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ABSTRACT

Quadratic modules in real algebraic geometry are akin to polyno-
mial ideals in algebraic geometry, and have been found useful in
the theory of Positivstellensatz to study Hilbert’s 17th problem.
Algorithms are presented in this paper for testing membership in
univariate finitely generated quadratic modules over the reals and
inclusion of two finitely generated quadratic modules. For a uni-
variate unbounded quadratic module, an explicit upper bound on
the degrees of sums of squares to construct any given polynomial
is proved and then used to design an algorithm for testing member-
ship in such a quadratic module. For a bounded quadratic module,
a unique signature is associated with it based on the real values on
which its finite basis is non-negative, and the signatures are used to
furnish a criterion for inclusion of two finitely generated quadratic
modules and a corresponding algorithm which solves the mem-
bership problem as a special case. It is also shown that a bounded
quadratic module can be transformed to an equivalent one with two
generators with an algorithm for performing this transformation.
All the presented algorithms have been implemented.
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1 INTRODUCTION

Hilbert’s 17th problem asks whether any non-negative polynomial
f over R, the field of real numbers, can be written in the form of
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a finite sum of squares of rational functions, i.e., f = ql? with
qi € R(X) [13]? Artin gave an affirmative answer to this problem
in 1927 [1]. However, computing a witness of f as a finite tuple
of rational functions qi, . . ., gs remains elusive (see [10], however).
Following a landmark result by Tarski-Seidenberg on the decid-
ability of the theory of real closed fields [22, 24] leading to the
Positivstellensatz discovered by Krivine and Stengle [8, 23], con-
structive methods for real algebraic geometry, paralleling methods
for algebraic geometry, have been investigated since the 1960s [3].
Two exciting results in this direction are (i) by Schmidgen [20] for
a compact (bounded) semi-algebraic subset S of R" defined by a
finite set of non-negative polynomial inequalities G = {g1,--- ,gs}
in R[X], characterizing every strictly positive polynomial f on S (a
preordering generated by G) and its denominator-free representa-
tion as ' = 3.6 cG 06/ ([1gec 9) with oG being a sum of squares
in R[X] and subsequently (ii) by Putinar [18], giving a simpler lin-
ear representation of a non-negative polynomial f on S (a quadratic
module generated by G) of the form f = go + X}_; 0ig; with o;
being a sum of squares in R[X]. Various types of Positivstellen-
satz focusing on semi-algebraic sets, the associated algorithms and
complexities are extensively studied [12, 13, 15, 21].

The membership problem for finitely generated quadratic mod-
ules is to decide whether a polynomial f € R[X] is in the qua-
dratic module generated by a finite set of polynomials ¢1,. .., gs,
i.e., whether f can be expressed as o9 + Y.;_; 0ig;i where o;’s are
sums of squares in R[X]. Note that the membership problem for
finitely generated preorderings can be solved naturally once the
former membership test is feasible because such preorderings can
be reformulated as finitely generated quadratic modules with the
representations by Schmiidgen and Putinar above. Much like the
importance of the ideal membership problem in algebraic geometry,
the membership test for finitely generated quadratic modules is a
fundamental problem of theoretical interest for Positivstellensatz.

Finding whether a polynomial f can be written as f = op +
le.:l 0ig; with sums of squares oy, . . ., o is closely related to find-
ing the sum-of-squares decomposition of f [9, 11, 16, 17], but these
two problems are different. If a quadratic module is generated by
1, the former problem degenerates to the latter, but in general, the
case of a quadratic module with multiple generators other than 1 is
different from the set of all sums of squares.

In Ph.D. theses by Augustin [2], Canto Cabral [4] and Wagner
[26], decidability of the membership problem in finitely generated
quadratic modules under certain conditions has been proved for,
respectively, the univariate, bivariate, and multivariate cases. Au-
gustin gave an algorithm for membership test for a bounded finitely
generated quadratic module in R[x]; for a stable quadratic module
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where an upper bound on the degrees of the respective sums of
squares is assumed to be given, she used the Gram matrix construc-
tion proposed by Powers and Wérmann [17] to decide membership.
Canto Cabral gave an algorithmic procedure for the bivariate case
for a finitely generated Archimedean quadratic module (in which
there exists a natural number N such that N — (xf +---+x2)isin
the quadratic module); her approach does not generalize however
to arbitrary number of variables. Wagner used a totally different ap-
proach based on Jacobi’s representation theorem [6] and Jacobi and
Prestel’s characterization theorem [7] to give a decision procedure
for the multivariate case using Abhyankar valuations.

The focus of this paper is on univariate finitely generated qua-
dratic modules. We improve upon the results in [2] for both un-
bounded as well as bounded quadratic modules. For an unbounded
quadratic module, we show that there is no need to specify a func-
tion bounding the degrees of its witnesses. For a bounded quadratic
module, we show that any finite basis of a quadratic module can be
reduced to a basis of two polynomials. Further, every such quadratic
module has a unique signature based on its bounded semi-algebraic
set represented as a finite union of intervals and isolated points
in ascending order. This signature is used for checking whether a
finitely generated quadratic module is a subset of another finitely
generated quadratic module. Immediate corollaries of this result
include the membership test for a polynomial to be in a finitely
generated quadratic module as well as equivalence of two quadratic
modules with two different bases. The paper presents algorithms
for each of these subproblems, which have been implemented and
tried on several examples.

2 PRELIMINARIES

2.1 Sum of squares

Consider the multivariate polynomial ring R[x, ..., x,]| with the
indeterminates x1, . . ., x,. We denote X = (x1, ..., x), and for any
a=(ay,..,ay) € N" denote X% = xfl R

A polynomial f € R[X] is called a sum of squares in R[X] if it
can be expressed as a sum of squares of polynomials in R[X]. It is
easy to show that any sum of squares f € R[X] is of an even total
degree and such that f > 0 over R.

For an arbitrary non-negative integer m, denote A, = {(a1, ...,
an) : X1, @ < m}. Then any polynomial f € R[X] of total degree
m can be written in the form f = Y o ¢y, caX*. In particular, let
k=|Am| = (m;;") and order the elements of Ay, as (f1,..., Br)
according to some order. Denote by x= (Xﬁl, o ,Xﬁk) the corre-
sponding ordered set of terms of total degrees <m in R[X]. The fol-
lowing characterization of sums of squares in R[X] is well-known.

THEOREM 1 ([17, THEOREM 1]). Let f € R[X] be a polynomial
of even total degree m and x = (Xﬂl, .. .,Xﬁk) be as stated above.
Then f is a sum of squares in R[X] if and only if there exists a real,
symmetric, positive semi-definite matrix B of size k X k such that
f = xBx!, where x! is the transpose of X.

