“Bayesian batch active learning as sparse subset approximation,” Ad-
vances in neural information processing systems, vol. 32, 2019.

M. Hutchinson, “A stochastic estimator of the trace of the influence
matrix for laplacian smoothing splines,” Communications in Statistics
- Simulation and Computation, vol. 19, no. 2, pp. 433-450, 1990.
[Online]. Available: https://doi.org/10.1080/03610919008812866

D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p. 101208, 2021, case Studies in Translational Computer Science.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877750320305093

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, p. 49-66, feb 2005. [Online]. Available:
https://doi.org/10.1177/1094342005051521

L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141-142, 2012.

A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
~kriz/cifar.html

F-F. Li, M. Andreeto, M. Ranzato, and P. Perona, “Caltech 101,” Apr
2022.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211-252, 2015.

M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khali-
dov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby, R. Howes, P.-Y.
Huang, H. Xu, V. Sharma, S.-W. Li, W. Galuba, M. Rabbat, M. Assran,
N. Ballas, G. Synnaeve, I. Misra, H. Jegou, J. Mairal, P. Labatut,
A. Joulin, and P. Bojanowski, “Dinov2: Learning robust visual features
without supervision,” 2023.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

Nvidia, = “Nvidia al00 tensor core gpu architecture,”
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf, 2020, accessed: Apr. 2,
2024.

https://arxiv.org/abs/2002.05709
https://doi.org/10.1080/03610919008812866
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://doi.org/10.1177/1094342005051521
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions
C1 We propose Approx-FIRAL to accelerate Exact-FIRAL

by exploiting matrix structure, randomized linear algebra,
and iterative methods.

Cs We evaluated the accuracy of Approx-FIRAL by com-
paring to Exact-FIRAL and several other popular active
learning methods.

C5 We used CuPy and MPI to support multi-GPU acceleration
in Python.

C4 We tested the scalability of our parallel implementation
on multi-GPU systems.
B. Computational Artifacts
The computational artifacts A; and A5 can be accessed at the
following link:
https://zenodo.org/doi/10.5281/zenodo.10981845.

There are two subdirectories included. The directory “ac-
curacy_tests/” contains artifact A;, the directory “scalabil-
ity_tests/” contains artifact As.

Artifact ID Contributions Related
Supported Paper Elements
Ay C,0Cs Figures 2-4
Ay C3,C4 Figures 6-8

II. ARTIFACT IDENTIFICATION
A. Computational Artifact Ay
Relation To Contributions

This artifact includes the implementation of our proposed
algorithm, Approx-FIRAL, and code for other active learning
methods such as Exact-FIRAL, Random, K-means, and En-
tropy. Through numerical experiments, we demonstrate that €@
Approx-FIRAL exhibits similar performance to Exact-FIRAL
in active learning, @ Approx-FIRAL accelerates the Exact-
FIRAL significantly.

Expected Results

By conducting active learning experiments on multiple
datasets (refer to Table V), we reproduce classification ac-
curacy results presented in Figures 2 and 4. It is expected that
the newly proposed Approx-FIRAL will exhibit performance
similar to Exact-FIRAL and surpass the other methods being
compared. By comparing the execution time of the RELAX
step and ROUND step between Approx-FIRAL and Exact-
FIRAL on the ImageNet-50 dataset, we replicate the time
comparison results within Figure 3. It is expected that Approx-
FIRAL significantly accelerates Exact-FIRAL in both the
RELAX step and the ROUND step.

Expected Reproduction Time (in Minutes)

All tests associated with artifact A; can be performed on a
single A100 GPU node within the TACC Lonestar6 system.
Each A100 GPU node is equipped with 3 NVIDIA A100 PCIE
40GB GPUs. Subdirectory /job_accuracy/ contains all
bash scripts for the experiments to replicate Figures 2-4. The
estimated execution time for all scripts are listed in the table
below.

Figure bash script time (min)
mnist.sh 2
Figure 2 cifarl0.sh 4
imagenet50.sh 55
Fioure 3 time_imagenet50.sh 2
£ time_caltechl0l.sh 21
Fioure 4 caltechl01l.sh 4
& imagenetlk.sh 100

Artifact Setup (incl. Inputs)

Hardware: We conducted experiments by executing code on
the NVIDIA A100 GPU on the TACC Lonestar6 system.

