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ABSTRACT
Quadratic modules in real algebraic geometry are akin to polyno-

mial ideals in algebraic geometry, and have been found useful in

the theory of Positivstellensatz to study Hilbert’s 17th problem.

Algorithms are presented in this paper for testing membership in

univariate finitely generated quadratic modules over the reals and

inclusion of two finitely generated quadratic modules. For a uni-

variate unbounded quadratic module, an explicit upper bound on

the degrees of sums of squares to construct any given polynomial

is proved and then used to design an algorithm for testing member-

ship in such a quadratic module. For a bounded quadratic module,

a unique signature is associated with it based on the real values on

which its finite basis is non-negative, and the signatures are used to

furnish a criterion for inclusion of two finitely generated quadratic

modules and a corresponding algorithm which solves the mem-

bership problem as a special case. It is also shown that a bounded

quadratic module can be transformed to an equivalent one with two

generators with an algorithm for performing this transformation.

All the presented algorithms have been implemented.
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• Computing methodologies→ Algebraic algorithms; • The-
ory of computation → Design and analysis of algorithms.
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1 INTRODUCTION
Hilbert’s 17th problem asks whether any non-negative polynomial

𝑓 over R, the field of real numbers, can be written in the form of
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a finite sum of squares of rational functions, i.e., 𝑓 =
∑
𝑞2
𝑖
with

𝑞𝑖 ∈ R(𝑋 ) [13]? Artin gave an affirmative answer to this problem

in 1927 [1]. However, computing a witness of 𝑓 as a finite tuple

of rational functions 𝑞1, . . . , 𝑞𝑠 remains elusive (see [10], however).

Following a landmark result by Tarski-Seidenberg on the decid-

ability of the theory of real closed fields [22, 24] leading to the

Positivstellensatz discovered by Krivine and Stengle [8, 23], con-

structive methods for real algebraic geometry, paralleling methods

for algebraic geometry, have been investigated since the 1960s [3].

Two exciting results in this direction are (i) by Schmüdgen [20] for

a compact (bounded) semi-algebraic subset 𝑆 of R𝑛 defined by a

finite set of non-negative polynomial inequalities 𝐺 = {𝑔1, · · · , 𝑔𝑠 }
in R[𝑋 ], characterizing every strictly positive polynomial 𝑓 on 𝑆 (a

preordering generated by 𝐺) and its denominator-free representa-

tion as 𝑓 =
∑
𝐺′⊆𝐺 𝜎𝐺′ (∏𝑔∈𝐺′ 𝑔) with 𝜎𝐺′ being a sum of squares

in R[𝑋 ] and subsequently (ii) by Putinar [18], giving a simpler lin-

ear representation of a non-negative polynomial 𝑓 on 𝑆 (a quadratic
module generated by 𝐺) of the form 𝑓 = 𝜎0 +

∑𝑠
𝑖=1 𝜎𝑖𝑔𝑖 with 𝜎𝑖

being a sum of squares in R[𝑋 ]. Various types of Positivstellen-
satz focusing on semi-algebraic sets, the associated algorithms and

complexities are extensively studied [12, 13, 15, 21].

The membership problem for finitely generated quadratic mod-

ules is to decide whether a polynomial 𝑓 ∈ R[𝑋 ] is in the qua-

dratic module generated by a finite set of polynomials 𝑔1, . . . , 𝑔𝑠 ,

i.e., whether 𝑓 can be expressed as 𝜎0 +
∑𝑠
𝑖=1 𝜎𝑖𝑔𝑖 where 𝜎𝑖 ’s are

sums of squares in R[𝑋 ]. Note that the membership problem for

finitely generated preorderings can be solved naturally once the

former membership test is feasible because such preorderings can

be reformulated as finitely generated quadratic modules with the

representations by Schmüdgen and Putinar above. Much like the

importance of the ideal membership problem in algebraic geometry,

the membership test for finitely generated quadratic modules is a

fundamental problem of theoretical interest for Positivstellensatz.

Finding whether a polynomial 𝑓 can be written as 𝑓 = 𝜎0 +∑𝑠
𝑖=1 𝜎𝑖𝑔𝑖 with sums of squares 𝜎0, . . . , 𝜎𝑠 is closely related to find-

ing the sum-of-squares decomposition of 𝑓 [9, 11, 16, 17], but these

two problems are different. If a quadratic module is generated by

1, the former problem degenerates to the latter, but in general, the

case of a quadratic module with multiple generators other than 1 is

different from the set of all sums of squares.

In Ph.D. theses by Augustin [2], Canto Cabral [4] and Wagner

[26], decidability of the membership problem in finitely generated

quadratic modules under certain conditions has been proved for,

respectively, the univariate, bivariate, and multivariate cases. Au-

gustin gave an algorithm for membership test for a bounded finitely

generated quadratic module in R[𝑥]; for a stable quadratic module
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where an upper bound on the degrees of the respective sums of

squares is assumed to be given, she used the Gram matrix construc-

tion proposed by Powers and Wörmann [17] to decide membership.

Canto Cabral gave an algorithmic procedure for the bivariate case

for a finitely generated Archimedean quadratic module (in which

there exists a natural number 𝑁 such that 𝑁 − (𝑥2
1
+ · · · + 𝑥2𝑛) is in

the quadratic module); her approach does not generalize however

to arbitrary number of variables. Wagner used a totally different ap-

proach based on Jacobi’s representation theorem [6] and Jacobi and

Prestel’s characterization theorem [7] to give a decision procedure

for the multivariate case using Abhyankar valuations.

The focus of this paper is on univariate finitely generated qua-

dratic modules. We improve upon the results in [2] for both un-

bounded as well as bounded quadratic modules. For an unbounded

quadratic module, we show that there is no need to specify a func-

tion bounding the degrees of its witnesses. For a bounded quadratic

module, we show that any finite basis of a quadratic module can be

reduced to a basis of two polynomials. Further, every such quadratic

module has a unique signature based on its bounded semi-algebraic

set represented as a finite union of intervals and isolated points

in ascending order. This signature is used for checking whether a

finitely generated quadratic module is a subset of another finitely

generated quadratic module. Immediate corollaries of this result

include the membership test for a polynomial to be in a finitely

generated quadratic module as well as equivalence of two quadratic

modules with two different bases. The paper presents algorithms

for each of these subproblems, which have been implemented and

tried on several examples.

2 PRELIMINARIES
2.1 Sum of squares
Consider the multivariate polynomial ring R[𝑥1, . . . , 𝑥𝑛] with the

indeterminates 𝑥1, . . . , 𝑥𝑛 . We denote 𝑋 = (𝑥1, ..., 𝑥𝑛), and for any

𝒂 = (𝑎1, ..., 𝑎𝑛) ∈ N𝑛 , denote 𝑋𝒂 = 𝑥
𝑎1
1

· · · 𝑥𝑎𝑛𝑛 .

A polynomial 𝑓 ∈ R[𝑋 ] is called a sum of squares in R[𝑋 ] if it
can be expressed as a sum of squares of polynomials in R[𝑋 ]. It is
easy to show that any sum of squares 𝑓 ∈ R[𝑋 ] is of an even total

degree and such that 𝑓 ≥ 0 over R.
For an arbitrary non-negative integer𝑚, denote Λ𝑚 = {(𝛼1, . . . ,

𝛼𝑛) :
∑𝑛
𝑖=1 𝛼𝑖 ≤ 𝑚}. Then any polynomial 𝑓 ∈ R[𝑋 ] of total degree

𝑚 can be written in the form 𝑓 =
∑

𝜶 ∈Λ𝑚
𝑐𝜶𝑋

𝜶
. In particular, let

𝑘 = |Λ𝑚 | =
(𝑚+𝑛

𝑛

)
and order the elements of Λ𝑚 as (𝜷1, . . . , 𝜷𝑘 )

according to some order. Denote by 𝒙 = (𝑋𝜷1 , . . . , 𝑋𝜷𝑘 ) the corre-
sponding ordered set of terms of total degrees ≤𝑚 in R[𝑋 ]. The fol-
lowing characterization of sums of squares in R[𝑋 ] is well-known.

Theorem 1 ([17, Theorem 1]). Let 𝑓 ∈ R[𝑋 ] be a polynomial
of even total degree𝑚 and 𝒙 = (𝑋𝜷1 , . . . , 𝑋𝜷𝑘 ) be as stated above.
Then 𝑓 is a sum of squares in R[𝑋 ] if and only if there exists a real,
symmetric, positive semi-definite matrix 𝐵 of size 𝑘 × 𝑘 such that
𝑓 = 𝒙𝐵𝒙𝑡 , where 𝒙𝑡 is the transpose of 𝒙 .

This theorem allows one to test whether a polynomial is a sum of

squares by applying semi-definite programming [25] or quantifier

elimination [5], and the latter method is explained as follows. Con-

sider a symmetric matrix 𝐵 of size 𝑘×𝑘 with its entries as unknowns.

Comparing the coefficients of both sides of 𝑓 = 𝒙𝐵𝒙𝑡 furnishes

constraints in the form of equations on the entries of 𝐵; positive

semi-definiteness of 𝐵 imposes constraints of inequalities on the

entries. In this way, testing the existence of 𝐵 in Theorem 1 is equiv-

alent to determining whether the corresponding semi-algebraic set

defined by the equations and inequations above is empty or not.

An algorithm based on quantifier elimination can be used for this

purpose, and there are also software tools available for performing

this check.

2.2 Quadratic module in R[𝑥]
Definition 2. Let 𝐺 = {𝑔1, ..., 𝑔𝑠 } be a set of polynomials in

R[𝑥]. Then the non-negative set of 𝐺 , denoted by 𝑆 (𝐺), is defined
to be {𝑥 ∈ R | 𝑔𝑖 (𝑥) ≥ 0, 𝑖 = 1, . . . , 𝑠}.

Definition 3. Let 𝑅 be a commutative ring with unit 1. Then a

subset𝑀 ⊆ 𝑅 is called a quadratic module in 𝑅 if𝑀 is closed under

addition, 1 ∈ 𝑀 , and for any 𝑎 ∈ 𝑅 and𝑚 ∈ 𝑀 , 𝑎2𝑚 ∈ 𝑀 .

A quadratic module 𝑀 in 𝑅 is said to be finitely generated if

there exists a finite set 𝐺 = {𝑔1, ..., 𝑔𝑠 } ⊆ 𝑅 such that 𝑀 = {𝜎0 +∑𝑠
𝑖=1 𝜎𝑖𝑔𝑖 | 𝜎𝑖 is a sum of squares in 𝑅, 𝑖 =0, . . . , 𝑠}. In this case, we

write𝑀 = QM(𝐺). A finitely generated quadratic module QM(𝐺)
in R[𝑥] is said to be bounded if the non-negative set 𝑆 (𝐺) is a
bounded set in R and unbounded otherwise.

Fix a polynomial set 𝐺 = {𝑔1, ..., 𝑔𝑠 } ⊂ R[𝑥]. For a polynomial

𝑓 ∈ R[𝑥], next we investigate the relationship between 𝑓 ∈ QM(𝐺)
and 𝑓 |𝑆 (𝐺) ≥ 0. 𝑓 ∈ QM(𝐺) means that there exist sums of squares

𝜎0, 𝜎1, . . . , 𝜎𝑠 in R[𝑥] such that 𝑓 = 𝜎0 +
∑𝑠
𝑖=1 𝜎𝑖𝑔𝑖 , and clearly this

implies 𝑓 |𝑆 (𝐺) ≥ 0; 𝑓 |𝑆 (𝐺) ≥ 0, however, does not necessarily

imply 𝑓 ∈ QM(𝐺), as illustrated by the following example.

