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Abstract

This study outlines a novel intrusion detection system (IDS) to detect compromised
sensor data anomalies in interdependent industrial processes. The IDS used a
peer-to-peer communication framework which allowed multiple programmable
logic controllers (PLCs) to communicate and share sensor data. Utilizing the shared
sensor data, state estimators used a long short-term memory (LSTM) machine
learning algorithm to identify anomalous sensor readings connected to neighboring
PLCs controlling an interdependent physical process. This study evaluated the
performance of the IDS on three industrial operations aligning to a midstream oil
terminal. The framework successfully detected several multi-sensor compromises
during mid-stream oil terminal operations. A set of performance evaluations also
showed no impact on the real-time operations of the PLC and outlined the

prediction latencies of the framework.

Keywords: embedded intrusion detection, interdependent process monitoring,
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1. Introduction

Cyberattacks have impacted industrial control systems (ICS) and supervisory
control and data acquisition (SCADA) for more than a decade. Some of these attacks
have relied on deception by manipulating or reusing data when the data no longer
represented the actual state of the critical infrastructure. Stuxnet manipulated data
to appear normal to the user so that the user would not be aware of the actual
physical state of the industrial process, eventually causing damage [1]. Operators
consider sensor data as the ground truth and rely on the readings to achieve remote
monitoring. Spoofing sensor values can create a disconnect between the operator’s
understanding and the actual state of the physical system. Such disconnects are
dangerous and may lead the operator to make the wrong operational decision,
causing damage to the critical infrastructure. Detecting such attacks is difficult due

to modern critical infrastructure’s sheer scale and complexity.

Critical infrastructure uses programmable logic controllers (PLCs) connected to
sensors and actuators to control physical processes. The processes may influence
system components in predictable ways, following established laws of physics, e.g.,
the flow rates and pressure follow fluid mechanics principles in a midstream oil
terminal. Actuators such as pumps can alter these flow rates, thus affecting sensor
readings. Statistical or machine learning models can capture such behaviors. The
working hypothesis is that if statistical models learn the process-semantic patterns
of inter-dependent industrial processes, the framework can identify spoofed sensor
readings. This detection can also be scaled across large-scale distributed physical

processes.

In a distributed infrastructure, an attacker can spoof sensor readings through a
network intrusion or a supply chain compromise. In a network intrusion, the
attacker can perform a man-in-the-middle (MiTM) attack and relay tampered
traffic, while in a supply chain attack, the attacker inserts a software or hardware
exploit inside the sensors. In both cases, the sensor communicates false readings to
the PLCs. The falsified reading may send incorrect data to the user and elicit an
improper operational response, potentially disrupting the physical process.
Network-based intrusion detection system (IDS) can detect intrusions across
industrial communications but cannot detect sensor compromise due to supply
chain compromise [2-6]. Literature review also shows that existing IDSs focus on
detecting attacks on one node and lack visibility of neighboring PLCs [7]. Moreover,

the existing solutions lack embedded detection capability within the PLCs.

Following are the contributions of this study.

* This study presents an embedded IDS framework that can predict the state of

peer node sensors if they control an interdependent physical process. If the sensor
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states are highly correlated, the IDS can detect anomalies of sensors connected to
neighboring PLCs.

* This study presents a hybrid spatio-temporal detection framework that uses a
convolutional neural network (CNN) to capture spatial co-activations within a
PLC scan, and a long short-term memory network (LSTM) to model temporal
dependencies across scans.

¢ The IDS can be embedded inside the industrial controller to provide native
detection.

* The IDS can detect falsified states of sensors due to supply chain attacks.

The contributions address the research gaps, as the existing IDS solutions focus
primarily on network-based attacks or single-node anomalies. The following
sections elucidate the design and implementation of three core modules: a data
sensor module that reads the state of the sensors and actuators from the MODBUS
memory of the PLC, a peer-to-peer network that circulates the current state of the
PLCs with other edge nodes, and a module inside the analysis engine. These modules
allow the framework to detect sensor anomalies across interconnected systems.
Section 2 presents the literature review pertaining to intrusion detection systems
and novelties of this work’s IDS. Section 3 discusses the threat model including the
software trojan exploit among others and explains the approach taken in this study
to detect the threat. Section 4 evaluates the accuracy of the approach using three
midstream oil terminal operations. Section 5 evaluates the impact of the IDS on PLC

performance and Section 6 concludes the study.

2. Literature review

Past studies have focused on sensor data compromised by cyberattacks and have
described these possible attacks, the proposed solutions and methods to detect and
mitigate against these attacks. Cardenas in his studies has discussed attacks that
affect certain supervisory, or control loops associated with industrial systems [8].
Attacks can affect the communication between the devices connected to sensors and
a controller. Huang [9], in his study, which includes Cardenas as coauthor,
characterized a threat model for a specific industrial control system—the Tennessee
Eastman System. This ICS has various controllers and sensors associated with
chemical reactions. The threat model involved the attacker providing deceptive
sensor data to the controllers, which therefore acted incorrectly and caused the
tanks to reach unsafe levels of pressure. In recent studies, Cardenas devised methods
to detect compromised sensor data and employed an Advanced detection module
(ADM) that used a linear mathematical model of the physical system, or plant [8].
With the model, the ADM determined if there was a discrepancy when compared to

the sensor data that it received. The discrepancy was accumulated in a variable
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called the CUSUM over time and compared to a threshold to determine if there was
a compromised sensor. Combita and Alvero [2] developed a method to mitigate the

threat model.

A survey described techniques in which a model of the physics in cyber-physical
systems was used to detect anomalies for ICSs and critical infrastructure [7]. The
survey highlighted the nature of sensor data as values at discrete points in time
whose behavior can be modeled even when the physical system was subjected to
various inputs and stimuli from actuators, such as pumps and valves among others
depending on the given domain of engineering or physics. If there was a discrepancy
from the expected values according to the model from the purported sensors and
other information, it can be inferred that there was an anomaly, indicating a
potential cyberattack. The survey also referenced disparate works in power systems,
control systems, and cybersecurity and discusses them in a unifying taxonomy of
various approaches. A later survey provided an update with similar techniques and
more sophisticated attacks for the smart grid [10]. This later survey focused on
situational awareness, and analyzed how various techniques of detection enabled
that awareness. Another survey by Gaggero et al. discussed similar detection
methods that specifically involved artificial intelligence (AI) for the smart grid [11].
Gaggero et al. discussed the ability of traditional machine learning and Al at large to
learn patterns in data associated with the physical system to be able to detect
anomalous events. Other studies have focused on power systems involving false data
injection attacks (FDIA). Wang et al. presented a survey of methods to detect FDIAs
in power systems, which involved state estimators to do so [3]. Ahmed et al.
analyzed several studies including a taxonomy of the current countermeasures to

defend against FDIA [4] for both structured and unstructured data.

