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REALIZING TREES OF CONFIGURATIONS IN THIN SETS

ALLAN GREENLEAF, ALEX IOSEVICH AND KRYSTAL TAYLOR

Let ω(x, y) be a continuous function, smooth away from the diagonal, such
that, for some ε > 0, the associated generalized Radon transforms

Rω
t f (x) =

∫

ω(x, y)=t
f ( y)ϑ( y) dϖx,t( y)

map L2(!d) → L2
ε(!d) for all t > 0. Let E be a compact subset of !d

for some d ↑ 2, and suppose that the Hausdorff dimension of E is greater
than d ↓ε. We show that any tree graph T on k + 1 (k ↑ 1) vertices is stably
realizable in E, in the sense that for each t in some open interval there exist
distinct x1, x2, . . . , xk+1 ↔ E such that the ω-distance ω(xi, x j ) equals t for
all pairs (i, j) corresponding to the edges of T .

We extend this result to trees whose edges are prescribed by more compli-
cated point configurations, such as congruence classes of triangles.

1. Introduction

The celebrated Falconer distance conjecture (see, e.g., [6; 21; 22]) states that if
the Hausdorff dimension of a compact set E → !d , d ↑ 2, is greater than d

2 , then
the Lebesgue measure of the distance set ω(E) = {|x ↓ y| : x, y ↔ E} is positive.
Until recently, the best results known were due to Wolff [31] in two dimensions
and Erdog̃an [4] in higher dimensions. They proved that Lebesgue measure of the
distance set is positive if the Hausdorff dimension of E satisfies dimH(E) > d

2 +
1
3 .

When d = 2, Orponen [27] proved that, under the additional assumption that E → !2

is Ahlfors–David regular, if dimH(E) > 1, then the packing dimension of ω(E) is 1.
Currently, the best known exponent threshold for the Falconer distance problem

in two dimensions is 5
4 , due to Guth, Iosevich, Ou and Wang [14]. In higher

dimensions, the best exponent in odd dimensions, recently established by Du, Ou,
Ren and Zhang [3], is d

2 +
1
4 ↓

1
8d+4 ; see [2] for even dimensions.
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The Falconer problem has many variations, where distance is replaced by more
general k-point configurations, which need not be scalar-valued. For p ↔ " and
k ↑ 2, let ε : (!d)k ↗ !p be a continuous function which is smooth (except
possibly on a lower-dimensional set). For a compact E → !d , the ε-configuration

set of E [9] is the compact set

ωε(E) := {ε(x
1, . . . , x

k) : x
1, . . . , x

k
↔ E} → !p,

and one can look for lower bounds on dimH(E) ensuring that ωε(E) has positive
Lebesgue measure in !p.

A further variation on the Falconer problem, originating in Mattila and Sjölin’s
result for the distance set [23], seeks to determine values sε so that dimH(E) > sε

guarantees that ωε(E) has nonempty interior in !p, in which case ε is said to be
a Mattila–Sjölin function. See [7; 11; 12; 13; 16; 17; 20; 23; 28; 29] for results of
this type.

A particularly interesting example arises when the Euclidean distance |x ↓ y|

is replaced by a more general function ϑ(x, y). For a compact E ↘ !d , for some
d ↑ 2, and a ϑ : !d ≃ !d ↗ !, continuous and smooth away from the diagonal, we
define the generalized distance set

(1-1) ωϑ(E) = {ϑ(x, y) : x, y ↔ E} → !.

Eswarathasan, Iosevich and Taylor proved in [5] that if ϑ satisfies the nonvanishing
Monge–Ampère determinant condition,

(1-2) det

(
0 ⇐xϑ

↓(⇐yϑ)T ϖ2ϑ
dxi dy j

)

⇒= 0,

on the set {(x, y) : ϑ(x, y) = t}, and if E → !d , d ↑ 2, is a compact set with
dimH(E) > d+1

2 , then the Lebesgue measure of ωϑ(E) is positive. A particularly
compelling case arises when E is a subset of a compact Riemannian manifold
without boundary or conjugate points and ϑ is the induced distance function.
Iosevich, Liu and Xi proved in two dimensions [19] that if dimH(E) > 5

4 then
the Lebesgue measure of ωϑ(E) is positive, matching the exponent obtained in the
Euclidean case of [14].

The main thrust of this paper is to develop a general technique to study finite
point configurations of a graph-theoretic nature in Euclidean space and Riemannian
manifolds, and apply it to resolve several open problems. We let G = (#, $) denote
an undirected graph on k vertices. The edge map of G is EG : # ≃ # ↗ {0, 1},
EG(i, j) = 1 if i ⇒= j and the i-th and j-th vertices are connected by an edge in $,
and 0 otherwise.
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Definition 1.1 (generalized distance graph). A continuous ϑ : !d ≃!d ↗ !, smooth
away from the diagonal and such that ϑ(x, y) = ϑ(y, x), a compact E → !d , and a
t > 0 define the generalized distance graph Gϑ,t(E), whose vertices are the points
in E , and for which two vertices x, y ↔ E , x ⇒= y, are connected by an edge if and
only if ϑ(x, y) = t .