Example 4. Clearly −𝑥 ≥ 0 on 𝑆 (−𝑥3) but −𝑥 ∉ QM(−𝑥3).
Suppose that −𝑥 ∈ QM(−𝑥3). Then −𝑥 = 𝑠0−𝑠1𝑥3 for some non-

zero sums of squares 𝑠0 and 𝑠1 in R[𝑥]. Since deg(𝑠0) and deg(𝑠1)
are both even whereas deg(−𝑠1𝑥3) is odd, there cannot be any

cancellation of the leading terms of 𝑠0 and −𝑠1𝑥3, implying that

1 = deg(−𝑥) = deg(𝑠0−𝑠1𝑥3) = max{deg(𝑠0), deg(−𝑠1𝑥3)} > 2,

which is a contradiction.

2.3 Formal power series
Augustin [2] related the membership problem of a bounded finitely

generated quadratic module in R[𝑥] to that in the ring of formal

power series. In the following we follow the conventions in [2].

Let 𝑅 be a commutative ring and 𝑥 be a variable. Then the form∑∞
𝑖=0 𝑟𝑖𝑥

𝑖
with 𝑟𝑖 ∈ 𝑅 is called a formal power series in 𝑥 over 𝑅.

The set of all formal power series in 𝑥 over 𝑅 forms a ring, and it is

called the ring of formal power series in 𝑥 over 𝑅 and is denoted by

𝑅 [[𝑥]].
For any 𝑎 ∈ R, instead of in R[[𝑥]] we extensively work in

R[[𝑥 −𝑎]], in which all the elements are in the form of

∑∞
𝑖=0 𝑟𝑖 (𝑥 −

𝑎)𝑖 . Let 𝜙𝑎 : R[𝑥] → R[[𝑥 − 𝑎]] be the natural embedding and

denote by
ˆ𝑓𝑎 := 𝜙𝑎 (𝑓 ) the image of a polynomial 𝑓 ∈ R[𝑥] in

R[[𝑥 − 𝑎]]. Supposing that deg(𝑓 ) = 𝑛, the Taylor expansion of 𝑓

at 𝑎 in R[𝑥] is:

𝑓 = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 −𝑎) + 𝑓 (2) (𝑎)
2!

(𝑥 −𝑎)2 + · · · + 𝑓 (𝑛) (𝑎)
𝑛!

(𝑥 −𝑎)𝑛 .

Then
ˆ𝑓𝑎 =

∑𝑛
𝑖=0 𝑐𝑖 (𝑥 − 𝑎)𝑖 in R[[𝑥 − 𝑎]] with 𝑐0 = 𝑓 (𝑎) and 𝑐𝑖 =

𝑓 (𝑖 ) (𝑎)
𝑖!

for 𝑖 = 1, . . . , 𝑛. With
ˆ𝑓𝑎 in the form

ˆ𝑓𝑎 =
∑𝑛
𝑖=0 𝑐𝑖 (𝑥 −𝑎)𝑖 , we
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define the order of 𝑓 at 𝑎 as ord𝑎 (𝑓 ) := min{𝑖 | 𝑐𝑖 ≠ 0} and denote

the sign of the first non-zero coefficient by 𝜖𝑎 (𝑓 ) := sign(𝑐
ord𝑎 (𝑓 ) ).

Let𝑑 = ord𝑎 (𝑓 ). SinceR[[𝑥−𝑎]] is a local ring with the maximal

ideal ⟨𝑥 − 𝑎⟩, we can write
ˆ𝑓𝑎 uniquely as

ˆ𝑓𝑎 = 𝜖𝑎 (𝑓 ) (𝑥 − 𝑎)𝑑 |𝑐𝑑 | (1 + 𝑞), (1)

where 𝑞 is some element in ⟨𝑥 −𝑎⟩ ⊆ R[[𝑥 −𝑎]] and thus |𝑐𝑑 | (1+𝑞)
is a unit in R[[𝑥 − 𝑎]]. To differentiate the quadratic modules in

R[[𝑥 − 𝑎]] from those in R[𝑥], we use QM𝑎 (𝐺) to denote the

quadratic module generated by a set 𝐺 of formal power series in

R[[𝑥 − 𝑎]]. The following proposition characterizes the quadratic

module generated by a single element in R[[𝑥 − 𝑎]].

Proposition 5 ([2, Page 32]). Let 𝑓 be a polynomial in R[𝑥]
with ord𝑎 (𝑓 ) = 𝑑 and ˆ𝑓𝑎 be written as in (1) in R[[𝑥 − 𝑎]]. Then
QM𝑎 ( ˆ𝑓𝑎) = QM𝑎 (𝜖𝑎 (𝑓 ) (𝑥 − 𝑎)𝑑 ) in R[[𝑥 − 𝑎]].

For an arbitrary polynomial 𝑓 ∈ R[𝑥], denote by 𝑍 (𝑓 ) the set of
its zeros in R. Augustin used the following “local-global principle”

for solving the membership problem.

Theorem 6 (Local-global principle [19, Corollary 3.17] [2,

Theorem 2.9]). Let 𝑓 be a polynomial and 𝐺 = {𝑔1, ..., 𝑔𝑠 } be a
polynomial set in R[𝑥] such that 𝑆 (𝐺) is bounded. If 𝑓 |𝑆 (𝐺) ≥ 0 and
ˆ𝑓𝑎 ∈ QM𝑎 (𝑔1𝑎, . . . , 𝑔𝑠𝑎) for any 𝑎 ∈ 𝑍 (𝑓 ) ∩ 𝑆 (𝐺), then 𝑓 ∈ QM(𝐺).

3 UNBOUNDED FINITELY GENERATED
QUADRATIC MODULES

For a polynomial 𝑓 ∈ R[𝑥], denote its leading coefficient by lc(𝑓 ).
The following proposition characterizes unbounded non-negative

sets of polynomial sets in R[𝑥].

Proposition 7. Let𝐺 = {𝑔1, . . . , 𝑔𝑠 } ⊆ R[𝑥] be a polynomial set.
Then 𝑆 (𝐺) is unbounded if and only if the following two conditions
hold simultaneously: (1) there is no polynomial in 𝐺 of even degree
with a negative leading coefficient; (2) either there is no polynomial
in 𝐺 of odd degree or the signs of leading coefficients of all such
polynomials, if they exist, are the same.

Proof. (⇐) Otherwise if 𝑆 (𝐺) is bounded, then there exists an

integer𝑀 >0 such that when 𝑥 >𝑀 , there exist two integers 𝑖 and

𝑗 such that 𝑔𝑖 (𝑥)<0 and 𝑔 𝑗 (−𝑥)<0. If either deg(𝑔𝑖 ) or deg(𝑔 𝑗 ) is
even, then lc(𝑔𝑖 ) or lc(𝑔 𝑗 ) is negative: this contradicts condition (1).

Else if both the degrees of 𝑔𝑖 and 𝑔 𝑗 are odd, then lc(𝑔𝑖 ) is negative
while lc(𝑔 𝑗 ) is positive: this contradicts condition (2).

(⇒) Again we prove the contrapositive.

(1) If in 𝐺 there exists a polynomial 𝑔𝑖 of an even degree with

lc(𝑔𝑖 ) < 0. Then there exists a positive number 𝑀 ∈ R such that

𝑔𝑖 (𝑥) < 0 whenever |𝑥 | > 𝑀 . In this case 𝑆 (𝐺) ⊆ 𝑆 (𝑔𝑖 ) ⊆ [−𝑀,𝑀],
and thus 𝑆 (𝐺) is bounded: a contradiction.

(2) If in 𝐺 there exist two polynomials 𝑔𝑖 and 𝑔 𝑗 of odd degrees

whose leading coefficients are of different signs, say lc(𝑔𝑖 ) < 0 and

lc(𝑔 𝑗 ) > 0 without loss of generality, then there exist two positive

numbers𝑀1, 𝑀2 ∈ R such that𝑔𝑖 (𝑥) < 0when 𝑥 > 𝑀1 and𝑔 𝑗 (𝑥) <
0 when 𝑥 < −𝑀2. In this case 𝑆 (𝐺) ⊆ 𝑆 (𝑔𝑖 , 𝑔 𝑗 ) ⊆ [−𝑀2, 𝑀1], and
thus 𝑆 (𝐺) is bounded: a contradiction. □

Definition 8 ([14]). Let 𝐺 = {𝑔1, . . . , 𝑔𝑠 } be a polynomial set

in R[𝑥]. The quadratic module QM(𝐺) is said to be stable if there

exists a function 𝑁 :Z≥0→Z≥0 such that for any 𝑓 ∈ QM(𝐺), there
exist sums of squares 𝜎0, 𝜎1, . . . , 𝜎𝑠 such that 𝑓 =

∑𝑠
𝑖=0 𝜎𝑖𝑔𝑖 with

deg(𝜎𝑖𝑔𝑖 ) ≤ 𝑁 (deg(𝑓 )) for 𝑖 = 0, . . . , 𝑠 , where 𝑔0 := 1. In particular,

if the function 𝑁 is identity, QM(𝐺) is said to be totally stable.

Theorem 9. Any finitely generated quadratic module QM(𝐺) ⊆
R[𝑥] with an unbounded 𝑆 (𝐺) is totally stable.

Proof. Let 𝐺 = {𝑔1, . . . , 𝑔𝑠 }. For any 𝑓 ∈ QM(𝐺), write it in

a uniform way as 𝑓 =
∑𝑠
𝑖=0 𝜎𝑖𝑔𝑖 with sums of squares 𝜎0, . . . , 𝜎𝑠

and 𝑔0 := 1. From Theorem 7 we know that for any two distinct

polynomials 𝑔𝑖 , 𝑔 𝑗 ∈ 𝐺 , if deg(𝑔𝑖 ) and deg(𝑔 𝑗 ) are both odd or both

even, then their leading terms do not cancel. Since𝜎𝑖 and𝜎 𝑗 are both

of even degrees, the leading terms of 𝜎𝑖𝑔𝑖 and 𝜎 𝑗𝑔 𝑗 do not cancel.

Suppose that the leading terms of 𝑓 and 𝜎𝑖𝑔𝑖 are the same for some

integer 𝑖 (0 ≤ 𝑖 ≤ 𝑠). Then deg(𝑓 ) = deg(𝜎𝑖𝑔𝑖 ) ≥ deg(𝜎 𝑗𝑔 𝑗 ) for 𝑗 ≠
𝑖 , and the conclusions follow. In particular, the stability of QM(𝐺)
follows by setting 𝑁 in Definition 8 as the identity function. □

The property that unbounded finitely generated univariate qua-

dratic modules are stable easily follows from a more general result

for multivariate quadratic modules (see, e.g., [13, Example 4.1.5]).

Total stability of univariate unbounded quadratic modules proved

above in Theorem 9 is likely to follow from general results about

total stability of multivariate quadratic modules [14], but the con-

ditions there for total stability are not easy to check. We believe

that the above proof for the special case is much simpler than more

general proofs.

Note that 𝜎𝑖 in the theorem is always of an even degree, we know

that its degree is bounded by 2⌊ deg(𝑓 ) − deg(𝑔𝑖 )
2

⌋ more precisely.

Based on these degree bounds, we have the following algorithm (Al-

gorithm 1) to solve the membership problem of unbounded finitely

generated quadratic modules in R[𝑥] by using undetermined co-

efficients of these sums of squares and the existing algorithm for

finding sums of squares. In Algorithm 1 below, SOS2Semi(·) is a
subroutine which takes a polynomial 𝜎 as input and outputs a semi-

algebraic set Φ described by polynomial equations and inequations

such that 𝜎 is a sum of squares if and only if Φ ≠ ∅. One can test

whether a semi-algebraic set is empty or not by applying methods

of quantifier elimination (in line 10). Note that a similar algorithm

by constructing sums of squares via semi-definite programming is

proposed in [2] assuming the bounding function on the degrees.

