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ABSTRACT: The ultrafast synthesis of £-Fe;N|,, in a diamond-anvil cell (DAC) from Fe XFEL-induced synthestEghigivon nitride
and N, under pressure was observed using serial exposures of an X-ray free electron laser
(XFEL). When the sample at 5 GPa was irradiated by a pulse train separated by 443 ns, the 2N

estimated sample temperature at the delay time was above 1400 K, confirmed by in situ R o),
transformation of a- to y-iron. Ultimately, the Fe and N, reacted uniformly throughout the \ ‘(;:?‘ | Temperature &Feau
beam path to form Fe;N| 33, as deduced from its established equation of state (EOS). We thus Ay

be coupled with the source time structure to enable exploration of the time-dependence of Pump Probe
reactions under high-pressure conditions. forees

= X
demonstrate that the activation energy provided by intense X-ray exposures in an XFEL can \ %bcc-Fe

J ‘ XFEL

S olid—gas reactions at high pressures and in high radiation Diamond-anvil cell (DAC) experiments are suitable for such
environments are important in space and on (exo-) planets." studies because the contained gas can function simultaneously as

In such environments copious amounts of molecular nitrogen a pressure-transmitting medium (PTM) and a reactant. To
are found together with common refractory materials, such as trigger a chemical reaction, the energy of intense electro-
iron alloys. On Earth, better understanding of the processes magnetic radiation pulses can be used.'’ Time-resolved

guiding the evolution of atmospheric nitrogen on Earth, from its
presence in a protoplanetary disc” to its present-day appearance
in deep mantle reservoirs, is needed.””

In addition, recent theoretical work on solid—gas reactions
such as Mg with Xe, Kr and Ar,” iron and nickel with xenon,® Kr
with oxygen,” and the possible formation of helium compounds®
warrants extensive exploratory synthesis efforts. The recent
synthesis of a NiAr Laves phase’ and (Xe,Si)O," supports Received: January 14, 2021
changes of electronegativity at high pressures'' and the Accepted:  March 13, 2021
opportunity to synthesize new materials with unusual properties. Published: March 25, 2021

High-pressure chemical synthesis is important because it
permits the exploration of novel compounds at extreme
conditions encountered in Earth and space science.'”

diffraction and spectroscopic studies in a DAC at XFEL facilities
have the potential to elucidate the formation and dynamics of
new materials under extreme conditions.

Here we present an experimental setup using a DAC
containing an Fe foil and N, as a PTM and reactant to

© 2021 American Chemical Society https://doi.org/10.1021/acs.jpclett.1c00150
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Figure 1. Experimental setup of the XFEL pump-and-probe using the DAC. Schematic diagram of the experimental setup at HED (High Energy

Density science) Beamline at European XFEL.

Table 1. Pump and Probe Conditions Used in Our
Experiment

Experimental
run XFEL pump and probe condition
A 2.25 MHz, 0.19 mJ/pulse, ~ With increasing XFEL
17.8 keV, XFEL beam transmission from 10% to
diameter: 14 ym o 100% (2 pulses per train)

B 20 consecutive pulses at 100%
transmission (20 pulses in
one train)

C 2 consecutive pulses per train at

100% transmission for 11 s
(220 exposures)

demonstrate that a reaction to form e-Fe;N,, can be induced by
appropriate XFEL pulse-probe conditions.

In addition to cosmochemical and planetary aspects,'* iron
nitrides have important technological applications due to their
greater magnetization compared to iron oxides and lower
manufacturing cost compared to iron alloys.'>'® In general, iron
nitrides are synthesized by reacting Fe and NH; above 400 °C
where Fe catalyzes the decomposition of ammonia. Atomic
nitrogen then diffuses into bulk Fe with reaction times in the
order of 100 s to form a nitride surface layer.'” Our experiments
here show that we can synthesize uniform &-Fe;N|,, within
nanoseconds without using conventional heating at an initial
pressure of 5 GPa within a DAC. Previously, Hasegawa and Yagi
synthesized Fe,N using a laser-heated DAC at pressures up to 10
GPa and temperatures near 1800 + 50 K.'"® Additional high-
pressure and high-temperature syntheses of iron nitrides have
led to the discovery of new Fe—N compounds such as a”-
Fe (N, a'-FegN, 7/-Fe,N, e-Fe,N,,, (—0.40 < x < 0.48), Fe,N,,
{-Fe,N, y”-FeN, and most recently, Fe;N,, FeN,, and
FeN,.'"*~** On the other hand, Laniel et al. revealed that after
decompression of a laser-heated DAC to 5 GPa only Fe,N was
found, while above 17.7 GPa NiAs-type FeN was the most stable
phase found after pressure release.”> No indications for the
presence of e-Fe;N|, . was found in these studies up to pressures
of 128 GPa. However, work by Clark et al. using *"Fe—
Mossbauer studies revealed a mixture of {-Fe,N and e-Fe;N |, .
after laser heating at 1300 K below 10 GPa."”