We say that an (abstract) connected finite graph G can be realized in E if there
exists t > 0 such that G is isomorphic to a subgraph of Gϑ,t(E); furthermore, G is
said to be stably realized in E if the set of such t has nonempty interior.

Bennett, Iosevich and Taylor proved in [1] that if E → !d , d ↑ 2, such that
dimH(E) > d+1

2 , ϑ(x, y) = |x ↓ y|, and G is a path (or chain), then G can be stably
realized in E . In [15], Iosevich and Taylor extended this result to the more general
case when G is a tree.

We note that trees and chains have also been considered for notions of size
other than Hausdorff dimension, see, for instance, [24; 25], where McDonald and
Taylor proved that chains and trees are stably realized in product sets of sufficient
Newhouse thickness, and see [26] for a topological variant, where the same authors
showed that all countably infinite bounded point configurations, including infinite
trees, are stably realized in second category Baire sets [26] and linked this area to
the Erdős similarity conjecture.

In this paper, we begin by extending these types of results to generalized distance
graphs, showing that arbitrary trees are stably realized in sets E with dimH(E)

sufficiently high (with threshold depending on ϑ but not on the tree G), under
the assumption that the generalized Radon transform associated with ϑ satisfies a
suitable Sobolev mapping property.

We shall also show that our method allows one to prove such results for trees G

composed of elements of a fixed configuration; for brevity, we illustrate this just
for a tree of triangles.

Example 1.2. Let ϑ(u, v) = |u ↓ v| denote the standard Euclidean distance and
the tree G be a path on three vertices, # = {x

1, x
2, x

3}. In Section 2.2 below, we
show that the configurations consisting of G, or in fact any tree, ‘decorated’ with
congruent triangles can be stably realized in any compact E → !d , d ↑ 4, with
dimH(E) > (2d + 3)/3. See Figure 1 below, the discussion in the next section, and
further details in Section 2.2.

1.1. Structure of this paper. We begin by proving a result about tree structures
in sets of a given Hausdorff dimension based on a general scheme that applies
to a wide variety of situations. We then show that, if a (sufficiently symmetric)
configuration can be embedded in the distance graph of a set E and dimH(E) is
sufficiently high, then a tree of such configurations, where the edges of the tree are
suitable subsets of the hyperedge defined by this configuration, is also guaranteed to



358 ALLAN GREENLEAF, ALEX IOSEVICH AND KRYSTAL TAYLOR

x
1

t
3

y
1

t
1

t
2

x
2

t
3

y
2

t
2

t
1

x
3

Figure 1. Chain of two congruent triangles.

be stably realizable under a suitable dimensional threshold on E . We then provide
concrete applications based on Fourier integral operator bounds for associated
Radon transforms.

1.2. Trees in general distance graphs. An important aspect of our approach is to
formulate the realizability of trees (and certain other configurations) in a general
setting. Let µ be a compactly supported nonnegative probability Borel measure
on !d , and

K : !d
≃ !d

↗ [0, ⇑)

a symmetric, (µ≃µ)-integrable continuous function. Consider the graph, denoted
by G K , whose vertices are the points of E → !d , with two vertices x, y ↔ E being
connected by an edge if and only if K (x, y) > 0.

The following result will allow us to reduce a variety of configuration problems
to a series of concrete operator bounds.

Theorem 1.3 (tree building criteria). Let µ and K be as above. Define

UK f (x) =

∫
K (x, y) f (y) dµ(y) for all f ↔ C0(!

d),

and suppose that

(1-3)
∫∫

K (x, y) dµ(x) dµ(y) > 0,

and

(1-4) UK : L
2(µ) ↗ L

2(µ) continuously.
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Then for any k ↑ 1,

(1-5)
∫

· · ·

∫
K (x

1, x
2)K (x

2, x
3) · · · K (x

k, x
k+1) dµ(x

1) dµ(x
2) · · · dµ(x

k+1) > 0.

More generally, let T be a tree graph on n vertices, n ↑ 2, with edge map ET .

Define K
⇓ : (!d)n ↗ [0, ⇑) by

K
⇓(x

1, . . . , x
n) =

∏
1⇔i< j⇔n

ET (i, j)=1

K (x
i , x

j ).

Then

(1-6)
∫

· · ·

∫
K

⇓(x
1, . . . , x

n) dµ(x
1) dµ(x

2) · · · dµ(x
n) > 0.