Example 10. Let 𝑔1 = 𝑥2 − 1, 𝑔2 = 𝑥 + 1, and 𝐺 = {𝑔1, 𝑔2}.
Then one knows that 𝑆 (𝐺) = {−1} ∪ [1,∞], and thus QM(𝐺) is
unbounded and totally stable by Theorem 9. Now we apply Algo-

rithm 1 to test whether 𝑓 = 6𝑥3 + 15𝑥2 + 𝑥 − 6 is in QM(𝐺). One
first sees that𝑚 = min(deg(𝑔1), deg(𝑔2)) = 1 < 3 = deg(𝑓 ) = 𝑛.

For 𝑖 = 1: we know that the degree of 𝜎1 is bounded by 𝑑1 =

2⌊ deg(𝑓 ) − deg(𝑔1)
2

⌋ = 0 and thus set 𝜎1 = 𝜆10 with 𝜆10 ∈ R as an

indeterminate. By applying Theorem 1, the subroutine SOS2Semi(𝜎1)
returns the semi-algebraic set {𝜆10 ≥ 0}.

For 𝑖 = 2: 𝑑2 = 2 and thus we set 𝜎2 = 𝜆20 + 𝜆21𝑥 + 𝜆22𝑥
2
with

𝜆20, 𝜆21, and 𝜆22 as indeterminates. This time the semi-algebraic set

returned is SOS2Semi(𝜎2) = {−𝜆2
21

+ 4𝜆22𝜆20 ≥ 0, 𝜆20 + 𝜆22 ≥ 0}.
Then for 𝜎0: we first compute 𝜎0 = 𝑓 − 𝜎1𝑔1 − 𝜎2𝑔2 = (−𝜆22 +

6)𝑥3 + (−𝜆10 −𝜆21 −𝜆22 + 15)𝑥2 + (−𝜆20 −𝜆21 + 1)𝑥 + (𝜆10 −𝜆20 − 6),
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Algorithm 1: Algorithm for testing membership in un-

bounded quadratic modules 𝐵 := IsInUnbounded(𝑓 ,𝐺)
Input: A polynomial 𝑓 ∈R[𝑥 ], a polynomial set

𝐺 = {𝑔1, ..., 𝑔𝑠 } ⊆R[𝑥 ] such that 𝑆 (𝐺) is unbounded
Output: A boolean 𝐵 such that 𝐵 = true if 𝑓 ∈ QM(𝐺) and

𝐵 = false otherwise
1 Φ := ∅;
2 for 𝑖 = 1, . . . , 𝑠 do
3 if deg(𝑓 ) < deg(𝑔𝑖 ) then 𝜎𝑖 := 0 ;

4 else

5 𝑑𝑖 := 2 ⌊ deg(𝑓 ) − deg(𝑔𝑖 )
2

⌋;

6 Write 𝜎𝑖 :=
∑𝑑𝑖

𝑗=0
𝜆𝑖 𝑗𝑥

𝑗
;

7 Φ := Φ ∪ SOS2Semi(𝜎𝑖 ) ;

8 𝜎0 := 𝑓 −∑𝑠
𝑖=1 𝜎𝑖𝑔𝑖 ;

9 Φ := Φ ∪ SOS2Semi(𝜎0) ;
10 if Φ = ∅ then 𝐵 := false; else 𝐵 := true ;
11 return 𝐵;

and the corresponding semi-algebraic set is

SOS2Semi(𝜎0) = {−1

4

𝜆2
20

+ 1

2

𝜆20𝜆21 −
1

4

𝜆2
21

− 29

2

𝜆20 +
13

2

𝜆21

− 361

4

− 𝜆2
10

+ 𝜆10𝜆20 − 𝜆21𝜆10 − 𝜆22𝜆10 + 𝜆22𝜆20 + 21𝜆10

+ 6𝜆22 ≥ 0,−𝜆21 − 𝜆22 + 9 − 𝜆20 ≥ 0,−𝜆22 + 6 = 0}.
Taking the union of three semi-algebraic sets above, we have

a semi-algebraic set Φ such that 𝑓 ∈ QM(𝐺) if and only if Φ ≠ ∅.
Any algorithm for quantifier elimination (e.g., QEPCAD) can verify

that Φ ≠ ∅ and thus 𝑓 ∈ QM(𝐺).

4 BOUNDED FINITELY GENERATED
QUADRATIC MODULES

In [2], Augustin reduced the membership test in QM(𝐺) for a finite
polynomial set 𝐺 in R[𝑥] to that in QM𝑎 (𝐺𝑎) ⊆ R[[𝑥 − 𝑎]] for 𝑎
being either a boundary or an isolated point of 𝑆 (𝐺). The latter test
is solved by studying the relationships of inclusion of quadratic

modules in R[[𝑥 − 𝑎]]. Next we recall this method.

Proposition 5 tells us that all the quadratic modules in R[[𝑥 −𝑎]]
generated by a single element are in the form QM𝑎 (±(𝑥 −𝑎)𝑑 ), and
thus they can be categorized into four cases according to the sign

and whether 𝑑 is odd or even: QM𝑎 (−(𝑥 −𝑎)2𝑘 ), QM𝑎 ((𝑥 −𝑎)2𝑘+1),
QM𝑎 (−(𝑥−𝑎)2𝑘+1), andQM𝑎 ((𝑥−𝑎)2𝑘 ). In particular, any element

in QM𝑎 ((𝑥 − 𝑎)2𝑘 ) is clearly a sum of squares in R[[𝑥 − 𝑎]], and
we can safely ignore this case. The inclusive relationships between

quadratic modules in the remaining three cases are illustrated in

Figure 1 (see [2, Theorem 2.3]), where an arrow from a quadratic

module 𝑄1 to another 𝑄2 indicates the proper inclusion 𝑄1 ⊊𝑄2.

Now consider a polynomial set 𝐺 = {𝑔1, ..., 𝑔𝑠 } ⊂ R[𝑥]. For any
𝑎 ∈ R, the quadratic modules QM𝑎 (𝑔1), . . . ,QM𝑎 (𝑔𝑠 ) in R[[𝑥 −𝑎]]
belong to these three cases unless they are trivial ones. Because of

the inclusive relationships of quadratic modules in this figure, for

each case of quadratic modules we only need to pay attention to the

one with the least exponent (or pictorially, the quadratic module at

the top of each column in Figure 1). This observation justifies the

following definition.

QM(−(𝑥 − 𝑎)2)

QM(−(𝑥 − 𝑎)4)

QM(−(𝑥 − 𝑎)6)

QM(−(𝑥 − 𝑎))

QM(−(𝑥 − 𝑎)3)

QM(−(𝑥 − 𝑎)5)

QM(𝑥 − 𝑎)

QM((𝑥 − 𝑎)3)

QM((𝑥 − 𝑎)5)
.
.
.

.

.

.
.
.
.

Figure 1: Inclusive relationships between quadratic modules
of single generators in R[[𝑥 − 𝑎]]

Definition 11 ([2, Page 43]). Let 𝐺 = {𝑔1, ..., 𝑔𝑠 } be a polyno-
mial set in R[𝑥]. For any 𝑎 ∈ R, define

𝑘𝑎 (𝐺) := min

1≤𝑖≤𝑠
{ord𝑎 (𝑔𝑖 ) | ord𝑎 (𝑔𝑖 ) is even, 𝜖𝑎 (𝑔𝑖 ) = −1},

𝑘+𝑎 (𝐺) := min

1≤𝑖≤𝑠
{ord𝑎 (𝑔𝑖 ) | ord𝑎 (𝑔𝑖 ) is odd, 𝜖𝑎 (𝑔𝑖 ) = 1},

𝑘−𝑎 (𝐺) := min

1≤𝑖≤𝑠
{ord𝑎 (𝑔𝑖 ) | ord𝑎 (𝑔𝑖 ) is odd, 𝜖𝑎 (𝑔𝑖 ) = −1}.

If the set to define 𝑘𝑎 (𝐺), 𝑘+𝑎 (𝐺), or 𝑘−𝑎 (𝐺) is empty, the correspond-

ing value is set to ∞.

Intuitively, 𝑘𝑎 (𝐺) is the exponent of the top quadratic module in

the middle column in Figure 1, while 𝑘+𝑎 (𝐺) and 𝑘−𝑎 (𝐺) are those for
the left and right columns respectively. It is straightforward to see

fromDefinition 11 that for any 𝑎 ∈ R, 𝑘𝑎 (𝐺) is even and both 𝑘+𝑎 (𝐺)
and 𝑘−𝑎 (𝐺) are odd when they are finite, and thus 𝑘𝑎 (𝐺) ≠ 𝑘+𝑎 (𝐺)
and 𝑘𝑎 (𝐺) ≠ 𝑘−𝑎 (𝐺) unless they are ∞.

Example 12. Let 𝑔1 = (𝑥 + 1)𝑥3 (𝑥 − 1)6 (𝑥 − 2)3, 𝑔2 = 𝑥 (𝑥 − 1),
𝑔3 = −(𝑥 − 1

2
) (𝑥 − 1)2 (𝑥 − 2)4, 𝑔4 = −(𝑥 + 1)3𝑥2 (𝑥 − 2)3, and

𝐺 = {𝑔1, 𝑔2, 𝑔3, 𝑔4}. Then one can compute 𝑆 (𝐺) = [−1, 0] ∪ {1, 2}.
• For 𝑎 = −1: 𝑘−1 (𝐺) = ∞, 𝑘+−1 (𝐺) = 1, and 𝑘−−1 (𝐺) = ∞;

• For 𝑎 = 0: 𝑘0 (𝐺) = ∞, 𝑘+
0
(𝐺) = ∞, and 𝑘−

0
(𝐺) = 1;

• For 𝑎 = 1: 𝑘1 (𝐺) = 2, 𝑘+
1
(𝐺) = 1, and 𝑘−

1
(𝐺) = ∞;

• For 𝑎 = 2: 𝑘2 (𝐺) = 4, 𝑘+
2
(𝐺) = 3, and 𝑘−

2
(𝐺) = 3.

Consider a bounded non-negative set 𝑆 (𝐺) for some polynomial

set 𝐺 ⊆ R[𝑥]. Then one knows that 𝑆 (𝐺) is a collection of closed

intervals and isolated points in R.

Theorem 13 ([2, Theorem 2.18]). Let 𝑓 ∈R[𝑥] and𝐺 = {𝑔1, ..., 𝑔𝑠 }
⊆ R[𝑥] with 𝑆 := 𝑆 (𝐺) bounded. Then 𝑓 ∈ QM(𝐺) if and only if
𝑓 |𝑆 ≥ 0 and the following statements hold.

(1) For every left boundary𝑎 of closed intervals of 𝑆 , either ord𝑎 (𝑓 )
is even or ord𝑎 (𝑓 ) − 𝑘+𝑎 (𝐺) ∈ 2N.

(2) For every right boundary 𝑏 of closed intervals of 𝑆 , either
ord𝑏 (𝑓 ) is even or ord𝑏 (𝑓 ) − 𝑘−

𝑏
(𝐺) ∈ 2N.

(3) For every isolated point 𝑐 of 𝑆 , either (ord𝑐 (𝑓 ) is even and
𝜖𝑐 (𝑓 ) = 1) or one of the following cases happens.

(Case 1) ord𝑐 (𝑓 ) ≥ 𝑘𝑐 (𝐺), if 𝑘𝑐 (𝐺) < 𝑘+𝑐 (𝐺) and 𝑘𝑐 (𝐺) < 𝑘−𝑐 (𝐺);
(Case 2) (ord𝑐 (𝑓 ) − 𝑘+𝑐 (𝐺) ∈ 2N and 𝜖𝑐 (𝑓 ) = 1) or ord𝑐 (𝑓 ) ≥

min(𝑘𝑐 (𝐺), 𝑘−𝑐 (𝐺)), if 𝑘+𝑐 (𝐺) ≤ min(𝑘𝑐 (𝐺), 𝑘−𝑐 (𝐺));
(Case 3) (ord𝑐 (𝑓 ) − 𝑘−𝑐 (𝐺) ∈ 2N and 𝜖𝑐 (𝑓 ) = −1) or ord𝑐 (𝑓 ) ≥

min(𝑘𝑐 (𝐺), 𝑘+𝑐 (𝐺)), if 𝑘−𝑐 (𝐺) ≤ min(𝑘𝑐 (𝐺), 𝑘+𝑐 (𝐺)).