Chromik, in several studies, discussed the use of power system models to detect
FDIAs [5, 6]. Of particular relevance is a study in which a local monitoring detection
system within substations was presented [12]. The current work is similar to this
study in that the IDS discussed is also local to the relevant devices and physical
system. However, the current work proposes an IDS that is not only local but also
embedded in the devices, which allows for a reduced attack surface. Chromik
proposed that in future work, the local IDSs of the various substations will
communicate and share relevant data. This current work, on the other hand,
involves the sharing of data among embedded IDSs in PLCs to allow for greater
situational awareness. According to HadZiosmanovic [13], certain variables within
industrial control systems and critical infrastructure may be correlated indicating
interdependencies. Therefore, sharing the data of these relevant variables is useful

for the PLCs to have more accurate state estimation, which can aid in detecting

"~
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In cyber-physical systems, interdependent processes are distributed across vast
distances and generate time-synchronized data streams. These data streams exhibit
spatio-temporal patterns, and the proposed IDS should be able to identify patterns
for effective anomaly detection. CNN-LSTM models offer superior handling of
spatial-temporal patterns in sensor-based time-series data, offering a stronger
foundation than GRU, ARIMA, and even Transformer-based methods in several
industrial and financial applications. Although studies have not applied CNN-LSTM
for embedded intrusion detection, prior work has explored CNN-LSTM in domains
like stock prediction, Internet of Things sensor data prediction, and other financial
applications [14-18]. For example, Kumar et al. compared CNN, LSTM, Gated
Recurrent Unit (GRU), and ARIMA in traffic forecasting and determined that
CNN-LSTM was superior to ARIMA and CNN exhibited lower RMSE values across
several datasets [14]. Ata et al. concluded that a CNN-based model effectively
predicted traffic flow with erratic and extended patterns, outperforming established
models in intelligent transportation systems [18]. For stock market analysis,
Dwivedi et al. and Chen et al. compared the S-ARIMA model with CNN-LSTM
[15, 16]. The CNN-LSTM model offered deeper insights into non-linear patterns.
Liang et al. observed that CNN-LSTM performed better in volatile conditions than a
standard ARIMA model [17]. Existing literature has established the effectiveness of
CNN-LSTM combination in modelling spatio-temporal data streams. This study also
used CNN-LSTM models within embedded architecture and a novel peer-to-peer

data sharing framework for PLC-native intrusion detection.

3. Methodology

This section outlines a novel framework to detect attacks on sensors connected to
neighboring nodes in an industrial control system. The framework uses three
modules to get visibility of the physical process, states of neighboring PLCs, and
establish a baseline of the system’s normal behavior. The first module is a physical
system data sensor; it allows the embedded IDS to monitor the states of the sensors
or actuators. The second module is a peer-to-peer (P2P) communication framework.
Sharing information through the P2P framework allows the embedded IDS to have
visibility over the states of neighboring PLCs. The third module is a physical system
anomaly detector. This module learns the sensors’ behavior and infers the sensors’

values using the actuators’ states.

In every PLC cycle, the physical system data sensor takes a snapshot of the
actuator and sensor readings from the hardware layer of the PLC. The instances of
the embedded IDS share the states using the P2Pcommunication framework.
Sharing allows the embedded IDS to have visibility of the entire physical process.
Using the collective states of PLCs, the physical system anomaly detectors predict

the potential values of the sensors and the actuators. The physical system anomaly
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detector also maintains a confidence interval for each sensor reading. If the reported
value is out of the confidence interval, the embedded IDS flags the reading as false
and sends an alert to a designated computer using the incident response system.

Figure 1 shows the architecture and workflows of the proposed framework.

PLC Architecture with Embedded IDS Physical System

[ Sensors ]
[ Actuators ]

Hardware layer
Interfacing with the
sensors/actuators

Data from
sensors &

MODBUS
communication

PLC Process

actuators

To HMI

Receiving
values from
the sensors

and actuators

Logs sent to
designated
computer

Incident response system
Analysis Engine

_ Sharing states with
neighboring PLCs

System MemoryMap
PhysicalMemoryMap

Peer-to-peer
Communication
} framework

s07d
SuuoqySiau of

Figure 1. Modules inside the embedded IDS with the physical anomaly detector and

the physical system data sensors.
The upcoming sections provide a detailed discussion of the three modules.

3.1. Physical system data sensors

The embedded IDS uses two physical system data sensors: physical memory map
(PMM) and system memory map (SMM). PMM monitors the current state of the

PLC and SMM maintains the current state of all interconnected nodes.

* Physical Memory Map (PMM): The PLC receives the states of the sensors and
actuators from the hardware layer. The PMM takes a snapshot of the MODBUS
memory and uses the address information from the PLC configuration file to
interpret the values of the sensors and actuators. The readings in the PMM update
every PLC scan cycle and mirror the states seen by the PLC CPU. If a sensor or
actuator value is altered, the PMM reads the falsified states of the sensors and
actuators.

* System Memory Map (SMM): The SMM takes the present state information from
the PMM and shares it with other PLCs using the P2P communication framework.
SMM receives the state information of the neighboring PLCs, and structures

them based on the variable address of the ladder logic and peer node locations.

The proposed framework embeds the PMM and SMM modules inside the PLC.

The case studies implemented these modules by adding additional code into an
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open-source PLC, OpenPLC [19]. The PMM obtained the values from the hardware
layer of the OpenPLC, and the SMM used a peer-to-peer network, as outlined in the

next section, to share values with neighboring nodes.

3.2. Peer-to-peer communication framework

The peer-to-peer (P2P) communication architecture enables the embedded IDS to
share the physical state of the actuators and sensors of each PLC with other edge
nodes. A P2P network is a distributed application architecture in which
interconnected nodes (“peers”) communicate without using a centralized server.
Each peer in this research is an instance of the embedded IDS inside the PLC. The
nodes have equal administrative privileges and can function concurrently as clients

and servers.

The P2P network uses an optimized depth-first routing algorithm [20] based on
Gao’s methodology [21]. Gao’s approach combined star and mesh topology. Gao
grouped the PLCs into k clusters based on the physical distance between the edge
nodes. Each cluster behaves like a star topology. The cluster selects a random central
node, and all edge nodes are directly connected to the central node. The intra-cluster
connections use a partial mesh architecture. The partial-mesh architecture directly
connects the central node of each cluster to two other central nodes using a
point-to-point connection. The clustered topology considers the inter-PLC distances

and allows the P2P network to scale for large systems.

