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Abstract 
This study outlines a novel intrusion detection system (IDS) to detect compromised 
sensor data anomalies in interdependent industrial processes. The IDS used a 
peer-to-peer communication framework which allowed multiple programmable 
logic controllers (PLCs) to communicate and share sensor data. Utilizing the shared 
sensor data, state estimators used a long short-term memory (LSTM) machine 
learning algorithm to identify anomalous sensor readings connected to neighboring 
PLCs controlling an interdependent physical process. This study evaluated the 
performance of the IDS on three industrial operations aligning to a midstream oil 
terminal. The framework successfully detected several multi-sensor compromises 
during mid-stream oil terminal operations. A set of performance evaluations also 
showed no impact on the real-time operations of the PLC and outlined the 
prediction latencies of the framework. 

Keywords: embedded intrusion detection, interdependent process monitoring, 
mid-stream oil terminal, physical sensor spoofing, spatio-temporal detection 
framework 
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1. Introduction 

Cyberattacks have impacted industrial control systems (ICS) and supervisory 
control and data acquisition (SCADA) for more than a decade. Some of these attacks 
have relied on deception by manipulating or reusing data when the data no longer 
represented the actual state of the critical infrastructure. Stuxnet manipulated data 
to appear normal to the user so that the user would not be aware of the actual 
physical state of the industrial process, eventually causing damage [1]. Operators 
consider sensor data as the ground truth and rely on the readings to achieve remote 
monitoring. Spoofing sensor values can create a disconnect between the operator’s 
understanding and the actual state of the physical system. Such disconnects are 
dangerous and may lead the operator to make the wrong operational decision, 
causing damage to the critical infrastructure. Detecting such attacks is difficult due 
to modern critical infrastructure’s sheer scale and complexity. 

Critical infrastructure uses programmable logic controllers (PLCs) connected to 
sensors and actuators to control physical processes. The processes may influence 
system components in predictable ways, following established laws of physics, e.g., 
the flow rates and pressure follow fluid mechanics principles in a midstream oil 
terminal. Actuators such as pumps can alter these flow rates, thus affecting sensor 
readings. Statistical or machine learning models can capture such behaviors. The 
working hypothesis is that if statistical models learn the process-semantic patterns 
of inter-dependent industrial processes, the framework can identify spoofed sensor 
readings. This detection can also be scaled across large-scale distributed physical 
processes. 

In a distributed infrastructure, an attacker can spoof sensor readings through a 
network intrusion or a supply chain compromise. In a network intrusion, the 
attacker can perform a man-in-the-middle (MiTM) attack and relay tampered 
traffic, while in a supply chain attack, the attacker inserts a software or hardware 
exploit inside the sensors. In both cases, the sensor communicates false readings to 
the PLCs. The falsified reading may send incorrect data to the user and elicit an 
improper operational response, potentially disrupting the physical process. 
Network-based intrusion detection system (IDS) can detect intrusions across 
industrial communications but cannot detect sensor compromise due to supply 
chain compromise [2–6]. Literature review also shows that existing IDSs focus on 
detecting attacks on one node and lack visibility of neighboring PLCs [7]. Moreover, 
the existing solutions lack embedded detection capability within the PLCs. 

Following are the contributions of this study. 

• This study presents an embedded IDS framework that can predict the state of 
peer node sensors if they control an interdependent physical process. If the sensor 
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states are highly correlated, the IDS can detect anomalies of sensors connected to 
neighboring PLCs. 

• This study presents a hybrid spatio-temporal detection framework that uses a 
convolutional neural network (CNN) to capture spatial co-activations within a 
PLC scan, and a long short-term memory network (LSTM) to model temporal 
dependencies across scans. 

• The IDS can be embedded inside the industrial controller to provide native 
detection. 

• The IDS can detect falsified states of sensors due to supply chain attacks. 

The contributions address the research gaps, as the existing IDS solutions focus 
primarily on network-based attacks or single-node anomalies. The following 
sections elucidate the design and implementation of three core modules: a data 
sensor module that reads the state of the sensors and actuators from the MODBUS 
memory of the PLC, a peer-to-peer network that circulates the current state of the 
PLCs with other edge nodes, and a module inside the analysis engine. These modules 
allow the framework to detect sensor anomalies across interconnected systems. 
Section 2 presents the literature review pertaining to intrusion detection systems 
and novelties of this work’s IDS. Section 3 discusses the threat model including the 
software trojan exploit among others and explains the approach taken in this study 
to detect the threat. Section 4 evaluates the accuracy of the approach using three 
midstream oil terminal operations. Section 5 evaluates the impact of the IDS on PLC 
performance and Section 6 concludes the study. 

2. Literature review 

Past studies have focused on sensor data compromised by cyberattacks and have 
described these possible attacks, the proposed solutions and methods to detect and 
mitigate against these attacks. Cardenas in his studies has discussed attacks that 
affect certain supervisory, or control loops associated with industrial systems [8]. 
Attacks can affect the communication between the devices connected to sensors and 
a controller. Huang [9], in his study, which includes Cardenas as coauthor, 
characterized a threat model for a specific industrial control system—the Tennessee 
Eastman System. This ICS has various controllers and sensors associated with 
chemical reactions. The threat model involved the attacker providing deceptive 
sensor data to the controllers, which therefore acted incorrectly and caused the 
tanks to reach unsafe levels of pressure. In recent studies, Cardenas devised methods 
to detect compromised sensor data and employed an Advanced detection module 
(ADM) that used a linear mathematical model of the physical system, or plant [8]. 
With the model, the ADM determined if there was a discrepancy when compared to 
the sensor data that it received. The discrepancy was accumulated in a variable 
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called the CUSUM over time and compared to a threshold to determine if there was 
a compromised sensor. Combita and Alvero [2] developed a method to mitigate the 
threat model. 

A survey described techniques in which a model of the physics in cyber-physical 
systems was used to detect anomalies for ICSs and critical infrastructure [7]. The 
survey highlighted the nature of sensor data as values at discrete points in time 
whose behavior can be modeled even when the physical system was subjected to 
various inputs and stimuli from actuators, such as pumps and valves among others 
depending on the given domain of engineering or physics. If there was a discrepancy 
from the expected values according to the model from the purported sensors and 
other information, it can be inferred that there was an anomaly, indicating a 
potential cyberattack. The survey also referenced disparate works in power systems, 
control systems, and cybersecurity and discusses them in a unifying taxonomy of 
various approaches. A later survey provided an update with similar techniques and 
more sophisticated attacks for the smart grid [10]. This later survey focused on 
situational awareness, and analyzed how various techniques of detection enabled 
that awareness. Another survey by Gaggero et al. discussed similar detection 
methods that specifically involved artificial intelligence (AI) for the smart grid [11]. 
Gaggero et al. discussed the ability of traditional machine learning and AI at large to 
learn patterns in data associated with the physical system to be able to detect 
anomalous events. Other studies have focused on power systems involving false data 
injection attacks (FDIA). Wang et al. presented a survey of methods to detect FDIAs 
in power systems, which involved state estimators to do so [3]. Ahmed et al. 
analyzed several studies including a taxonomy of the current countermeasures to 
defend against FDIA [4] for both structured and unstructured data. 