Theorem 13 directly leads to an algorithm to test the membership

in bounded finitely generated quadratic modules in R[𝑥], while the
following corollary, whose proof is straightforward, can be used to

optimize the algorithm.
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Corollary 14. Let 𝑓 , 𝐺 , and 𝑆 be as stated in Theorem 13. (1) If
𝑓 |𝑆 > 0, then 𝑓 ∈ QM(𝐺). (2) If 𝑓 |𝑆 ≥ 0 and any of 𝑍 (𝑓 ) is neither
a boundary nor an isolated point of 𝑆 , then 𝑓 ∈ QM(𝐺).

Instead of presenting the algorithm based on Theorem 13, we

further make use of the fact that a quadratic moduleQM(𝐺) is char-
acterized by the values (𝑘𝑎 (𝐺), 𝑘+𝑎 (𝐺), 𝑘−𝑎 (𝐺)) for any boundary

or isolated point 𝑎 of 𝑆 (𝐺) to derive a simpler criterion based on

which an algorithm will be presented.

Given a finite polynomial set 𝐺 ⊆ R[𝑥] with 𝑆 (𝐺) bounded, let
𝑆 (𝐺) =

⋃𝑛
𝑖=1 [𝑎𝑖 , 𝑏𝑖 ] (note that 𝑎𝑖 = 𝑏𝑖 is possible for an isolated

point) such that any two distinct [𝑎𝑖 , 𝑏𝑖 ] and [𝑎 𝑗 , 𝑏 𝑗 ] do not intersect
and 𝑏𝑖 < 𝑎𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1. For any finite polynomial set

𝐹 ⊆ R[𝑥] such that 𝑆 (𝐺) ⊆ 𝑆 (𝐹 ), we assign a tuple (𝑘𝑖 , 𝑘+𝑖 , 𝑘
−
𝑖
) to

each interval [𝑎𝑖 , 𝑏𝑖 ] for 𝑖 = 1, . . . , 𝑛 as follows.

(1) If 𝑎𝑖 ≠ 𝑏𝑖 , set 𝑘𝑖 = ∞, 𝑘+
𝑖
= 𝑘+𝑎𝑖 (𝐹 ), and 𝑘

−
𝑖
= 𝑘−

𝑏𝑖
(𝐹 ).

(2) If 𝑎𝑖 = 𝑏𝑖 = 𝑎, set the values in the following five cases.

(Type A) If 𝑘𝑎 (𝐹 ) < 𝑘+𝑎 (𝐹 ) and 𝑘𝑎 (𝐹 ) < 𝑘−𝑎 (𝐹 ), set
𝑘𝑖 = 𝑘𝑎 (𝐹 ), 𝑘+𝑖 = 𝑘𝑎 (𝐹 ) + 1, 𝑘−𝑖 = 𝑘𝑎 (𝐹 ) + 1.

(Type B) If 𝑘𝑎 (𝐹 ) > 𝑘+𝑎 (𝐹 ) and 𝑘𝑎 (𝐹 ) > 𝑘−𝑎 (𝐹 ), set
𝑘𝑖 = max(𝑘+𝑎 (𝐹 ), 𝑘−𝑎 (𝐹 )) + 1, 𝑘+𝑖 = 𝑘+𝑎 (𝐹 ), 𝑘−𝑖 = 𝑘−𝑎 (𝐹 ).

(Type C) If 𝑘+𝑎 (𝐹 ) < 𝑘𝑎 (𝐹 ) < 𝑘−𝑎 (𝐹 ), set
𝑘𝑖 = 𝑘𝑎 (𝐹 ), 𝑘+𝑖 = 𝑘+𝑎 (𝐹 ), 𝑘−𝑖 = 𝑘𝑎 (𝐹 ) + 1.

(Type D) If 𝑘−𝑎 (𝐹 ) < 𝑘𝑎 (𝐹 ) < 𝑘+𝑎 (𝐹 ), set
𝑘𝑖 = 𝑘𝑎 (𝐹 ), 𝑘+𝑖 = 𝑘𝑎 (𝐹 ) + 1, 𝑘−𝑖 = 𝑘−𝑎 (𝐹 ).

(Type E) If 𝑘𝑎 (𝐹 ) = 𝑘+𝑎 (𝐹 ) = ∞, set 𝑘𝑖 = 𝑘+
𝑖
= ∞ and 𝑘−

𝑖
= 𝑘−𝑎 (𝐹 ),

or if 𝑘−𝑎 (𝐹 ) = 𝑘𝑎 (𝐹 ) = ∞, set 𝑘𝑖 = 𝑘−
𝑖
= ∞ and 𝑘+

𝑖
= 𝑘+𝑎 (𝐹 ).

Concatenating all the tuples together, we assign to 𝐹 a signature

𝜔𝑆 (𝐹 ) := (𝑘1, 𝑘+
1
, 𝑘−

1
, ..., 𝑘𝑛, 𝑘

+
𝑛 , 𝑘

−
𝑛 ) with respect to 𝑆 . When 𝑆 =

𝑆 (𝐹 ), the subscript 𝑆 in 𝜔𝑆 (𝐹 ) is omitted.

Note that all the three values 𝑘𝑎 (𝐹 ), 𝑘+𝑎 (𝐹 ), and 𝑘−𝑎 (𝐹 ) can take

infinity. When a strict inequality like 𝑘𝑎 (𝐹 ) < 𝑘+𝑎 (𝐹 ) occurs, it
implies that the less value like 𝑘𝑎 (𝐹 ) here is finite.

Example 15. Let us continue with Example 12. Writing isolated

points also as intervals, 𝑆 (𝐺) = [−1, 0] ∪ [1, 1] ∪ [2, 2], and in the

following we compute the signature 𝜔 (𝐺).
• For the proper closed interval [−1, 0]. With all the values

computed in Example 12, one can easily see that 𝑘1 = ∞,

𝑘+
1
= 1, and 𝑘−

1
= 1;

• For the isolated point [1, 1], since 𝑘+
1
(𝐺) < 𝑘1 (𝐺) < 𝑘−

1
(𝐺),

one knows that it is of Type C in the definition, and thus one

has 𝑘2 = 2, 𝑘+
2
= 1, and 𝑘−

2
= 3.

• For the isolated point [2, 2], since𝑘2 (𝐺) > 𝑘+
2
(𝐺) and𝑘2 (𝐺) >

𝑘−
2
(𝐺), one knows that it is of Type B and 𝑘3 = 4, 𝑘+

3
= 3,

and 𝑘−
3
= 3.

As a result, one has 𝜔 (𝐺) = (∞, 1, 1, 2, 1, 3, 4, 3, 3).

Our definition of the signature 𝜔𝑆 (𝐹 ) here generalizes the sim-

ilar notion 𝜔± (𝐺) in [2] in the way that we allow to compute

the signature of a polynomial set 𝐹 with respect to the bounded

non-negative set 𝑆 (𝐺) of another polynomial set 𝐺 as long as the

condition 𝑆 (𝐺) ⊆ 𝑆 (𝐹 ) is satisfied. This generalization results in a

new type (Type E) for an isolated point 𝑎 reflecting the case when

𝑓 (𝑎) > 0 for all 𝑓 ∈ 𝐹 (which will not happen if one restricts

himself to the signature 𝜔 (𝐺) for only one polynomial set𝐺). This

generalization furnishes us the criterion (Theorem 19) below to test

inclusion of finitely generated quadratic modules in R[𝑥] by using

their signatures, which naturally degenerates to a method to test

membership in bounded quadratic modules. What is more inter-

esting, this generalization which allows Type E naturally encodes

Corollary 14, which can be considered as improvement of Theo-

rem 13, in the criterion. In particular, the condition 𝑆 (𝐺) ⊆ 𝑆 (𝐹 )
we impose on 𝐹 means that the results we obtain below also apply

to an unbounded quadratic module QM(𝐹 ).
Fix a bounded non-negative set 𝑆 = 𝑆 (𝐺) = ⋃𝑛

𝑖=1 [𝑎𝑖 , 𝑏𝑖 ]. Then
we can assign a partial order ⪯ to all the signatures with respect

to 𝑆 as follows: two signatures 𝜔𝑆 (𝐹1) and 𝜔𝑆 (𝐹2) are such that

𝜔𝑆 (𝐹1) ⪯ 𝜔𝑆 (𝐹2) if and only if 𝜔𝑆 (𝐹1) [𝑖] ≤ 𝜔𝑆 (𝐹2) [𝑖] for 𝑖 =

1, . . . , 3𝑛, where 𝜔𝑆 (𝐹1) [𝑖] denotes the 𝑖-th entry of the sequence

𝜔𝑆 (𝐹1). For any polynomial set 𝐹 ⊆ R[𝑥] and any 𝑎 ∈ R, denote the
tuple (𝑘𝑎 (𝐹 ), 𝑘+𝑎 (𝐹 ), 𝑘−𝑎 (𝐹 )) by 𝐿𝑎 (𝐹 ). Note that we can compare

two tuples 𝐿𝑎 (𝐹 ) and 𝐿𝑎 (𝐺) with the same partial order ⪯.
In the following we first present three lemmas, the first of which

is straightforward and we omit its proof.

Lemma 16. Let 𝑓 be a polynomial in R[𝑥]. (1) Among the three
values of 𝐿𝑎 (𝑓 ) there are at most one finite value. (2) If a polynomial
set 𝐹 ⊂ R[𝑥] contains 𝑓 , then 𝐿𝑎 (𝑓 ) ⪰𝐿𝑎 (𝐹 ). (3) If 𝑓 (𝑎)>0, then ˆ𝑓𝑎
is a sum of squares in R[[𝑥 − 𝑎]] and 𝐿𝑎 (𝑓 ) = (∞,∞,∞).

Lemma 17. Let 𝐹 be a finite polynomial set in R[𝑥] with 𝑆 (𝐹 ) =⋃𝑛
𝑖=1 [𝑎𝑖 , 𝑏𝑖 ] and 𝜔 (𝐹 ) = [𝑘1, 𝑘+

1
, 𝑘−

1
, ..., 𝑘𝑛, 𝑘

+
𝑛 , 𝑘

−
𝑛 ]. Then for each

𝑖 = 1, . . . , 𝑛, if 𝑎𝑖 ≠ 𝑏𝑖 , then (𝑥−𝑎𝑖 )𝑘
+
𝑖 ∈ QM𝑎𝑖

(𝐹 ) and −(𝑥−𝑏𝑖 )𝑘
−
𝑖 ∈

QM𝑏𝑖
(𝐹 ) in R[[𝑥 − 𝑎]]; if 𝑎𝑖 = 𝑏𝑖 = 𝑎, then −(𝑥 − 𝑎)𝑘𝑖 , (𝑥 − 𝑎)𝑘+

𝑖 ,
and −(𝑥 − 𝑎)𝑘−

𝑖 are all in QM𝑎 (𝐹 ) in R[[𝑥 − 𝑎]].

Proof. For each 𝑖 = 1, . . . , 𝑛, if 𝑎𝑖 ≠ 𝑏𝑖 , then by the definition

of 𝑘+𝑎𝑖 (𝐹 ) we know that there exists a polynomial 𝑓 ∈ 𝐹 such

that
ˆ𝑓𝑎𝑖 = (𝑥 − 𝑎𝑖 )𝑘

+
𝑖 ∈ QM𝑎𝑖

(𝐹 ). Similarly, there exists another

polynomial 𝑔 ∈ 𝐹 such that 𝑔𝑏𝑖 = −(𝑥 − 𝑏𝑖 )𝑘
−
𝑖 ∈ QM𝑏𝑖

(𝐹 ).
If 𝑎𝑖 =𝑏𝑖 =𝑎, then we discuss according to the type of (𝑘𝑖 , 𝑘+𝑖 , 𝑘

−
𝑖
).