For case studies involving virtual midstream oil terminals, outlined in Section 4,
twelve PLCs control five subsystems (tank farms, pump houses, tanker truck gantry,
pipeline transfer, and vessel operation) which were distributed across different
distances were simulated. This study used the simulation distance of the subsystems
to create the distance matrix for twelve PLCs and created five clusters:

Cluster I—[PLC1, PLC2, PLC4, PLC5]—Controls Marine Tanker (MT) operation
and the terminal-to jetty pipeline; Cluster II—[PLC10, PLC11, PLC12]—Controls
Tank Farm (TF) operations; Cluster III—[PLC7, PLC8, PLC9]—Controls
pumphouses; Cluster IV—[PLC6]—Controls Tanker Truck (TT') operations; and
Cluster V—[PLC3]—Controls Pipeline Transfer operation (PLT).

The IDS uses a custom configuration file to define the P2P topology. Python script
parses the “config.csv” and creates a logical overlay network encapsulated within a
traditional TCP/IP routing framework. Figure 2 shows a sample configuration file of

a P2P network topology in the virtual midstream oil terminal testbed.

The configuration file shown in Figure 2 illustrates the logical interconnectivity of
each node with other neighboring edge nodes. An interpreter reading the
configuration file considers a line starting with hash (“#”) sign as a comment and

skips the first line of the file having names of the configuration parameters. The rest
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on of the network parameters----------—--—-—--—--
e of the PLC
) Neighbors to the PLC
NIPs->IP address of the neighbor
¥ NodeIPs->IP address of the current node

e
PLC4, PLCS, .200.200.1
0.200.1/200.

€91200.200.200.1

c3, 3,200.200.200.7,200.200.200.8,200.200.200.12|200.200.200.9
10| PLC12 |

.C11|PLC12]|
PLC12 | PLCE

.200.200.12]2

9,PLC10, PLC11| )0.46,200.200.200.9,200.200.200.10,200.200.200.111200.200.200.12

Figure 2. Configuration file for designing the topology of the P2P network.

of the file contains a line of network configuration parameters for each edge node.

For each node, an operator configures the following four parameters:

* Node: Name of the PLC. In the case study, the virtual midstream oil terminal
names the twelve PLCs as “PLC” followed by a sequential number between 1
and 12.

Example: “PLC1”

* Neighbors: Names of the neighboring PLCs logically connected to the current
PLC. The PLC names are represented as a list separated by commas.

Example: “PLC2, PLC3, PLC4, PLCs, PLC6”.

* NIPs: A list of IP addresses of logically connected neighboring nodes separated by
commas.

Example: “200.200.200.2, 200.200.200.3, 200.200.200.4, 200.200.200.5 .

* NodelPs: IP address of the current PLC.

Example: “200.200.200.1".

A vertical bar (

ul”

) separates each configuration parameter.

To identify the quantitative performance of network topologies, this study
compared the network latency of the physical P2P topology developed using Gao’s
approach with four topologies from the existing literature [1, 22, 23]. The analysis

considered line topology, ring topology, star topology, and full-mesh topology.

Line topology connects all edge nodes in a single line. Ring topology connects
every edge node to two neighboring devices. A star topology connects all edge nodes
to a centralized hub. In the case of the midstream oil terminal, one of the edge nodes
acts as a central hub and connects to other edge nodes. A full-mesh topology
establishes a direct point-to-point connection between each edge node and every

other edge node.

The network latency test measures the time taken by each PLC to complete the
sharing of physical states. For the midstream oil terminal, it was the sum of the time

taken by each PLC to send its physical state information to the other eleven PLCs
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and the time taken to receive the states of all eleven PLCs. For example, the network
latency of PLC1 is

Network latency of PLC1 = Time taken to send physical state information of
PLC 1 to all other PLCs + Time taken to receive

physical state information of every other PLC

Table 1. Network latency in milliseconds for different topologies.

Topology of PLC1 PLC2 PLC3 PLC4 PLC5; PLC6 PLC7; PLC8 PLC9 PLCio PLCia PLC1i2  Average (in
the network milliseconds)
Line [1] 10.82 1416 1241 15.72 16.52 11.32 18.57 15.63 15.81 12.94 1536 14.73 14.49
Ring [22] 23.44 23.14 27.65 26.25 25.55 27.98 31.53 31.53 24.53 28.23 29.54 24.5 26.99
Full mesh [1] 2200.75 194835 1979.29 2175.12 2004.47 2218.48 2205.74 2788.18 2379.42 2248.85 2169.44 2572.38 2240.87
Star [23] 12.49 12.3 13.6 10.59 10.75 15.22 12.72 13.25 12.88 1529 12.94  10.58 12.717
Gao’s 10.71 14417  10.67  11.52 18.93 17.55 13.39 13.8 11.43 11.92 10.72 1137 13.015

approach [21]

9/31

Star topology provided a lower average latency. However, Gao’s approach
provided more reliability, greater network bandwidth, and is cost-efficient. This is
because star topology has a single point of failure; If the central node fails, the
attached nodes get disabled. The central node has to handle heavy network traffic
from all other nodes. A PLC with low computation capacity cannot handle such
network traffic. Additionally, the star topology is a centralized architecture. Hence,
each node, however far apart, needs a physical connection to the central node. This
increases the construction cost of the network. Hence, this study used the topology
designed using Gao’s approach for the P2P network of the embedded IDS. Table 1

outlines the network latencies for different topologies.

3.3. Analysis engine—physical system anomaly detector

The physical system anomaly detector in the analysis engine runs every PLC cycle
and uses state estimators to decide if the readings of the sensors are false. The state
estimators model the values of a continuous or a discrete system parameter. It takes
the older system conditions as input and predicts the state of the next time step. A
data preprocessing unit aggregates the current readings from the PMM and SMM.
After aggregation, the data preprocessing unit rearranges the readings and feeds the
ordered list into a FIFO stack. This stack is coupled to the inputs of the module
containing the state estimators. If the prediction is within the confidence interval,
the physical system anomaly detectors mark the value as normal; otherwise, the
incident response system logs the false value of the sensor. The analysis engine uses

two types of state estimators: Type I and Type II. Each type performs a unique

"~
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A generic interconnected system with three PLCs is shown in Figure 3.

Peer-to-peer network

Peer-to-peer Peer-to-peer

network network

Actuators:- Actuators:- Actuators:-

*  aX;,aXs, . aXm *  aY,ay, ..ay; *  alyaly, .. aly
Sensors:- Sensors:- sensors:-

o sXy,5Xs, . SXn o sYysYs, .8V ¢ 524,523, ... 524

Figure 3. System with three interconnected PLCs.

In the example, PLC X has m actuators and n sensors. Sensor and actuator names
start with “s” and “a” followed by the PLC name (X, Y, and Z) and the serial number.
The naming for PLC Y and PLC Z follows the same convention.

The Type I state estimator takes the value of the actuators and changes in sensor
value (4s; = st —5(;—y)) at previous time stamps (£ — 1, — 2, £ — 3) as input and
predicts the change in sensor value at the current timestamp (¢). Each sensor
attached to a PLC has a Type I state estimator. Hence, PLC X, Y, and Z have n, k, and
q Type I state estimators, respectively. For a given states of the actuators, the Type I
state estimator predicts the change in sensor value of the current timestamp. Hence,
Type I state estimator for sensor sX; predicting timestamp ¢ based on actuator values

and past sensor changes is expressed as

AsXi = fax, v, z(-10-3)> DXi(e-123) D)

where:

* ax.y,z (t-1:1-3): actuator values from PLCs X, Y, Z at timestamps £ — 1, — 2, — 3.