Software: We set the TACC environment as follows:

intel/19.1.1 impi/19.0.9
cmake/3.24.2 pmix/3.2.3
TACC

Furthermore, the following packages are necessary to run
the active learning experiments: python/3.11.8, numpy/1.24.3,
scipy/1.10.1, cupy/13.0.0, mpidpy/3.1.5, absl-py/1.3.0, scikit-
learn/1.2.2. For plotting results, we utilize matplotlib/3.7.1 and
seaborn/0.12.2.

autotools/1.4
xalt/2.10.32

Datasets / Inputs: We have seven datasets obtained by
real-world image datasets with features acquired through
self-supervised learning methods: MNIST, CIFAR-10, imb-
CIFAR-10, ImageNet-50, imb-ImageNet-50, Caltech-101, and
ImageNet-1k. The specifics of each dataset are outlined in
Table V. Our datasets can be accessed via the following link:
https://zenodo.org/doi/10.5281/zenodo.10977375.

Installation and Deployment Once the testing environment has
been configured (refer to set_env.sh), we proceed to set
the path for downloaded data and the path for saving active
learning results by exporting them (refer to set_path. sh).

Artifact Execution

To replicate the active learning accuracy perfor-
mance results depicted in Figures 2 and 4, the
execution of the following five scripts is required:

mnist.sh, cifarl0.sh, imagenet50.sh,
caltechl01l.sh, and imagenetlk.sh. Besides, running
time_imagenet50.sh provides the results necessary
to replicate the time comparison results of ImageNet-50 as
depicted in Figure 3.

For each dataset, the respective active learning bash script
carries out active learning experiments utilizing methods like
Approx-FIRAL, Random, K-means, and Entropy. With the
exclusion of tests conducted on Caltech-101 and ImageNet-
1k, each script also runs Exact-FIRAL. In the case of random
number-based methods such as Random and K-means, results
are stored for 10 different random seeds.

For the details about the dataset size, dimension, number of
classes, active learning rounds and batch size, one can refer
to Table V.

Both Exact-FIRAL and Approx-FIRAL involve RELAX and
ROUND steps. For the RELAX step of Exact-FIRAL, we set
the mirror descent iteration number to be 200. we configure the
number of mirror descent iterations to be 200. This iteration
count is deemed sufficient, as the relative change of the
objective typically falls below 1.E-6 in all tests. For the RELAX
step of Approx-FIRAL, we establish the termination condition
for mirror descent as reaching either 40 iterations or achieving
a relative change in the objective function of less than 1.E-4.
In addition, we use 10 Rademacher random vectors for trace
estimation and we terminate CG iterations when the relative
residual falls below 0.1. In the ROUND step of both Exact-
FIRAL and Approx-FIRAL, we perform a grid search for
the hyperparameter learning rate 7 to maximize the minimum
eigenvalue of the sum of Hessian matrices of the selected
points. To replicate Figures 2 and 4, we provide the values
for n in our datasets.

In order to ensure fair comparison for the computation time
depicted in Figure 3, we maintain a fixed mirror descent
iteration number of 40. All other hyperparameter settings
remain consistent with those previously stated.

Artifact Analysis (incl. Outputs)

Once all the bash scripts associated with the active learning ex-
periments have been executed, running plot_results.sh
will handle the post-processing and visualization of the active
learning results, thereby reproducing the results depicted in
Figures 2-4.

B. Computational Artifact A,
Relation To Contributions

This artifact leverages CuPy and MPI to enable parallel
execution across multiple GPUs. We used NVIDIA’s nvtx to
profile our codes. It applies to contributions C3 and Cy.

Expected Results

We expect nearly perfect scaling for both strong and
weak scaling runs as the communication costs comprise
MPI_Allreduce operations of modest size. Therefore for
strong scaling we expect O(1/p) costs where p is the number
of GPUs. For weak scaling we expect constant time for fixed
grain size (problem size per GPU). We also test algorithmic
scaling on a single A100 when varying the feature dimension
d and the number of classes c.

Expected Reproduction Time (in Minutes)

We time RELAX and ROUND separately. RELAX is tested for
a single iteration of mirror descent, while ROUND is tested for
its second iteration.