(Type A) In this case we know 𝑘𝑖 = 𝑘𝑎 (𝐹 ) is finite and by Defini-

tion 11 there exists a polynomial 𝑓 ∈ 𝐹 such that ord𝑎 (𝑓 ) = 𝑘𝑖 is

even and 𝜖𝑎 (𝑔𝑖 ) = −1, which implies that
ˆ𝑓𝑎 = −(𝑥−𝑎)𝑘𝑖 ∈ QM𝑎 (𝐹 ).

Then by the inclusive relationship in Figure 1 we know that −(𝑥 −
𝑎)𝑘−

𝑖 = −(𝑥−𝑎)𝑘𝑖+1 and (𝑥−𝑎)𝑘+
𝑖 = (𝑥−𝑎)𝑘𝑖+1 are both inQM𝑎 (𝐹 ).

(Type B) It suffices to prove QM
0
(−𝑥2𝑛) ⊆ QM

0
(𝑥2𝑛−1,−𝑥2𝑛−1)

for any positive integer 𝑛, and this inclusion can be shown with

−𝑥2𝑛 = 𝑥2𝑛−1 (−𝑥) = 𝑥2𝑛−1
(
−𝑥 + 1

2

)
2

+ (−𝑥2𝑛−1)
(
−𝑥 − 1

2

)
2

.

The proofs for Type C and Type D are similar to that of Type A. □

Lemma 18. Let 𝑓 ∈ R[𝑥] be a polynomial whose factorization
is 𝑓 =

∏𝑚
𝑖=1 (𝑥 − 𝑎𝑖 )𝑡𝑖ℎ(𝑥), where 𝑎1, . . . , 𝑎𝑚 are pairwisely distinct

and ℎ(𝑥) is a product of quadratic irreducible polynomials. Then for
each 𝑖 = 1, . . . ,𝑚, ord𝑎𝑖 (𝑓 ) = 𝑡𝑖 and 𝜖𝑎𝑖 (𝑓 ) = sign(𝑓 (𝑝𝑖 )), where 𝑝𝑖
is any point to the right of 𝑎𝑖 such that no root of 𝑓 falls in (𝑎𝑖 , 𝑝𝑖 ].

Proof. For each 𝑖 = 1, . . . ,𝑚, from the factorization of 𝑓 we

know that 𝑎𝑖 is a root of 𝑓 of multiplicity 𝑡𝑖 , and thus 𝑓 ( 𝑗) (𝑎𝑖 ) = 0
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for 𝑗 = 0, . . . , 𝑡𝑖−1 and 𝑓 (𝑡𝑖 ) (𝑎𝑖 ) = (𝑡𝑖 !)
∏𝑚

𝑗=1, 𝑗≠𝑖 (𝑎𝑖−𝑎 𝑗 )𝑡 𝑗ℎ(𝑎𝑖 ) ≠ 0.

Then, ord𝑎𝑖 (𝑓 ) = 𝑡𝑖 .

Write 𝑓 as 𝑓 = (𝑥 − 𝑎𝑖 )𝑡𝑖
∏𝑚

𝑗=1, 𝑗≠𝑖 (𝑥 − 𝑎 𝑗 )𝑡 𝑗ℎ(𝑥). Then 𝑓 (𝑝𝑖 ) =
(𝑝𝑖−𝑎𝑖 )𝑡𝑖

∏𝑚
𝑗=1, 𝑗≠𝑖 (𝑝𝑖−𝑎 𝑗 )𝑡 𝑗ℎ(𝑝𝑖 ). Comparing this expression with

that of 𝑓 (𝑡𝑖 ) (𝑎𝑖 ), we know that 𝑓 (𝑡𝑖 ) (𝑎𝑖 ) and 𝑓 (𝑝𝑖 ) share the same

sign, for 𝑝𝑖−𝑎𝑖 >0 and (𝑎𝑖 , 𝑝𝑖 ] does not contain any root of 𝑓 . □

Theorem 19. Let 𝐺 = {𝑔1, ..., 𝑔𝑠 } and 𝐹 = {𝑓1, ..., 𝑓𝑡 } be two
polynomial sets in R[𝑥] such that 𝑆 (𝐺) is bounded. Then QM(𝐹 ) ⊆
QM(𝐺) if and only if 𝑆 (𝐺) ⊆ 𝑆 (𝐹 ) and 𝜔 (𝐺) ⪯ 𝜔𝑆 (𝐺) (𝐹 ).

Proof. Without loss of generality, let 𝑆 (𝐺) = ⋃𝑛
𝑖=1 [𝑎𝑖 , 𝑏𝑖 ],𝜔 (𝐺) =

(𝑘1, 𝑘+
1
, 𝑘−

1
, ..., 𝑘𝑛, 𝑘

+
𝑛 , 𝑘

−
𝑛 ), and𝜔𝑆 (𝐺) (𝐹 )= ( ˜𝑘1, ˜𝑘+

1
, ˜𝑘−

1
, . . . , ˜𝑘𝑛, ˜𝑘

+
𝑛 ,

˜𝑘−𝑛 ).
(⇒) From the inclusion QM(𝐹 ) ⊆ QM(𝐺) we know that for

each 𝑖 = 1, . . . , 𝑡 , 𝑓𝑖 is in QM(𝐺) , and thus there exist sums of

squares 𝜎0, 𝜎1, . . . , 𝜎𝑠 in R[𝑥] such that 𝑓𝑖 = 𝜎0 +
∑𝑠

𝑗=1 𝜎 𝑗𝑔 𝑗 . Then,

𝑓𝑖 |𝑆 (𝐺) ≥ 0 for 𝑖 = 1, . . . , 𝑡 , and thus 𝑆 (𝐺) ⊆ 𝑆 (𝐹 ). To prove

𝜔 (𝐺) ⪯ 𝜔𝑆 (𝐺) (𝐹 ), it suffices to prove that for each 𝑗 = 1, . . . , 𝑛,

(𝑘 𝑗 , 𝑘+𝑗 , 𝑘
−
𝑗
) ⪯ ( ˜𝑘 𝑗 , ˜𝑘+𝑗 , ˜𝑘

−
𝑗
).

(1) If 𝑎 𝑗 ≠ 𝑏 𝑗 , then this is a closed interval and
˜𝑘 𝑗 = 𝑘 𝑗 = ∞.

We first prove the inequality 𝑘+
𝑗
≤ ˜𝑘+

𝑗
, which only involves the left

boundary 𝑎 𝑗 . For each 𝑓𝑖 ∈ 𝐹 , we know that 𝑓𝑖 (𝑎 𝑗 ) ≥ 0. If 𝑓𝑖 (𝑎 𝑗 ) > 0,

then by Lemma 16(3) 𝑘+𝑎 𝑗
(𝑓𝑖 ) = ∞. Else if 𝑓𝑖 (𝑎 𝑗 ) = 0, then by

𝑓𝑖 | [𝑎 𝑗 ,𝑏 𝑗 ] ≥ 0 and Lemma 18, we know that 𝜖𝑎 𝑗
(𝑓𝑖 ) = 1. When

ord𝑎 𝑗
(𝑓𝑖 ) is even, by Definition 11 𝑘+𝑎 𝑗

(𝑓𝑖 ) = ∞; when ord𝑎 𝑗
(𝑓𝑖 ) is

odd, by Theorem 13(1) 𝑘+𝑎 𝑗
(𝑓𝑖 ) = ord𝑎 𝑗

(𝑓𝑖 ) ≥ 𝑘+𝑎 𝑗
(𝐺). Summarizing

all the cases above,
˜𝑘+
𝑗
=𝑘+𝑎 𝑗

(𝐹 )= min1≤𝑖≤𝑡 𝑘+𝑎 𝑗
(𝑓𝑖 ) ≥𝑘+𝑎 𝑗

(𝐺)=𝑘+
𝑗
.

Next we prove the remaining inequality 𝑘−
𝑗
≤ ˜𝑘−

𝑗
which only

involves 𝑏 𝑗 . As in the arguments above for 𝑎 𝑗 , we only need to con-

sider the case when 𝑓𝑖 (𝑏 𝑗 ) = 0 for each 𝑓𝑖 ∈ 𝐹 . When 𝜖𝑏 𝑗
(𝑓𝑖 ) = 1,

we know that ord𝑏 𝑗
(𝑓𝑖 ) is even, for otherwise 𝑓𝑖 will be negative at

some point to the left of 𝑏 𝑗 , which contradicts the fact 𝑓𝑖 | [𝑎 𝑗 ,𝑏 𝑗 ] ≥
0. Now 𝑘−

𝑏 𝑗
(𝑓𝑖 ) = ∞ by Definition 11. When 𝜖𝑏 𝑗

(𝑓𝑖 ) = −1, we
know that ord𝑏 𝑗

(𝑓𝑖 ) is odd, for otherwise 𝑏 𝑗 would be an iso-

lated point in 𝑆 (𝑓𝑖 ). By Theorem 13(2) we know that 𝑘−
𝑏 𝑗
(𝑓𝑖 ) =

ord𝑏 𝑗
(𝑓𝑖 ) ≥ 𝑘−

𝑏 𝑗
(𝐺). Summarizing all the cases above,

˜𝑘−
𝑗
= 𝑘−

𝑏 𝑗
(𝐹 )

= min1≤𝑖≤𝑡 𝑘−𝑏 𝑗
(𝑓𝑖 ) ≥ 𝑘−

𝑏 𝑗
(𝐺) = 𝑘−

𝑗
.

(2) If 𝑎 𝑗 = 𝑏 𝑗 = 𝑎, then it is an isolated point: For any 𝑓 ∈ 𝐹 ,

if ord𝑎 (𝑓 ) is even and 𝜖𝑎 (𝑓 ) = 1, then as in the arguments above,

we can show that 𝐿𝑎 (𝑓 ) = (∞,∞,∞). In this case such a polyno-

mial 𝑓 has no influence on our target comparison (𝑘 𝑗 , 𝑘+𝑗 , 𝑘
−
𝑗
) ⪯

( ˜𝑘 𝑗 , ˜𝑘+𝑗 , ˜𝑘
−
𝑗
), and thus we can ignore this kind of polynomials in 𝐹 .

Next we consider the four types of (𝑘 𝑗 , 𝑘+𝑗 , 𝑘
−
𝑗
).

Type A corresponds to Case 1 of Theorem 13(3), and thus for each

𝑓𝑖 ∈ 𝐹 , 𝑓𝑖 ∈ QM(𝐺) and therefore ord𝑎 (𝑓 ) ≥ 𝑘𝑎 (𝐺) = 𝑘𝑖 , where

𝑘𝑖 is a finite even number. When 𝜖𝑎 (𝑓𝑖 ) = 1 and ord𝑎 (𝑓𝑖 ) is odd,
𝑘+𝑎 (𝑓𝑖 ) = ord𝑎 (𝑓𝑖 ) ≥ 𝑘 𝑗 + 1 = 𝑘+

𝑗
; when 𝜖𝑎 (𝑓𝑖 ) = −1 and ord𝑎 (𝑓𝑖 )

is even, 𝑘𝑎 (𝑓𝑖 ) = ord𝑎 (𝑓𝑖 ) ≥ 𝑘𝑖 ; when 𝜖𝑎 (𝑓𝑖 ) = −1 and ord𝑎 (𝑓𝑖 )
is odd, 𝑘−𝑎 (𝑓𝑖 ) = ord𝑎 (𝑓𝑖 ) ≥ 𝑘 𝑗 + 1 = 𝑘−

𝑗
. In all the three cases

above, we can draw the conclusion 𝐿𝑎 (𝑓𝑖 ) ⪰ [𝑘 𝑗 , 𝑘+𝑗 , 𝑘
−
𝑗
], for the

remaining two values in 𝐿𝑎 (𝑓𝑖 ) are both∞ by Lemma 16(1). Then

by the arbitrariness of 𝑓𝑖 in 𝐹 , ˜𝑘 𝑗 = 𝑘𝑎 (𝐹 ) = min1≤𝑖≤𝑡 𝑘𝑎 (𝑓𝑖 ) ≥ 𝑘 𝑗 .