In other words, the existence of trees even in this generalized setting is simply
a consequence of assumptions (1-3) and (1-4). For example, in order to handle
the Euclidean distance graph, where the vertices are points in a compact set E and
two vertices are connected by an edge if and only if the distance between them
is equal to some fixed t > 0, one takes K = ϱt(x ↓ y), where ϱ is the surface
measure on the sphere of radius t . In this case, UK is the corresponding translation-
invariant spherical averaging operator. As a technical point, even though ϱ is a
measure and not an L

1 function, the proof is accomplished by convolving ϱ with
the approximation to the identity at scale ς and checking that the estimates (upper
and lower bounds (see, e.g., [1]) do not depend on ς. The existence of arbitrary
trees in the case K = ϱt(x ↓ y) was previously established by Iosevich and Taylor
in [15]. Further, observe that nondegeneracy of the point configurations in question
is guaranteed by the positivity of the integrals in (1-5) and (1-6), since degenerate
configurations form lower-dimensional sets, which are of measure 0 with respect
to

⊗
n µ.

The view point afforded by Theorem 1.3 also proves useful in the context of
trees of hypergraphs, significantly expanding the scope of configurations that can
be handled. For example, suppose that we want to show that a set E contains many
2-chains of congruent triangles (see Figure 1). We are led to considering, for a
Borel measure µ supported on E , the expression

(1-7)
∫ (5)

F1(x
1, x

2)F2(x
2, y

1)F3(y
1, x

1)F1(x
2, x

3)F2(x
3, y

2)F3(y
2, x

2)

dµ(x
1) dµ(y

1) dµ(x
2) dµ(y

2) dµ(x
3),

where, for j = 1, 2, 3, the Fj (x, y) are nonnegative L
1 functions which will be

smoothed out versions of ϕ(|x ↓ y|↓ t j ), where the vector ↖t = (t1, t2, t3) can range
over a set S of side length vectors with nonempty interior in !3

+
. Then we may
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rewrite (1-7) in the form
∫∫∫

K (x
1, x

2)K (x
2, x

3) dµ(x
1) dµ(x

2) dµ(x
3),

where

(1-8) K (x, y) := F1(x, y)
∫

F2(x, z)F3(y, z) dµ(z) = K (y, x)

is symmetric and satisfies (1-3) and (1-4). Thus, Theorem 1.3 applies, establishing
the existence in E of chains of two congruent triangles, for all vectors ↖t ↔ S. More
details can be found in Section 2.2 below, together with the extension from 2-chains
to arbitrary trees of triangles and certain other configurations.

2. Consequences of Theorem 1.3

We begin with corollaries in the setting of trees, followed by hypergraphs, showing
that Theorem 1.3 reduces the existence of a wide variety of configuration to the
verification of conditions (1-3) and (1-4). These conditions amount to certain
function space estimates which may, depending on the particular result, be of
greater or lesser difficulty to establish. We will now proceed to work out a variety
of such examples.

2.1. Generalized Radon transforms.
Corollary 2.1 (realizing trees in sets of sufficient Hausdorff dimension). Let T be a

tree graph on n vertices, and ET its edge map. Let ϑ : !d ≃ !d ↗ ! be continuous.

Suppose that for all t > 0, ϑ is smooth near ↼t := {(x, y) : ϑ(x, y) = t}, with

⇐xϑ(x, y), ⇐yϑ(x, y) ⇒= ↖0, so that ↼t → !d ≃ !d
is smooth and for each x ↔ !d ,

↼x

t
:= {y ↔ !d : ϑ(x, y) = t} → !d

is smooth. Further assume that, if ↽ is a smooth

cut-off and ϱx,t is the surface measure on ↼x

t
, there is some ⇀ > 0 such that the

generalized Radon transform

R
ϑ
t f (x) :=

∫

↼x

t

f (y) ↽(y) dϱx,t(y)

is continuous L
2(!d) ↗ L

2
⇀(!d), locally uniformly in t.

Then, if E → !d
is compact with Hausdorff dimension dimH(E) > d ↓ ⇀, T is

stably realizable in E. In other words, there is a nonempty open interval I → !+

such that T is realizable in E with any gap t ↔ I : for all t ↔ I there exist distinct

x
1, . . . , x

n ↔ E such that ϑ(x
i , x

j ) = t for (i, j) such that ET (i, j) = 1.

(We refer to [8; 30] for treatments of the L
2-based Sobolev spaces, L

2
⇀, ⇀ ↔ !,

that we will use.) Corollary 2.1 will be proved in Section 4. As an example, if
ϑ(x, y)=|x↓y| is the Euclidean distance, the corresponding R

ϑ
t are spherical means

operators which are smoothing of order ⇀ = (d ↓ 1)/2, and thus the conclusions
of Corollary 2.1 hold if the Hausdorff dimension of E is greater than (d + 1)/2.
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More generally, this L
2 Sobolev regularity holds within the conjugate locus for the

distance induced by any Riemannian metric, leading immediately to the following.

Corollary 2.2 (realizing trees on Riemannian manifolds). Let (M, g) be a compact

Riemannian manifold without boundary or conjugate points, of dimension d ↑ 2.