RELAX: In the ImageNet-1k dataset, the anticipated strong
scaling computational time for this artifact is approximately
2 minutes for 1 GPU, 1 minute for 2 GPUs, 0.6 minutes for
3 GPUs, 0.3 minutes for 6 GPUs, and 0.15 minutes for 12
GPUs. The expected weak scaling computational time from 1
to 12 GPUs is approximately 0.17 minutes.

For the CIFAR-10 dataset, the expected strong scaling com-
putational time is about 0.117 minutes for 1 GPU, 0.067
minutes for 2 GPUs, 0.05 minutes for 3 GPUs, 0.03 minutes
for 6 GPUs, and 0.016 minutes for 12 GPUs. The anticipated
weak scaling computational time from 1 to 12 GPUs is
approximately 0.003 minutes.

We conduct sensitivity tests on RELAX regarding feature size
d and the number of classes c using a single GPU-A100 and
the ImageNet-1k dataset. For varying feature sizes d, the com-
putational times are approximately 0.13 minutes for d = 383,
0.32 minutes for d = 766, and 0.45 minutes for d = 1022.
Regarding the number of classes ¢, the computational times
are approximately 0.21 minutes for ¢ = 100 and 1.91 minutes
for ¢ = 1000.

ROUND: In the ImageNet-1k dataset, the anticipated strong
scaling computational time for this artifact is approximately
1.17 minutes for 1 GPU, 0.58 minutes for 2 GPUs, 0.38
minutes for 3 GPUs, 0.2 minutes for 6 GPUs, and 0.12 minutes
for 12 GPUs. The expected weak scaling computational time
from 1 to 12 GPUs is around 0.09 minutes.

For the CIFAR-10 dataset, the expected strong scaling compu-
tational time is approximately 0.038 minutes for 1 GPU, 0.02
minutes for 2 GPUs, 0.015 minutes for 3 GPUs, 0.008 minutes
for 6 GPUs, and 0.004 minutes for 12 GPUs. The anticipated
weak scaling computational time from 1 to 12 GPUs is about
0.0013 minutes.

We test the sensitivity of the single-GPU wall-clock time
when varying the feature dimension d and the number of
classes c using the ImageNet-1k dataset. With varying d,
the computational times are approximately 0.1 minutes for
d = 383, 0.42 minutes for d = 766, and 0.78 minutes
for d = 1022. With varying ¢, the computational times are
approximately 0.12 minutes for ¢ = 100 and 1.17 minutes for
¢ = 1000.

Artifact Setup (incl. Inputs)

Hardware: we test our results in GPU-A100 of TACC
Lonestar6 system.
Software: we set environment of TACC as below

gcc/11.2.0 mvapich2-gdi/2.3.7 cmake/3.24.2
pmix/3.2.3 xalt/2.10.32 TACC
cuda/11.4 nccl/2.11.4

In addition, we install python/3.11.8, cupy/13.0.0,

mpidpy/3.1.5, numpy/1.24.3 and nvtx packages.

Dataset: In the strong scaling experiments, we used the entire
ImageNet-1k dataset and an extended version of the CIFAR-
10 dataset. The CIFAR-10 dataset is expanded by introducing
Gaussian random noise to its features, thereby increasing the
dataset size from 50,000 data points to 3 million data points.
These datasets are available here: https://zenodo.org/doi/10.
5281/zenodo.10977375.

The ImageNet-1k dataset can be prepared by executing

python —-u prepare_data.py —--mode
‘strong_scaling’ --dataset
‘imagenet1lM_d383’

The CIFAR-10 dataset can be prepared (on 3 GPUs) by
executing

python -u prepare_data.py —--mode
‘weak_scaling’ --dataset ‘cifarl0O’,
—--nproc 3

The code has an option ——output to save the dataset in the
given output path.

Deployment: Before running the following test, users should
ensure they have installed all required packages and prepared
the dataset as described above.