Similarly the inequalities
˜𝑘+
𝑗
≥ 𝑘+

𝑗
and

˜𝑘−
𝑗
≥ 𝑘−

𝑗
also hold, and thus,

( ˜𝑘 𝑗 , ˜𝑘+𝑗 , ˜𝑘
−
𝑗
) ⪰ (𝑘 𝑗 , 𝑘+𝑗 , 𝑘

−
𝑗
).

In Type B, the case 𝑘 𝑗 ≥ 𝑘+
𝑗
≥ 𝑘−

𝑗
corresponds to Case 3 of

Theorem 13(3), while the remaining case 𝑘 𝑗 ≥ 𝑘−
𝑗
≥ 𝑘+

𝑗
to Case 2;

Type C corresponds to Case 2; and Type D corresponds to Case

3. Performing similar analysis as done in Type A, we can draw

the same conclusion 𝐿𝑎 (𝑓𝑖 ) ⪰ (𝑘 𝑗 , 𝑘+𝑗 , 𝑘
−
𝑗
) for each 𝑓𝑖 ∈ 𝐹 , and the

inequality ( ˜𝑘 𝑗 , ˜𝑘+𝑗 , ˜𝑘
−
𝑗
) ⪰ (𝑘 𝑗 , 𝑘+𝑗 , 𝑘

−
𝑗
) follows.

(⇐) To prove the inclusion QM(𝐹 ) ⊆ QM(𝐺), it suffices to

prove 𝑓𝑖 ∈ QM(𝐺) for each 𝑓𝑖 ∈ 𝐹 . Since 𝑆 (𝐺) ⊆ 𝑆 (𝐹 ) ⊆ 𝑆 (𝑓𝑖 ),
𝑓𝑖 |𝑆 (𝐺) ≥ 0, and thus by the local-global principle (Theorem 6),

it suffices to show that
ˆ𝑓𝑖𝑎 ∈ QM𝑎 (𝐺) for any 𝑎 ∈ 𝑆 (𝐺) ∩ 𝑍 (𝑓𝑖 ).

Next we prove the inclusion for each interval [𝑎 𝑗 , 𝑏 𝑗 ] of 𝑆 (𝐺) for
𝑗 = 1, . . . , 𝑛.

(1) If 𝑎 𝑗 ≠ 𝑏 𝑗 , then it is a closed interval. For any 𝑎 ∈ (𝑎 𝑗 , 𝑏 𝑗 ) such
that 𝑓𝑖 (𝑎) = 0, we know that 𝜖𝑎 (𝑓𝑖 ) = 1 and ord𝑎 (𝑓𝑖 ) is even, and
thus

ˆ𝑓𝑎 is a sum of squares in R[[𝑥 − 𝑎]], implying
ˆ𝑓𝑎 ∈ QM𝑎 (𝐺)

trivially. For the left boundary 𝑎 𝑗 , 𝜖𝑎 𝑗
(𝑓𝑖 ) = 1. When ord𝑎 𝑗

(𝑓𝑖 ) is
even, we can show that

ˆ𝑓𝑖𝑎 𝑗
is a sum of squares in R[[𝑥 − 𝑎 𝑗 ]]

and thus
ˆ𝑓𝑖𝑎 𝑗

∈ QM𝑎 𝑗
(𝐺) trivially. When ord𝑎 𝑗

(𝑓𝑖 ) is odd, by

Lemma 17 (𝑥 − 𝑎 𝑗 )𝑘
+
𝑗 ∈ QM𝑎 𝑗

(𝐺), and thus from ord𝑎 𝑗
(𝑓𝑖 ) =

𝑘+𝑎 𝑗
(𝑓𝑖 ) ≥ ˜𝑘+

𝑗
≥ 𝑘+

𝑗
, we have

ˆ𝑓𝑖𝑎 𝑗
= (𝑥 − 𝑎 𝑗 )ord𝑎𝑗 (𝑓𝑖 ) ∈ QM𝑎 𝑗

(𝐺).
For the right boundary 𝑏 𝑗 , when 𝜖𝑏 𝑗

(𝑓𝑖 ) = 1, ord𝑏 𝑗
(𝑓𝑖 ) must be

even, for otherwise 𝑓 is negative at some point to the left of 𝑏 𝑗 ,

which contradicts the fact 𝑓𝑖 | [𝑎 𝑗 ,𝑏 𝑗 ] ≥ 0. In this case
ˆ𝑓𝑖𝑏𝑗

is a sum

of squares in R[[𝑥 −𝑏 𝑗 ]] and thus ˆ𝑓𝑖𝑏 𝑗
∈ QM𝑏 𝑗

(𝐺) trivially. When

𝜖𝑏 𝑗
(𝑓𝑖 ) = −1, ord𝑏 𝑗

(𝑓𝑖 ) must be odd, for otherwise 𝑏 𝑗 is an isolated

point of 𝑆 (𝑓 ), another contradiction. By Lemma 17 we know that

−(𝑥−𝑏 𝑗 )𝑘
−
𝑗 ∈ QM𝑏 𝑗

(𝐺), and thus from ord𝑏 𝑗
(𝑓𝑖 ) = 𝑘−

𝑏 𝑗
(𝑓𝑖 ) ≥ ˜𝑘−

𝑗
≥

𝑘−
𝑗
,
ˆ𝑓𝑖𝑏 𝑗

= −(𝑥 − 𝑏 𝑗 )ord𝑏𝑗 (𝑓𝑖 ) ∈ QM𝑏 𝑗
(𝐺).

(2) If 𝑎 𝑗 = 𝑏 𝑗 = 𝑎, then it is an isolated point: by Lemma 16(2) we

have that 𝐿𝑎 (𝑓𝑖 ) ⪰ 𝐿𝑎 (𝐹 ) ⪰ ( ˜𝑘 𝑗 , ˜𝑘+𝑗 , ˜𝑘
−
𝑗
) ⪰ (𝑘 𝑗 , 𝑘+𝑗 , 𝑘

−
𝑗
), and thus

ˆ𝑓𝑖𝑎 = 𝜖𝑎 (𝑓𝑖 ) (𝑥 − 𝑎)ord𝑎 (𝑓 ) is in QM𝑎 ({−(𝑥 − 𝑎)𝑘 𝑗 , (𝑥 − 𝑎)𝑘
+
𝑗 ,−(𝑥 −

𝑎)𝑘
−
𝑗 }) and thus in QM𝑎 (𝐺) by Lemma 17. □

Corollary 20. Let 𝐺 ⊆ R[𝑥] be a polynomial set with bounded
𝑆 (𝐺) and 𝑓 ∈ R[𝑥] be an polynomial. Then 𝑓 ∈ QM(𝐺) if and only
if 𝑓 |𝑆 (𝐺) ≥ 0 and 𝜔 (𝐺) ⪯ 𝜔𝑆 (𝐺) (𝑓 ).

Based on Theorem 19, we directly derive an algorithm to test

inclusion of finitely generated quadratic modules. This algorithm is

summarized below as Algorithms 2, where Signature(𝐹, 𝑆) is a sub-
routine to compute the signature of 𝐹 with respect to a non-negative

set 𝑆 . Note that when the polynomial set 𝐹 consists of a single poly-

nomial 𝑓 , Algorithm 2 indeed degenerates to an algorithm to test

membership in bounded quadratic module QM(𝐺).
From Theorem 19, the criterion for the equality of two quadratic

modules, which is Corollary 2.27 in [2], is straightforward.

Corollary 21. Let 𝐹 and 𝐺 be two polynomial sets in R[𝑥] with
bounded 𝑆 (𝐹 ) and 𝑆 (𝐺). Then QM(𝐺) = QM(𝐹 ) if and only if
𝑆 (𝐺) = 𝑆 (𝐹 ) and 𝜔 (𝐺) = 𝜔 (𝐹 ).
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Algorithm 2: Algorithm for testing inclusion of finitely

generated quadratic modules 𝐵 := IsIncluded(𝐹,𝐺)
Input: Two finite polynomial sets 𝐹,𝐺 ⊆ R[𝑥 ] with bounded 𝑆 (𝐺)
Output: A boolean 𝐵 such that 𝐵 = true if QM(𝐹 ) ⊆ QM(𝐺) and

𝐵 = false otherwise
1 𝑆𝐹 := 𝑆 (𝐹 ) ; 𝑆𝐺 := 𝑆 (𝐺) ;
2 if 𝑆𝐺 ⊆ 𝑆𝐹 then
3 𝜔𝐹 := Signature(𝐹, 𝑆𝐹 ) ; 𝜔𝐺 := Signature(𝐺, 𝑆𝐺 ) ;
4 if 𝜔𝐺 ⪯ 𝜔𝐹 then 𝐵 := true; else 𝐵 := false;
5 else 𝐵 := false ;
6 return 𝐵;

Example 22. (1) We first test whether the polynomial 𝑓1 =

𝑥3 (𝑥 − 1)3 is in QM(𝐺) with the polynomial set 𝐺 in Example 12

by using Corollary 20. One can check that 𝑆 (𝑓1) = [−∞, 0] ∪
[1,∞] ⊇ 𝑆 (𝐺) and 𝜔𝑆 (𝐺) (𝑓1) = (∞,∞, 3,∞, 3,∞,∞,∞,∞). Com-

paring𝜔𝑆 (𝐺) (𝑓1) with𝜔 (𝐺) computed in Example 15, one finds that

𝜔 (𝐺) ⪯𝜔𝑆 (𝐺) (𝑓1), and thus by Corollary 20 one has 𝑓1 ∈QM(𝐺).
(2) Let 𝐹 = {𝑓1, 𝑓2, 𝑓3} with 𝑓2 = 𝑥3 (𝑥 − 1)6 (𝑥 − 2) and 𝑓3 =

(𝑥 − 1)5 (𝑥 − 2)4 (𝑥 − 2.5). Next we test whether the quadratic mod-

ule QM(𝐹 ) is included in QM(𝐺). One can compute that 𝑆 (𝐹 ) =

[−∞, 0]∪[1, 1]∪[2, 2]∪[2.5,∞] ⊇ 𝑆 (𝐺) and𝜔𝑆 (𝐺) (𝐹 ) = (∞,∞, 3, 6,

3, 5, 4, 1, 5). The last tuples in 𝜔𝑆 (𝐺) (𝐹 ) and 𝜔 (𝐺) are (4, 1, 5) and
(4, 3, 4) respectively and (4, 1, 5) ⪯̸ (4, 3, 4). As a result, one knows
that QM(𝐹 ) ⊈ QM(𝐺) by Theorem 19.

(3) Let 𝐻 = {(𝑥 + 1)𝑥 (𝑥 − 1)2 (𝑥 − 2)3,−(𝑥 − 0.8) (𝑥 − 1) (𝑥 − 2)3}.
Then one can check that 𝑆 (𝐻 ) = 𝑆 (𝐺) and 𝜔 (𝐻 ) = 𝜔 (𝐺), and thus

by Corollary 21 one knows QM(𝐻 ) = QM(𝐺).

5 MINIMAL NUMBER OF GENERATORS OF
BOUNDED QUADRATIC MODULES

A key result of this paper is to reduce the number of generators for

any bounded finitely generated quadratic module QM(𝐺) in R[𝑥]
to at most 2, the best possible in general, using Algorithm 3 below.