Our experiments were performed at the High Energy Density
(HED) instrument at the European X-ray Free Electron Laser
(EuXFEL) facility in Schenefeld, Germany.*>~** Pulses of 20 fs

3247

duration at 17.8 keV were generated in a train of 2—20 pulses at a
2.25 MHz repetition rate, repeating at 10 Hz. The fluence
incident on the DAC at 100% transmission was 187(48) uJ/
pulse over a spot size of 14 + 1 um fwhm, focused by the
compound refractive lens (CRL), as measured using damage
imprinting in freestanding Ta foil. At this repetition rate, XFEL
pulses were so close in time (443 ns) that they may be used to
pump and probein situ chemical reactions.'>*

A DAC with 500 pm culets was used as a precompression
chamber. A small piece of a 4 ym thick Fe foil (<250 um X 250
um, 99.99% purity) was loaded into a cylindrical chamber of
310 ym diameter and SO um height made by electro-spark
erosion in a preindented rhenium gasket (Figure 1). A small
spherical ruby crystal with ~10 ym diameter was placed into the
sample chamber to determine the pressure.’”’' We then loaded
N, gas as a pressure-transmitting medium (PTM) and a reactant

Figure 2. Photos of the sample inside DAC (a) before and (b) after a
series of XFEL exposures as described in Table 1. The red line in panel b
has been cross-sectioned by FIB for SEM and STEM imaging (see
Figure 4).
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Figure 3. Changes of X-ray diffraction patterns of iron and nitrogen during and after i situ chemical reaction by XFEL pump-and-probe. (a) Changes
in diffraction patterns of the Fe foil under N, PTM precompressed to S GPa in a DAC. The percentages in run A indicate the transmission (fluence) of
the XFEL. At 100% XFEL transmission, run B contains 20 consecutive pulses while run C has consecutive pulses over 11 s. (b) Synchrotron X-ray
diffraction patterns collected at beamline P02.2 at PETRA III after run B, compared to the XFEL data measured right after run B (top pattern). After
the XFEL experiments, the sample pressure has changed from 5.0(1) GPa to 7.8(1) GPa. (c) Changes in the diffraction patterns of the Fe foil during
run C. (d) Profile fitting of the ex situ XRD pattern measured after run B as shown in panel b. £-Fe;Ny,, (P6;22) and 8-Nitrogen (Pm3n) were fitted to

an agreement index of

= 1%. Observed data are shown in black crosses, and the calculated pattern is a red line. Tick-marks under the pattern

indicate the (k) reflection positions of the composing phases (green, £-Fe;N,, ; blue, 6-nitrogen). The red asterisk is an unidentified shoulder peak.

using the gas loading system at the Extreme Conditions Science
Infrastructure (ECSI) of PETRA IIL The pressure of the sample
inside the DAC was determined by recording the shift of the R1
emission line of ruby (precision: 0.1 GPa). The initial pressure
of the sample before XFEL irradiation was set at 5.0(1) GPa.
Prior to the experiment, the sample was characterized by
synchrotron X-ray diffraction and optical techniques at the
Extreme Conditions Beamline, P02.2, at PETRA III to confirm
the presence of pure N, and Fe in the sample.