* AsX; (;-1:1-3): previous changes in sensor sX; at timestampst — 1,7 — 2,7 — 3.

The Type II state estimator models correlated sensor values of interdependent
processes in an industrial control system. An interdependent process is a large
industrial system that uses multiple PLCs and adheres to a distributed control
system architecture. In such a system, a change of an actuator on one of the PLC
may cause changes in sensor states on other PLCs. An example of an interdependent
industrial operation is the TI' loading operation at the mid-stream oil terminal. The
TT loading operation uses three interconnected PLCs: a PLC controlling the tank
farm, a PLC controlling the pump house, and a PLC controlling the tanker trucks.

During a TT loading operation, turning on pumps at the pump house increases the
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flow rate at the outlet of the pump house and at the TT loading bay; Sensors P7SF2
and P6SF1 observe these changes. The PLC controlling the tanker truck observes a
change in sensor reading even though the actuator states are the same. Here sensor
P7SF2 and sensor P6SF1 show a statistical correlation. Using the change in values of
one of the correlated sensors, the Type II state estimator can predict the change in

the other.

The first step for modeling a Type II state estimator is identifying the correlated
sensors. This research uses PCC [24] for measuring the linear relationship between
two sensor readings. The PCC coefficient ranges from —1 to +1. An exact value of +1
or —1 implies that a linear equation can completely describe the relationship of the
variables and a value of o implies no linear correlation between the variables. For
this study, the interdependent processes in the midstream oil terminal require a PCC
value of at least |0.9| for building accurate state models [25]. Hence, while
identifying interdependent sensors, the case studies in the upcoming sections chose

the sensor pairs only if the PCC value was greater than or equal to |0.9).

Let’s assume that sensor sX; and sensor sZ; are strongly linearly correlated, and
PCC (sX4,5Z,) = |0.9|. At timestamp ¢, the Type II state estimator operating in PLC
X for predicting the correlated sensor values of PLC Z receives the actuator values
from PLCs X, Y, Z (ax, v, 7 (+-1:¢—3)) and changes in sensor values on PLC X
(AsX (4. 1¢_3)) as inputs from the FIFO stack (timestampst —1,¢ — 2, — 3). The
output of the type II estimator will predict the change in the correlated sensorsZ,; on

PLC Z at current timestamp ¢, AsZ; ¢ =523 ¢ — s‘Zi, (t-1)-
AsZy 1 = h ({“X, Y, Z(t-1:t-3)> A‘-Xi(r—tt—y D

h: represents the predictive state estimator model trained based on historical data

exhibiting a strong correlation (PCC > |0.9|) between sX; and sZ;.

3.3.1. Choice of algorithm for Type I and Type 1I state estimators

The Type I and Type II state estimators are both one-step forecast models. These
models take a stack of values containing parallel input time series of sensors and
actuators values. The input time series are parallel because each series has an
observation at the same time steps. The output depends on the input time series and

predicts the value of the current timestamp.

The algorithm for state estimation in the midstream oil terminal needs to infer
spatial and temporal structure from the data. The actuator and sensor data from the
midstream oil terminal have a spatial structure. For example, a tanker truck loading
operation in the midstream oil terminal involves the actuation of valves in three
locations; the change in sensor readings are spatially linked to these locations. The

state estimator has to infer the spatial relations from the data. Additionally, the
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midstream oil terminal data exhibits a temporal structure. For example, turning a
pump ON in the pumphouse increases the pressure and flow rate at the outlet of the

pump house at a future timestamp.

Considering the requirement of spatial and temporal awareness, this study used a
combination of CNN and LSTM model inside the state estimators. CNN-LSTM
combination is the current state- of-the-art for modeling multiple parallel input
time series with spatial and temporal structure [26, 27]. A deep CNN architecture
extracts the spatial features from the 1D input vector and the LSTM model
interprets the features across time steps. Together the hybrid CNN-LSTM model

infers the spatial and temporal information of the data.

3.3.2. CNN-LSTM structure

CNN-LSTM combines two sub-models: CNN model for feature extraction and
LSTM model for interpreting the features across time steps. The CNN model has
three layers: a 1-D convolutional layer, a Max pooling layer, and a Flatten layer.
Figure 4 shows the layout of the CNN layers and the LSTM backend components.
The 1-D convolutional layer analyzes the rolling window and extracts the features.
The kernel size parameter in the convolutional layer specifies the number of time
steps included in each input sequence. In this research, the kernel size parameter
was set to three to match the FIFO input sequence length of the Type I and II
estimators. The matching kernel size ensured that the convolution layer captured the
essential temporal dynamics from the last three timestamps of the sensor data. The
number of filters was set to 64, which optimized computational complexity while
capturing relevant spatial features. The model used ReLU activation to mitigate the
vanishing gradient problem in deep neural networks. After the feature extraction, a
Max pooling layer with a pool size of 2 with stride 2 reduced the dimensionality of
the feature map, and a Flatten layer converted the multidimensional feature map to
a single-dimensional array. A Time- distributed wrapper binds all three layers into a

single CNN unit.

The CNN unit provides a single-dimensional feature vector to the LSTM network.
Using these features, the LSTM learns the long-term dependencies between the
timestamps [28]. The LSTM network has two layers: an LSTM layer and a Dense
layer. The LSTM layer holds the neural network nodes for learning the behavior of
the system. This study optimized the number of nodes using GridSearchCV [29]. An
LSTM layer with 200 nodes provides the lowest Root-Mean-Square Error (RMSE)
value for the operational data of the midstream oil terminal. The combination of
dropout and recurrent dropout at 0.2 randomly drops connections during training
and mitigates overfitting. The dropout allows for a better generalization across
temporal sequences and reduces sensitivity to noisy sensor data. A single node dense

layer with linear activation directly maps LSTM output to predicted continuous
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Dropout

Input
Output

Time distributed layer

Figure 4. Type Il state estimators of PLC X for predicting correlated sensor values of
PLCY.

sensor values. Linear activation ensures unbiased prediction suitable for regression

problems in state estimators.

The training data used 37 h of routine operations from the oil terminal. During
training, the model used five-fold time series cross-validation, where each fold
advanced the validation block forward in time so that the model was never validated
on the past data points. To prevent temporal leakage, the stream was split in arrival
order into 70% training, 15% validation, and 15% hold-out test segments. A grid
search explored the LSTM hidden units (64, 128, 200, 256), CNN kernels (3, 5, 7),
dropout (0, 0.2, 0.3), and learning rate (1 x 10 3,5 x 10" %, 1 x 10" 4). The
configuration with 200 hidden LSTM units, a kernel length of five, a 0.2 dropout
value, and a § x 10”4 learning rate provided the lowest validation RMSE.

