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Abstract
In this work, a high-fidelity virtual testbed modeling a networked diesel generator, similar to those used commercially
and by the military, is described. This testbed consists of a physical system model of a generator, a digital control system,
a remote monitoring system, and physical and networked connections. The virtual testbed allows researchers to emulate
a cyber-physical system and perform cyber attacks against the system without the monetary and safety risks associated
with a testbed created from physical components. The testbed was used to feasibly simulate network, hardware Trojan,
and software Trojan attacks against the diesel generator, and to observe the cyber and physical outcomes.
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1. Introduction

Hospitals, businesses, and other commercial buildings

often use networked generators to provide power to critical

systems in the event of an electrical outage. Manufacturers

lose money in the time they cannot produce, hospitals

must have a continuous source of power to operate critical

equipment, and nuclear power plants require a constant

source of electricity to operate reactor coolant pumps.

Because of their importance in times of need, networked

generator systems are targets of interest to cyber criminals

and nation states. A cyber attack could cause damage to

the generator or its physically connected subsystems, lead-

ing to power loss and inability to use connected devices.

Researchers have worked to understand the vulnerabilities

and impacts of cyber attacks against systems using test-

beds. Due to monetary and safety concerns, virtual test-

beds are preferred over their physical counterparts for

cyber-physical attack simulations. This approach has been

shown effective in modeling cyber attacks on electrical

systems.1

The focus of this work is the development of a virtual,

modular testbed to provide a high- fidelity model of the

cyber and physical components of a networked generator

system that incorporates features lacking in similar test-

beds. A modular virtualization approach was first

introduced by Alves et al. in 2016 and further refined in

2018.2,3 Use of a testbed allows development of high-

fidelity testbeds without requiring a large laboratory setup.

Testbeds consist of virtualized components, including a

physical system model, a cyber-physical link, a controller,

a virtual network, and a human machine interface. The

goal of this present work is to build upon the work of

Alves et al. to create a generator testbed for studying

threat vectors, attack outcomes, and security controls with-

out risk of damage to a costly physical system.3

Previous works include a publication by Korkmaz et al.

that describes a testbed comprising a physical generator,

programmable logic controller (PLC), and computer with a

human machine interface.4 Because the Korkmaz model is

not virtual, however, it is expensive to reproduce, requires
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continued maintenance, and cannot be easily shared.

Ashok et al. modeled a microgrid, including multiple gen-

erators, loads, attack nodes, and a control center, using a

Real Time Digital Simulator (RTDS) and Automatic

Generation Control (AGC).5 This testbed was used to

study the impacts of network-borne attacks against the

microgrid. The RTDS simulator provided the ability to

model the physical system with high fidelity, but results in

a costly testbed without portability.

In addition to the previous works on generator testbeds,

which lack fully implemented virtualization, it is helpful

to review works related to testbeds for power systems and

other relevant systems. Researchers have developed multi-

ple testbeds to simulate cyber attacks against power sys-

tems. The Testbed for Analyzing Security of SCADA

Control Systems (TASSCS) is a sophisticated testbed

developed to simulate the effects of network-based cyber

attacks. TASSCS provides high fidelity simulation of

SCADA networks using MODBUS and DNP3 protocols.

The testbed’s network is simulated through the network

library Opnet. TASSCS does not simulate a complete PLC

or a digital control system (DCS). Therefore, DCS vulner-

abilities cannot be tested.6 In contrast, the approach in this

present work does incorporate a DCS for greater fidelity.

Adhikari et al. developed a testbed for bulk electric trans-

mission systems with wide area measurement components

using a RTDS and hardware-in-the-loop protection relays,

phasor measurement units, and phasor data concentrators.7

The testbed demonstrated its use for the study of faults

and network-based cyber attacks, but did not focus on a

specific generator subsystem with high fidelity.