This theorem allows one to test whether a polynomial is a sum of
squares by applying semi-definite programming [25] or quantifier
elimination [5], and the latter method is explained as follows. Con-
sider a symmetric matrix B of size k Xk with its entries as unknowns.
Comparing the coefficients of both sides of f = xBx! furnishes

Shang, Mou, and Kapur

constraints in the form of equations on the entries of B; positive
semi-definiteness of B imposes constraints of inequalities on the
entries. In this way, testing the existence of B in Theorem 1 is equiv-
alent to determining whether the corresponding semi-algebraic set
defined by the equations and inequations above is empty or not.
An algorithm based on quantifier elimination can be used for this
purpose, and there are also software tools available for performing
this check.

2.2 Quadratic module in R[x]

DEFINITION 2. Let G = {g1,...,gs} be a set of polynomials in
R[x]. Then the non-negative set of G, denoted by S(G), is defined
tobe {x e R|gi(x) >0,i=1,...,s}.

DEFINITION 3. Let R be a commutative ring with unit 1. Then a
subset M C R is called a quadratic module in R if M is closed under
addition, 1 € M, and for any a € Rand m € M, a’me M.

A quadratic module M in R is said to be finitely generated if
there exists a finite set G = {g1,...,¢gs} € R such that M = {0y +
Zle 0igi | oj is a sum of squares in R, i=0, ..., s}. In this case, we
write M = QM(G). A finitely generated quadratic module QM(G)
in R[x] is said to be bounded if the non-negative set S(G) is a
bounded set in R and unbounded otherwise.

Fix a polynomial set G = {gy, ...,gs} € R[x]. For a polynomial
f € R[x], next we investigate the relationship between f € QM(G)
and f|s(c) = 0. f € QM(G) means that there exist sums of squares
00, 01, - . ., 0s in R[x] such that f = gy + Zle 0igi, and clearly this
implies fls(g) = 0; fls(g) = 0, however, does not necessarily
imply f € QM(G), as illustrated by the following example.

ExaMPLE 4. Clearly —x > 0 on S(—x%) but —x ¢ QM(—x).
Suppose that —x € QM(—x3). Then —x = sy —s;x°> for some non-
zero sums of squares sp and s in R[x]. Since deg(so) and deg(s1)
are both even whereas deg(—s;x®) is odd, there cannot be any
cancellation of the leading terms of sy and —s;x3, implying that
1 = deg(—x) = deg(so—s1x°) = max{deg(so),deg(—-s1x>)} > 2,

which is a contradiction.

2.3 Formal power series

Augustin [2] related the membership problem of a bounded finitely
generated quadratic module in R[x] to that in the ring of formal
power series. In the following we follow the conventions in [2].

Let R be a commutative ring and x be a variable. Then the form
Yo rix' with r; € R is called a formal power series in x over R.
The set of all formal power series in x over R forms a ring, and it is
called the ring of formal power series in x over R and is denoted by
R[[x]].

For any a € R, instead of in R[[x]] we extensively work in
R[[x - a]], in which all the elements are in the form of 372 r; (x —
a)l. Let ¢4 : R[x] — R[[x — a]] be the natural embedding and
denote by fa = ¢q(f) the image of a polynomial f € R[x] in
R[[x — a]]. Supposing that deg(f) = n, the Taylor expansion of f

at a in R[x] is:

(2) (n)
/= f@+f @ -+ L2 L2 (e
Thenf:Z =Xtyci(x— a)! in R[[x — a]] with ¢o = f(a) and ¢; =
% fori=1,...,n With f, in the form f, = >, ci(x—a)t, we

(x—a)’+---+
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define the order of f at a as ord,(f) := min{i|c; # 0} and denote
the sign of the first non-zero coefficient by €4 (f) = sign(corq, (1))-
Letd = ord,(f). Since R[[x—a]] is a local ring with the maximal

ideal (x — a), we can write f; uniquely as

fa = €a(f)(x = a)eql (1+ ). (1)
where g is some element in (x —a) € R[[x—a]] and thus |cz|(1+q)
is a unit in R[[x — a]]. To differentiate the quadratic modules in
R[[x — a]] from those in R[x], we use QM,(G) to denote the
quadratic module generated by a set G of formal power series in
R[[x — a]]. The following proposition characterizes the quadratic
module generated by a single element in R[[x — a]].

PRrROPOSITION 5 ([2, PAGE 32]). Let f be a polynomial in R[x]
with 0{da(f) =d andfa be written as in (1) in R[[x — a]]. Then
QM (fa) = QM (€a(f) (x = @)?) inR[[x — a]].

For an arbitrary polynomial f € R[x], denote by Z(f) the set of
its zeros in R. Augustin used the following “local-global principle”
for solving the membership problem.

THEOREM 6 (LOCAL-GLOBAL PRINCIPLE [19, COROLLARY 3.17] [2,
THEOREM 2.9]). Let f be a polynomial and G = {g1,...9s} be a
polynomial set in R[x] such that S(G) is bounded. If f|s(g) = 0 and

fa € OM,(d1, - --»Gsg) foranya € Z(f) N S(G), then f € QM(G).

3 UNBOUNDED FINITELY GENERATED
QUADRATIC MODULES

For a polynomial f € R[x], denote its leading coefficient by lc(f).
The following proposition characterizes unbounded non-negative
sets of polynomial sets in R[x].

PropoSITION 7. Let G = {g1,...,9s} C R[x] be a polynomial set.
Then S(G) is unbounded if and only if the following two conditions
hold simultaneously: (1) there is no polynomial in G of even degree
with a negative leading coefficient; (2) either there is no polynomial
in G of odd degree or the signs of leading coefficients of all such
polynomials, if they exist, are the same.

ProoF. (&) Otherwise if S(G) is bounded, then there exists an
integer M > 0 such that when x > M, there exist two integers i and
Jj such that g;(x) <0 and g;(—x) <0. If either deg(g;) or deg(g;) is
even, then Ic(g;) or Ic(g;) is negative: this contradicts condition (1).
Else if both the degrees of g; and g; are odd, then lc(g;) is negative
while lc(g;) is positive: this contradicts condition (2).

(=) Again we prove the contrapositive.

(1) If in G there exists a polynomial g; of an even degree with
Ic(g;i) < 0. Then there exists a positive number M € R such that
gi(x) < 0 whenever |x| > M. In this case S(G) C S(gi) € [-M, M],
and thus S(G) is bounded: a contradiction.