3.3.3. Confidence interval and detection of anomaly using state estimators

The physical system anomaly detector received the predictions from the state
estimators and maintained a dynamic confidence interval for each estimator. The
dynamic confidence interval of a state estimator is the standard deviation of a
rolling window containing 20 of its latest predictions. The dynamic confidence
interval acts as a threshold while measuring the variation of the state prediction
from the current sensor values [30]. If the sensor value is out of the confidence

interval the physical system anomaly detector calls the incidence response system to

"

log the false sensor value.
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4. Case studies and evaluation

This section describes the effectiveness of the embedded intrusion detection system
inside PLCs controlling a simulated midstream oil terminal [31, 32]. The midstream
oil terminal included twelve operational stations adhering to the American
Petroleum Institute (API) standards [33-39]. The stations used OpenPLC to control
the mid-stream oil terminal processes. OpenPLC is an IEC 61,131-3 compliant
open-source industrial controller for cybersecurity research [19]. Being open-source,
researchers can access and modify the source code to test novel cybersecurity
methodologies. OpenPLC also matches the comparison benchmark of commercial
PLCs in metrics like real-time scan operations, ladder logic arithmetic, SCADA
connectivity, and cyberattack response. Alves et al. provided a comprehensive
comparison of OpenPLC with commercial PLCS like Schneider M221, Siemens
S7-1214C, Omron CP1L-L20DR-D, and Allen-Bradley (A-B) MicroLogix 1400 [19].
Prior research on the midstream oil terminal testbed using OpenPLC as the
controller device showed high-fidelity responses during cyber-attack scenarios and

illustrated cyber-attacks’ impact on connected processes [31].

The case studies in this section focused on three cargo operations in the
mid-stream oil terminal: Tanker Truck loading operation, where an attacker
compromised a single sensor across one PLC; Pipeline Transfer (PLT) operation,
where an attacker compromised five sensors across one PLC; and Marine Tanker
(MT) loading operation, where an attacker compromised three sensors across three
PLCs.

These cases’ studies were motivated by historical attacks and scenarios from
existing literature. The case studies assumed that the attacker had access to the
industrial sensor network and could falsify the sensor response. The attack
privileges were similar to the Irongate scenario, which targeted industrial control
systems (ICS) and spoofed sensor data to hide malicious activities [40].

Yang et al. [41] also outlined a similar sensor spoofing scenario where the attacker
injected fake measurements into sensor networks to mislead decision-making.
Studies ([40] and [41]) have shown scenarios where the attacker had complete
control over the sensor responses. Attacks like Stuxnet have shown that similar
sensor spoofing could be achieved even in an air-gapped network, where an attacker
used infected USB drives to gain control over the network and eventually

manipulated the programmable logic controller [42, 43, 44].

4.1. Tanker truck loading operation— (attack on single sensor)

The Tanker Truck (TT) loading operation involved three subsystems of the

midstream oil terminal: Tank Farm (TF), Pumphouse, and TT gantry. During TT

"~

loading, the liquid cargo moved from the TF to the TT gantry through the
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pumphouse. One of the adverse effects of cyber-attacks during the TT loading
operation is an overflow scenario [31]. The midstream oil terminal simulated the
sensor network in MATLAB. During the attack scenario, MATLAB activated a
malicious Simulink block which delayed the level sensor (P6SL1) reading of the
internal tanks of the TT by 7 s. This resulted in HMI reporting an older value
different from the actual reading of the level sensor. The delayed response may have
misled the operators in taking an incorrect control decision and create a cargo

overflow scenario.

The cyberattack involved a single PLC (PLC6) and spoofed the readings of one
level sensor (P6SL1) connected to it. The cyber attack is represented as Ex-14 in

Figure 5.

alse reporting (EX-14)

Data from MATLAB

Confidence Interval limit

Confidence Interval limit

- - - - Prediction by P6SL1||P10SL1

——————— Prediction by P6SL1||P7SF1

s Prediction by P6SLA||P7SF2
Prediction by P6SL1||P6SL1
Start of false reporting (EX-14)
Hardware Layer Value

Change of TT internal tank level per PLC cycle

I | I 1 I I I
120 122 124 126 128 130 132
PLC Cycles

Figure 5. Prediction of the state estimators and the confidence interval of the

hardware layer values.

Table 2 shows the list of sensors involved in the gasoline tanker truck loading
operation. For each sensor, the embedded IDS has a Type I state estimator. We
represent Type I state estimators using a specific nomenclature. The nomenclature
uses the name of the sensor whose value is forecasted, followed by a subscript. The
subscript represents the name of the sensor that inputs to the state estimator. For
example, a Type I state estimator forecasting the value of sensor P1oSL1 using the

past observation of P10SL1 as represented as P10SL1p,g1 4.

The number of Type II state estimators depends on the statistical relationship

between the sensor readings. Hence, this analysis used a dataset containing 37 h of

"~
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Table 2. List of sensors involved in a gasoline TT loading operation.

PLC name Sensor name Purpose
PLC10 (Gasoline tank farm) P1oSL1 TK11 Tank level
P10SP1 Dispatch valve pressure
P10SF1 Dispatch valve flow rate
PLC7 (Gasoline pump house) P7SF1 Gasoline pump house inlet flow rate
P7SF2 Gasoline pump house outlet flow rate
P7SP1 Gasoline pump house inlet pressure
P7SP2 Gasoline pump house outlet pressure
PLC6 ('IT Gantry) P6SF1 Bay 1 flow rate sensor
P6SP1 Bay 1 pressure sensor
P6SL1 Bay 1 level sensor 1
P6SL2 Bay 1 level sensor 2

16/31

normal operational data of the midstream oil terminal to compute a matrix
containing the absolute values of PCC of sensors responses. Table 3 illustrates the
matrix with the absolute PCC values of the sensors. A Type II state estimator was
constructed for sensors having PCC values higher than or equal to 0.9. The Type II
estimator enabled the embedded IDS to predict the states of correlated sensors in
neighboring nodes. Table 3 highlights the sensor pairs with PCC values great than
equal to 0.9 showing strong linear relationship. For example, P7SF2 shows high
linear relationship with P6SL2. A Type II state estimator can be constructed
forecasting the value of sensor P7SF2 using past observations of P6SL2 (represented

as P78F2pgs, ).

Figure 5 shows the predictions of the state estimators and the confidence
intervals. The false reporting started at the 122nd cycle of the PLC and the hardware
layer replaced the current observations of sensor P6SL1 with older values. The state
estimators forecasting the response of P6SL1 predicted a value different from the
hardware layer. Every estimator flagged it as an anomalous reading because the

value of the hardware layer was out of the confidence interval.