RELAX: for strong scaling tests with the ImageNet dataset
with X number of GPUs, users run the following code

ibrun -n X nsys profile -t
nvtx,osrt —-—-force-overwrite=true
——output=nvtx_mpi_imagenet_relax
python —-u relax_test.py ——nproc X
--mode ‘strong_scaling’ --dataset
‘imaegnet1M_d383’

For weak scaling tests with the CIFAR-10 dataset with X
number of GPUs, users run

ibrun -n X nsys profile -t

nvtx,osrt —-—-force-overwrite=true
——output=nvtx_mpi_cifar_relax python
-u relax_test.py —-—nproc X —--mode
‘weak_scaling’ --dataset ‘cifarl0’

ROUND: for strong scaling tests with the ImageNet dataset
with X number of GPUs, users run

ibrun -n X nsys profile -t nvtx,osrt
-—force-overwrite=true --stats=true

——output=nvtx_mpi_imagenet_round
python -u round_test.py —--nproc X
—--mode ‘strong_scaling’ --dataset
‘imagenet1lM _d383’ --d 383

For weak scaling tests with the CIFAR-10 dataset with X
number of GPUs, users run

ibrun -n X nsys profile -t nvtx,osrt
—-—force-overwrite=true --stats=true
——output=nvtx_mpi_cifar_ round python
-u round_test.py —--nproc X —--mode
‘weak_scaling’ --dataset ‘cifarl0’

Both RELAX and ROUND codes support testing sen-
sitivity to d. Users can modify the —--dataset op-
tion to be imagenetlM_d383, imagenetlM_d766, or
imagenet1M_d1022, and adjust the corresponding —-d
option to 383, 766, or 1022. To test sensitivity on ¢, users
can vary the ——c option from 100 to 1000.

Artifact Execution

Users first run prepare_data.py to generate inputs of
RELAX and ROUND codes, and then test the strong/weak
scaling or the sensitivity experiment.

Artifact Analysis (incl. Outputs)

Users can retrieve the » . gdrep file from the specified path
in the ——output options mentioned above. The timing
performance is obtained using NVIDIA Nsight Systems, and
the results should correspond to those depicted in Figures 6-8.

Artifact Evaluation (AE)

A. Computational Artifact Ay
Artifact Setup (incl. Inputs)

Download the wunzip the file from https://zenodo.
org/doi/10.5281/zenodo.10981845. The subdirectory
/accuracy_tests/ contains artifact A;. All tests

associated with artifact A; can be performed on a single
A100 GPU node within the TACC Lonestar6 system. Each
A100 GPU node is equipped with 3 NVIDIA A100 PCIE
40GB GPUs. The setup process for the artifact involves the
following steps:

1) Install anaconda.

2) Create an environment named firal in conda and install
all packages listed in requirements.txt (or using
requirements_pip.txt for pip install):

conda create -n firal -c conda-forge
python=3.11.0

conda activate firal

conda install --yes —--file
requirements.txt

3) Install mpidpy:

module unload python3
env MPICC=mpicc
python3 -m pip install --user mpidpy

4) Download and unzip data_accuracy.tar.gz from
https://zenodo.org/doi/10.5281/zenodo.10977375. This di-
rectory contains all datasets for the tests related to Artifact
A; and replicate Figures 2-4. In addition, set the environ-
ment variable for the data directory:

export DATA='‘the absolute path of the
data directory’’

5) Create a directory to save results and set the environment
variable for the results directory:

mkdir results
export SAVE='‘the absolute path of the
results directory’’

Artifact Execution

The directory /jobs_accuracy/ contains all the bash
scripts needed to run the experiments for replicating Figures
2-4 in the paper. Each script operates independently. The
experiments related to each figure are explained as follows:

1) To replicate Figure 2, run the bash scripts mnist. sh,
cifarl0.sh, and imagenet50.sh. Each script exe-
cutes an active learning task on one/two different datasets
using the following active learning methods: Exact-FIRAL,
Approx-FIRAL, Random, K-means, and Entropy.