Chromik, in several studies, discussed the use of power system models to detect 
FDIAs [5, 6]. Of particular relevance is a study in which a local monitoring detection 
system within substations was presented [12]. The current work is similar to this 
study in that the IDS discussed is also local to the relevant devices and physical 
system. However, the current work proposes an IDS that is not only local but also 
embedded in the devices, which allows for a reduced attack surface. Chromik 
proposed that in future work, the local IDSs of the various substations will 
communicate and share relevant data. This current work, on the other hand, 
involves the sharing of data among embedded IDSs in PLCs to allow for greater 
situational awareness. According to Hadžiosmanovic [13], certain variables within 
industrial control systems and critical infrastructure may be correlated indicating 
interdependencies. Therefore, sharing the data of these relevant variables is useful 
for the PLCs to have more accurate state estimation, which can aid in detecting 
anomalies. 
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In cyber-physical systems, interdependent processes are distributed across vast 
distances and generate time-synchronized data streams. These data streams exhibit 
spatio-temporal patterns, and the proposed IDS should be able to identify patterns 
for effective anomaly detection. CNN-LSTM models offer superior handling of 
spatial-temporal patterns in sensor-based time-series data, offering a stronger 
foundation than GRU, ARIMA, and even Transformer-based methods in several 
industrial and financial applications. Although studies have not applied CNN-LSTM 
for embedded intrusion detection, prior work has explored CNN-LSTM in domains 
like stock prediction, Internet of Things sensor data prediction, and other financial 
applications [14–18]. For example, Kumar et al. compared CNN, LSTM, Gated 
Recurrent Unit (GRU), and ARIMA in traffic forecasting and determined that 
CNN-LSTM was superior to ARIMA and CNN exhibited lower RMSE values across 
several datasets [14]. Ata et al. concluded that a CNN-based model effectively 
predicted traffic flow with erratic and extended patterns, outperforming established 
models in intelligent transportation systems [18]. For stock market analysis, 
Dwivedi et al. and Chen et al. compared the S-ARIMA model with CNN-LSTM 
[15, 16]. The CNN-LSTM model offered deeper insights into non-linear patterns. 
Liang et al. observed that CNN-LSTM performed better in volatile conditions than a 
standard ARIMA model [17]. Existing literature has established the effectiveness of 
CNN-LSTM combination in modelling spatio-temporal data streams. This study also 
used CNN-LSTM models within embedded architecture and a novel peer-to-peer 
data sharing framework for PLC-native intrusion detection. 

3. Methodology 

This section outlines a novel framework to detect attacks on sensors connected to 
neighboring nodes in an industrial control system. The framework uses three 
modules to get visibility of the physical process, states of neighboring PLCs, and 
establish a baseline of the system’s normal behavior. The first module is a physical 
system data sensor; it allows the embedded IDS to monitor the states of the sensors 
or actuators. The second module is a peer-to-peer (P2P) communication framework. 
Sharing information through the P2P framework allows the embedded IDS to have 
visibility over the states of neighboring PLCs. The third module is a physical system 
anomaly detector. This module learns the sensors’ behavior and infers the sensors’ 
values using the actuators’ states. 

In every PLC cycle, the physical system data sensor takes a snapshot of the 
actuator and sensor readings from the hardware layer of the PLC. The instances of 
the embedded IDS share the states using the P2Pcommunication framework. 
Sharing allows the embedded IDS to have visibility of the entire physical process. 
Using the collective states of PLCs, the physical system anomaly detectors predict 
the potential values of the sensors and the actuators. The physical system anomaly 
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detector also maintains a confidence interval for each sensor reading. If the reported 
value is out of the confidence interval, the embedded IDS flags the reading as false 
and sends an alert to a designated computer using the incident response system. 
Figure 1 shows the architecture and workflows of the proposed framework. 

Figure 1. Modules inside the embedded IDS with the physical anomaly detector and 
the physical system data sensors. 

The upcoming sections provide a detailed discussion of the three modules. 

3.1. Physical system data sensors 

The embedded IDS uses two physical system data sensors: physical memory map 
(PMM) and system memory map (SMM). PMM monitors the current state of the 
PLC and SMM maintains the current state of all interconnected nodes. 

• Physical Memory Map (PMM): The PLC receives the states of the sensors and 
actuators from the hardware layer. The PMM takes a snapshot of the MODBUS 
memory and uses the address information from the PLC configuration file to 
interpret the values of the sensors and actuators. The readings in the PMM update 
every PLC scan cycle and mirror the states seen by the PLC CPU. If a sensor or 
actuator value is altered, the PMM reads the falsified states of the sensors and 
actuators. 

• System Memory Map (SMM): The SMM takes the present state information from 
the PMM and shares it with other PLCs using the P2P communication framework. 
SMM receives the state information of the neighboring PLCs, and structures 
them based on the variable address of the ladder logic and peer node locations. 

The proposed framework embeds the PMM and SMM modules inside the PLC. 
The case studies implemented these modules by adding additional code into an 
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open-source PLC, OpenPLC [19]. The PMM obtained the values from the hardware 
layer of the OpenPLC, and the SMM used a peer-to-peer network, as outlined in the 
next section, to share values with neighboring nodes. 

3.2. Peer-to-peer communication framework 

The peer-to-peer (P2P) communication architecture enables the embedded IDS to 
share the physical state of the actuators and sensors of each PLC with other edge 
nodes. A P2P network is a distributed application architecture in which 
interconnected nodes (“peers”) communicate without using a centralized server. 
Each peer in this research is an instance of the embedded IDS inside the PLC. The 
nodes have equal administrative privileges and can function concurrently as clients 
and servers. 

The P2P network uses an optimized depth-first routing algorithm [20] based on 
Gao’s methodology [21]. Gao’s approach combined star and mesh topology. Gao 
grouped the PLCs into k clusters based on the physical distance between the edge 
nodes. Each cluster behaves like a star topology. The cluster selects a random central 
node, and all edge nodes are directly connected to the central node. The intra-cluster 
connections use a partial mesh architecture. The partial-mesh architecture directly 
connects the central node of each cluster to two other central nodes using a 
point-to-point connection. The clustered topology considers the inter-PLC distances 
and allows the P2P network to scale for large systems. 

For case studies involving virtual midstream oil terminals, outlined in Section 4, 
twelve PLCs control five subsystems (tank farms, pump houses, tanker truck gantry, 
pipeline transfer, and vessel operation) which were distributed across different 
distances were simulated. This study used the simulation distance of the subsystems 
to create the distance matrix for twelve PLCs and created five clusters: 
Cluster I—[PLC1, PLC2, PLC4, PLC5]—Controls Marine Tanker (MT) operation 
and the terminal-to jetty pipeline; Cluster II—[PLC10, PLC11, PLC12]—Controls 
Tank Farm (TF) operations; Cluster III—[PLC7, PLC8, PLC9]—Controls 
pumphouses; Cluster IV—[PLC6]—Controls Tanker Truck (TT) operations; and 
Cluster V—[PLC3]—Controls Pipeline Transfer operation (PLT). 