Table 4 shows the predictions of the state estimator, actual values from MATLAB
simulation, and the false readings from the hardware layer. Few state estimators
flagged PLC cycle 125 and 126 as normal because the false readings overlapped with
the actual values. The Type I states estimators in PLC 6 and the Type II state

estimators in PLC 7 and 10 detected the false readings of sensor P6SL1.

4.2. Pipeline transfer (PLT) operation— (attack on multiple sensors)

The PLT operation transfers liquid cargo from a shore-side oil refinery to the

mid-stream oil terminal using a 150 kilometer (km) pipeline. The pipeline transports

"~
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Table 3. Absolute values of Pearson Correlation Coefficient (PCC) of sensors.

P10SL1 | P10SP1 | P10SF1 P7SF2 | P7SP2 | P6SF1 | P6SP1 | P6SL1 | P6SL2

P10SL1 0.1735

P10SP1 0.7542 | 0.1247 | 0.1057

P10SF1

0.0943

Table 4. Behavior of the state estimators during the cyber-attack.

PLC Cycles
Normal Normal | Spoofed | Spoofed | Spoofed | Spoofed | Spoofed | Spoofed | Spoofed | Spoofed
Sensor | Sensor | Sensor | Sensor | Semsor | Sensor | Semsor | Sensor
Cydle | Cycle | Cycle | Cycle Cycle | Cycle | Cycle | Cycle | Cycle | Cycle130
121 122 123 124 125 126 127 128 129
MATLAB
State State values | o rens | azsers | 228 15 -0.424 06 0.852 0.985 107 114
Estimator | Estimator | oo \ground
2 P6SLL truth)
Location Type
H“{:y":’:" 5.27e11 | -425e-11 | -425e-11 | -425e-11 | -4.25e-11 | -4.25e-11 | -4.25e-11 | 4.25e-11 | -4.25e-11 | -4.25e-11
PLC10 Typell | P6SLleosus | Predicted
PESLLersrn | Predicted
i Typell P6SL1p7sr2 Predicted
PLC6 Type| | P6SLlress | Predicted

. Within Confidence interval . Outside Confidence interval

the liquid cargo into one tank in the tank farm. Five pressure sensors (P3SP1, P3SP2,
P3SP3, P3SP4 and P3SP5) monitor the state of the pipeline during the PLT operation.
The attacker closed a valve at one end of the pipeline and spoofed the readings of the
pressure sensors. The closing of the valve increased the pressure inside the pipeline.
The operators do not see this change of state because of the false readings of the
pressure sensors. This attack can eventually lead to a pipeline rupture similar to the

Trans-Siberian explosion [45].

The cyber-attack involved a single PLC (PLC3) and spoofed the readings of five
pressure sensors (P3SP1, P3SP2, P3SP3, P3SP4, and P3SPs).
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In PLT operation, PLC 3 manages the 150 km pipeline. The pipeline transports the
liquid cargo into a gasoline tank farm. Table 5 shows the list of sensors connected to
PLC 3 and PLC 10. For each sensor, the embedded IDS has a Type I state estimator.
Similar to Case study I, we constructed Type II state estimators for sensors pairs
having PCC values higher than or equal to 0.9. Table 6 shows a matrix with the

absolute PCC values of the sensors.

Table 5. List of sensors involved in a gasoline PLT operation.

PLC name Sensor name Purpose

PLC3 (Pipeline transfer) P3SP1 Terminal side pressure
P3SF1 Terminal side flow rate
P3SP2 30 km from terminal pressure
P3SF2 30 km from terminal flow rate
P3SP3 60 km from terminal pressure
P3SF3 60 km from terminal flow rate
P3SP4 90 km from terminal pressure
P3SF4 90 km from terminal flow rate
P3SPs 120 km from terminal pressure
P3SF5 120 km from terminal flow rate

PLC10 (Gasoline tank farm) P10SP2 TK11 Receipt line pressure
P10SF2 TK11 Receipt line flow rate
P10SL1 TK11 Tank Level

—— 18/31

Table 6. Absolute values of Pearson Correlation Coefficient (PCC) of sensors.

P10SP2 | P10SF2 | P10SL1

|_os13] o046

P10SP2

P10SF2
P10SL1

Figures 6, 7, 8, 9, and 10 show the predictions of the state estimators and the
confidence intervals. The false reporting started after the 2nd cycle of the PLC and
the hardware layer replaced the current observations of pressure sensors with older
values. The state estimators forecasting the response predicted a value different from
the hardware layer. Every estimator flagged it as an anomalous reading because the
value of the hardware layer was out of the confidence interval. During such

scenarios, instead of using the anomalous readings from the hardware layer, the

"~
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Type I state estimators P3SP1p;sp;, P3SP2p3sp,, P3SP3p;sp;, P3SP4pssp,, and
P3SPs5p;sps used its predictions as input.

~

Start of EX-14

Change of Pressure as measured by P3S5P1
N

| = S
// / E—
I

i Data from MATLAB

i IA[, Hardware Layer Value

] ! / —&— Confidence Interval Lower Limit

,‘; —+— Confidence Interval Upper Limit

5l | /,U Prediction by P3SP1||P3SP1 i
| Zv’ Prediction by P3SP1||P10SP2

- - Prediction by P3SP1||P10SF2
Start of EX-14

PLC Cycles

Figure 6. Prediction of the state estimators and the confidence interval of the

hardware layer values.

Table 7 shows the responses of the state estimators during the cyber-attack. The
false readings were from the pressure sensor of PLC 3. The Type II state estimators
P3SP1p,,sp, and P3SP1p, sk, placed inside PLC 10 successfully identified the
incorrect values. The successful detection demonstrates that the proposed IDS
effectively identifies cyberattacks on neighboring nodes managing interdependent
processes. The Type I state estimators inside PLC3 were able to flag the false values

from all sensors.

4.3. Marine tanker (MT) loading operation— (attack on multiple

sensors across multiple PLCs)

The MT loading operation involves four subsystems: gasoline tank farm (PLC 10),
gasoline pump house (PLC 7), loading marine tanker (PLC 5), and 12.5 kilometers
(km) terminal-to-jetty pipeline (PLC1). The centrifugal pumps in the gasoline pump
house transfer liquid cargo from the gasoline tank farm to the internal tanks of the

Marine Tanker (MT) using the 12.5 km terminal-to-jetty pipeline. The attack

— . "
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Figure 7. Prediction of the state estimators and the confidence interval of the

hardware layer values.

scenario involved three PLCs during the MT loading operation: PLC 1, PLC 5, and
PLC 10. The attacker closed a valve at one end of the jetty-to-terminal pipeline and
spoofed the readings of the pressure sensors P1SP1, P7SP2, and P1oSP7. Such

scenarios can increase the pressure in the pipeline and cause pipeline rupture [31].