Let E be a subset of M of Hausdorff dimension > (d + 1)/2, and let ⇁M denote the

induced Riemannian distance function on M.

Let T be any tree graph on n vertices, and let ET be the corresponding edge

map. Then T is realizable in E , in the sense that there exist x
1, . . . , x

n ↔ E and a

nonempty interval I such that ⇁M(x
i , x

j ) = t for (i, j), t ↔ I , such that ET (i, j) = 1.

2.2. Trees of triangles. We now illustrate applications of Theorem 1.3 to more
complicated configurations, based on the approach briefly described below the
statement of Theorem 1.3 for 2-chains of congruent triangles, and this is where we
pick up the narrative and provide more details for some specific examples.

Theorem 1.3 yields the existence of trees of k-point configurations for a wide
variety of configurations studied in the literature on what are now called Mattila–
Sjölin functions. For d, p ↔ " and k ↑ 2, let ε : (!d)k ↗ !p be a continuous
function which is smooth (except possibly on a lower-dimensional set). For a
compact E → !d , the ε-configuration set of E [9] is the compact set

ωε(E) := {ε(x
1, . . . , x

k) : x
1, . . . , x

k
↔ E} → !p.

Then ε is said to be a Mattila–Sjölin function if there is some sε < d such that
dimH(E) > sε ensures that ωε(E) has nonempty interior. See [7; 11; 12; 13; 16;
20; 23; 28; 29] for results of this type.

Our approach in [11; 12; 13] was as follows: Let µ be a Frostman measure
supported on E and of finite s-energy. Then the Radon–Nikodym derivative of
the configuration measure νε := ε⇓(µ↙ · · ·↙ µ) on !p with respect to Lebesgue
measure d t can be represented as a multilinear form -t(µ, . . . , µ), with multilinear
kernel

L t(x
1, . . . , x

k) = ϕ(ε(x
1, . . . , x

k) ↓ t),

where ϕ is the Dirac delta at 0 ↔ !p. The method of partition optimization [11; 12]
and its local and microlocal variants [13] allow one to obtain estimates of the form

|-t( f1, . . . , fk)| ⇔ C

k∏
j=1

∝ f j∝L2
r j

for negative r j with a lower bound on
∑

r j depending on ε. Applying this to
f1 = · · · = fk = µ having finite s-energy (which implies that µ ↔ L

2
(s↓d)/2) yields

that, for t in a set S → !p with nonempty interior,

(2-1) 0 < -t(µ, µ, . . . , µ) :=
〈
ϕ(ε(x

1, . . . , x
k) ↓ t), µ↙ · · · ↙µ

〉
= C < ⇑
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if dimH(E) > sε, and furthermore -t(µ, . . . , µ) is continuous in t ↔ S. Here, the
pairing ′ · , · ∞ is between distributions and Sobolev functions on !kd .

The left side of (2-1) can be rewritten in various equivalent ways by partitioning
the variables and integrating out some first. In particular, fixing distinct indices
1 ⇔ i < j ⇔ k, for points x, y ↔ !d , let

x̂i j
= (x

1, . . . , x
i↓1, x, x

i+1, . . . , x
j↓1, y, x

j+1, . . . x
k).

Then (2-1) implies that

(2-2) K (x, y) :=

〈
ϕ(ε(x̂i j )),

k⊗
l=1

l ⇒=i, j

µ(x
l)

〉

has the property that

(2-3) 0 <
∫∫

K (x, y)µ(x)µ(y) = C < ⇑,

which is condition (1-3) from Theorem 1.3. The following argument shows that,
by replacing µ with its restriction to a chosen subset F → E, µ(F) > 0, one can
preserve (1-3) while also ensuring that (1-4) holds.

To start, from (2-3) it follows that

µ
{

y :

∫
K (x, y) dµ(x) > 3C

}
⇔

1
3 .

Thus, if we define

F1 =

{
y ↔ E :

∫
K (x, y) dµ(x) ⇔ 3C

}
,

then µ(F1) ↑
2
3 . Denoting by µ1 the restriction of µ to F1, it follows that

(2-4)
∫

K (x, y) dµ(x) ⇔ 3 for all y ↔ F1,

and ∫∫
K (x, y) dµ(x) dµ1(y) ⇔ C.