For instance, using the mnist.sh script as an exam-
ple, the following command executes one round of an

active learning task using the Exact-FIRAL method for the
MNIST dataset by first running the RELAX solve followed
by the ROUND solve. “test” represents the dataset name, r
indicates which round of active learning is to run, b denotes
the budget for sampling, “task” means RELAX solve or
ROUND solve is to run. Note that for each round of the
active learning, it depends on the results of the previous
rounds, ROUND solve results depends on the RELAX solve
results. The execution of Approx-FIRAL method is similar
to Exact-FIRAL.

python3
—-—test="mnist’
—-—task="relax’
python3 ../run_exact_firal.py
—-—test='mnist’ --r=1 --b=10
——task=’round’

../run_exact_firal.py
—r=1 ——b=10

The Random and K-means methods are random ap-
proaches. For each dataset, these two methods are executed
with 10 different random seeds within the script.

2) To replicate Figure 3, run the bash scripts
time_imagenet50.sh and time_caltechlO1l.sh
for the time comparison between Exact-FIRAL and
Approx-FIRAL on one round of active learning task using
datasets ImageNet-50 and Caltech-101.

3) To replicate Figure 4, run the bash scripts
caltechl101.shand imagenetlk. sh for caltech-101
and ImageNet-1K, respectively.

Each script executes active learning tests on a spe-
cific dataset using the following active learning methods:
Approx-FIRAL, Random, K-means, and Entropy. Exact-
FIRAL is not included here due to its high time require-
ments and the limited storage available for these two large-
scale datasets.

Note that the execution of the ROUND solve for ImageNet-
1K in imagenet1lk. sh uses multiple GPUs by mpi4py.
For example, there are 3 GPUs available in an A100
GPU node on TACC Lonstar6, we can run the following
command by set X = 3:

ibrun -n X python3
—-—test=’'imagenetlk’ —--ppn=X —--r=1
——print_unit=50 --b=200 --log_C=0.1

Artifact Analysis (incl. Outputs)

After running experiments, results for Figures 2-4 can be
plotted by using python script plot_results.py. Note
that all the plots for Figures 2-4 will be saved in the directory
results/accuracy_plot. We illustrate the details for
the analysis of each figure as follows:

1) To replicate Figure 2, run:

python3 plot_results.py —-—-figureid=2

../run_round_approx_mpi.py

The expected outcomes are twofold. Firstly, our pro-
posed fast algorithm, Approx-FIRAL, achieves similar ac-
tive learning accuracy to Exact-FIRAL. Additionally, both
Approx-FIRAL and Exact-FIRAL outperform other active
learning methods across different datasets. This relates to
the evaluation of our contribution Cs.

2) To replicate Figure 3, run:
python3 plot_results.py —-—-figureid=3

The key result is that Approx-FIRAL is much faster than
the Exact-FIRAL on the active learning test on datasets
ImageNet-50 and Caltech-101. This is related to the eval-
uation of our contribution C.

3) To replicate Figure 4, run:
python3 plot_results.py ——-figureid=4

The anticipated result is that Approx-FIRAL will out-
perform other active learning methods on tests involving
large datasets such as Caltech-101 and ImageNet-1K. This
relates to the evaluation of our contribution Cs.

B. Computational Artifact Ao

Artifact Setup (incl. Inputs)

Download and wunzip the file from https://zenodo.
org/doi/10.5281/zenodo.10981845. The subdirectory
/scalability_tests/ contains artifact A,. Associated
tests are performed on various number of GPU-A100 (1, 2,
3, 6, 12 GPUs) from TACC Lonestar6 system. We deploy the
code following these steps:

1) Load the following modules in TACC: gcc/11.2.0,
mvapich2-gdr/2.3.7, cmake/3.24.2 pmix/3.2.3, xalt/2.10.32,
TACC, cuda/11.4 and nccl/2.11.4.

2) Create an environment named firal_ mpi in conda and
install packages as following:

e conda create -n firal mpi -c
conda-forge python=3.11.0

e conda activate firal_mpi

e conda install -c conda-forge cupy
cuda-version=11.4

e CC=gcc CXX=g++ pip install mpidpy
—--no-cache-dir --no-binary :all:

e conda install -c conda-forge nvtx
3) Set the following:

e export MV2_USE_CUDA=1

e export MV2_USE_ALIGNED_ALLOC=1

e export LD_PRELOAD=
/opt/apps/gccll_2/mvapich2-gdr/2.3.7/
1ib64/libmpi.so

e export CUDA_HOME=$TACC_CUDA_DIR

4) Download and unzip the following files into a folder
named data_scalability/ from https://zenodo.org/
doi/10.5281/zenodo.10977375. These datasets are neces-
sary for running artifact A, and replicating Figures 6-8.