The cyberattack involved three PLCs (PLC10, PLC7, and PLC1) and spoofed the
readings of three pressure sensors (P1SP1, P7SP2, and P1oSP7).

Table 8 shows the list of sensors connected to PLC 1, PLC 5, PLC 7, and PLC 10.
The embedded IDS inside each PLCs have a Type I state estimator. Type II state
estimators were built for sensors having PCC values higher than or equal to o.9.

Table 9 shows a matrix with the absolute PCC values of the sensors.

Table 10 shows the response of the state estimators during the cyberattack. The
false readings were from the pressure sensors connected to PLC 1, 7, and 10. During
the attack, the Type II state estimators in PLC 5 identified the incorrect values from
the pressure sensor connected to the neighboring node (PLC1). Additionally, the
Type I state estimators inside PLC 1, 7, and 10 detected the incorrect values from
pressure sensors connected. Figure 11 and 12 shows the predictions of the state

estimators and the confidence intervals.

- . "~
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Table 7. Behavior of the state estimators during the cyberattack.

PLC Cycles

Normal

Normal

Spoofed
Reading

Spoofed
Reading

Spoofed
Reading

Spoofed
Reading

Spoofed
Reading

Spoofed
Reading

Spoofed
Reading

Spoofed
Reading

MATLAB
(Ground
Sensor/Notation truth) Cycle 1
[Hardware
Layer

Cycle 2

Cycle 3

Cycled

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

MATLAB

1371
Values

Sensor P35P1

1371

4.7391

4.7354

4.7317

4.7282

4.7246

4.7212

4.7177

4.7144

Hardware

Layer 1371

1371

1371

1371

1371

1371

1371

1371

1371

1371

MATLAB

0.0983
Values

0.0983

225.3551

226.9389

228.5181

230.0972

231.6909

233.3256

234.9768

236.639

Sensor P35P2 Hardware

0.0983
Layer

0.0983

0.0983

0.0983

0.0983

0.0983

0.0983

0.0983

0.0983

0.0983

MATLAB

0.1613
Values

Sensor P35P3

0.1613

2.6323

3.4267

4.2086

4.8766

5713

6.9122

7.4099

7.7066

Hardware

Ly 0.1613

0.1613

0.1613

0.1613

0.1613

0.1613

0.1613

0.1613

0.1613

0.1613

MATLAB

Valigs 0.4218

Sensor P35P4

0.4218

1.9535

2.0838

2.2364

2.4053

2.5594

2.6412

2.7074

2.7714

Hardware

04218
Layer

0.4218

0.4218

0.4218

0.4218

0.4218

0.4218

0.4218

0.4218

0.4218

MATLAB

0.8893
Values

Sensor P3SP5

0.8893

29.3407

29.3437

29.3571

29.3511

29.355

29.3602

29.3649

29.3697

Hardware
Layer

0.8893

State State
Estimator | Estimator
Location Type

P3SP1p3se1 Predicted
P3SP2p3se2 Predicted
PLC3 Type | P3SP3p3se3 Predicted
P3SP4pasea Predicted
P3SP5p3ses Predicted
P3SP1piosp2 Predicted
P3SP1pi0sr2 Predicted

PLC10 Type ll

0.8893

. Within Confidence interval .Outslde Confidence interval

0.8893

0.8893

0.8893

0.8893

0.8893

0.8893

0.8893

0.8893

Table 8. List of sensors involved in a gasoline PLT operation.

PLC name Sensor name

Purpose

PLC1 (Loading marine tanker pipeline) P1SP1
P1SF1

PLCs5 (Loading marine tanker) P5SP1
P5SF1
PsSL1
P5SL2
PsSL3
P5SL4
P5SLs
PsSL6

PLC7 (Gasoline pump house) P7SF1
P7SF2
P7SP1
P7SP2

PLC10 (Gasoline tank farm) P10SP7
P10oSF7
P10SL3

Terminal side pressure

Terminal side flow rate

Marine tanker manifold pressure

Marine tanker manifold flow rate

Tank P1 Level
Tank P2 Level
Tank P3 Level
Tank S1 Level
Tank S2 Level
Tank S3 Level

Gasoline pump house inlet flow rate
Gasoline pump house outlet flow rate
Gasoline pump house inlet pressure
Gasoline pump house outlet pressure

TK13 Dispatch line pressure
TK13 Dispatch line flow rate
TK13 Tank Level
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Figure 8. Prediction of the state estimators and the confidence interval of the

hardware layer values.

Table 9. Absolute values of Pearson Correlation Coefficient (PCC) of sensors.

P75P1 | P75P2 | P10SP7 | P10SF7 | P10SL3
0371 0.291 [ 0.1391 | 0.0027

0.6713 | 0.6412 | 0.1788 0.013 | 0.1006

P5SF1 | P5sL1 | P5sL2 [ P5sL3 | p5sLa | PssLS [ PSSL6 | P7SFL

0.6743 | 0.3703 | 0.6014 | 0.1507 | 0.1864 | 0.1005 0.145 | 0.4831

0.8571

0051 | 0.6587

0.673 |

0.1343 | 0.7430 | 01456 0.723 0.731

0.3219 | 0.4160 | 0.0125 | 0.0357 0.364

P55L1 | 53703

P3SL2 | 0.6014
P3SL3 | 01007

P55L4 | 59854

0.0947 0.112 071 | 01332 01131

0.7649
0.8561

0.3641| 0.1360 | 0.354 | 0.6311 | 0.1145
0.0541 0.213 [ 0.1546 0.546 | 0.1165

0.731 00721 | 07045 | 01655 | 0.1457 | 0.1364
0.8101 § 0.0746 | 0.7601 | 0.3694 | 0.151 | 0.1516

0.643 | 0.8846 0.03 | 0.1114 0.616

P35L5 | 0.1005
P55L6

P7SF1

| oass1] o7slosios | osss
0.6713 | 0.1343 | 0.3219 | 0.0947 | 0.3641 | 0.0541 | 0.0721 | 0.0746 0.03
0.6412 0.743 0416 0112 0.136 0.213 | 0.7045 | 0.7601 | 0.1114

P75P1

P75P2
P10SP7
P10SF7

0.291) 0.1789 | 0.643 | 0.0129 071 | 0.354]| 0.1546 | 0.1655 | 0.3646
01391 | 0013| 0.723 | 0.0387 | 0.1332 | 0.6311 | 0.546 | 0.1457 | 0.151 | 0.1564
0.0027 [ 0.1006 | 0.731| 0.364 | 0.1131 | 0.1145 | 0.1165 | 0.1364 | 0.1516 | 0.616

0.8012 | 0.0633

P10SL3
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Figure 9. Prediction of the state estimators and the confidence interval of the

hardware layer values.

Table 10. Behavior of the state estimators during the cyber-attack.