The IDS uses a custom configuration file to define the P2P topology. Python script 
parses the “config.csv” and creates a logical overlay network encapsulated within a 
traditional TCP/IP routing framework. Figure 2 shows a sample configuration file of 
a P2P network topology in the virtual midstream oil terminal testbed. 

The configuration file shown in Figure 2 illustrates the logical interconnectivity of 
each node with other neighboring edge nodes. An interpreter reading the 
configuration file considers a line starting with hash (“#”) sign as a comment and 
skips the first line of the file having names of the configuration parameters. The rest 
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of the file contains a line of network configuration parameters for each edge node. 
For each node, an operator configures the following four parameters: 

Figure 2. Configuration file for designing the topology of the P2P network. 

• Node: Name of the PLC. In the case study, the virtual midstream oil terminal 
names the twelve PLCs as “PLC” followed by a sequential number between 1 
and 12. 
Example: “PLC1”. 

• Neighbors: Names of the neighboring PLCs logically connected to the current 
PLC. The PLC names are represented as a list separated by commas. 
Example: “PLC2, PLC3, PLC4, PLC5, PLC6”. 

• NIPs: A list of IP addresses of logically connected neighboring nodes separated by 
commas. 
Example: “200.200.200.2, 200.200.200.3, 200.200.200.4, 200.200.200.5”. 

• NodeIPs: IP address of the current PLC. 
Example: “200.200.200.1”. 

A vertical bar (“|”) separates each configuration parameter. 

To identify the quantitative performance of network topologies, this study 
compared the network latency of the physical P2P topology developed using Gao’s 
approach with four topologies from the existing literature [1, 22, 23]. The analysis 
considered line topology, ring topology, star topology, and full-mesh topology. 

Line topology connects all edge nodes in a single line. Ring topology connects 
every edge node to two neighboring devices. A star topology connects all edge nodes 
to a centralized hub. In the case of the midstream oil terminal, one of the edge nodes 
acts as a central hub and connects to other edge nodes. A full-mesh topology 
establishes a direct point-to-point connection between each edge node and every 
other edge node. 

The network latency test measures the time taken by each PLC to complete the 
sharing of physical states. For the midstream oil terminal, it was the sum of the time 
taken by each PLC to send its physical state information to the other eleven PLCs 
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and the time taken to receive the states of all eleven PLCs. For example, the network 
latency of PLC1 is 

Network latency of PLC 1 = Time taken to send physical state information of 
PLC 1 to all other PLCs + Time taken to receive 
physical state information of every other PLC 

Table 1. Network latency in milliseconds for different topologies. 

Topology of 
the network 

PLC1 PLC2 PLC3 PLC4 PLC5 PLC6 PLC7 PLC8 PLC9 PLC10 PLC11 PLC12 Average (in 
milliseconds) 

Line [1] 10.82 14.16 12.41 15.72 16.52 11.32 18.57 15.63 15.81 12.94 15.36 14.73 14.49 

Ring [22] 23.44 23.14 27.65 26.25 25.55 27.98 31.53 31.53 24.53 28.23 29.54 24.5 26.99 

Full mesh [1] 2200.75 1948.35 1979.29 2175.12 2004.47 2218.48 2205.74 2788.18 2379.42 2248.85 2169.44 2572.38 2240.87 

Star [23] 12.49 12.3 13.6 10.59 10.75 15.22 12.72 13.25 12.88 15.29 12.94 10.58 12.717 

Gao’s 
approach [21] 

10.71 14.17 10.67 11.52 18.93 17.55 13.39 13.8 11.43 11.92 10.72 11.37 13.015 

Star topology provided a lower average latency. However, Gao’s approach 
provided more reliability, greater network bandwidth, and is cost-efficient. This is 
because star topology has a single point of failure; If the central node fails, the 
attached nodes get disabled. The central node has to handle heavy network traffic 
from all other nodes. A PLC with low computation capacity cannot handle such 
network traffic. Additionally, the star topology is a centralized architecture. Hence, 
each node, however far apart, needs a physical connection to the central node. This 
increases the construction cost of the network. Hence, this study used the topology 
designed using Gao’s approach for the P2P network of the embedded IDS. Table 1  
outlines the network latencies for different topologies. 

3.3. Analysis engine—physical system anomaly detector 

The physical system anomaly detector in the analysis engine runs every PLC cycle 
and uses state estimators to decide if the readings of the sensors are false. The state 
estimators model the values of a continuous or a discrete system parameter. It takes 
the older system conditions as input and predicts the state of the next time step. A 
data preprocessing unit aggregates the current readings from the PMM and SMM. 
After aggregation, the data preprocessing unit rearranges the readings and feeds the 
ordered list into a FIFO stack. This stack is coupled to the inputs of the module 
containing the state estimators. If the prediction is within the confidence interval, 
the physical system anomaly detectors mark the value as normal; otherwise, the 
incident response system logs the false value of the sensor. The analysis engine uses 
two types of state estimators: Type I and Type II. Each type performs a unique 
input-to-output mapping for state estimation. 
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A  g e n e ri c  i nt e r c o n n e ct e d s yst e m  wit h  t h r e e P L C s  i s s h o w n  i n Fi g u r e  3 . 

Fi g ure  3.  S yst e m  wit h  t h r e e i nt e r c o n n e ct e d P L C s.  

I n t h e e x a m pl e,  P L C  X  h a s  m  a ct u at o rs  a n d  n  s e n s o rs.  S e n s o r  a n d  a ct u at o r  n a m e s  

st a rt  wit h  “s ”  a n d  “ a ”  f oll o w e d b y  t h e P L C  n a m e  ( X,  Y,  a n d  Z )  a n d  t h e s e ri al  n u m b e r.  

Th e  n a mi n g  f o r P L C  Y  a n d  P L C  Z  f oll o ws t h e s a m e  c o n v e nti o n.  