For virtual testbeds in general, Reaves and Morris

developed a testbed framework for data collection and

intrusion detection research.8 Their testbed was built to

study a high-fidelity gas pipeline, but the framework may

be used for other types of cyber-physical systems, such as

power systems. Although the testbed developed by Reaves

and Morris is modular and portable, Python scripts were

used as controllers instead of virtualizing an actual DCS,

and physical system components were modeled with sim-

ple equations derived from curve fits of behaviors

observed from a laboratory scale gas pipeline.8 The

Reaves testbed does not match true physical system beha-

vior when the simulated system state deviates from state

initially observed on the laboratory scale reference system.

Lastly, Cintuglu et al. published a survey of power sys-

tem testbeds to model ARP spoofing, denial of service

(DoS), malware, and malformed packet attacks.9 Many

testbeds surveyed are virtual; however, they focus on the

power grid as a whole, not a generator subsystem and its

major components necessary for studying exploits. Some

of the testbeds incorporate simple generators, but only as a

basic power source. Other surveyed testbeds use non-

virtual generators.

This current work offers four major contributions. First,

a generator testbed was created that is fully virtualized. A

model of the physical system was built in MATLAB

Simulink and based upon Yeager and Willis’ work in

modeling emergency diesel generators.10 Sensors were

added to the model, and the generator’s governor, a con-

troller that regulates the speed of the engine, was removed

from the MATLAB Simulink model and implemented in

ladder logic running on the generator’s digital control sys-

tem as a discrete control algorithm. Second, a higher-

fidelity model of the generator was included, which allows

for more types of threat models to be evaluated. The

higher fidelity of representing the governor as a digital

control algorithm implemented as software in the DCS

enables the study of cyber attacks that affect parameters of

the algorithm. The digital control system has high fidelity

in representing a real generator system’s functions with

regard to monitoring of sensor data and response to faults.

A fault is defined as an abnormal occurrence or problem

due to damaged equipment.11 This allows for other cyber

attack exploits that would trigger faults to be studied.

Third, this work examines case studies of cyberattacks

including two supply chain attacks: a simulated hardware

Trojan that is triggered by a time bomb, and a software

Trojan activated by a logic bomb. Network-based cyber

attacks were also performed. These cyber attacks were

modeled in order to observe the effect that they would

have on a generator system. Fourth, a novel attack against

the gain parameter of the generator’s control system, caus-

ing chaotic physical behavior, was included and is unique

from the well-known Aurora attack against a generator

system by affecting the DCS software directly.12 Table 1

summarizes the major contributions.

The remainder of this work is organized as follows:

Section 2 covers the testbed’s various modules and their

implementations; Section 3 describes a selected set of

attacks that were performed on the testbed; and Section 4

is the conclusion and discusses future work.

2. Testbed

This generator testbed was created using a modular

approach involving the five primary components of a

Supervisory Control and Data Acquisition (SCADA) sys-

tem according to a framework presented in recent work.2

These main components are (1) the physical system, (2) a

cyber-physical link, (3) the Distributed Control System or

DCS, (4) a network, and (5) the remote monitoring or con-

trol also known as a Human Machine Interface (HMI).

Figure 1 illustrates this architecture.

Each of these modules will be described in depth in the

following subsections along with their specific implemen-

tations for the generator system testbed.
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2.1. Physical system