(2) If in G there exist two polynomials g; and g; of odd degrees
whose leading coefficients are of different signs, say lc(g;) < 0 and
lc(gj) > 0 without loss of generality, then there exist two positive
numbers My, My € R such that g;(x) < 0 whenx > M and g;(x) <
0 when x < —Mp. In this case S(G) C S(gi,g;) S [-M2, M1], and
thus S(G) is bounded: a contradiction. O

DEFINITION 8 ([14]). Let G = {g1,...,gs} be a polynomial set
in R[x]. The quadratic module QM(G) is said to be stable if there
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exists a function N:Z ¢ — Zx¢ such that for any f € QM(G), there
exist sums of squares oy, 01, ..., 05 such that f = Z?:o oig; with
deg(oigi) < N(deg(f)) fori=0,...,s, where go := 1. In particular,
if the function N is identity, QM(G) is said to be totally stable.

THEOREM 9. Any finitely generated quadratic module QM(G) C
R[x] with an unbounded S(G) is totally stable.

Proor. Let G = {g1,...,9s}. For any f € QM(G), write it in
a uniform way as f = }_, 0ig; with sums of squares oy, ..., o5
and go := 1. From Theorem 7 we know that for any two distinct
polynomials g;, g; € G, if deg(g;) and deg(g;) are both odd or both
even, then their leading terms do not cancel. Since ; and o; are both
of even degrees, the leading terms of 0;9; and ¢;g; do not cancel.
Suppose that the leading terms of f and o;g; are the same for some
integeri (0 < i < s). Then deg(f) = deg(oig;) > deg(ojg;) for j #
i, and the conclusions follow. In particular, the stability of QM (G)
follows by setting N in Definition 8 as the identity function. O

The property that unbounded finitely generated univariate qua-
dratic modules are stable easily follows from a more general result
for multivariate quadratic modules (see, e.g., [13, Example 4.1.5]).
Total stability of univariate unbounded quadratic modules proved
above in Theorem 9 is likely to follow from general results about
total stability of multivariate quadratic modules [14], but the con-
ditions there for total stability are not easy to check. We believe
that the above proof for the special case is much simpler than more
general proofs.

Note that o; in the theorem is always of an even degree, we know

deg(f) — deg(gi)

that its degree is bounded by 2| | more precisely.

Based on these degree bounds, we have the following algorithm (Al-
gorithm 1) to solve the membership problem of unbounded finitely
generated quadratic modules in R[x] by using undetermined co-
efficients of these sums of squares and the existing algorithm for
finding sums of squares. In Algorithm 1 below, SOS2Semi(-) is a
subroutine which takes a polynomial ¢ as input and outputs a semi-
algebraic set ® described by polynomial equations and inequations
such that o is a sum of squares if and only if ® # 0. One can test
whether a semi-algebraic set is empty or not by applying methods
of quantifier elimination (in line 10). Note that a similar algorithm
by constructing sums of squares via semi-definite programming is
proposed in [2] assuming the bounding function on the degrees.

ExAMPLE 10. Let g; = x% -1, g2 = x+1,and G = {g1,92}.
Then one knows that S(G) = {—1} U [1, 0], and thus QM(G) is
unbounded and totally stable by Theorem 9. Now we apply Algo-
rithm 1 to test whether f = 6x3 + 15x + x — 6 is in QM(G). One
first sees that m = min(deg(g;1), deg(gz2)) =1 < 3 = deg(f) = n.

For i = 1: we know that the degree of oy is bounded by d; =

, deaf) ~ dex(g1)

indeterminzzite. By applying Theorem 1, the subroutine SOS2Semi(o1)
returns the semi-algebraic set {439 > 0}.

Fori = 2: dy = 2 and thus we set 03 = Ayg + A21x + A22x? with
220, A21, and App as indeterminates. This time the semi-algebraic set
returned is SOS2Semi(o2) = {—Agl + 420420 = 0, A2 + Ag2 > 0}

Then for op: we first compute oy = f — 0191 — 0292 = (A2 +
6)x3 + (=A10 — Aa1 — Agz +15)x% + (=20 — Ag1 + 1)x + (A10 — A20 — 6),

| = 0 and thus set o1 = 119 with A9 € R as an
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Algorithm 1: Algorithm for testing membership in un-
bounded quadratic modules B := IslnUnbounded(f, G)
Input: A polynomial f €eR[x], a polynomial set
G={g1,..-.gs } CR[x] such that S(G) is unbounded
Output: A boolean B such that B = true if f € QM(G) and
B = false otherwise

1 ®:=0;

2 fori=1,...,sdo

3 |if deg(f) < deg(g;) then o; :=0;
4 |else

2 deg(f) ;deg(gi)
6 Write o; := Z;iio )kijxj;

7 @ := ® U SOS2Semi(a;);

5 di = I

8 09 = f— X5 0i9i;

9 @ :=® U SOS2Semi(o0y);

10 if ® = () then B := false; else B := true;
11 return B;

and the corresponding semi-algebraic set is

1 1 1 29 13
SOS2Semi(og) = {—ZASO + 520821 —A5 - - A0+ A2

4
361,
ahvele Ao + A10d20 — A21d10 — A22d10 + Az2A20 + 21210
+6A22 > 0,—A21 — A2 + 9 — Ag9 = 0,—Ag2 + 6 = 0}.

Taking the union of three semi-algebraic sets above, we have
a semi-algebraic set ® such that f € QM(G) if and only if & # 0.
Any algorithm for quantifier elimination (e.g., QEPCAD) can verify
that @ # 0 and thus f € QM(G).

4 BOUNDED FINITELY GENERATED
QUADRATIC MODULES

In [2], Augustin reduced the membership test in QM(G) for a finite
polynomial set G in R[x] to that in QM,(G,) C R[[x — a]] for a
being either a boundary or an isolated point of S(G). The latter test
is solved by studying the relationships of inclusion of quadratic
modules in R[[x — a]]. Next we recall this method.

Proposition 5 tells us that all the quadratic modules in R[[x —a]]
generated by a single element are in the form QM (+(x — a)%), and
thus they can be categorized into four cases according to the sign
and whether d is odd or even: QM (—(x — a)%k), OM, ((x— a)2k+1y,
OM, (—(x— a)?k*+1y and OM,((x— a)?k). In particular, any element
in QM ((x — a)%k) is clearly a sum of squares in R[[x — a]], and
we can safely ignore this case. The inclusive relationships between
quadratic modules in the remaining three cases are illustrated in
Figure 1 (see [2, Theorem 2.3]), where an arrow from a quadratic
module Q; to another Qy indicates the proper inclusion Q1 € Qs.