Th e  T y p e I  st at e  e sti m at o r  t a k e s t h e v al u e  of  t h e a ct u at o rs  a n d  c h a n g e s  i n s e n s o r  

v al u e  ( 𝛥 st =   st −  s( t− 1 ) )  at  p r e vi o u s  ti m e st a m p s  ( t −   1, t −   2, t −   3 ) a s  i n p ut a n d  

p r e di ct s  t h e c h a n g e  i n s e n s o r  v al u e  at  t h e c u r r e nt  ti m e st a m p ( t).  E a c h  s e n s o r  

a tt a c h e d  t o a  P L C  h a s  a  T y p e I  st at e  e sti m at o r.  H e n c e,  P L C  X,  Y,  a n d  Z  h a v e  n , k , a n d  

q  T y p e I  st at e  e sti m at o rs,  r e s p e cti v el y.  F o r  a  gi v e n  st at e s  of  t h e a ct u at o rs,  t h e T y p e I  

st at e  e sti m at o r  p r e di ct s  t h e c h a n g e  i n s e n s o r  v al u e  of  t h e c u r r e nt  ti m e st a m p. H e n c e,  

T y p e I  st at e  e sti m at o r  f o r s e n s o r  s X i p r e di cti n g  ti m e st a m p t b a s e d  o n  a ct u at o r  v al u e s  

a n d  p a st  s e n s o r  c h a n g e s  i s e x p r e s s e d  a s  

∆ s Xi,t =  f( { a    , ∆ s X } )  X , Y , Z ( t– 1: t– 3 ) i( t– 1: t– 3 )

w h e r e:  

• a X , Y , Z  ( t− 1:  t− 3 ) : a ct u at o r  v al u e s    f r o m  P L C s X , Y , Z  at  ti m e st a m p s t −   1, t −   2, t −   3. 

• 𝛥 s Xi ( t− 1:  t− 3 )  : p r e vi o u s c h a n g e s  i n s e n s o r  s Xi at  ti m e st a m p s t −   1, t −   2, t −   3. 

Th e  T y p e II  st at e  e sti m at o r  m o d el s  c o r r el at e d  s e n s o r  v al u e s  of  i nt e r d e p e n d e nt 

p r o c e s s e s  i n a n  i n d u st ri al c o nt r ol  s yst e m.  A n  i nt e r d e p e n d e nt p r o c e s s  i s a  l a r g e 

i n d u st ri al s yst e m  t h at u s e s  m ulti pl e  P L C s  a n d  a d h e r e s  t o a  di st ri b ut e d  c o nt r ol  

s yst e m  a r c hit e ct u r e.  I n s u c h  a  s yst e m,  a  c h a n g e  of  a n  a ct u at o r  o n  o n e  of  t h e P L C  

m a y  c a u s e  c h a n g e s  i n s e n s o r  st at e s  o n  ot h e r  P L C s.  A n  e x a m pl e  of  a n  i nt e r d e p e n d e nt 

i n d u st ri al o p e r ati o n  i s t h e TT  l o a di n g o p e r ati o n  at  t h e mi d- st r e a m  oil  t e r mi n al. Th e  

TT  l o a di n g o p e r ati o n  u s e s  t h r e e i nt e r c o n n e ct e d P L C s:  a  P L C  c o nt r olli n g  t h e t a n k 

f a r m, a  P L C  c o nt r olli n g  t h e p u m p  h o u s e,  a n d  a  P L C  c o nt r olli n g  t h e t a n k e r t r u c k s. 

D u ri n g  a  TT  l o a di n g o p e r ati o n,  t u r ni n g o n  p u m p s  at  t h e p u m p  h o u s e  i n c r e a s e s t h e 
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Th o w  r at e  at  t h e o utl et  of  t h e p u m p  h o u s e  a n d  at  t h e Th  l o a di n g b a y;  S e n s o rs  P 7 S F 2  

a n d  P 6 S F1  o b s e r v e  t h e s e c h a n g e s.  𝛥 e  P L C  c o nt r olli n g  t h e t a n k e r t r u c k o b s e r v e s  a  

c h a n g e  i n s e n s o r  r e a di n g  e v e n  t h o u g h t h e a ct u at o r  st at e s  a r e  t h e s a m e.  H e r e  s e n s o r  

P 7 S F 2  a n d  s e n s o r  P 6 S F1  s h o w  a  st ati sti c al  c o r r el ati o n.  Usi n g  t h e c h a n g e  i n v al u e s  of  

o n e  of  t h e c o r r el at e d  s e n s o rs,  t h e T y p e II  st at e  e sti m at o r  c a n  p r e di ct  t h e c h a n g e  i n 

t h e ot h e r.  

tt e  𝛥 rst  s t e p f o r m o d eli n g  a  T y p e II  st at e  e sti m at o r  i s i d e ntif yi n g t h e c o r r el at e d  

s e n s o rs.  Thi s  r e s e a r c h  u s e s  P C C  [ 2 4 ]  f o r m e a s u ri n g  t h e li n e a r r el ati o n s hi p  b et w e e n  

t w o s e n s o r  r e a di n g s. TT e  P C C  c o e Th ci e nt  r a n g e s  f r o m − 1  t o + 1.  A n  e x a ct  v al u e  of  + 1  

o r  − 1  i m pli e s t h at a  li n e a r e q u ati o n  c a n  c o m pl et el y  d e s c ri b e  t h e r el ati o n s hi p  of  t h e 

v a ri a bl e s  a n d  a  v al u e  of  0  i m pli e s n o  li n e a r c o r r el ati o n  b et w e e n  t h e v a ri a bl e s.  F o r  

t hi s st u d y,  t h e i nt e r d e p e n d e nt p r o c e s s e s  i n t h e mi d st r e a m  oil  t e r mi n al r e q ui r e  a  P C C  

v al u e  of  at  l e a st | 0. 9| f o r b uil di n g  a c c u r at e  st at e  m o d el s  [ 2 5 ] . H e n c e,  w hil e  

i d e ntif yi n g i nte r d e p e n d e nt  s e n s o rs,  t h e c a s e  st u di e s  i n t h e u p c o mi n g  s e cti o n s  c h o s e  

t h e s e n s o r  p ai rs  o nl y  if t h e P C C  v al u e  w a s  g r e at e r  t h a n o r  e q u al  t o | 0. 9|. 

L et’s  a s s u m e  t h at s e n s o r a n d  s e n s o r  s Z1  a r e  st r o n gl y  li n e a rl y c o r r el at e d,  a n d   s X1  

P C C  ( s X1 , s Z1 )  ≥  | 0. 9|. At  ti m e st a m p t, t h e T y p e II  st at e  e sti m at o r  o p e r ati n g  i n P L C  

X  f o r p r e di cti n g  t h e c o r r el at e d  s e n s o r  v al u e s  of  P L C  Z  r e c ei v e s  t h e a ct u at o r  v al u e s  

f r o m P L C s  X , Y , Z  ( a X , Y  Z  , (t− 1:  t− 3 ) )  a n d c h a n g e s i n s e n s o r v al u e s o n  P L C  X

( TT s X1 ( t− 1:  t− 3 ) )  a s  i n p ut s f r o m t h e FI F O  st a c k  (ti m e st a m p s  t −   1, t −   2, t −   3 ). TT e  

o ut p ut  of  t h e t yp e II  e sti m at o r  will  p r e di ct  t h e c h a n g e  i n t h e c o r r el at e d  s e n s o r  s Z1  o n  

P L C  Z  at  c u r r e nt  ti m e st a m p t, 𝛥 s Z1,  t =  s Z1,  t −  s Z1,  ( t− 1 ) . 