o cifar10-data.tar.gz
« dinov2-features-small-transform.tar.gz
o dinov2-features-base-transform.tar.gz
o dinov2-features-large-transform.tar.gz
o imagenet_idx.tar.gz

5) Load necessary environment by running:
source set_env.sh

6) Set variable DATASET as
data_scalability/ by:

the absolute path of

export DATASET="'‘absolute path of
data_scalability/’’

Artifact Execution

The directory jobs_scalability/ contains all the bash
scripts needed to run the experiments for Figures 6-8. The
experiments for Figure 6 test scaling performance on a single
GPU, while the experiments for Figures 7-8 test scaling
performance on up to 12 GPUs. We recommend that users
warm up the machine by running one of our scalability
test scripts multiple times before conducting any tests.
Additionally, we advise repeating the test until the per-
formance stabilizes. Users should run the bash files under
directory scalability_tests/jobs_scalability/.
We split all experiments into 2 main steps:

STEP 1: we run jobs in interactive session by using 2 A100
GPU nodes in TACC Lonestar6 equipped with 6 GPUs:

idev -p gpu-alO00O-dev -N 2 -n 6 -t 02:00:00
Then we run jobs as follows:

1) First of all, run bash script prepare_dataset.sh to
prepare data necessary for the tasks followed.

2) To replicate Figure o6, run the bash
RELAX_step_sensitivity_test.sh and
ROUND_step_sensitivity_test.sh. The first

bash file runs sensitivity test regarding variable feature
size d and number of class ¢ on RELAX step. The second
bash file runs for ROUND step. Within the bash file, user
will see several options for our python programs. We
profile our python code by nvtx for timing purpose, and
which is executed by nsys. ——output represents where
to save nvtx file. ——mode helps define size of the dataset
we use to test. ——dataset represents the name of the
dataset we use for test. ——d and ——c are the variables of
interest of our sensitivity test.

3) To replicate part of the scaling tests in
Figure 7 upto 6 GPUs, run the bash files
RELAX_step_scaling_test_imagenetlM.sh
and RELAX_step_scaling_test_cifarl0.sh.
These two files test strong and weak scaling for RELAX
solve on datasets ImageNet-1K and CIFAR-10.

4) To replicate part of the scaling tests in
Figure 8 upto 6 GPUs, run the bash file
ROUND_step_scaling_test_imagenetlM.sh
and ROUND_step_scaling_test_cifarl0.sh.
These two files test strong and weak scaling on two
datasets ROUND solve on datasets ImageNet-1K and
CIFAR-10.

STEP 2: To finish the scaling tests in Figure 7 and Figure
8 with 12 GPUs, we first exit the interactive session after
finishing STEP 1. Then we submit the Slurm job script to
TACC server by running:

sbatch job_MPI_ngpul2.sh

Artifact Analysis (incl. Outputs)

After running the experiments, we can generate plots
for Figures 6-8 by using the Jupyter notebook file
FIRAL_scalability.ipynb (or equivalently, using
python script FIRAL_scalability_plot.py).
The plot results will be saved in the folder
scalability_plot_results. Using the NVTX
profile, we can identify the time consumption for each
component of the artifact. These files can be read by
NVIDIA Nsight Systems. To automate the evaluation, we use
cupy.cuda.get_elapsed_time () and save the time
consumption in .npz files under the time_folder. The
Jupyter notebook FIRAL_scalability.ipynb or python
script FIRAL_scalability_plot.py reads these .npz
files to plot Figures 6-8. We expect nearly perfect scaling
performance for both strong and weak scaling tests. The
sensitivity tests on feature size d and the number of classes ¢
should also align with the complexity order presented in the

paper.

	Introduction
	The exact FIRAL algorithm
	Formulation
	FIRAL: Relax step
	FIRAL: Round step
	Complexity and scalability of FIRAL

	The Approx-FIRAL algorithm
	The Hessian structure and a fast Relax step
	The new Round step
	HPC implementation and complexity analysis

	Numerical Experiments
	Active learning performance
	Single-GPU performance
	Parallel scalability

	Conclusions
	References