Using the last inequality and the positivity of the integrand, we can change the
order of integration and repeat this argument with respect to x . Since

(2-5) µ
{

x :

∫
K (x, y) dµ1(y) > 3C

}
⇔

1
3 ,

the set F2 :=
{

x :
∫

K (x, y) dµ1(y) ⇔ 3C
}

has µ(F2) ↑
2
3 . Denoting µ|F2 by µ2,

we then have

(2-6)

∫
K (x, y) dµ1(y) ⇔ 3C for all x ↔ F2,

µ(F1 ∈ F2) ↑ 1 ↓
1
3 ↓

1
3 =

1
3 ,
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and we denote F1 ∈ F2 by Ẽ and µ|
Ẽ

by µ̃. Finally, we have
∫

K (x, y) dµ̃(x)⇔3C for all y ↔ Ẽ,
∫

K (x, y) dµ̃(y)⇔3C for all x ↔ Ẽ,

so that Young’s inequality applies to the integral kernel K̃ = K |
Ẽ≃Ẽ

, which thus
defines a bounded operator U

K̃
: L

2(µ̃) ↗ L
2(µ̃). Erasing all the tildes, we see

that (1-4) is satisfied.
Finally, in order to apply Theorem 1.3 to obtain trees of ε-configurations, we

need that K (x, y) be symmetric in x and y, and for this one needs to impose
some symmetry conditions on the configuration function ε. For simplicity, take
i = 1, j = 2 in (2-2); then we demand that for some A ↔ GL(p, !) and some
permutation x̃12 of the k ↓ 2 variables in x̂12, we have

(2-7) ε(y, x, x̂12) = A ∋ ε(x, y, x̃12),

so that K (y, x) = c · K (x, y), with c = |A|↓1, which preserves (2-3) and is good
enough for our purposes.

2.2.1. Building a tree of congruent triangles. The mechanism of this paper applies
to any configuration for which we can prove that the natural measure associated to
the configuration satisfies the assumptions of Theorem 1.3, in the sense described
below the statement of that result. We give just one illustrative example, namely the
existence of trees of congruent triangles in E , using the following result from [29];
see also [13] for an alternate proof using microlocal analysis.

Theorem 2.3 [29]. If E → !d , d ↑ 4, is compact with dimH (E) > 2d+3
3 , then the

set of congruence classes of triangles with vertices in E ,

(2-8)
{
(|x ↓ y|, |x ↓ z|, |y ↓ z|) : x, y, z ↔ E

}
,

has nonempty interior in !3
.

Moreover, it is shown that the natural measure supported on
{
(|x ↓ y|, |x ↓ z|, |y ↓ z|) : x, y, z ↔ E

}
,

namely the configuration measure νtriangle defined by
∫

f (t1, t
2, t

3)dνtriangle(t
1, t

2, t
3) :=

∫∫∫
f (|x↓y|, |x↓z|, |y↓z|)dµ(x)dµ(y)dµ(z),

is continuous away from the degenerate triangles, and from this the conclusion of
Theorem 2.3 is ultimately obtained.

Given a side length vector ↖t = (t1, t
2, t

3) in the nonempty interior, say S, of
the configuration set guaranteed by Theorem 2.3, we can build a tree of congruent
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triangles with side lengths ↖t , with any two triangles joined at exactly one vertex, as
follows. At such a ↖t the measure νtriangle has a continuous density function, namely

νtriangle = lim
ς↗0+

νς
triangle,

where

νς
triangle(↖t ) =

∫∫∫
ϱ ς

t1(x ↓ y)ϱ ς
t2(x ↓ z)ϱ ς

t3(y ↓ z) dµ(x) dµ(y) dµ(z).

We now define the approximate kernel

K
ς
↖t
(x, y) = ϱ ς

t1(x ↓ y)
∫

ϱ ς
t2(x ↓ z)ϱ ς

t3(y ↓ z) dµ(z),

which satisfies the equivariance property (2-7) with A ↔ GL(3, !) interchanging t
2

and t
3. This is the object to which we apply Theorem 1.3, and the argument

is complete. Following the same procedure we can produce an arbitrary tree of
triangles, not just two triangles joined at a vertex.

2.2.2. Trees of equiarea triangles. This method can be applied to obtain the exis-
tence of arbitrary trees for some, but not all, of the k-point configurations for which
nonempty interior of configurations sets were established in [12; 13]. One of these
concerned areas of triangles in the plane:

Theorem 2.4 [12, Theorem 1.1(i)]. If E → !2
is compact with dimH(E) > 5

3 , then

the set of signed areas of triangles determined by triples of points of E ,

(2-9)
{ 1

2 det[x ↓ z, y ↓ z] : x, y, z ↔ E
}

→ !,

contains an open interval.

The !1-valued configuration function ε of three variables in !2, ε(x, y, z) =

det[x ↓ z, y ↓ z] satisfies (2-7) with factor ↓1, so that the method above applies.
Hence, for dimH(E) > 5

3 and for an arbitrary tree T , and areas A in an open
interval, there exist copies of T in E and auxiliary points y

i j ↔ E for each (i, j)

with ET (i, j) = 1, such that x
i , x

j and y
i j span a triangle of area A.

3. Proof of Theorem 1.3

Our basic scheme is the following. We first prove the result for paths with k = 2m

vertices by utilizing Cauchy–Schwarz and the assumption (1-3). We then induct
downwards to fill in the gaps between the dyadic numbers after first pigeonholing to
a subset where UK 1 is not too large. Finally, we notice that the flexibility afforded
by our arguments allows us to extend the case of a path to a general tree.
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3.1. The case k = 2m. We begin by proving (1-5). Set

clower :=

∫∫
K (x, y) dµ(x) dµ(y),

which is > 0 by (1-3), and define

Ck(µ) =

∫
· · ·

∫ k

j=1

K (x
j , x

j+1)

k+1

i=1

dµ(x
i ).