Now consider a polynomial set G = {gy, ...,gs} € R[x]. For any
a € R, the quadratic modules QM (41), ..., OM,(gs) in R[[x —a]]
belong to these three cases unless they are trivial ones. Because of
the inclusive relationships of quadratic modules in this figure, for
each case of quadratic modules we only need to pay attention to the
one with the least exponent (or pictorially, the quadratic module at
the top of each column in Figure 1). This observation justifies the
following definition.
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QM(x — a) QM(~(x — a)?) OM(—(x — a))
OM((x - a)*) OM(—(x —a)*) OM(~(x - @)%)
QM(—(x - a)°)

OM((x - a)*) OM(=(x - )%

Figure 1: Inclusive relationships between quadratic modules
of single generators in R[[x — a]]

DEFINITION 11 ([2, PAGE 43]). Let G = {g1, ..., gs} be a polyno-
mial set in R[x]. For any a € R, define

ka(G) = 1rgiigs{orda(gi)l ordg(g;) is even, e4(g;) = —1},
k3 (G) :
k; (G) :

min {ordg(g;) | orda(g;) is odd, e4(g;) = 1},
1<i<s

min {orda(g:) | orda(gi) is odd, €a(gi) = —1}.
1<i<s

If the set to define k4 (G), k: (G), or k7 (G) is empty, the correspond-
ing value is set to co.

Intuitively, k4 (G) is the exponent of the top quadratic module in
the middle column in Figure 1, while k} (G) and k; (G) are those for
the left and right columns respectively. It is straightforward to see
from Definition 11 that for any a € R, kq(G) is even and both k7 (G)
and k (G) are odd when they are finite, and thus k(G) # k} (G)
and kq(G) # k; (G) unless they are oco.

EXAMPLE 12. Let g1 = (x + Dx3(x — 1)%(x — 2)3, g2 = x(x — 1),
g5 = ~(x = H)(x - D¥(x = 2% g4 = ~(x + D*x%(x - 2)°, and
G = {91, 92, 93, ga}. Then one can compute S(G) = [-1,0] U{1, 2}.

e Fora=—1: k-1(G) = o0, k* (G) = 1, and k7, (G) = oo;
For a = 0: ko(G) = o0, kj (G) = c0, and k; (G) = 1;
Fora=1:k1(G) =2, kIL(G) =1, and k7 (G) = oo;
For a = 2: k2(G) = 4, k3 (G) = 3, and k5 (G) = 3.

Consider a bounded non-negative set S(G) for some polynomial
set G C R[x]. Then one knows that S(G) is a collection of closed
intervals and isolated points in R.

THEOREM 13 ([2, THEOREM 2.18]). Let f €R[x] andG={g1, ..., gs}
C R[x] with S := S(G) bounded. Then f € QM(G) if and only if
fls > 0 and the following statements hold.
(1) Forevery left boundary a of closed intervals of S, either ord, (f)
is even or ord, (f) — K} (G) € 2N.
(2) For every right boundary b of closed intervals of S, either
ordy (f) is even or ordy (f) — k; (G) € 2N.
(3) For every isolated point ¢ of S, either (ord.(f) is even and
€c(f) = 1) or one of the following cases happens.
(Case 1) ord¢(f) > kc(G), ifke(G) < kX (G) and kc(G) < k; (G);
(Case 2) (orde(f) — Kk} (G) € 2N and e.(f) = 1) or ordc(f) >
min(ke(G). k; (G)). if k£ (G) < min(ke(G). k7 (G)):
(Case 3) (ordc(f) — kz (G) € 2N and e.(f) = -1) orordc(f) =
min(ke(G). k£ (G)), ifk; (G) < min(ke(G), k2 (G)).

Theorem 13 directly leads to an algorithm to test the membership
in bounded finitely generated quadratic modules in R[x], while the
following corollary, whose proof is straightforward, can be used to
optimize the algorithm.
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CoROLLARY 14. Let f, G, and S be as stated in Theorem 13. (1) If
fls > 0, then f € QM(G). (2) If f|s = 0 and any of Z(f) is neither
a boundary nor an isolated point of S, then f € QM(G).

Instead of presenting the algorithm based on Theorem 13, we
further make use of the fact that a quadratic module QM(G) is char-
acterized by the values (kq(G), k! (G), k7 (G)) for any boundary
or isolated point a of S(G) to derive a simpler criterion based on
which an algorithm will be presented.

Given a finite polynomial set G € R[x] with S(G) bounded, let
S(G) = UL, lai, bi] (note that a; = b; is possible for an isolated
point) such that any two distinct [a;, b;] and [a}, b;] do not intersect

and b; < aj4q fori = 1,...,n — 1. For any finite polynomial set
F € R[x] such that S(G) C S(F), we assign a tuple (k,-,k;’, k) to
each interval [a;, b;j] fori = 1,..., n as follows.

(1) I a; # by, set ki = 0o, kf = kg, (F), and k;” =k, (F).
(2) If a; = b; = a, set the values in the following five cases.

(Type A) If ko(F) < k}(F) and kq(F) < k (F), set

ki =ka(F), ki =ka(F)+1, k; =kq(F)+1.
(Type B) If kq(F) > k:(F) and kq(F) > k; (F), set
ki = max(k} (F),k; (F))+1, ki =ki(F), ki =k, (F).
(Type C) If k} (F) < kq(F) < k7 (F), set
ki=ka(F), ki =kZI(F), ki =kq(F)+1.
(Type D) If k; (F) < kq(F) < Kk} (F), set
ki=ka(F), ki =ka(F)+1, k; =k;(F).

(Type E) If kq(F) = k}(F) = oo, set k; = k;r = o0 and k; = k; (F),
orifk; (F) = kq(F) = oo, setk; = k; = coand k} =k (F).
Concatenating all the tuples together, we assign to F a signature
ws(F) = (kl,kf,kl_, ..o kn, ki, k;) with respect to S. When S =
S(F), the subscript S in wg(F) is omitted.
Note that all the three values k,(F), k (F), and k (F) can take
infinity. When a strict inequality like k4(F) < k% (F) occurs, it
implies that the less value like k, (F) here is finite.

ExAMPLE 15. Let us continue with Example 12. Writing isolated
points also as intervals, S(G) = [-1,0] U [1,1] U [2,2], and in the
following we compute the signature w(G).

e For the proper closed interval [—1, 0]. With all the values
computed in Example 12, one can easily see that k; = oo,
ki =1,and k] = 1;

e For the isolated point [1, 1], since kT (G) < k1(G) < k] (G),
one knows that it is of Type C in the definition, and thus one
has ky = 2, k; =1,and k; =3.

e For the isolated point [2, 2], since k2(G) > k;(G) and k2(G) >
k3 (G), one knows that it is of Type B and k3 = 4, k;’ =3,
and k3 =3.