The horizontally polarized EuXFEL X-ray beam was directed
along the central axis of the DAC, through both diamond culets
(Figure 1). Powder X-ray diffraction patterns were collected at
10 Hz using two VAREX XRD4343 area detectors placed above
and below the perpendicular direction of the XFEL beam
(Figure 1). Patterns comprise a superposition of all scattering
during each pulse train, allowing reactions to be tracked in a
pump and probe fashion, while repeatedly exposing the sample.
We recorded the X-ray diffraction pattern using different
combinations of the XFEL fluence and pulses as summarized
in Table 1. Dioptas software was used to convert two-
dimensional diffraction images to one-dimensional diffraction
patterns.”” Following the in situ XFEL measurements, ex situ X-
ray powder diffraction data of the reaction product were
collected at the P02.2 beamline at PETRA III using a
monochromatic synchrotron X-ray beam with 0.2898(1) A
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wavelength and a PerkinElmer XRD 1621 flat-panel detector.
The incident X-ray beam on the sample was focused to 2 ym
fwhm beam using a pair of Kirkpatrick Baez (KB) mirrors. The
CeO, powder standard from NIST SRM 674b was used to
calibrate the detector parameters using Dioptas. A 200 ym X 200
pum sample area was grid-scanned in 21 X 21 steps with 1 s
exposure time per step.

Figure 2 shows photographic images of the sample before and
after the XFEL experiments. Areas irradiated by the three
different XFEL pump-and-probe modes are marked with A, B,
and C (Table 1). While area A appears to be intact after exposure
during run A (increasing pulse fluence), areas B and C visibly
show partial and complete alteration of the sample, after 20
consecutive pulses and continuous exposure with 2 consecutive
pulses for 11 s, respectively. It should be noted that during
exposure runs B and C, in situ XRD patterns showed the
presence of both the reaction product and compressed solid N,
(Figure 3c). The observed damage on area C in Figure 2b is
interpreted to result from the indirect effects of the X-ray
absorption and heating in the sample leading to reaction.

Real-time changes in the X-ray diffraction patterns as a
function of XFEL irradiation are summarized in Figure 3. First,
we measured the XRD patterns using two consecutive pulses by
changing the XFEL fluence to 10%, 30%, 50%, 70%, and 100%
(run A) to check the stability of the sample and the diamond
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Figure 4. Electron microscopy images and elemental mapping of the recovered sample. (a) Cross-sectional SEM image after exposure run B (the red
line in Figure 2b). (b) The positions of the red, orange, and green area in the SEM image are shown by the STEM images. (c) Energy dispersive
spectroscopy (EDS) elemental mapping of iron (left), nitrogen (middle), and their overlay (right) at the middle of the recovered sample (the green

area in the SEM image).

anvil cell. In each two-pulse exposure, the first pulse probed the
sample at ambient temperature and also increased its temper-
ature as a result of the X-ray absorption. The second X-ray pulse
probed the sample 443 ns after the first, measuring diffraction
peaks that are shifted to lower g values, where the relative shift
was used to estimate the temperature at this time (530—1424
K). The peak sample temperature was higher because of cooling
between exposures, ranging from 700 to 5700 K in the Fe for
10—100% transmitted power.”

As the XFEL fluence increased from 10 to 100% transmission
(~10" to ~10'" photons per pulse), the diffraction peak
intensities of the compressed solid N, and bcc-Fe (a-iron)
increase as expected, which demonstrates that the anvils remain
intact and maintain the original compression conditions (Figure
3a). At 30% transmission, a shoulder peak starts to form at the
low-q side of the a-iron (110) peak, indicating an XFEL-induced
thermal expansion. At 50% transmission, this shoulder peak
grows and shifts further toward the low-q side, and above 70%
transmission, high-temperature fcc-Fe (y-iron) is observed by
the appearance of its (111) peak. The transformation of a- to y-
iron would require at least 900 K at 5 GPa.”” Given the refined
peak positions and the established EOS of the iron phases,”* we
estimate residual temperatures of 750 and 1270 K at 50 and 70%
fluence (2400 and 3900 K calculated peak temperatures),
respectively (Figure 3a). The reaction between Fe and N,,
however, did not occur even at the full 100% transmission in run
A, at which point the residual temperature is estimated to be
1424 K (5700 K peak temperature). The ~70% cooling between
the pump and the probe is consistent with expectations for Fe
samples.”” The pulse-to-pulse energy variance of the XFEL, of
order 30%, could lead to differing heating in shorter duration
experiments, whereas in longer duration studies, where reactions
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products appear, only the averaged heating and duration is
important. Thus, temperatures measured following single pulses
(pump—probe) are consistent with expected values including
initial volumetric X-ray absorption and heat transfer between
pulses;”” somewhat higher temperatures are expected after serial
exposures in a MHz pulse train, because of heat accumulation;””
thus, the temperature conditions reported following single
pulses are lower bounds on those achieved after second and
subsequent pulses in a train.