Suppose that k = 2m for some m. Then, by repeated application of Cauchy–
Schwarz, we have

C2m (µ) =

∫
· · ·

∫ k

j=1

K (x
j , x

j+1)

k+1

i=1

dµ(x
i )

↑

 ∫∫
K (x, y) dµ(x) dµ(y)

2m

> c
2m

lower > 0,

where we used (1-3) and the assumption that µ is a probability measure.

3.2. Refinement to a subset where UK 1 is not too large. In order to deal with
general k, we need to do a bit of pigeonholing. Observe that, if Cnorm :=∝UK ∝L2↗L2 ,

µ{x : (UK 1)(x) > (} ⇔
1
(2

∫
|UK 1(x)|2 dµ(x) ⇔

C
2
norm
(2

by (1-4). It follows that if ( = NCnorm, with N > 2 to be determined later, then

(3-1) (UK 1) (x) ⇔ NCnorm on a set E
△ with µ(E

△) ⇔
1

N 2 .

If we replace the constant function 1 in (3-1) by the indicator function of E
△, the

upper bound still holds. Moreover, if we let µ△ denote µ restricted to E
△, we have

∫∫
K (x, y) dµ△(x) dµ△(y)

=

∫∫
K (x, y) dµ(x) dµ(y) ↓

∫∫
K (x, y) f (x) f (y) dµ(x) dµ(y) = I ↓ II,

where f is the indicator function of the set where UK 1(x)> 2Cnorm. By assumption,
I = clower > 0. Observe that

II ⇔ Cnorm · ∝ f ∝
2
L2(µ)

⇔
C

3
norm
(2 ⇔

Cnorm

N 2 ⇔
clower

2
if we choose

N ↑


2Cnorm

clower
.
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With a slight abuse of notation, we can now rename µ△ back to µ, renormalize,
and pretend that from the very beginning we had a set E , equipped with the Borel
measure µ, such that (UK 1) (x) is bounded above by some uniform constant C ,
and both (1-3) and (1-4) hold.

3.3. Paths of arbitrary finite length and transition to trees. Using the results just
obtained in Section 3.2, one sees that for k ↑ 2,

Ck(µ) ⇔ C · Ck↓1(µ),

where C is the upper bound on (UK 1) (x).
Proceeding by induction we get a lower bound on a path of arbitrary length. In

particular, and this notion will come in handy in a moment, having built a path in E

with 2m links, we have also built a path of smaller length.
In order to build an arbitrary tree, we use the simple principle that if T , T

△ are
trees, and T is contained in T

△, then building T
△ in E implies that we can build T .

Given a tree T , let

(3-2) T (µ) =

∫
· · ·

∫ 

(i, j)↔ET

K (x
i , x

j )

k+1

i=1

dµ(x
i ),

where ET is as above.
We shall need the following definition.

Definition 3.1 (a wrist of a tree). Let G be a connected tree graph. We say that w

is a wrist of order n if the following conditions hold:

(i) w ↔ V , the vertex set of G.

(ii) V = V1 ▽ V2, where V1 ∈ V2 = {w}.

(iii) Vertices from V1 \ {w} are not connected by edges to vertices in V2 \ {w}.

(iv) Let G1 denote G restricted to V1. Then G1 is the union of finitely many chains
C1, C2, . . . , Cn such that vertices of Ci only intersect vertices of C j , i ⇒= j ,
at w.

Example 3.2. (i) Consider a chain on three vertices, with vertices v1, v2, v3 such
that v1 is connected by an edge to v2, and v2 is connected by an edge to v3, but v1
and v3 are not connected (see Figure 2, left). Then v1 is a wrist because there is a
chain with vertices v1, v2, v3 with one endpoint at v1. The vertex v3 is a wrist for
the same reason. The vertex v2 is also a wrist because two chains, namely the one
with vertices v2, v1, and the one with vertices v2, v3 have v2 as an endpoint.

(ii) Consider a complete graph on three vertices (see Figure 2, middle). Then no
vertex is a wrist.
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v1

v2

v3 v1

v2

v3

v1

v2

v3

v4

Figure 2. Illustration of Example 3.2.

(iii) Consider a graph on four vertices v1, v2, v3, v4, where v1 and v2 are connected,
v2 and v3 are connected, v2 and v4 are connected, and there are no other edges (see
Figure 2, right). Then v2 is the only wrist.

Our argument is based on the fact that every tree which is not a chain contains a
wrist of order > 1.

Lemma 3.3 (any nontrivial tree contains a wrist). Let T be a finite connected tree.

Then either T is a chain, or T contains a wrist of order > 1.