As a result, one has w(G) = (o0,1,1,2,1,3,4,3,3).

Our definition of the signature wg(F) here generalizes the sim-
ilar notion w*(G) in [2] in the way that we allow to compute
the signature of a polynomial set F with respect to the bounded
non-negative set S(G) of another polynomial set G as long as the
condition S(G) C S(F) is satisfied. This generalization results in a
new type (Type E) for an isolated point a reflecting the case when
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f(a) > 0 forall f € F (which will not happen if one restricts
himself to the signature w(G) for only one polynomial set G). This
generalization furnishes us the criterion (Theorem 19) below to test
inclusion of finitely generated quadratic modules in R[x] by using
their signatures, which naturally degenerates to a method to test
membership in bounded quadratic modules. What is more inter-
esting, this generalization which allows Type E naturally encodes
Corollary 14, which can be considered as improvement of Theo-
rem 13, in the criterion. In particular, the condition S(G) C S(F)
we impose on F means that the results we obtain below also apply
to an unbounded quadratic module QM(F).

Fix a bounded non-negative set S = S(G) = U} [a;, b;]. Then
we can assign a partial order < to all the signatures with respect
to S as follows: two signatures ws(F;) and ws(Fz) are such that
ws(F1) = ws(Fp) if and only if ws(F1)[i] < ws(F2)[i] fori =
1,...,3n, where wg(Fp)[i] denotes the i-th entry of the sequence
ws(F1). For any polynomial set F C R[x] and any a € R, denote the
tuple (kq(F), k}(F),k; (F)) by Ly(F). Note that we can compare
two tuples L, (F) and L, (G) with the same partial order <.

In the following we first present three lemmas, the first of which
is straightforward and we omit its proof.

LEMMA 16. Let f be a polynomial in R[x]. (1) Among the three
values of Ly (f) there are at most one finite value. (2) If a polynomial
set F C R[x] contains f, then Ly (f) = Lq(F). (3) If f(a) >0, then fa
is a sum of squares in R[[x — a]] and Ly (f) = (o0, 00, 00).

LEMMA 17. Let F be a finite polynomial set in R[x] with S(F) =
UL, lai bi] and w(F) = [k, kT, k], ... kn, kyy, k;; 1. Then for each
i=1,...,n ifa; # b, then (x—ai)k;r € QM,, (F) and—(x-b;)ki €
OM,, (F) inR[[x = al]; if a; = b; = a, then —(x — a)*i, (x — a)¥i,
and —(x — &)~ are all in OM,(F) inR[[x — a]].

Proor. For each i = 1,...,n, if a; # b;, then by the definition
of k;'l'i (F) we know that there exists a polynomial f € F such
that fa,» = (x— ai)k;r € QM,, (F). Similarly, there exists another
polynomial g € F such that gp, = —(x - b)ki e QM (F).

If a; =b; = a, then we discuss according to the type of (k;, k;r, ki_).
(Type A) In this case we know k; = k,(F) is finite and by Defini-
tion 11 there exists a polynomial f € F such that ord,(f) = k; is
evenand €,4(g;) = —1, which implies thatfa = —(x—a)ki € QM (F).
Then by the inclusive relationship in Figure 1 we know that —(x —
o)k = —(x—a)**! and (x—a)¥ = (x—a)*i*! are both in QM, (F).
(Type B) It suffices to prove QM,(—x%") € QM,(x?"~1, —x?7~1)
for any positive integer n, and this inclusion can be shown with

2 2
_x2 = 21y = 201 (—x + 1) + (=x2n1y (—x - 1) 4
2 2
The proofs for Type C and Type D are similar to that of Type A. O

LEmMA 18. Let f € R[x] be a polynomial whose factorization
isf =12 (x~ ai)lih(x), where ay, ..., am are pairwisely distinct
and h(x) is a product of quadratic irreducible polynomials. Then for
eachi=1,...,m,ordg, (f) = t; and eq,(f) = sign(f(pi)), where p;
is any point to the right of a; such that no root of f falls in (a;, p;].

Proor. For each i = 1,...,m, from the factorization of f we
know that a; is a root of f of multiplicity ¢;, and thus f D(a;))=0
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forj=0,....i=1and £ (a;) = (t:!) [T, ;. (ai=a;) h(a;) # 0.
Then, ordg; (f) = t.

Write f as f = (x — a;)* H;”:L#i(x - aj)tfh(x). Then f(pi) =
(pi—ai)t H] 1];&l(pi—aj)t/h(pi).Comparing this expression with
that off(tl) (a;), we know that f(t") (a;) and f(p;) share the same
sign, for p;—a; >0 and (a;, p;] does not contain any root of f. O

THEOREM 19. Let G = {g1,....9s} and F = {fi,..., fr} be two
polynomial sets in R[x] such that S(G) is bounded. Then QM(F) C
QM(G) if and only if S(G) € S(F) and »(G) = ws(g) (F).

Proor. Without loss of generality, let S(G) =
(k1. kF KT ok K Ky ), and g Gy (F) = (ky kL k7 ke K K.

(=) From the inclusion QM(F) € QM(G) we know that for
each i = 1,...,t, fj is in QM(G) , and thus there exist sums of
squares 0y, 01, . . ., 0s in R[x] such that f; = op + Zj’:l 0jgj. Then,
filsqgy = 0fori = 1,...,t, and thus S(G) < S(F). To prove
0(G) = ws(g)(F), it suffices to prove that for each j = 1,...,n,
(kj, k;.f, kJT) < (kj,k;.',k;).

(1) If aj # bj, then this is a closed interval and Igj =kj = co.

)i= l[at» bi],w(G) =

We first prove the inequality k}' < I;;' which only involves the left
boundary a;. For each f; € F, we know that f;(a;) > 0.If fi(a;) > 0,
then by Lemma 16(3) k:;j (fi) = oo. Else if fi(aj) = 0, then by
filla;b;1 = 0 and Lemma 18, we know that €5,(f;) = 1. When
ordg, (fi) is even, by Definition 11 k7 (f;) = co; when ordg, (f;) is
odd, by Theorem 13(1) k;rj (fi) = ordg, (fi) = kgj (G). Summarizing
all the cases above, Iz;r =k;rj (F)=minj<;<; k:;j ()= k;rj (G) =k}r.