∆ s Z1,  t =  h ( { a    , ∆ s X } )  X , Y , Z ( t– 1: t– 3 ) 1 ( t– 1: t– 3 )

h : r e p r e s e nt s  t h e p r e di cti v e  st at e  e sti m at o r  m o d el  t r ai n e d b a s e d  o n  hi st o ri c al  d at a  

e x hi biti n g  a  st r o n g  c o r r el ati o n  ( P C C  ≥  | 0. 9| ) b et w e e n  s X1  a n d  s Z1 . 

3. 3. 1.  C h oice  of  al g o rit h m  f o r T y pe I  a n d  T y pe II  st ate esti m at o rs  

Th e  T y p e I  a n d  T y p e II  st at e  e sti m at o rs  a r e  b ot h  o n e- st e p  f o r e c a st m o d el s.  Th e s e  

m o d el s  t a k e a  s t a c k of  v al u e s  c o nt ai ni n g  p a r all el  i n p ut ti m e s e ri e s  of  s e n s o rs  a n d  

a ct u at o rs  v al u e s.  Th e  i n p ut ti m e s e ri e s  a r e  p a r all el  b e c a u s e  e a c h  s e ri e s  h a s  a n  

o b s e r v ati o n  at  t h e s a m e  ti m e st e p s.  Th e  o ut p ut  d e p e n d s  o n  t h e i n p ut ti m e s e ri e s  a n d  

p r e di ct s  t h e v al u e  of  t h e c u r r e nt  ti m e st a m p. 

Th e  al g o rit h m  f o r st at e  e sti m ati o n  i n t h e mi d st r e a m  oil  t e r mi n al n e e d s  t o i nf e r 

s p ati al  a n d  t e mp o r al  st r u ct u r e  f r o m t h e d at a.  Th e  a ct u at o r  a n d  s e n s o r  d at a  f r o m t h e 

mi d st r e a m  oil  t e r mi n al h a v e  a  s p ati al  st r u ct u r e.  F o r  e x a m pl e,  a  t a n k e r t r u c k l o a di n g 

o p e r ati o n  i n t h e mi d st r e a m  oil  t e r mi n al i n v ol v e s t h e a ct u ati o n  of  v al v e s  i n t h r e e 

l o c ati o n s; t h e c h a n g e  i n s e n s o r  r e a di n g s  a r e  s p ati all y  li n k e d t o t h e s e l o c ati o n s. Th e  

st at e  e sti m at o r  h a s  t o i nf e r t h e s p ati al  r el ati o n s  f r o m t h e d at a.  A d diti o n all y,  t h e 
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midstream oil terminal data exhibits a temporal structure. For example, turning a 
pump ON in the pumphouse increases the pressure and flow rate at the outlet of the 
pump house at a future timestamp. 

Considering the requirement of spatial and temporal awareness, this study used a 
combination of CNN and LSTM model inside the state estimators. CNN-LSTM 
combination is the current state- of-the-art for modeling multiple parallel input 
time series with spatial and temporal structure [26, 27]. A deep CNN architecture 
extracts the spatial features from the 1D input vector and the LSTM model 
interprets the features across time steps. Together the hybrid CNN-LSTM model 
infers the spatial and temporal information of the data. 

3.3.2. CNN-LSTM structure 

CNN-LSTM combines two sub-models: CNN model for feature extraction and 
LSTM model for interpreting the features across time steps. The CNN model has 
three layers: a 1-D convolutional layer, a Max pooling layer, and a Flatten layer. 
Figure 4 shows the layout of the CNN layers and the LSTM backend components. 
The 1-D convolutional layer analyzes the rolling window and extracts the features. 
The kernel size parameter in the convolutional layer specifies the number of time 
steps included in each input sequence. In this research, the kernel size parameter 
was set to three to match the FIFO input sequence length of the Type I and II 
estimators. The matching kernel size ensured that the convolution layer captured the 
essential temporal dynamics from the last three timestamps of the sensor data. The 
number of filters was set to 64, which optimized computational complexity while 
capturing relevant spatial features. The model used ReLU activation to mitigate the 
vanishing gradient problem in deep neural networks. After the feature extraction, a 
Max pooling layer with a pool size of 2 with stride 2 reduced the dimensionality of 
the feature map, and a Flatten layer converted the multidimensional feature map to 
a single-dimensional array. A Time- distributed wrapper binds all three layers into a 
single CNN unit. 

The CNN unit provides a single-dimensional feature vector to the LSTM network. 
Using these features, the LSTM learns the long-term dependencies between the 
timestamps [28]. The LSTM network has two layers: an LSTM layer and a Dense 
layer. The LSTM layer holds the neural network nodes for learning the behavior of 
the system. This study optimized the number of nodes using GridSearchCV [29]. An 
LSTM layer with 200 nodes provides the lowest Root-Mean-Square Error (RMSE) 
value for the operational data of the midstream oil terminal. The combination of 
dropout and recurrent dropout at 0.2 randomly drops connections during training 
and mitigates overfitting. The dropout allows for a better generalization across 
temporal sequences and reduces sensitivity to noisy sensor data. A single node dense 
layer with linear activation directly maps LSTM output to predicted continuous 
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s e n s o r  v al u e s.  Li n e a r  a cti v ati o n  e n s u r e s  u n bi a s e d  p r e di cti o n  s uit a bl e  f o r r e g r e s si o n  

p r o bl e m s  i n st at e  e sti m at o rs.  

Fi g ure  4.  T y p e II  st at e  e sti m at o rs  of  P L C  X  f o r p r e di cti n g  c o r r el at e d  s e n s o r  v al u e s  of  

P L C  Y.  

Th e  t r ai ni n g d at a  u s e d  3 7  h  of  r o uti n e  o p e r ati o n s  f r o m t h e oil  t e r mi n al. D u ri n g  

t r ai ni n g, t h e m o d el  u s e d  Th v e-f ol d  ti m e s e ri e s  c r o s s- v ali d ati o n,  w h e r e  e a c h  f ol d 

a d v a n c e d  t h e v ali d ati o n  bl o c k  f o r w a r d i n ti m e s o  t h at t h e m o d el  w a s  n e v e r  v ali d at e d  

o n  t h e p a st  d at a  p oi nt s.  T o  p r e v e nt  t e m p o r al l e a k a g e, t h e st r e a m  w a s  s plit  i n a r ri v al  

o r d e r  i nt o 7 0 %  t r ai ni n g, 1 5 %  v ali d ati o n,  a n d  1 5 %  h ol d- o ut  t e st s e g m e nt s.  A  g ri d  

s e a r c h  e x pl o r e d  t h e L S T M  hi d d e n  u nit s  ( 6 4,  1 2 8,  2 0 0,  2 5 6 ),  C N N  k e r n el s  ( 3,  5,  7 ),  

d r o p o ut  ( 0,  0. 2,  0. 3 ),  a n d  l e a r ni n g r at e  ( 1  ×  1 0 − 3 , 5  ×  1 0 − 4 , 1  ×  1 0 − 4 ) . 𝛥 e  

c o n tt g u r a ti o n wit h  2 0 0  hi d d e n  L S T M  u nit s,  a  k e r n el  l e n gt h of  𝛥 v e,  a  0. 2  d r o p o ut  

v al u e,  a n d  a  5  ×  1 0 − 4  l e a r ni n g r at e  p r o vi d e d  t h e l o w e st v ali d ati o n  R M S E.  