To prove the lemma, let v1, v2, . . . , vm denote the (distinct) vertices of degree 1
in T . We move from each v j until we encounter a vertex of degree ↑ 3. If such a
vertex does not exist, then T is clearly a chain. In this way, we assign a vertex w j ,
of degree ↑ 3, to each v j . We claim that there exist i, j , i ⇒= j , such that wi = w j .
Suppose not. Remove all the v j s and the vertices and edges that lead up to, but not
including, w j . The resulting graph T

△ is still a connected tree. Each vertex w j in T
△

has a degree ↑ 3 ↓ 1 = 2, so the vertices of degree 1 in T
△ are not any of the v j s

or any of the w j s. This means that those vertices were present in the original tree
graph T , but this is impossible since we removed them.

Now that we have shown that there exists i ⇒= j such that wi = w j , it is not
difficult to see that this wi is a wrist of order > 1, as desired. This completes the
proof of the lemma.

Let w0 denote a wrist point in T , which, as we just proved, is guaranteed to exist.
We now rewrite (3-2) in the form

(3-3)
∫

UK (w)C1(w)C2(w) . . . Ck(w) dw,

where

C j (w) =

∫
· · ·

∫
K (w, x

j,1)K (x
1,1, x

j,2) . . . K (x
j,n j ↓1, x

j,n j ) dx
j,1

· · · dx
j,n j .

Adding vertices and edges, if necessary, we can make all the chains have the
same length, nmax. One can then estimate (3-2) using Hölder’s inequality:
∫

UK (w)
∫

· · ·

∫
K (w, x

1)K (x
1, x

2) · · · K (x
nmax↓1, x

nmax)dx
1
· · ·dx

nmax
k

dw

=

∫ ∫
· · ·

∫
K (w, x

1)K (x
1, x

2) · · · K (x
nmax↓1, x

nmax)dx
1
· · ·dx

nmax
k

UK (w)dw
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↑

∫∫
· · ·

∫
K (w, x

1)K (x
1, x

2) · · · K (x
nmax↓1, x

nmax)dx
1 · · ·dx

nmaxUK (w)dw
k

∫
UK (w)dw

k↓1

↑ C

∫∫
· · ·

∫
K (w, x

1)K (x
1, x

2) · · · K (x
nmax↓1, x

nmax)dx
1
· · ·dx

nmaxUK (w)dw
k

since we have an upper bound for
∫

UK (w) dw by a repeated use of (3-1).
In other words,

T (µ) ↑ c · T
△(µ),

where T
△ is the tree obtained from T by removing all but the longest chain ema-

nating from the wrist w. It is clear that T
△ has fewer vertices (and hence edges)

than T . Proceeding in this way shows that given any tree T , there exists a tree T
⇓

containing T and a positive constant c
⇓ such that

T
⇓(µ) ↑ c

⇓
· clower > 0.

This completes the proof of Theorem 1.3.

4. Proof of Corollary 2.1

The proof of Corollary 2.1 follows, in view of Theorem 1.3, from the following
results. The first one follows from the proof of the main result in [11] (also see [12]).

Theorem 4.1 (establishing the lower bound (1-3)). Let ϑ, R
ϑ
t be as in the statement

of Corollary 2.1, with R
ϑ
t : L

2(!d) ↗ L
2
⇀(!d) for some ⇀ > 0, uniformly for t

in a nontrivial interval I0 → !. Let E be a compact set of Hausdorff dimension

dimH(E) > d ↓ ⇀, and µ a Frostman measure on E of finite s-energy for some

s > d ↓ ⇀. Then

J (t) :=

∫
R

ϑ
t µ(x) dµ(x)

is a continuous function on I0, and there exists a nonempty open interval I ↘ I0 and

a cϕ > 0 such that for all t ↔ I ,

(4-1)
∫

R
ϑ
t µ(x) dµ(x) ↑ cϕ > 0.

Theorem 4.1 establishes that assumption (1-3) in Theorem 1.3 is satisfied (with
K (x, y) the Schwartz kernel of R

ϑ
t ) uniformly for t ↔ I .

Theorem 4.2 (establishing the upper bound (1-4)). Let ϑ, R
ϑ
t be as in the statement

of Corollary 2.1. Suppose that for some ⇀ > 0 and all t > 0, R
ϑ
t : L

2(!d) ↗ L
2
⇀(!d)

is bounded. Let E → !d
be compact, with Hausdorff dimension greater than d ↓⇀,

and µ a Frostman measure on E. Then for any t > 0,

(4-2) ∝R
ϑ
t f ∝

L2(µ) ⇔ K ∝ f ∝
L2(µ).
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This establishes the assumption (1-4) in Theorem 1.3.