The physical system in this testbed consists of a MATLAB

Simulink model that simulates the basic operation of the

electromechanical aspects of the generator. This model is

based upon an example generator model designed by

Yeager and Willis and provided in the MATLAB soft-

ware.10 The model in Yeager and Willis was rated at 2400

volts line-to-line and 3.25 MVA (megavolt amps).10 These

characteristics remained unchanged for the purposes of

this testbed. The example was modified to include sensors

to measure RPM (revolutions per minute), oil pressure,

fuel level, and temperature for the engine as well as the

output power frequency, VRMS (voltage root mean square),

and IRMS (current root mean square). The generator in this

work is connected to a simple load, such as a motor for

running pumps. A model of a fuel tank was also added as

a subsystem to represent the fuel as if it were in a storage

tank similar to the case study described in Alves et al.2

Only, in this case, Qin is set to 0, and the Qout is assumed

to be 1.04 gal/h, which is the average fuel rate of con-

sumption for the generator when it is on. It is also assumed

that there is an initial amount of fuel when the generator is

first switched on. To represent the thermodynamics of an

engine, which varies with the RPM, a MATLAB model

was integrated with the main generator model.13 The

resulting RPM produced from the generator’s

electromechanical model is fed as input into the thermody-

namic model. By incorporating the thermodynamic model,

the dynamic behavior of the temperature of the engine can

be better represented. Additionally, the original example

generator model contained a control system for the

engine’s governor, which regulates the fuel injection

within the engine. The rate at which fuel is injected

impacts the speed at which the engine operates, and, there-

fore, the frequency because the generator is a synchronous

machine. This control system was removed from the

Simulink model and redesigned in the DCS’s ladder logic

in order to better emulate a real system and allow for a

logical separation of the physical model and its digital con-

trol system, which is normally implemented on a computer

or embedded system in industry. Also, the physical system

incorporated a set of actuators and sensors that communi-

cate with the digital control system; these are listed in

Table 2 in addition to related internal state registers.

2.2. Cyber-physical link

The cyber-physical link facilitates communication between

the physical system and the DCS to allow for the transmis-

sion of sensor data from the physical system to the DCS,

and also actuator commands from the DCS to the physical

system. For the purposes of the testbed, this link is imple-

mented as User Datagram Protocol (UDP) packets sent

Table 1. Major contributions of this work.

No. Contribution Description

1 Overall virtual generator Testbed A generator testbed created that is fully virtualized as opposed to an actual
physical implementation.

2 Higher-fidelity control algorithm Higher fidelity of representing the governor as a digital control algorithm
implemented as software in the DCS.

3 Two supply-chain attacks (1) Simulated hardware Trojan triggered by a time bomb,
(2) Software Trojan activated by a logic bomb

4 Novel cyber-physical attack Command attack against the gain parameter of the generator’s control system,
inducing chaotic physical behavior

DCS: digital control system.

Figure 1. Modular structure of a cyber-physical system.
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over a virtual network that connects the host machine on

which the MATLAB simulation is running to the virtual

machine that serves as the DCS. The purpose of this con-

nection is not to emulate a network, but to use the send

and forget property of UDP to emulate a wired connection

transferring information between the DCS and physical

system. Each of the sensors and actuators from Table 2 is

assigned a UDP port on the DCS, and data to and from the

physical model is sent and received by the corresponding

port. This is implemented on the physical system using the

Linux UDP Send and Receive blocks built into MATLAB

Simulink. In this virtualization approach, the UDP packets

sent by the physical model are relayed by an interface pro-

gram running on the DCS virtual machine to the main

DCS software. The values passed are then stored in regis-

ters in the DCS. This is the approach described in depth by

Alves et al.1,2

2.3. Digital control system

The DCS is implemented on a Linux virtual machine

equipped with OpenPLC, an open-source PLC (program-

mable logic controller) software package that executes

control code written in ladder logic, an IEC-61131-3 stan-

dard language.14 This DCS serves to monitor the sensor

data, including the temperature of the engine and the speed

of the engine shaft in RPM, as well as other information.

Additionally, the DCS regulates the speed of the engine

by means of a control algorithm, and control signals are

sent from the DCS to actuators on the physical system to

dictate engine speed and other operating conditions.

Figure 2 depicts the portion of the main ladder logic of

the DCS, which controls the engine governor and checks

the validity of sensor data. The sensor readings are passed

through comparator blocks within the ladder logic; if these

values leave a valid range, the DCS triggers a fault because

there is a potential for the system to be physically damaged.

Because safe operating ranges vary from system to system,

these valid ranges are stored within the DCS as editable reg-

isters to allow operators to set the variables as needed. What

follows is an explanation of each of the rungs in the ladder

logic beginning at the top and proceeding to the bottom.