3. 3. 3.  C o n Th d e nce  i nte r v al a n d  d etecti o n  of  a n o m al y  usi n g  st ate esti m at o rs  

TT e  p h ysi c al  s yst e m  a n o m al y  d et e ct o r  r e c ei v e d  t h e p r e di cti o n s  f r o m t h e st at e  

e sti m at o rs  a n d  m ai nt ai n e d  a  d y n a mi c  c o n Th d e n c e  i nt e r v al f o r e a c h  e sti m at o r.  TT e  

d y n a mi c  c o n TT d e n c e  i nt e r v al of  a  st at e  e sti m at o r  i s t h e st a n d a r d  d e vi ati o n  of  a  

r olli n g  wi n d o w  c o nt ai ni n g  2 0  of  it s l at e st p r e di cti o n s.  𝛥 e  d y n a mi c  c o n Th d e n c e  

i nt e r v al a ct s  a s  a  t h r e s h ol d w hil e  m e a s u ri n g  t h e v a ri ati o n  of  t h e st at e  p r e di cti o n  

f r o m t h e c u r r e nt  s e n s o r  v al u e s  [ 3 0 ] . If t h e s e n s o r  v al u e  i s o ut  of  t h e c o n Th d e n c e  

i nt e rv al  t h e p h ysi c al  s yst e m  a n o m al y  d et e ct o r  c all s  t h e i n ci d e n c e r e s p o n s e  s yst e m  t o 

l o g t h e f al s e s e n s o r  v al u e.  
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4. Case studies and evaluation 

This section describes the effectiveness of the embedded intrusion detection system 
inside PLCs controlling a simulated midstream oil terminal [ 31, 32]. The midstream 
oil terminal included twelve operational stations adhering to the American 
Petroleum Institute (API) standards [33–39]. The stations used OpenPLC to control 
the mid-stream oil terminal processes. OpenPLC is an IEC 61,131–3 compliant 
open-source industrial controller for cybersecurity research [19]. Being open-source, 
researchers can access and modify the source code to test novel cybersecurity 
methodologies. OpenPLC also matches the comparison benchmark of commercial 
PLCs in metrics like real-time scan operations, ladder logic arithmetic, SCADA 
connectivity, and cyberattack response. Alves et al. provided a comprehensive 
comparison of OpenPLC with commercial PLCS like Schneider M221, Siemens 
S7-1214C, Omron CP1L-L20DR-D, and Allen-Bradley (A-B) MicroLogix 1400 [19]. 
Prior research on the midstream oil terminal testbed using OpenPLC as the 
controller device showed high-fidelity responses during cyber-attack scenarios and 
illustrated cyber-attacks’ impact on connected processes [31]. 

The case studies in this section focused on three cargo operations in the 
mid-stream oil terminal: Tanker Truck loading operation, where an attacker 
compromised a single sensor across one PLC; Pipeline Transfer (PLT) operation, 
where an attacker compromised five sensors across one PLC; and Marine Tanker 
(MT) loading operation, where an attacker compromised three sensors across three 
PLCs. 

These cases’ studies were motivated by historical attacks and scenarios from 
existing literature. The case studies assumed that the attacker had access to the 
industrial sensor network and could falsify the sensor response. The attack 
privileges were similar to the Irongate scenario, which targeted industrial control 
systems (ICS) and spoofed sensor data to hide malicious activities [40]. 
Yang et al. [41] also outlined a similar sensor spoofing scenario where the attacker 
injected fake measurements into sensor networks to mislead decision-making. 
Studies ([40] and [41]) have shown scenarios where the attacker had complete 
control over the sensor responses. Attacks like Stuxnet have shown that similar 
sensor spoofing could be achieved even in an air-gapped network, where an attacker 
used infected USB drives to gain control over the network and eventually 
manipulated the programmable logic controller [42, 43, 44]. 

4.1. Tanker truck loading operation—(attack on single sensor) 

The Tanker Truck (TT) loading operation involved three subsystems of the 
midstream oil terminal: Tank Farm (TF), Pumphouse, and TT gantry. During TT 
loading, the liquid cargo moved from the TF to the TT gantry through the 
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pumphouse. One of the adverse effects of cyber-attacks during the TT loading 
operation is an overflow scenario [31]. The midstream oil terminal simulated the 
sensor network in MATLAB. During the attack scenario, MATLAB activated a 
malicious Simulink block which delayed the level sensor (P6SL1) reading of the 
internal tanks of the TT by 7 s. This resulted in HMI reporting an older value 
different from the actual reading of the level sensor. The delayed response may have 
misled the operators in taking an incorrect control decision and create a cargo 
overflow scenario. 

The cyberattack involved a single PLC (PLC6) and spoofed the readings of one 
level sensor (P6SL1) connected to it. The cyber attack is represented as Ex-14 in 
Figure 5. 

Figure 5. Prediction of the state estimators and the confidence interval of the 
hardware layer values. 

Table 2 shows the list of sensors involved in the gasoline tanker truck loading 
operation. For each sensor, the embedded IDS has a Type I state estimator. We 
represent Type I state estimators using a specific nomenclature. The nomenclature 
uses the name of the sensor whose value is forecasted, followed by a subscript. The 
subscript represents the name of the sensor that inputs to the state estimator. For 
example, a Type I state estimator forecasting the value of sensor P10SL1 using the 
past observation of P10SL1 as represented as P10SL1P10SL1. 

The number of Type II state estimators depends on the statistical relationship 
between the sensor readings. Hence, this analysis used a dataset containing 37 h of 
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normal operational data of the midstream oil terminal to compute a matrix 
containing the absolute values of PCC of sensors responses. Table 3 illustrates the 
matrix with the absolute PCC values of the sensors. A Type II state estimator was 
constructed for sensors having PCC values higher than or equal to 0.9. The Type II 
estimator enabled the embedded IDS to predict the states of correlated sensors in 
neighboring nodes. Table 3 highlights the sensor pairs with PCC values great than 
equal to 0.9 showing strong linear relationship. For example, P7SF2 shows high 
linear relationship with P6SL2. A Type II state estimator can be constructed 
forecasting the value of sensor P7SF2 using past observations of P6SL2 (represented 
as P7SF2P6SL2). 

Table 2. List of sensors involved in a gasoline TT loading operation. 