PLC Cycles
Spoofed | Spoofed | Spoofed | Spoofed | Spoofed | Spoofed | Spoofed | Spoofed
Normal Normal
veading | reading | resding | reading reading reading | reading reading
Cyclel | Cycle2 | Cycle3 Cycled | Cycle5 | Cycle Cycle7 Cycles | Cycles Cycle 10
—— MATLAB (Ground
Truth)/Hardware
Sensor PISPL | MATLAB Values | -0.00004 | -0.00004 | 2.086-08 | 476608 | 815608 | 83608 | 7.99E:08 | 7.6E08 | 72808 | 6.98£.08
Sensor P1SPL_| _Hardware Layer | -0.00004 | -0.00004 | -0.00004 | -0.00004 | -0.00004 | -0.00004 | -0.00004 4E-05 | -0.00004 | -0.00004
SensorP7SP2_|  MATLAB Values | -0.00004 | -0.00004 | 43022.08 | 72232.179 | 2476666 | 272423 | 254843.6119 | 171334 | 12347406 | 85512.771
Sensor P7P2_| Hardware Layer | -0.00004 | -0.00004 | -0.00004 | -0.00004 | -0.00004 | -0.00004 | -0.00004 4E05 | -0.00004 | -0.00004
Sensor P10SP7 | MATLAB Values | -18668 | -18668 | -643.394 | -677.004 | 689.0399 | -496.194 | 246412 | 0.5124 | 1991277 | 330.3051
Sensor PL0SP7 | Hardware Layer 18667 | 18667 | -1.8667 | -1.8667 ; 18667 18667
State State N
Estimator | Estimator | State Estimator
" Notation
Location Type
et Typel P1PTruses Predicted
Typell P75P2osses Predicted
PLCS Typell P10SPTrsser Predicted
Typel P75P2ersrs Predicted
PISPLorssy Predicted
Ber Typell P1PLorss Predicted
P10SPTerses Predicted
PLC10 Typel P7P7ro5e7 Predicted

. Outside Confidence interval
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Figure 10. Prediction of the state estimators and the confidence interval of the

hardware layer values.

5. Impact on PLC performance

This section describes two experiments to assess the impact of embedded IDS on the
performance of the PLC: the first experiment measured the time taken by the
embedded IDS to log a false sensor reading, the second experiment analyzed the

effect of the embedded IDS on the real time performance of the PLC.

5.1. Response time of the embedded IDS

This analysis measured the time taken by the embedded intrusion detection system
to respond to a false sensor reading. The embedded IDS operated inside the PLCs of
the midstream oil terminal. The experiment repeated the attack scenario of case
study I ten times during the TT loading operation. Each instance of the experiment
measured the peer-to-peer network latency, time taken by the ensemble state
estimators, and time taken by the incident response system. Figure 13 illustrates the

average, median, and maximum response time of the embedded IDS.

The embedded IDS took an average time of 33.922 ms to predict and log a false

sensor reading. The analysis also revealed that the maximum time taken to respond

"~
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Figure 11. Prediction of the state estimators and the confidence interval of the

hardware layer values.

was 40.3 ms. The disparity in response time was because of the network latency of

the P2P network.
5.2. Effect On real-time performance of the PLC

This analysis repeated the experiment of case studies and documented the effect of
embedded IDS with the physical system anomaly detector on the real-time
performance of PLCs. The embedded IDS operated inside PLC 6 of the midstream
oil terminal. The cycle time of the PLC was set to 50 ms, and an embedded logger
monitored the cycle time for a period of 24 h. This experiment was conducted twice
to examine the cycle time data, both without the IDS and with the embedded

physical system anomaly detector.

Table 11 outlines the standard deviation and the average cycle of the PLC. The
PLC maintained a mean cycle time of 50.04 ms and a standard deviation of 0.0142.

The experiments showed that the embedded IDS had no impact on the real-time

"~

performance of the PLC.
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6. Conclusion

This study elucidated the implementation of a distributed embedded intrusion
detection system. The embedded IDS operated inside the PLCs and used a
peer-to-peer network to share the physical states of the PLC with its neighboring
nodes. Using the states of the PLCs, a CNN-LSTM-based state estimator predicted
the potential values of the sensors. The embedded IDS categorized a sensor value as
incorrect if the values received from the sensor network were out of the prediction
interval of the state estimators and generated an alert. In interdependent processes
with correlated sensor values, the embedded IDS can predict the state of the sensors
connected to neighboring PLCs, facilitating the detection of attacks on connected

systems.

This work used a to-scale midstream oil terminal to test the embedded IDS.
Through three case studies involving tanker truck loading operations, pipeline
transfer operations, and marine tanker loading, the IDS successfully detected
falsified sensor data across single-sensor, multi-sensor, and multi-node spoofing.
Two performance analyses determined that the proposed IDS achieved detection
latencies within the operational constraints of programmable logic controllers
(PLCs) without impacting real-time system operations. This study provides a robust
framework for securing interconnected ICS controlling complex critical

infrastructure.

The embedded IDS uses time-synchronized multivariate data streams (sensor,
actuator, and control-flag values) that most modern SCADA installation archives for
routine historical or alarm management purposes. The 1-D CNN layers learn the
spatial co-activation patterns, and the LSTM network captures temporal dynamics
independent of the absolute cycle time. Neither layer requires explicit knowledge of
the physical system and learns the patterns in dimensionless sequences. As the
CNN-LSTM system parameters are agnostic to physical units, the same model
architecture can be effective on another plant whose tags relate to different physical
processes. The hybrid CNN-LSTM combination makes the system process-agnostic
and can scale across a broad range of critical infrastructure, including water, power,

chemical, and discrete-manufacturing SCADA systems.

7. Limitations and future work

This research explored the detection of a cyberattack on a midstream oil terminal.
The novel methodology identified falsified sensor readings on interconnected PLCs.
Future work can investigate methodologies to enhance the outlined intrusion
detection systems. Researchers can improve the latency of the peer-to-peer network

to achieve more efficient data sharing between peer nodes. A lower latency in the

"~
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peer-to-peer network can enable the IDS to work within PLCs with lower cycle
times. Another research path can compare the performance of different algorithms
for state estimation. A comparison helps to identify algorithms that achieve faster
performance with higher accuracy. Researchers can also use ICSs from different

domains to investigate the performance of the IDS.

Besides exploring IDS enhancements, future work can investigate residual attack
vectors arising from platform vulnerabilities, time synchronization attacks, and
resource hogging attacks. An unpatched PLC with platform vulnerabilities like
buffer overflow bugs, scan-cycle denial-of-service flaws, and remote code execution
can compromise the PLC. The embedded IDS relies on a time-aligned tag stream. A
time synchronization attack that skews NTP clocks can degrade detection
performance without altering process variables. The proposed system may be
vulnerable to resource exhaustion attacks like CPU hogging or memory by
fragmentation. Resource exhaustion can force the IDS to shed load or miss scan

deadlines.
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