The purpose of the first and second rungs are for

detecting if the voltage or current exceeds a maximum

voltage and current, respectively. In such events, the gen-

erator triggers a fault. The third rung of the ladder logic

shown uses both a less than block (LT) to compare the oil

pressure (Oil) with the minimum (oil_min), and a greater

than block (GT) to compare the pressure with the maxi-

mum pressure (oil_max). If either block’s output is

‘‘true’’, the physical model’s oil pressure is outside the

safe operating range, and a fault is triggered by setting (S),

the Boolean fault variable, to a value of ‘‘true.’’ The fourth

rung down uses a greater than block to verify that the cur-

rent engine temperature (Temp) has not risen above the

maximum temperature (temp_max). If the temperature is

too high, a fault is triggered. In the fifth rung of logic, the

RPM is compared with the fastest allowable engine speed

(RPM_max) via a greater than block. The fifth rung

checks the Fault and Override variables to determine the

generator’s state (onoff). If no fault has been triggered

(Fault = ‘‘false’’) and the fault override has not been set

(Override = ‘‘false’’), the generator will remain on. If a

fault is triggered and the override is not set, however, the

generator will cut off. On other hand, the generator will

remain on if the override is set despite any faults that

occur. Also, the last rung’s purpose is for the fault to be

reset when desired by the user if a fault has occurred.

Below these rungs is a selector block, which allows one of

two given values for the reference to pass as the value for

Table 2. Generator Instrumentation – registers associated with sensors and actuators.

Registers Description Range

Sensors Vrms Output voltage RMS -
Irms Output current RMS -
Frequency Output frequency 59.5 - 60.5 Hz.

(49.5 - 50.5 Hz.)
RPM Revolutions per minute of engine 0 – 20,000 RPM
Fuel level Engine fuel level 0 - 100%
Oil pressure Engine oil pressure 10 PSI - 90 PSI
Temperature Engine temperature 0 - 300oC

Actuators Com_Act Fuel Injection -
Onoff Toggle generator {0, 1}
Breaker Connection to load though breaker {0, 1}

Internal Override If enabled, prevents shutdown from faults {0, 1}
Fault Engine state {0, 1}
Gain Gain used in engine governor control system -
Freq. Switch Toggle between 60 and 50 Hz output {0, 1}
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reference depending on the user’s selection (boolean vari-

able ‘‘switch’’) of the set point for frequency (60 Hz or 50

Hz).

In addition, included in the ladder logic is a block that

serves as the controller, written in ST (Structured Text)

code. This code is a high-level programming language as

part of the IEC-61131-3 standard. An algorithm was cre-

ated in this controller that implements the digital controller

for regulating the speed of the engine. As seen at the bot-

tom of Figure 2, the controller is implemented as a block

in the ladder logic. This block takes the angular velocity

(omega in the ladder logic) of the engine and the reference

angular velocity as input. The controller then determines,

based upon the transfer function, whether to increase,

decrease, or maintain the speed at which fuel is injected

into the engine. This value is output as the variable

act_com in Figure 2.10 This bottom subsystem (as seen in

Figure 2) of the DCS uses a function block to implement a

governor to regulate the speed of the engine shaft by con-

trolling the fuel injection rate. This block is functionally

equivalent to the dashed box in Figure 3.

Wref (a variable that corresponds with ‘‘Reference’’ in

the ladder logic) represents the reference, or desired, angu-

lar velocity of the engine shaft, while W (a variable that

corresponds with Omega in the ladder logic) represents

the current angular velocity. W is read by a sensor and

passed through a zero-order hold, which is needed to con-

vert the resulting value from a continuous-time value to a

discrete one. Within the portion of the governor imple-

mented in the DCS, the current velocity, which is given

from sampled sensor readings, is subtracted from the refer-

ence velocity to determine the error, or the difference

between the ideal and actual values. The resulting value is

then passed through a discrete transfer function as repre-

sented as a block within the dashed area of Figure 3. This

transfer function uses Equation 1:

Hd = 9:518z � 8:448

z2 � 0:2977z + 0:3679
ð1Þ

The output of that function is multiplied by the gain, an

adjustable parameter stored in a register within the DCS.