This improves upon an algorithm in Augustin’s thesis [2] to find a

set of at most 3 generators by using the signature 𝜔 (𝐺).
The key insight that led to the algorithm is that in the definition

of (𝑘𝑖 , 𝑘+𝑖 , 𝑘
−
𝑖
) of a polynomial set 𝐹 with respect to the 𝑖-th interval

[𝑎𝑖 , 𝑏𝑖 ] of 𝑆 (𝐹 ), there are at least one redundant value in the above

tuple. The redundant values are: (1) for a closed interval: 𝑘𝑖 ; (2) for

an isolated point: 𝑘+
𝑖
and 𝑘−

𝑖
for Type A, 𝑘𝑖 for Type B, 𝑘

−
𝑖
for Type

C, and 𝑘+
𝑖
for Type D.

Theorem 23. Algorithm 3 generates a set of at most 2 generators
for a given bounded finitely generated univariate quadratic module.

Proof. Obviously Algorithm 3 outputs two polynomials 𝑓 and

𝑔 in finite steps, and it suffices to prove that the quadratic modules

QM(𝑓 , 𝑔) is equal to QM(𝐺). Then by Corollary 21, we only need

to show the equality 𝑆 (𝑓 , 𝑔) = 𝑆 (𝐺) and 𝜔 (𝑓 , 𝑔) = 𝜔 (𝐺).
The algorithm handles [𝑎1, 𝑏1], . . . , [𝑎𝑛, 𝑏𝑛] in 𝑆 (𝐺) one by one

and updates 𝑓 and 𝑔 accordingly in each iteration. For each 𝑖 =

1, . . . , 𝑛, denote the updated 𝑓 and 𝑔 after the 𝑖-th iteration by 𝑓𝑖 and

𝑔𝑖 respectively, and let 𝑆𝑖 :=
⋃𝑖

𝑗=1 [𝑎 𝑗 , 𝑏 𝑗 ] and 𝜔𝑖 be the truncated

sequence of 𝜔 (𝐺) consisting of its first 3𝑖 elements. Next we prove

by induction the equality 𝑆 (𝑓𝑖 , 𝑔𝑖 ) = 𝑆𝑖 and 𝜔 (𝑓𝑖 , 𝑔𝑖 ) = 𝜔𝑖 for all

𝑖 = 1, . . . , 𝑛, which completes the proof because clearly 𝑆𝑛 = 𝑆 (𝐺)
and 𝜔𝑛 = 𝜔 (𝐺).

Algorithm 3: Algorithm for finding two generators of a

bounded quadratic module {𝑓 , 𝑔} := 2Generators(𝐺)
Input: A finite polynomial set𝐺 ⊆ R[𝑥 ] with bounded 𝑆 (𝐺)
Output: Two polynomials 𝑓 and 𝑔 such that QM(𝐺) = QM(𝑓 , 𝑔)

1 𝑓 := −1; 𝑔 := 1;

2 𝑆 := 𝑆 (𝐺) (assuming =
⋃𝑛

𝑖=1 [𝑎𝑖 , 𝑏𝑖 ]);
3 (𝑘1,𝑘+

1
,𝑘−
1
, ..., 𝑘𝑛,𝑘

+
𝑛,𝑘

−
𝑛 ) := Signature(𝐺,𝑆) ;

4 for 𝑖 = 1, . . . , 𝑛 do
5 if 𝑎𝑖 < 𝑏𝑖 then 𝑓 := 𝑓 (𝑥 − 𝑎𝑖 )𝑘

+
𝑖 (𝑥 − 𝑏𝑖 )𝑘

−
𝑖 ;

6 else
7 switch Type of (𝑘𝑖 , 𝑘+𝑖 , 𝑘−𝑖 ) do
8 case Type A do 𝑓 := 𝑓 (𝑥 − 𝑎𝑖 )𝑘𝑖 ;
9 case Type B do
10 if 𝑖 = 1 then 𝑓 := 𝑓 (𝑥 − 𝑎𝑖 )𝑘

−
𝑖 ; 𝑔 := 𝑔 (𝑥 − 𝑎𝑖 )𝑘

+
𝑖 ;

11 else if 𝑖 = 𝑛 then
12 𝑓 := 𝑓 (−𝑥 + 𝑎𝑖 )𝑘

+
𝑖 ; 𝑔 := 𝑔 (−𝑥 + 𝑎𝑖 )𝑘

−
𝑖 ;

13 else
14 𝑑 := 𝑎𝑖+1 − 𝑎𝑖 ; 𝑓 := 𝑓 (𝑥 − 𝑎𝑖 )𝑘

+
𝑖 (𝑥 − (𝑎𝑖 + 𝑑

5
)) ;

15 𝑔 := 𝑔 (𝑥 − 𝑎𝑖 )𝑘
−
𝑖 (𝑥 − (𝑎𝑖 + 2𝑑

5
)) ;

16 case Type C do
17 𝑓 := 𝑓 (𝑥 − 𝑎𝑖 )𝑘𝑖 ;
18 if 𝑖 = 1 then 𝑔 := 𝑔 (𝑥 − 𝑎𝑖 )𝑘

+
𝑖 ;

19 else 𝑑 := 𝑎𝑖 − 𝑏𝑖−1; 𝑔 := 𝑔 (𝑥 − (𝑎𝑖 − 𝑑
5
)) (𝑥 − 𝑎𝑖 )𝑘

+
𝑖 ;

20 case Type D do
21 𝑓 := 𝑓 (𝑥 − 𝑎𝑖 )𝑘𝑖 ;
22 if 𝑖 = 𝑛 then 𝑔 := 𝑔 (−𝑥 + 𝑎𝑖 )𝑘

−
𝑖 ;

23 else 𝑑 := 𝑎𝑖+1 − 𝑎𝑖 ; 𝑔 := 𝑔 (𝑥 − 𝑎𝑖 )𝑘
−
𝑖 (𝑥 − (𝑎𝑖 + 𝑑

5
)) ;

24 return {𝑓 , 𝑔};

(1) We start with 𝑖 = 1. (a) If 𝑎1 < 𝑏1, then [𝑎1, 𝑏1] is a closed
interval. By Algorithm 3, 𝑓1 = −(𝑥 −𝑎1)𝑘

+
1 (𝑥 −𝑏1)𝑘

−
1 and 𝑔1 = 1. By

the definitions of𝑘−
1
and𝑘+

1
, we know that both of them are odd, and

thus 𝑆 (𝑓1) = [𝑎1, 𝑏1]. With 𝑔1 = 1, clearly 𝑆 (𝑓1, 𝑔1) = [𝑎1, 𝑏1] and
𝑓1 (𝑥) < 0, 𝑔1 (𝑥) > 0 when 𝑥 > 𝑏1. From ord𝑎1 (𝑓1) = 𝑘+

1
, 𝜖𝑎1 (𝑓1) =

1, ord𝑏1 (𝑓1) = 𝑘−
1
, 𝜖𝑏1 (𝑓1) = −1, ord𝑎1 (𝑔1) = ord𝑏1 (𝑔1) = 0, and

𝜖𝑎1 (𝑔1) = 𝜖𝑏1 (𝑔1) = 1, we know that 𝑘+𝑎1 (𝑓1, 𝑔1) = 𝑘+
1
, 𝑘−

𝑏1
(𝑓1, 𝑔1) =

𝑘−
1
, and 𝑘1 (𝑓1, 𝑔1) = 𝑘1 = ∞, which means 𝜔 (𝑓1, 𝑔1) = 𝜔1.

(b) If 𝑎1 = 𝑏1 = 𝑎, then it is an isolated point. The discussions

are divided into four cases according to the type of (𝑘1, 𝑘+
1
, 𝑘−

1
). We

take Type A for example, where 𝑓1 = −(𝑥 − 𝑎)𝑘1 and 𝑔1 = 1. Then,

𝑘𝑎 (𝑓1, 𝑔1) = 𝑘1 and 𝑘
+
𝑎 (𝑓1, 𝑔1) = 𝑘−𝑎 (𝑓1, 𝑔1) = ∞ = 𝑘+

1
= 𝑘−

1
, which

imply𝜔 (𝑓1, 𝑔1) = 𝜔1. The equality 𝑆 (𝑓1, 𝑔1) = [𝑎, 𝑎] is easy to verify.
The proofs for the remaining three types are similar. Furthermore,

𝑓1 and 𝑔1 also satisfy the condition that 𝑓 (𝑥)<0 and 𝑔(𝑥)>0 when

𝑥 >𝑎 + 2𝑑1
5

in all the four types, where 𝑑1 := 𝑎2 − 𝑏1.

(2) Assume that for 𝑖 = 1, . . . ,𝑚, 𝑆 (𝑓𝑖 , 𝑔𝑖 ) = 𝑆𝑖 , 𝜔 (𝑓𝑖 , 𝑔𝑖 ) = 𝜔𝑖 ,

and 𝑓𝑖 (𝑥) < 0, 𝑔𝑖 (𝑥) > 0 when 𝑥 > 𝑏𝑖 + 2𝑑𝑖
5
, where 𝑑𝑖 := 𝑎𝑖+1 − 𝑏𝑖 .

Next we prove the equality 𝑆 (𝑓𝑖 , 𝑔𝑖 ) = 𝑆𝑖 and 𝜔 (𝑓𝑖 , 𝑔𝑖 ) = 𝜔𝑖 and the

inequality 𝑓𝑖 (𝑥) < 0, 𝑔𝑖 (𝑥) > 0 when 𝑥 > 𝑏𝑖 + 2𝑑𝑖
5

for 𝑖 =𝑚 + 1.

(a) If 𝑎𝑚+1<𝑏𝑚+1, then 𝑓𝑚+1= 𝑓𝑚 (𝑥 − 𝑎𝑚+1)𝑘
+
𝑚+1 (𝑥 −𝑏𝑚+1)𝑘

−
𝑚+1

and 𝑔𝑚+1 = 𝑔𝑚 . (i) For any 𝑥 < 𝑎𝑚+1, since both 𝑘+
𝑚+1 and 𝑘−

𝑚+1
are odd, (𝑥 − 𝑎𝑚+1)𝑘

+
𝑚+1 (𝑥 − 𝑏𝑚+1)𝑘

−
𝑚+1 >0. This means that when

𝑥 <𝑎𝑚+1, 𝑓𝑚+1 and 𝑓𝑚 share the same sign. In particular, one can
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show that 𝑆 (𝑓𝑚+1, 𝑔𝑚+1) ∩ (−∞, 𝑎𝑚+1)=𝑆 (𝑓𝑚, 𝑔𝑚) ∩ (−∞, 𝑎𝑚+1)=
𝑆 (𝑓𝑚, 𝑔𝑚). (ii) For any𝑎𝑚+1 ≤𝑥 ≤𝑏𝑚+1, (𝑥−𝑎𝑚+1)𝑘

+
𝑚+1 (𝑥−𝑏𝑚+1)𝑘

−
𝑚+1 ≤

0. Since 𝑓𝑚 (𝑥) < 0 when 𝑥 >𝑏𝑖 + 2𝑑𝑖
5

by the induction hypothesis,

we know that 𝑓𝑚+1 ≥ 0 when 𝑥 ∈ [𝑎 𝑗 , 𝑏 𝑗 ]. (iii) For any 𝑥 > 𝑏𝑚+1,
(𝑥−𝑎𝑚+1)𝑘

+
𝑚+1 (𝑥−𝑏𝑚+1)𝑘

−
𝑚+1 >0 and 𝑓𝑚 (𝑥)<0, and thus 𝑓𝑚+1 (𝑥)<0.