Next we prove the remaining inequality k]T < I;]_ which only
involves bj. As in the arguments above for a;, we only need to con-
sider the case when fi(b;) = 0 for each f; € F. When ¢, (fi) = 1,
we know that ordy, ( fi) is even, for otherwise f; will be negative at
some point to the left of b;, which contradicts the fact f;| lap.b;] =
0. Now k;j (fi) = oo by Definition 11. When €p; (i) = -1, we
know that ordbj (fi) is odd, for otherwise b; would be an iso-
lated point in S(f;). By Theorem 13(2) we know that k;j (fi) =
ordy, (fi) = k;j (G). Summarizing all the cases above, IEJ_ = k;j (F)
= miny it Ky () 2 & (G) = k5

(2)If aj = bj = a, then it is an isolated point: For any f € F,
if ord,(f) is even and €4(f) = 1, then as in the arguments above,

we can show that L, (f) = (o0, 00, 00). In this case such a polyno-
mial f has no influence on our target comparison (kj, k}', k;) <
(k 7> l;;', I;J_), and thus we can ignore this kind of polynomials in F.
Next we consider the four types of (kj, k;.“, ij).

Type A corresponds to Case 1 of Theorem 13(3), and thus for each
fi € F, fi € QM(G) and therefore ord,(f) > kqa(G) = ki, where
ki is a finite even number. When €,(f;) = 1 and ord,(f;) is odd,
kL (fi) = orda(fi) 2 kj+1 = k+' when €,(f;) = —1 and ord,(f;)
is even, kq(fi) = ordg(fi) = k,, when €;(fi) = —1 and ord,(f;)
is odd, k; (f;) = orda(fi) = kj+1 = k]_. In all the three cases
above, we can draw the conclusmn La(fi) = [kj, k}r, k]T], for the
remaining two values in L, (f;) are both co by Lemma 16(1). Then
by the arbitrariness of f; in F, I;j =ka(F) = miny<j<t ka(fi) = k;j.

Shang, Mou, and Kapur

Similarly the inequalities lzj > k}.L and Izj_ > k]T also hold, and thus,
ko kt kT Kt kT
(k],kj,kj) > (k],kj,kj).

In Type B, the case k; > k;.' > k]T corresponds to Case 3 of
Theorem 13(3), while the remaining case kj > k7 > k¥ to Case 2;
Type C corresponds to Case 2; and Type D corresponds to Case
3. Performing similar analysis as done in Type A, we can draw
the same conclusion L4 (f;) > (kj, k;.“, k;) for each f; € F, and the
inequality (l;j, I;;r I;J_) = (kj, k;, kJT) follows.

(&) To prove the inclusion QM(F) € QM(G), it suffices to
prove fi € QM(G) for each f; € F. Since S(G) € S(F) < S(fi),
fils(c) = 0, and thus by the local-global principle (Theorem 6),
it suffices to show that fia € QM,(G) for any a € S(G) N Z(f;).
Next we prove the inclusion for each interval [aj, b;] of S(G) for
j=1,...,n

(1)Ifa; # bj, thenitisa closed interval. For any a € (aj, bj) such
that fj(a) = 0, we know that €,(f;) = 1 and ord,(f;) is even, and
thus f; is a sum of squares in R[[x — a]], implying f, € QM,(G)
trivially. For the left bounAdary aj, €q;(fi) = 1. When ordg; (fi) is
even, we can show that f;,
and thus f, a; € QMaj (G) trivially. When ordg; (fi) is odd, by
Lemma 17 (x — aj)k;' € QMaj (G), and thus from ordg; (fi) =
ki (f) 2 kY 2 kY, we have fi, = (x — ap) ™) € oM, (G).
For the right boundary b;, when €p; ) =1, ordbj (f;) must be
even, for otherwise f is negative at some point to the left of b,

; is a sum of squares in R[[x — a;]]

which contradicts the fact f;| la;b;] Z 0.In this case ﬁbj is a sum
of squares in R[[x — b;]] and thus ﬁbj € QMbj (G) trivially. When
€p; (fi) =-1, ordp, (f;) must be odd, for otherwise b; is an isolated
pomt of § ( (), another contradiction. By Lemma 17 we know that

—(x-b; ) 7 € QM; (G), and thus from ordy,  (fi) = k;, (f) = k =

k7, fip, = —(x = b)) e oM, (G).
(2)Ifaj = bj = a, then it is an isolated point: by Lemma 16(2) we
have that L, (f;) > La(F) = (kj, k;f, k]f) > (kj, k;r, k}f), and thus

fra = €a(fi) (x = 0)°a U s in QM ({~(x - @)k, (x = @)F7, —(x -
)%/ }) and thus in QM (G) by Lemma 17. o

COROLLARY 20. Let G C R[x] be a polynomial set with bounded
S(G) and f € R[x] be an polynomial. Then f € QM(G) if and only
if fls(g) 2 0 and w(G) = ws(g) (f)-

Based on Theorem 19, we directly derive an algorithm to test
inclusion of finitely generated quadratic modules. This algorithm is
summarized below as Algorithms 2, where Signature(F, S) is a sub-
routine to compute the signature of F with respect to a non-negative
set S. Note that when the polynomial set F consists of a single poly-
nomial f, Algorithm 2 indeed degenerates to an algorithm to test
membership in bounded quadratic module QM(G).

From Theorem 19, the criterion for the equality of two quadratic
modules, which is Corollary 2.27 in [2], is straightforward.

COROLLARY 21. Let F and G be two polynomial sets in R[x] with
bounded S(F) and S(G). Then QM(G) = QM(F) if and only if
S(G) = S(F) and w(G) = w(F).
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Algorithm 2: Algorithm for testing inclusion of finitely
generated quadratic modules B := IsIncluded(F, G)

Algorithm 3: Algorithm for finding two generators of a
bounded quadratic module  {f, g} := 2Generators(G)

Input: Two finite polynomial sets F, G € R[x] with bounded S(G)
Output: A boolean B such that B = true if QM(F) € QM(G) and
B = false otherwise

1 Sp = S(F); Sg :=S(G);

2 if Sg C Sr then

3 |wF = Signature(F, SF); wg = Signature(G, Sg);
4 |if wg =< wf then B := true; else B := false;

5 else B :=false;

6 return B;

ExaMpLE 22. (1) We first test whether the polynomial fi =
x3(x = 1)3 is in QM(G) with the polynomial set G in Example 12
by using Corollary 20. One can check that S(f;) = [—-o0,0] U
[1,00] 2 S(G) and wg(g)(f1) = (e0, 00,3, 00,3, 00, 00, 00, ). Com-~
paring ws(g) (f1) with ©(G) computed in Example 15, one finds that
(G) 2ws()(f1), and thus by Corollary 20 one has f; € QM(G).