The output of the gain is transmitted to the physical model

and passed through the actuator block to produce the tor-

que value, which is multiplied by W, the angular velocity.

The product of this multiplication is Pm, the mechanical

power, which is used by the Simulink model to determine

the electrical output of the engine. The work by Yeager

and Willis describes a continuous-time transfer function

for this governor,10 which this work discretized so that the

transfer function can be implemented on the DCS. Because

the DCS is a digital system, it is important to note that the

DCS has a sampling period. Essentially, an input to the

system is sampled at a period determined appropriate by

the designer of the system. Updates to internal state vari-

ables and outputs, which may be determined partially by

the inputs, are performed at the sampling period. If a

higher sampling rate is selected, then the digital transfer

function will behave more accurately like its continuous-

time counterpart. Parameters of the transfer function were

determined for a digital system with a sampling period of

20 ms. Special methods can be applied to convert a contin-

uous transfer function to a discrete transfer function at a

given sampling period. MATLAB provides commands that

can carry out this operation.15

Figure 2. Ladder Logic, including the Governor Controller.
GT: greater than; irms: current root mean square; irms_max:
maximum current root mean square; Oil: oil pressure; oil_max:
maximum oil pressure; oil_min: minimal oil pressure; RPM:
revolutions per minute; vrms: voltage root mean square;
vrms_max: maximum voltage root mean square.
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2.4. Network

The network between the testbed’s DCS and the HMI is

implemented as a virtual network. Communication between

these systems is done using the MODBUS TCP/IP protocol,

which is commonly used in ICSs. To have other computers,

other virtual machines may be added to the network. These

additional computers could include a threat actor or control

devices for other networked systems.

2.5. Human machine interface

The HMI, shown in Figure 4, is used to allow a user to

monitor and manage the DCS over a network. For this

testbed, it is built using ScadaBR, an open source program

designed for HMI production, and run in an internet brow-

ser window on the host computer.

In the model’s HMI, generator sensor data is displayed

through simulated analog dials and digital displays; both

types of displays include the exact sensor reading in their

bottom left. The chart in the bottom right of the HMI dis-

plays sensor readings over time, allowing the operator to

observe history and trends in fuel and oil levels, RPM, and

temperature.

Across the top of the HMI, there are two large dials:

one for the generator’s RPM and one for its fuel level as a

percentage. The four smaller dials are, clockwise from top

Figure 3. Block diagram of implementation of transfer function in Equation 1.
DCS: digital control system; Pm: mechanical power; W: variable corresponding with Omega in the ladder logic; Wref: variable
corresponding with ‘‘Reference’’ in the ladder logic.

Figure 4. HMI designed for the generator model.
HMI: human machine interface; irms: current root mean square; RPM: revolutions per minute; vrms: voltage root mean square.
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left, the output frequency, current root mean square (IRMS),

voltage root mean square zero (VRMS0, an adjusted VRMS),

and voltage root mean square (VRMS). To the right of these

small dials is the generator’s temperature gauge, displayed

as a thermometer with nine different temperature levels. In

the HMI’s bottom left, there are three sets of buttons and

displays; these are for switching the generator’s frequency,

on/off status, and override. The buttons are color coded to

allow for easier identification of the modes by the operator.

Below these is another small dial which displays the gen-

erator’s gain. This dial would not be included on the gen-

erator’s HMI in the field, but it is useful in testing.

The HMI includes a network interface and communi-

cates with the digital controller over the network using the

Modbus/TCP protocol. The HMI sends Modbus read

requests to the digital controller once per second to obtain

sensor information. The requests consist of the DCS’s

identifier, the function code, the data address to read, the

number of registers or statuses to read, and a cyclic redun-

dancy check (CRC).16 The DCS responds with a corre-

sponding Modbus response of the same identifier and

function code, followed by the number of bytes to follow,

the requested information, and CRC. Of the four types of

values on the DCS, only two are outputs that can be writ-

ten to. To modify these, a packet similar to the read

requests is sent. This packet also contains the DCS’s iden-

tifier, function code, the data address to access, and a

CRC, as well as the value to write. The function codes

used in these exchanges are shown in Table 3.