Remark 4.3. The constant K above only depends (uniformly) on the implicit
constants in the assumptions of Corollary 2.1. By standard FIO theory (see, e.g.,
Section 2 in [10] for similar calculations) K depends only on the ambient dimen-
sion d, the Hausdorff dimension of the support of µ, the bounds implicit in the
Sobolev estimate for R

ϑ
t and the Frostman constant, i.e., the constant such that

µ(B(x, r)) ⇔ Cr
⇀ for any ⇀ < d , where B(x, r) is the ball of radius r (sufficiently

small) centered at x in the support of µ.

4.1. Proof of Theorem 4.1. This is essentially proven in [11], but for the sake of
completeness we include the argument. The assumption ⇐xϑ(x, y), ⇐yϑ(x, y) ⇒= ↖0
on {(x, y) : ϑ(x, y) = t} allows one to conjugate by an elliptic pseudodifferential
operator of any order r ↔ !, so that R

ϑ
t : L

2
r
(!d) ↗ L

2
r+⇀(!d), locally uniformly

in t . Since µ has finite s-energy, µ ↔ L
2
s↓d/2. Thus R

ϑ
t µ ↔ L

2
(s↓d)/2+⇀, and this

will pair boundedly against µ if (s ↓ d)/2 + ⇀ + (s ↓ d)/2 ↑ 0, i.e., if s > d ↓ ⇀.
Furthermore, by continuity of the integral, this is continuous in t . Since the integral
of J in t is positive by the coarea formula, there must be a t0 at which J (t0) > 0,
and hence there is a nonempty open interval on which J is strictly positive.

4.2. Proof of Theorem 4.2. It is enough to show that
∫

R
ϑ
t f µ(x)g(x) dµ(x) ⇔ C < ⇑

for g such that ∝g∝
L2(µ) = 1. Let ( f µ)

j
denote the Littlewood–Paley piece of f µ

on scale j ↑ 0. Negative scales are straightforward and will be handled separately.
We are going to bound

′R
ϑ
t ( f µ)

j
, (gµ)

j △ ∞ = ′

̸

R
ϑ
t ( f µ)

j
,
̸

(gµ)
j △ ∞.

By a standard orthogonality argument for generalized Radon transforms, the
expression above decays rapidly when | j↓ j

△|↑5. It follows that it suffices to bound

(4-3)


| j↓ j △|↑5

′

̸

R
ϑ
t ( f µ)

j
,
̸

(gµ)
j △ ∞

⇔



| j↓ j △|↑5

 ∫
|

̸

R
ϑ
t ( f µ)

j
())|

2
d)

1
2

·

 ∫
|
̸

(gµ)
j △())|

2
d)

1
2

⇔ C



| j↓ j △|↑5

2↓ j⇀

 ∫
|
̸

( f µ)
j
())|

2
d)

1
2
 ∫

|
̸

(gµ)
j △())|

2
d)

1
2

.

We shall need the following basic estimate. See [5; 18] for similar results.
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Lemma 4.4. With the notation above, for any ς > 0,
 ∫

|
̸

( f µ)
j
())|

2
d)

1
2

⇔ Cς2 j (d↓s+ς)/2
∝ f ∝

L2(µ).

With Lemma 4.4 in tow, the expression in (4-3) is bounded by

C2↓ j⇀2 j (d↓s+ς)
∝ f ∝

L2(µ)∝g∝
L2(µ),

so the sum over j is bounded by C ∝ f ∝
L2(µ) provided that s > d ↓ ⇀, as claimed.

This completes the proof of Theorem 4.2, once we establish Lemma 4.4.
To prove Lemma 4.4, we write

∫
| ⊋( f µ)

j
())|

2
d) =

∫
|f µ())|

2
↽2(2↓ j)) d),

where ↽ is a smooth cut-off function supported in the annulus
{
) ↔ !d

:
1
2 ⇔ |) | ⇔ 4

}
.

This expression is bounded by
∫

|f µ())|
2⇁(2↓ j)) d),

where ⇁ is a suitable cut-off function.
By Fourier inversion and a limiting argument (see [31]), this expression equals

2d j

∫∫
⇁(2 j (x ↓ y)) f (x) f (y) dµ(x) dµ(y) = ′U j f, f ∞,

where

U j f (x) =

∫
2d j⇁(2 j (x ↓ y)) f (y) dµ(y),

and ′ · , · ∞ is the L
2(µ) inner product.

Since
∫

2d j⇁(2 j (x ↓ y)) dµ(y) =

∫
2d j⇁(2 j (x ↓ y)) dµ(x) ⇔ Cς2↓ j (s↓ς)

for any ς > 0 since µ is a Frostman measure on E . By Schur’s test,

U j : L
2(µ) ↗ L

2(µ) with norm Cς2 j (d↓s↓ς).

By Cauchy–Schwarz,

′U j f, f ∞ ⇔ ∝U j f ∝
L2(µ) · ∝ f ∝

L2(µ) ⇔ Cς2 j (d↓s↓ς)
∝ f ∝

2
L2(µ)

and the proof is completed by taking square roots.
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