PLC name Sensor name Purpose 

PLC10 (Gasoline tank farm) P10SL1 TK11 Tank level 
P10SP1 Dispatch valve pressure 
P10SF1 Dispatch valve flow rate 

PLC7 (Gasoline pump house) P7SF1 Gasoline pump house inlet flow rate 
P7SF2 Gasoline pump house outlet flow rate 
P7SP1 Gasoline pump house inlet pressure 
P7SP2 Gasoline pump house outlet pressure 

PLC6 (TT Gantry) P6SF1 Bay 1 flow rate sensor 
P6SP1 Bay 1 pressure sensor 
P6SL1 Bay 1 level sensor 1 
P6SL2 Bay 1 level sensor 2 

Figure 5 shows the predictions of the state estimators and the confidence 
intervals. The false reporting started at the 122nd cycle of the PLC and the hardware 
layer replaced the current observations of sensor P6SL1 with older values. The state 
estimators forecasting the response of P6SL1 predicted a value different from the 
hardware layer. Every estimator flagged it as an anomalous reading because the 
value of the hardware layer was out of the confidence interval. 

Table 4 shows the predictions of the state estimator, actual values from MATLAB 
simulation, and the false readings from the hardware layer. Few state estimators 
flagged PLC cycle 125 and 126 as normal because the false readings overlapped with 
the actual values. The Type I states estimators in PLC 6 and the Type II state 
estimators in PLC 7 and 10 detected the false readings of sensor P6SL1. 

4.2. Pipeline transfer (PLT) operation—(attack on multiple sensors) 

The PLT operation transfers liquid cargo from a shore-side oil refinery to the 
mid-stream oil terminal using a 150 kilometer (km) pipeline. The pipeline transports 
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the liquid cargo into one tank in the tank farm. Five pressure sensors (P3SP1, P3SP2, 
P3SP3, P3SP4 and P3SP5) monitor the state of the pipeline during the PLT operation. 
The attacker closed a valve at one end of the pipeline and spoofed the readings of the 
pressure sensors. The closing of the valve increased the pressure inside the pipeline. 
The operators do not see this change of state because of the false readings of the 
pressure sensors. This attack can eventually lead to a pipeline rupture similar to the 
Trans-Siberian explosion [45]. 

Table 3. Absolute values of Pearson Correlation Coefficient (PCC) of sensors. 

Table 4. Behavior of the state estimators during the cyber-attack. 

The cyber-attack involved a single PLC (PLC3) and spoofed the readings of five 
pressure sensors (P3SP1, P3SP2, P3SP3, P3SP4, and P3SP5). 

17/31 



In PLT operation, PLC 3 manages the 150 km pipeline. The pipeline transports the 
liquid cargo into a gasoline tank farm. Table 5 shows the list of sensors connected to 
PLC 3 and PLC 10. For each sensor, the embedded IDS has a Type I state estimator. 
Similar to Case study I, we constructed Type II state estimators for sensors pairs 
having PCC values higher than or equal to 0.9. Table 6 shows a matrix with the 
absolute PCC values of the sensors. 

Table 5. List of sensors involved in a gasoline PLT operation. 

PLC name Sensor name Purpose 

PLC3 (Pipeline transfer) P3SP1 Terminal side pressure 
P3SF1 Terminal side flow rate 
P3SP2 30 km from terminal pressure 
P3SF2 30 km from terminal flow rate 
P3SP3 60 km from terminal pressure 
P3SF3 60 km from terminal flow rate 
P3SP4 90 km from terminal pressure 
P3SF4 90 km from terminal flow rate 
P3SP5 120 km from terminal pressure 
P3SF5 120 km from terminal flow rate 

PLC10 (Gasoline tank farm) P10SP2 TK11 Receipt line pressure 
P10SF2 TK11 Receipt line flow rate 
P10SL1 TK11 Tank Level 

Table 6. Absolute values of Pearson Correlation Coefficient (PCC) of sensors. 

Figures 6, 7, 8, 9, and 10 show the predictions of the state estimators and the 
confidence intervals. The false reporting started after the 2nd cycle of the PLC and 
the hardware layer replaced the current observations of pressure sensors with older 
values. The state estimators forecasting the response predicted a value different from 
the hardware layer. Every estimator flagged it as an anomalous reading because the 
value of the hardware layer was out of the confidence interval. During such 
scenarios, instead of using the anomalous readings from the hardware layer, the 
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Type I state estimators P3SP1P3SP1, P3SP2P3SP2, P3SP3P3SP3, P3SP4P3SP4, and 
P3SP5P3SP5 used its predictions as input. 

Figure 6. Prediction of the state estimators and the confidence interval of the 
hardware layer values. 

Table 7 shows the responses of the state estimators during the cyber-attack. The 
false readings were from the pressure sensor of PLC 3. The Type II state estimators 
P3SP1P10SP2 and P3SP1P10SF2 placed inside PLC 10 successfully identified the 
incorrect values. The successful detection demonstrates that the proposed IDS 
effectively identifies cyberattacks on neighboring nodes managing interdependent 
processes. The Type I state estimators inside PLC3 were able to flag the false values 
from all sensors. 

4.3. Marine tanker (MT) loading operation—(attack on multiple 
sensors across multiple PLCs) 

The MT loading operation involves four subsystems: gasoline tank farm (PLC 10), 
gasoline pump house (PLC 7), loading marine tanker (PLC 5), and 12.5 kilometers 
(km) terminal-to-jetty pipeline (PLC1). The centrifugal pumps in the gasoline pump 
house transfer liquid cargo from the gasoline tank farm to the internal tanks of the 
Marine Tanker (MT) using the 12.5 km terminal-to-jetty pipeline. The attack 
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scenario involved three PLCs during the MT loading operation: PLC 1, PLC 5, and 
PLC 10. The attacker closed a valve at one end of the jetty-to-terminal pipeline and 
spoofed the readings of the pressure sensors P1SP1, P7SP2, and P10SP7. Such 
scenarios can increase the pressure in the pipeline and cause pipeline rupture [31]. 

Figure 7. Prediction of the state estimators and the confidence interval of the 
hardware layer values. 

The cyberattack involved three PLCs (PLC10, PLC7, and PLC1) and spoofed the 
readings of three pressure sensors (P1SP1, P7SP2, and P10SP7). 

Table 8 shows the list of sensors connected to PLC 1, PLC 5, PLC 7, and PLC 10. 
The embedded IDS inside each PLCs have a Type I state estimator. Type II state 
estimators were built for sensors having PCC values higher than or equal to 0.9. 
Table 9 shows a matrix with the absolute PCC values of the sensors. 

Table 10 shows the response of the state estimators during the cyberattack. The 
false readings were from the pressure sensors connected to PLC 1, 7, and 10. During 
the attack, the Type II state estimators in PLC 5 identified the incorrect values from 
the pressure sensor connected to the neighboring node (PLC1). Additionally, the 
Type I state estimators inside PLC 1, 7, and 10 detected the incorrect values from 
pressure sensors connected. Figure 11 and 12 shows the predictions of the state 
estimators and the confidence intervals. 
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Table 7. Behavior of the state estimators during the cyberattack. 