2.6. Versatility and usefulness of virtualization
approach

The testbed is versatile in that the testbed allows changes

in sensors, actuators, and other components by using the

virtualization framework described by Alves et al. for

SCADA testbeds.2 The configuration file for DCS inputs

and output can be modified by the user to specify what

general I/O are to be used by the DCS or PLC so that new

sensors and actuators may be added (both analog and digi-

tal). Also, the simulator, in this case MATLAB, can be

modified to add and remove sensors and actuators in the

model to correspond with the configuration file. An addi-

tional generator can be added to the topology as needed

and other changes may be made to the load, etc. Virtual

machines that serve as PLCs, HMIs, rogue devices, and

other computers may be added as nodes to the virtual net-

work as needed by the user. OpenPLC, which is used in

this work as the DCS, does support multiple SCADA pro-

tocols, such as Modbus, DNP3, and Ethernet/IP, and also

new drivers for protocols to be added. This methodology

for virtual testbeds was shown to be representative of an

actual testbed as seen in the main works discussing the

framework.2,3 The works discuss a comparison between

actual and virtual testbeds, and demonstrate that the test-

beds are similar in their response to the same attacks.

Therefore, this virtual testbed capability is useful as a way

to understand how cyber physical systems would actually

behave in the real world and with greater cost effective-

ness. As for packets that are sent to various nodes, how

they behave depends on the driver for processing Modbus

packets. If the same driver is used in the virtual testbed as

in the actual testbed, it will respond as expected for a real

system. If a malicious rogue device on the network were

to send Modbus command packets to the DCS at a high

frequency to change the settings of a register in the DCS,

a legitimate user may have difficulty also changing the

setting while this is happening. The user, who may be able

to send command packets to change settings only periodi-

cally at a lower frequency from the HMI, would be over-

ruled for the setting by the rogue device. The work by Das

and Morris, which uses the virtual modular framework,

includes this scenario, demonstrating the framework’s versa-

tility in exploring changes of timing in Modbus packets.17 If

a malformed packet is received by the PLC, how the PLC

responds depends on the driver implementation for process-

ing packets and also specifically for Modbus. The virtual

PLCs in this work use the Modbus implementation of

OpenPLC. In this case, if a packet were to be malformed in

the application layer of the OSI stack where Modbus resides

for Modbus/TCP, then the Modbus packet will not be pro-

cessed properly and an appropriate error code will be

given.27 This is to be expected in real SCADA systems that

use the Modbus protocol. Corruptions of the packets in gen-

eral, and, more specifically, in the lower layers of the OSI

stack would be handled by the standard networking libraries

that OpenPLC uses.

3. Experiments with cyber attacks

Diesel generators have been a subject of discussion in

cyber-security research for more than a decade, including

experiments by Idaho National Laboratory in which the

relays connecting a generator to a power grid were hacked.

Table 3. Modbus function codes and the value types
requested.

Code to
Read

Code to
Write

Value Read Data Type

01 05 Coil status Digital output (1 bit)
02 N/A Input status Digital input (1 bit)
03 06 Holding

register
Analog output (16 bit)

04 N/A Input register Analog input (16 bit)
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By turning the relays on and off, the generator and grid

became unsynchronized, causing physical damage to the

generator.12 This experiment helped bring to light that

generators and their associated networks and equipment

are vulnerable to cyber attacks.

The purpose of this testbed is to implement additional

cyber-physical attacks and observe their effects on the sys-

tem as a whole. To verify the performance and feasibility

of the testbed for these means that examples of two major

categories of attacks – network based and supply chain –

were simulated. The attacks in these categories were cho-

sen in part because of the adverse effects they can have on

networked systems, and in part due to their potential to

cause even physical damage.

3.1. Network-based attack scenarios

The following network attacks, in which the attacker is

assumed to have access to the ICS network through a

rogue device or an unauthorized node, were performed

between the DCS and HMI: injection, denial of service,

and alteration.