(2) Let F = {fi, fo, s} with o = x3(x - 1)®(x — 2) and fz =
(x = 1)°(x — 2)4(x — 2.5). Next we test whether the quadratic mod-
ule QM(F) is included in QM(G). One can compute that S(F) =
[—o0,0]U[1, 1]U[2,2]U[2.5, 0] 2 S(G) and W5(G) (F) = (00,00,3,6,
3,5,4,1,5). The last tuples in wg(g) (F) and «(G) are (4, 1,5) and
(4,3, 4) respectively and (4, 1,5) £ (4,3,4). As a result, one knows
that QM(F) ¢ OM(G) by Theorem 19.

(3)Let H = {(x+1x(x—1)%(x—2)3, —(x = 0.8) (x — 1) (x — 2)3}.
Then one can check that S(H) = S(G) and w(H) = w(G), and thus
by Corollary 21 one knows QM(H) = QM(G).

5 MINIMAL NUMBER OF GENERATORS OF
BOUNDED QUADRATIC MODULES

A key result of this paper is to reduce the number of generators for
any bounded finitely generated quadratic module QM(G) in R[x]
to at most 2, the best possible in general, using Algorithm 3 below.
This improves upon an algorithm in Augustin’s thesis [2] to find a
set of at most 3 generators by using the signature w(G).

The key insight that led to the algorithm is that in the definition
of (k;, k}, k;) of a polynomial set F with respect to the i-th interval
[ai, bi] of S(F), there are at least one redundant value in the above
tuple. The redundant values are: (1) for a closed interval: k;; (2) for
an isolated point: k] and k;” for Type A, k; for Type B, k; for Type
C, and k for Type D.

THEOREM 23. Algorithm 3 generates a set of at most 2 generators
for a given bounded finitely generated univariate quadratic module.

Proor. Obviously Algorithm 3 outputs two polynomials f and
g in finite steps, and it suffices to prove that the quadratic modules
OM(f, g) is equal to QM(G). Then by Corollary 21, we only need
to show the equality S(f,g) = S(G) and w(f,g) = w(G).

The algorithm handles [aj, b1],. .., [an, bn] in S(G) one by one
and updates f and g accordingly in each iteration. For each i =
1,...,n, denote the updated f and g after the i-th iteration by f; and
gi respectively, and let S; := U§:1 [aj,bj] and w; be the truncated
sequence of w(G) consisting of its first 3i elements. Next we prove
by induction the equality S(f;,gi) = Si and w(f;, gi) = w; for all
i =1,...,n, which completes the proof because clearly S,, = S(G)
and w,, = w(G).

Input: A finite polynomial set G € R[x] with bounded S(G)
Output: Two polynomials f and g such that QM(G) = QM(f, g)
1 f=-1;9g:=1;
2 S :=S(G) (assuming = U, [a;, b;]);

3 (ki,k{ kT, .. knky, k;,) = Signature(G,S);

4 fori=1,..., n do

s |if a; < b; then f = f(x —a)ki (x— by

6 |else

7 switch Type of (ki k}, k;) do

8 case Type Ado f := f(x —a;)ki;

9 case Type Bdo

10 ifi=1then f:=f(x—a)";g:=g(x-a)";
11 else if i = n then

12 ‘f::f(—x+ai)k;r;g:: g(—x+ai)k;;

13 else

u di=api —a; f = f(x - )" (x = (@i + );
15 g9:=g(x—a)"i (x = (a; + %))

16 case Type Cdo

17 f=f(x—ap)ki;

18 if i =1then g :=g(x - ai)k;;

19 else d := ai—bi,lgg::g(x—(ai—%))(x—ai)k;r;
20 case Type D do

21 f=f(x—a)ki;

22 if i = nthen ¢:=g(-x+a;)";

23 lelse d = ain —ai;g=g(x—a)ki (x- (ai+%)) ;

24 return {f,g};

(1) We start with i = 1. (a) If a; < by, then [ay, b1] is a closed
interval. By Algorithm 3, fi = —(x - al)kr (x—b1)k" and g1 = 1.By
the definitions of kl_ and k;r, we know that both of them are odd, and
thus S(f1) = [a1, b1]. With g1 = 1, clearly S(f1,91) = [a1,b1] and
fi(x) <0,g1(x) > 0 when x > by. From ordg, (fi) = ki, €a, (f1) =
1, ordy, (f1) = ki, €, (fi) = =1, ordg, (91) = ordp, (g1) = 0, and
€a;(91) = €p, (1) = 1, we know that k (fi,91) = k7, k;l (f,g91) =
ki, and k1(f1,g1) = k1 = o0, which means w(f1,91) = 1.

(b) If a1 = b1 = a, then it is an isolated point. The discussions
are divided into four cases according to the type of (k1 k},k]). We
take Type A for example, where fi = —(x - a)kt and g1 = 1. Then,
ka(fi.g1) = k1 and k3 (fi.g1) = kg (fi.g1) = oo = ki = ki, which
imply w(fi, g1) = wi1. The equality S(fi,g1) = [a, a] is easy to verify.
The proofs for the remaining three types are similar. Furthermore,
/1 and g also satisfy the condition that f(x) <0 and g(x) >0 when
x>a+ Z?dl in all the four types, where dj = az — b;.

(2) Assume that fori = 1,...,m, S(fi,9i) = Si, w(fi, gi) = wi,
and fi(x) < 0,gi(x) > 0 whenx > b; + 2%1", where d; == aj+1 — b;.
Next we prove the equality S(f;, g;) = S; and w(f;, gi) = w; and the
inequality fi(x) < 0,g;(x) > 0 when x > b; + 2—?‘ fori=m+ 1.

(@) If @m+1 <bm+1, then frnp1 = fm (x — am+l)k:r"” (x - bm+1)k'_"+l

and gm+1 = gm- (i) For any x < ap+1, since both k;“nﬂ and k.

are odd, (x — am+1)k:rn+1 (x— bm+1)kr_n+1 > 0. This means that when
X <am+1, fm+1 and fp, share the same sign. In particular, one can
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show that S(fm+1, gm+1) N (=00, am+1) =S(fin, gm) N (=00, am+1) =

S(fm»gm). (ii) For any am+1 <X < b1, (x—am+1)k:r""1 (3C—l7m+1)k;"+1 <

0. Since fi(x) <0 when x > b; + sz, by the induction hypothesis,

we know that fi,41 > 0 when x € [aj, b;]. (iii) For any x > b1,
(x—am+1)k:n+l (x—bm+1)kr_n+1 >0 and fi (x) <0, and thus f41(x) <0.