Table 8. List of sensors involved in a gasoline PLT operation. 

PLC name Sensor name Purpose 

PLC1 (Loading marine tanker pipeline) P1SP1 Terminal side pressure 
P1SF1 Terminal side flow rate 

PLC5 (Loading marine tanker) P5SP1 Marine tanker manifold pressure 
P5SF1 Marine tanker manifold flow rate 
P5SL1 Tank P1 Level 
P5SL2 Tank P2 Level 
P5SL3 Tank P3 Level 
P5SL4 Tank S1 Level 
P5SL5 Tank S2 Level 
P5SL6 Tank S3 Level 

PLC7 (Gasoline pump house) P7SF1 Gasoline pump house inlet flow rate 
P7SF2 Gasoline pump house outlet flow rate 
P7SP1 Gasoline pump house inlet pressure 
P7SP2 Gasoline pump house outlet pressure 

PLC10 (Gasoline tank farm) P10SP7 TK13 Dispatch line pressure 
P10SF7 TK13 Dispatch line flow rate 
P10SL3 TK13 Tank Level 
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Figure 8. Prediction of the state estimators and the confidence interval of the 
hardware layer values. 

Table 9. Absolute values of Pearson Correlation Coefficient (PCC) of sensors. 
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Figure 9. Prediction of the state estimators and the confidence interval of the 
hardware layer values. 

Table 10. Behavior of the state estimators during the cyber-attack. 
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Figure 10. Prediction of the state estimators and the confidence interval of the 
hardware layer values. 

5. Impact on PLC performance 
This section describes two experiments to assess the impact of embedded IDS on the 

performance of the PLC: the first experiment measured the time taken by the 

embedded IDS to log a false sensor reading, the second experiment analyzed the 

effect of the embedded IDS on the real time performance of the PLC. 

5.1. Response time of the embedded IDS 

This analysis measured the time taken by the embedded intrusion detection system 

to respond to a false sensor reading. The embedded IDS operated inside the PLCs of 
the midstream oil terminal. The experiment repeated the attack scenario of case 

study I ten times during the TT loading operation. Each instance of the experiment 
measured the peer-to-peer network latency, time taken by the ensemble state 

estimators, and time taken by the incident response system. Figure 13 illustrates the 

average, median, and maximum response time of the embedded IDS. 

The embedded IDS took an average time of 33.922 ms to predict and log a false 

sensor reading. The analysis also revealed that the maximum time taken to respond 
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was 40.3 ms. The disparity in response time was because of the network latency of 

the P2P network. 

Figure 11. Prediction of the state estimators and the confidence interval of the 
hardware layer values. 

5.2. Effect On real-time performance of the PLC 

This analysis repeated the experiment of case studies and documented the effect of 

embedded IDS with the physical system anomaly detector on the real-time 

performance of PLCs. The embedded IDS operated inside PLC 6 of the midstream 

oil terminal. The cycle time of the PLC was set to 50 ms, and an embedded logger 

monitored the cycle time for a period of 24 h. This experiment was conducted twice 

to examine the cycle time data, both without the IDS and with the embedded 

physical system anomaly detector. 

Table  11 outlines the standard deviation and the average cycle of the PLC. The 

PLC maintained a mean cycle time of 50.04 ms and a standard deviation of 0.0142. 

The experiments showed that the embedded IDS had no impact on the real-time 

performance of the PLC. 

25/31 



Figure 12. Prediction of the state estimators and the confidence interval of the 
hardware layer value. 

Figure 13. Response time of the embedded intrusion detection system. 

Table 11. PLC cycle time in milliseconds. 

PLC Average Standard deviation 

PLC without IDS 50.04 0.0142 
PLC with embedded network IDS and physical system anomaly detector 50.04 0.0142 
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6. Conclusion 

This study elucidated the implementation of a distributed embedded intrusion 
detection system. The embedded IDS operated inside the PLCs and used a 
peer-to-peer network to share the physical states of the PLC with its neighboring 
nodes. Using the states of the PLCs, a CNN-LSTM-based state estimator predicted 
the potential values of the sensors. The embedded IDS categorized a sensor value as 
incorrect if the values received from the sensor network were out of the prediction 
interval of the state estimators and generated an alert. In interdependent processes 
with correlated sensor values, the embedded IDS can predict the state of the sensors 
connected to neighboring PLCs, facilitating the detection of attacks on connected 
systems. 

This work used a to-scale midstream oil terminal to test the embedded IDS. 
Through three case studies involving tanker truck loading operations, pipeline 
transfer operations, and marine tanker loading, the IDS successfully detected 
falsified sensor data across single-sensor, multi-sensor, and multi-node spoofing. 
Two performance analyses determined that the proposed IDS achieved detection 
latencies within the operational constraints of programmable logic controllers 
(PLCs) without impacting real-time system operations. This study provides a robust 
framework for securing interconnected ICS controlling complex critical 
infrastructure. 

The embedded IDS uses time-synchronized multivariate data streams (sensor, 
actuator, and control-flag values) that most modern SCADA installation archives for 
routine historical or alarm management purposes. The 1-D CNN layers learn the 
spatial co-activation patterns, and the LSTM network captures temporal dynamics 
independent of the absolute cycle time. Neither layer requires explicit knowledge of 
the physical system and learns the patterns in dimensionless sequences. As the 
CNN-LSTM system parameters are agnostic to physical units, the same model 
architecture can be effective on another plant whose tags relate to different physical 
processes. The hybrid CNN-LSTM combination makes the system process-agnostic 
and can scale across a broad range of critical infrastructure, including water, power, 
chemical, and discrete-manufacturing SCADA systems. 

7. Limitations and future work 

This research explored the detection of a cyberattack on a midstream oil terminal. 
The novel methodology identified falsified sensor readings on interconnected PLCs. 
Future work can investigate methodologies to enhance the outlined intrusion 
detection systems. Researchers can improve the latency of the peer-to-peer network 
to achieve more efficient data sharing between peer nodes. A lower latency in the 
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peer-to-peer network can enable the IDS to work within PLCs with lower cycle 

times. Another research path can compare the performance of different algorithms 

for state estimation. A comparison helps to identify algorithms that achieve faster 

performance with higher accuracy. Researchers can also use ICSs from different 

domains to investigate the performance of the IDS. 

Besides exploring IDS enhancements, future  work can investigate residual attack 

vector s arising from platform vulnerabilities, time synchronization attacks, and 

resource hogging attacks. An unpatched PLC with platform vulnerabilities like 

buffer overflow bugs, scan-cycle denial-of-service flaws, and remote code execution 

can compromise the PLC. The embedded IDS relies on a time-aligned tag stream. A 

time synchronization attack that skews NTP  clocks can degrade detection 

performance without altering process variables. The proposed system may be 

vulnerable to resource exhaustion attacks like CPU hogging or memory by 

fragmentation. Resource exhaustion can force the IDS to shed load or miss scan 

deadlines. 
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