In contrast, XFEL-induced chemical reaction between Fe and
N, is observed in the runs B and C (Figure 3a). The new peaks
observed both in situ and ex situ after exposure during run B are
indexed as an &-Fe;N|,, phase (Figure 3b). When we exposed
the sample with serial XFEL trains for 11 s (run C), the
formation of the e-Fe;N ., was observed from the third train by
the growth of its (002) and (111) peaks (Figure 3c). In the first
and second trains, we observed the growth of (111) and (002)
Bragg reflections of fcc-Fe indicating temperatures of 1490 and
1680 K, respectively. From the third train where &-Fe;N,,
formed, the temperature was maintained between 1340 and
1780 K up to the 14th train where the Bragg peaks of fcc-Fe
disappeared. The &-Fe;Ny,, (and residual bec-Fe) remained
until the last train without any systematic changes in the relative
peak intensities and positions. We estimate a cumulative
absorbed energy of 3 mJ for the chemical reaction of Fe and
N, at the precompression conditions of 5 GPa.

The sample pressure after run C increased to 7.8(1) GPa,
where the unit cell parameters of &-Fe;N,,, are refined to a =
4.707(1) A and ¢ = 4.357(1) A in the space group P6;22 (no.
182) (Figure 3d). It is well-established that the unit-cell volume
of &-Fe;N|,, is linearly proportional to the increasing nitrogen
content x at ambient pressure.’>*® The refined unit cell volume
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of the recovered &-Fe;Ny,,, e.g, 83.59(3) A’ at 7.8(1) GPa,
would correspond to &-Fe;N,, with x = 0.33 at ambient
conditions, assuming an EOS of By = 172 GPa and B’ = 5.7 as
derived previously.”> >’ We therefore conclude that the
composition of the XFEL-induced synthesis product is Fe;N| 3.

To investigate the cross-sectional textures and chemical
distribution of the Fe;N 35 reaction product, we have prepared
the sample from run B using a focused Ga ion beam (FIB, 30 kV
and 10 pA to 30 nA for surfacing) and performed scanning
electron microscopy (SEM) (ZEISS Crossbeam 540 at Yonsei
University) and scanning transmission electron microscope
imaging (STEM, JEOL JEM-F200 combined with energy-
dispersive X-ray spectroscopy) (Figure 4). The sample was
mounted on a Cu grid and measured in the annular dark-field
mode. A two-dimensional elemental distribution of the cross-
sectioned sample shown in Figure 4c,d reveals that over the 4 ym
thickness of the original Fe-foil, the distribution of Fe and N
appears to be uniform with regularly spaced holes representing
degassed N, after the recovery of the sample. STEM data
corroborate the results of the in situ and ex situ XRD by showing
the distribution of the ABAB type stacking and distance between
the Fe atoms, as expected for the e-Fe;N,, structure (Figure
4b). It is remarkable that such a homogeneous composition is
obtained after such a short cumulative heating time as atomic
nitrogen diffusion is in general a much slower process.*

In conclusion, our work demonstrates that the required
activation energy for chemical reactions controlled by the XFEL
radiation is an important experimental parameter. Despite only a
limited number of exposures due to constraints and availability
of in and ex situ characterizations, we are confident that the
XFEL parameters of our studies are well within parameters that
are reproducible and in agreement with the known behavior of
the Fe—N, system under high pressure and temperature. In
contrast, the kinetics of the XFEL-induced synthesis of &-
Fe;N, 43 are noteworthy and unprecedented. We found a
remarkably homogeneous reaction product after the ultrafast
reaction between Fe and nitrogen in a DAC at pressures above §
GPa and temperatures exceeding 1400 K as pumped and probed
by consecutive XFEL pulses separated by 443 ns. Following
chemical reactions between gas and solid at high pressures and
temperatures in a DAC using a tailored pump—probe setup at an
XFEL opens up a new parameter space for the exploration of
new materials forming on fast time scales at high pressure.
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