Summarizing the arguments above, we know that S( fin+1, gm+1) =

S(fims9m) Y [am+1, bm+1] = Sm+1. Furthermore, by Lemma 18 we

know that ordg,,,,, (fn+1) = k;H,ls Ordbm+1 (fn+1) = ki_n+l s €apmey (frm+1)

=1,¢p, ., (fm+1) = =1, and thus ki1 (frne1, gme1) = 00,k (fine1,
gm+1) = ki and ko (fint1, gm+1) = ki, Note that the first m
elements in the signature o (fin+1, gm+1) are precisely @(fm, gm),

and thus o (fin+1, gm+1) = @m+1- The conditions f41(x) < 0, gm+1(x) >

0 when x> by41+ are easy to verify.

(b) If am+1 = bm+1, we study the four cases according to the
type of (km+1, k;:l+l’ k;,+1)- As can be found in Algorithm 3, we
also need to distinguish whether m +1 = n.

(b.1) When m + 1 < n. Note that for all the four types, both f;;41
and gm+1 are constructed from fp, and g, by multiplying even
numbers (counting multiplicities) of linear factors.

First we consider the signs of f;+1 and g+ for different inter-
vals in the most complicated Type B. (i) When x < a1, we know
that both the multiplied factors (x—am+1)k:n+1 (x—(am+1 + %)) and

(x—am+1)kr_n+l (x~ams1+ 2Td)) are positive, and thus S(fim+1, gm+1)N
(=00, am+1) = S(finsgm) N (=0, am+1) = S(fin,gm). (i) When
X = am+1s fma1(@m+1) = gm1(am+1) = 0. (iii) When a1 < x <
am+1+2dg"+1 ,gm+1 < 0.(iv) When x > am+1+2dg”+1 s fme1 < 0. With
these four arguments, we know that S(fm+1, gm+1) = S(fin, gm) U
[am+1, am+1] = Sm+1. In particular, fi41(x) < 0 and gms1(x) > 0
hold when x > b1+ 2d,5,,+1 ,and it is easy to verify o ( fin+1, gm+1) =
®m+1- The proofs for the remaining three types can be done with
similar analysis as above.

(b.2) When m+1=n, it suffices to study Types B and D. (i) For type
B, fu=fo-1 (—xmn)k; and gn =gn-1 (—x+an)kr;, and thus ordg, (f) =
k', €a,(f) = 1, ordg,(g9) = k;, and €4,(g9) = —1. This implies
that ky, (fn, gn) =0, kit (fu, gn) = ki, and k;; (fn, gn) = k;;, namely
@(fn, gn) =wn.For any x > ap, f, >0and g, <0, and thus S(fp, gn) =
S(fn-1,9n-1) U [an, an] =Sp. (ii) For type D, f;, :fn_l(x—an)ki and
gn(an)=0, and thus S(f4, gn) = S(fu-1,9n-1) Y [an, an] = Sn. The
equality w(f, gn) = wp, is easy to verify. ]

2dm+1
5

The following pictures illustrate the changes we make to f;; and
gm at an isolated point a,,41 to construct fiu41 and gme1-

ExAMPLE 24. Let us demonstrate Algorithm 3 with the polyno-
mial set G as in Example 12. The two polynomials f and g are first
initialized with —1 and 1 respectively. Then in lines 2 and 3 the
algorithm computes S(G) = U?:l [ai, bi] = [-1,0] U [1,1] U [2,2]
and w(G) = (00,1,1,2,1,3,4,3,3), as done in the previous examples.
Next in the iteration for the 3 intervals:

Fori = 1:since —1 = a; # b1 = 0, in line 5 the algorithm updates
f=-1-(x-1)"x-0)! = —(x+1)x and g remains to be 1.

For i = 2: since ap = by = 1 and (ka, k;, ky) =(2,1,3) is of Type
C, the algorithm jumps to line 16 and updates f = [—(x + 1)x] -
[(x-1?]=-(x+Dx(x-D?andg=1-[x - (1-3)](x-1) =
(x —0.8)(x — 1) (for d=1-0=1) respectively in lines 17 and 19.

For i = 3: since as = b3 = 2 and (ka, k;, kz_) = (4,3,3) is of Type
B, the algorithm jumps to line 9 and updates f = [—(x + 1)x(x —

Shang, Mou, and Kapur
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Figure 2: Illustrations of updates at a new isolated point

1)2] - (=x+2)% = (x+ Dx(x - 1)%(x = 2)3 and g = [(x - 0.8) (x —
D] - (—x +2)% = —(x — 0.8) (x — 1) (x — 2) respectively in line 12.

At the end, Algorithm 3 outputs f = (x + 1)x(x — 1)%(x — 2)3
and g = —(x — 0.8)(x — 1)(x — 2)*. In Example 22(3) the equality
QOM(f, 9) = OM(G) is already proved.

ExampLE 25. In [2, Example 2.31] Augustin gave an example
of a finitely generated bounded quadratic module for which her
algorithm outputs three generators fi := —x*(x = 1)°, f5 := x3(x —
1)7, and f3 := —(x — 1)°. The proposed algorithm instead outputs
two generators fj and g := —x>(x — 0.2)(x — 1)° for the same
quadratic module. It can be easily checked that QM(f1, f2, 3) and
QM(f1, g) have the same non-negative set and signature, implying
OM(fi, f2, 3) = QM(fi,g). Certificates for f, 5 € QM(fi,g) are:
fo =520+ s21f1 +s229 and f3 = s30 + 531f1 + 53,29, where s31 =
5(x —2)%, 522 = 5(x — 1)%, 531 = 1, 532 = 1.25, and

3 3
52,0 = 5% (x = 1)°[(x - 5)2 + Z]’

1 7 5
$30 = 5(x - 1)6[Rx4 +x2(1x+ D2+ (x+1)%+1].

6 CONCLUDING REMARKS AND
ACKNOWLEDGEMENTS

Precise implementable algorithms for membership test for uni-
variate finitely generated quadratic modules are presented. The
algorithms discussed in the paper have been implemented and ex-
perimented with many examples. The paper thus improves upon
results in [2].

An exhaustive enumerative algorithm can be given for generat-
ing a witness in the bounded case by incrementally constructing
sums of squares oy, . . ., 0s with undetermined coefficients degree
by degree in the representation go+Y.;_; 0g;; however, it is unclear
to us how a witness can be computed efficiently. Whether the con-
cepts and techniques discussed in the paper can be generalized to
the bivariate case is also an open problem. The complexity analysis
of the proposed algorithms and a detailed comparisons with other
existing algorithms are planned.

The second and third author would like to acknowledge re-
spectively National Natural Science Foundation of China (NSFC
11971050) and National Science Foundation of the United States
(CCF 1908804) for supporting this research.
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