Summarizing the arguments above, we know that 𝑆 (𝑓𝑚+1, 𝑔𝑚+1)=
𝑆 (𝑓𝑚, 𝑔𝑚) ∪ [𝑎𝑚+1, 𝑏𝑚+1] = 𝑆𝑚+1. Furthermore, by Lemma 18 we

know that ord𝑎𝑚+1 (𝑓𝑚+1)=𝑘+𝑚+1, ord𝑏𝑚+1 (𝑓𝑚+1)=𝑘−𝑚+1, 𝜖𝑎𝑚+1 (𝑓𝑚+1)
=1, 𝜖𝑏𝑚+1 (𝑓𝑚+1) = −1, and thus𝑘𝑚+1 (𝑓𝑚+1, 𝑔𝑚+1) = ∞,𝑘+

𝑚+1 (𝑓𝑚+1,
𝑔𝑚+1) = 𝑘+

𝑚+1, and 𝑘
−
𝑚+1 (𝑓𝑚+1, 𝑔𝑚+1) = 𝑘−

𝑚+1. Note that the first𝑚
elements in the signature 𝜔 (𝑓𝑚+1, 𝑔𝑚+1) are precisely 𝜔 (𝑓𝑚, 𝑔𝑚),
and thus𝜔 (𝑓𝑚+1, 𝑔𝑚+1) = 𝜔𝑚+1. The conditions 𝑓𝑚+1 (𝑥) < 0, 𝑔𝑚+1 (𝑥) >
0 when 𝑥 >𝑏𝑚+1+ 2𝑑𝑚+1

5
are easy to verify.

(b) If 𝑎𝑚+1 = 𝑏𝑚+1, we study the four cases according to the

type of (𝑘𝑚+1, 𝑘+𝑚+1, 𝑘
−
𝑚+1). As can be found in Algorithm 3, we

also need to distinguish whether𝑚 + 1 = 𝑛.

(b.1) When𝑚 + 1 < 𝑛. Note that for all the four types, both 𝑓𝑚+1
and 𝑔𝑚+1 are constructed from 𝑓𝑚 and 𝑔𝑚 by multiplying even

numbers (counting multiplicities) of linear factors.

First we consider the signs of 𝑓𝑚+1 and 𝑔𝑚+1 for different inter-
vals in the most complicated Type B. (i) When 𝑥 < 𝑎𝑚+1, we know
that both the multiplied factors (𝑥−𝑎𝑚+1)𝑘

+
𝑚+1 (𝑥−(𝑎𝑚+1 + 𝑑

5
)) and

(𝑥−𝑎𝑚+1)𝑘
−
𝑚+1 (𝑥−(𝑎𝑚+1+ 2𝑑

5
)) are positive, and thus 𝑆 (𝑓𝑚+1, 𝑔𝑚+1)∩

(−∞, 𝑎𝑚+1) = 𝑆 (𝑓𝑚, 𝑔𝑚) ∩ (−∞, 𝑎𝑚+1) = 𝑆 (𝑓𝑚, 𝑔𝑚). (ii) When

𝑥 = 𝑎𝑚+1, 𝑓𝑚+1 (𝑎𝑚+1) = 𝑔𝑚+1 (𝑎𝑚+1) = 0. (iii) When 𝑎𝑚+1 < 𝑥 <

𝑎𝑚+1+ 2𝑑𝑚+1
5

,𝑔𝑚+1 < 0. (iv)When𝑥 ≥ 𝑎𝑚+1+ 2𝑑𝑚+1
5

, 𝑓𝑚+1 < 0. With

these four arguments, we know that 𝑆 (𝑓𝑚+1, 𝑔𝑚+1) = 𝑆 (𝑓𝑚, 𝑔𝑚) ∪
[𝑎𝑚+1, 𝑎𝑚+1] = 𝑆𝑚+1. In particular, 𝑓𝑚+1 (𝑥) < 0 and 𝑔𝑚+1 (𝑥) > 0

holdwhen𝑥 > 𝑏𝑚+1+ 2𝑑𝑚+1
5

, and it is easy to verify𝜔 (𝑓𝑚+1, 𝑔𝑚+1) =
𝜔𝑚+1. The proofs for the remaining three types can be done with

similar analysis as above.

(b.2)When𝑚+1=𝑛, it suffices to study Types B and D. (i) For type

B, 𝑓𝑛 = 𝑓𝑛−1 (−𝑥+𝑎𝑛)𝑘
+
𝑛 and𝑔𝑛 =𝑔𝑛−1 (−𝑥+𝑎𝑛)𝑘

−
𝑛 , and thus ord𝑎𝑛 (𝑓 ) =

𝑘+𝑛 , 𝜖𝑎𝑛 (𝑓 ) = 1, ord𝑎𝑛 (𝑔) = 𝑘−𝑛 , and 𝜖𝑎𝑛 (𝑔) = −1. This implies

that 𝑘𝑛 (𝑓𝑛, 𝑔𝑛) =∞, 𝑘+𝑛 (𝑓𝑛, 𝑔𝑛) = 𝑘+𝑛 , and 𝑘
−
𝑛 (𝑓𝑛, 𝑔𝑛) = 𝑘−𝑛 , namely

𝜔 (𝑓𝑛, 𝑔𝑛)=𝜔𝑛 . For any 𝑥 >𝑎𝑛 , 𝑓𝑛 >0 and𝑔𝑛 <0, and thus 𝑆 (𝑓𝑛, 𝑔𝑛)=
𝑆 (𝑓𝑛−1, 𝑔𝑛−1) ∪ [𝑎𝑛, 𝑎𝑛]=𝑆𝑛 . (ii) For type D, 𝑓𝑛 = 𝑓𝑛−1 (𝑥−𝑎𝑛)𝑘𝑖 and
𝑔𝑛 (𝑎𝑛)=0, and thus 𝑆 (𝑓𝑛, 𝑔𝑛) = 𝑆 (𝑓𝑛−1, 𝑔𝑛−1) ∪ [𝑎𝑛, 𝑎𝑛] = 𝑆𝑛 . The

equality 𝜔 (𝑓𝑛, 𝑔𝑛) = 𝜔𝑛 is easy to verify. □

The following pictures illustrate the changes we make to 𝑓𝑚 and

𝑔𝑚 at an isolated point 𝑎𝑚+1 to construct 𝑓𝑚+1 and 𝑔𝑚+1.

Example 24. Let us demonstrate Algorithm 3 with the polyno-

mial set 𝐺 as in Example 12. The two polynomials 𝑓 and 𝑔 are first

initialized with −1 and 1 respectively. Then in lines 2 and 3 the

algorithm computes 𝑆 (𝐺) = ⋃
3

𝑖=1 [𝑎𝑖 , 𝑏𝑖 ] = [−1, 0] ∪ [1, 1] ∪ [2, 2]
and𝜔 (𝐺) = (∞, 1, 1, 2, 1, 3, 4, 3, 3), as done in the previous examples.

Next in the iteration for the 3 intervals:

For 𝑖 = 1: since −1 = 𝑎1 ≠ 𝑏1 = 0, in line 5 the algorithm updates

𝑓 = −1 · (𝑥 − 1)1 (𝑥 − 0)1 = −(𝑥 + 1)𝑥 and 𝑔 remains to be 1.

For 𝑖 = 2: since 𝑎2 = 𝑏2 = 1 and (𝑘2, 𝑘+
2
, 𝑘−

2
) = (2, 1, 3) is of Type

C, the algorithm jumps to line 16 and updates 𝑓 = [−(𝑥 + 1)𝑥] ·
[(𝑥 − 1)2] = −(𝑥 + 1)𝑥 (𝑥 − 1)2 and 𝑔 = 1 · [𝑥 − (1 − 1

5
)] (𝑥 − 1) =

(𝑥 − 0.8) (𝑥 − 1) (for 𝑑 =1−0=1) respectively in lines 17 and 19.

For 𝑖 = 3: since 𝑎3 = 𝑏3 = 2 and (𝑘2, 𝑘+
2
, 𝑘−

2
) = (4, 3, 3) is of Type

B, the algorithm jumps to line 9 and updates 𝑓 = [−(𝑥 + 1)𝑥 (𝑥 −

𝑎𝑚+1

𝑔𝑚+1

𝑓𝑚+1

Type A

𝑎𝑚+1
𝑎𝑚+1+

2𝑑𝑚+1
5

𝑎𝑚+1+
𝑑𝑚+1
5

𝑔𝑚+1

𝑓𝑚+1

Type B

𝑎𝑚+1

𝑎𝑚+1−
𝑑𝑚+1
5

𝑔𝑚+1

𝑓𝑚+1

Type C

𝑎𝑚+1

𝑎𝑚+1+
𝑑𝑚+1
5

𝑔𝑚+1

𝑓𝑚+1

Type D

Figure 2: Illustrations of updates at a new isolated point

1)2] · (−𝑥 + 2)3 = (𝑥 + 1)𝑥 (𝑥 − 1)2 (𝑥 − 2)3 and 𝑔 = [(𝑥 − 0.8) (𝑥 −
1)] · (−𝑥 + 2)3 = −(𝑥 − 0.8) (𝑥 − 1) (𝑥 − 2)3 respectively in line 12.

At the end, Algorithm 3 outputs 𝑓 = (𝑥 + 1)𝑥 (𝑥 − 1)2 (𝑥 − 2)3
and 𝑔 = −(𝑥 − 0.8) (𝑥 − 1) (𝑥 − 2)3. In Example 22(3) the equality

QM(𝑓 , 𝑔) = QM(𝐺) is already proved.

Example 25. In [2, Example 2.31] Augustin gave an example

of a finitely generated bounded quadratic module for which her

algorithm outputs three generators 𝑓1 := −𝑥4 (𝑥 − 1)6 , 𝑓2 := 𝑥3 (𝑥 −
1)7, and 𝑓3 := −(𝑥 − 1)5 . The proposed algorithm instead outputs

two generators 𝑓1 and 𝑔 := −𝑥3 (𝑥 − 0.2) (𝑥 − 1)5 for the same

quadratic module. It can be easily checked that QM(𝑓1, 𝑓2, 𝑓3) and
QM(𝑓1, 𝑔) have the same non-negative set and signature, implying

QM(𝑓1, 𝑓2, 𝑓3) = QM(𝑓1, 𝑔). Certificates for 𝑓2, 𝑓3 ∈ QM(𝑓1, 𝑔) are:
𝑓2 = 𝑠2,0 + 𝑠2,1 𝑓1 + 𝑠2,2𝑔 and 𝑓3 = 𝑠3,0 + 𝑠3,1 𝑓1 + 𝑠3,2𝑔, where 𝑠2,1 =

5(𝑥 − 2)2, 𝑠2,2 = 5(𝑥 − 1)2, 𝑠3,1 = 1, 𝑠3,2 = 1.25, and

𝑠2,0 = 5𝑥4 (𝑥 − 1)6 [(𝑥 − 3

2

)2 + 3

4

],

𝑠3,0 =
1

2

(𝑥 − 1)6 [ 7
16

𝑥4 + 𝑥2 ( 5
4

𝑥 + 1)2 + (𝑥 + 1)2 + 1] .

6 CONCLUDING REMARKS AND
ACKNOWLEDGEMENTS

Precise implementable algorithms for membership test for uni-

variate finitely generated quadratic modules are presented. The

algorithms discussed in the paper have been implemented and ex-

perimented with many examples. The paper thus improves upon

results in [2].

An exhaustive enumerative algorithm can be given for generat-

ing a witness in the bounded case by incrementally constructing

sums of squares 𝜎0, . . . , 𝜎𝑠 with undetermined coefficients degree

by degree in the representation 𝜎0+
∑𝑠
𝑖=1 𝜎𝑖𝑔𝑖 ; however, it is unclear

to us how a witness can be computed efficiently. Whether the con-

cepts and techniques discussed in the paper can be generalized to

the bivariate case is also an open problem. The complexity analysis

of the proposed algorithms and a detailed comparisons with other

existing algorithms are planned.
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