3.1.1. Injection attack. One network-based attack performed

was an injection attack against the gain in the control sys-

tem. The generator’s gain is stored as an accessible value

on the DCS, so an attacker who has access to the network

can inject a single command packet to change the value of

the register.18 During normal conditions, the generator’s

governor causes the angular velocity (ω, or omega) of the

shaft in the generator to converge to the desired setpoint

(Figure 5, left). This is necessary to produce output at the

correct frequency in a short amount of time and to ensure

that the resulting waveform is stable (Figure 6, left).

When the injected packet sends a command to the DCS

to change the gain to be three times as large as the original

value, the control system is unable to settle on the desired

angular velocity. Instead, its behavior becomes chaotic

(Figure 5, right) due to its inability to settle upon a constant

frequency output. The resulting voltage waveform is irre-

gular in shape, with chaotic frequency output (Figure 6,

right), indicating poor power quality. The variations in fre-

quency are great enough to inhibit other connected power

sources from remaining synchronized, which could harm

the devices being powered by the generator. In industry, a

frequency variation of 1.5 Hz is often considered proble-

matic, with variations of 4 Hz or more resulting in damage

to attached equipment, even if no other synchronized gen-

erators are in use.19 When the attack occurred, the fre-

quency variation became greater than 30 Hz in 10 s, which

far exceeds what is allowed for power systems in the elec-

tric grid.

3.1.2. Flooding denial of service. Denial of service attacks

were performed using hping3 to send an overwhelming

number of packets to the HMI, resulting in the HMI not

receiving up-to-date system information from the DCS

since the flooding of packets overwhelms the network dur-

ing the attack. Figure 7 depicts the temperature of the

engine versus time as seen from the perspective of the

HMI. The temperature is rising as the engine has started.

Due to the DoS attack, which occurs between 20 and 40 s

into the simulation, new temperature sensor readings are

not received by the HMI. This is seen in Figure 7 in the

Figure 5. Speed of shaft – normal conditions (left) vs attack on
gain (right).

Figure 6. Resulting waveform – normal conditions (left) vs
attack on gain (right).

30 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 19(1)



section of the curve without markers indicating no received

HMI data, between 20 and 40 s. A DoS attack like this can

prevent situational awareness from the HMI’s perspective.

Therefore, the attack can prevent the user at the HMI from

knowing the true situation for critical variables, such as

engine temperature. In this case, when the DoS attack ends

the temperature readings from the HMI’s perspective

resume as expected. However, such behavior is not always

the case, as can be seen in the next DoS example.

In another scenario of a DoS attack that is more conse-

quential than the previous, an injection attack is performed

on the gain parameter of the control algorithm to set the

gain to a larger value (Figure 8) immediately before the

DoS attack is started. This, in turn, causes instability and

chaotic behavior in the engine and the resulting output fre-

quency, which a user would not be able to see. The

Attacker’s purpose for the DoS attack is to ensure that the

HMI, and, therefore, the user, lacks situational awareness

and is unable to respond.

3.1.3. Man-in-the-middle alteration. In a Man-in-the-Middle

(MitM) alteration attack, packets travelling from their orig-

inal source are intercepted by an attacker who modifies the

packets. The attacker then sends these altered packets to

the intended destination while disguising that the packets

are not coming directly from the legitimate source. For the

network configuration, the HMI and the DCS are assumed

to be connected to the same network, specifically the same

switch. There is also a rogue device that is connected to

the network and is responsible for the MitM attack. To per-

form this testbed attack, an Ettercap filter was created to

read Modbus packets sent from the DCS to the HMI and

change the value of the voltage readings in the packet pay-

load. The method by which Ettercap achieves the attack is

to use Address Resolution Protocol (ARP) poisoning.

The rogue device conducts ARP poisoning by broad-

casting fraudulent ARP packets to victims and changing

their ARP table entries. Ordinarily, the ARP protocol

allows nodes with IP addresses on the network to discover

the MAC addresses of other devices associated with spe-

cific IP addresses. This discovery is achieved by broad-

casting the request to all other nodes. The node with the

corresponding IP address will send its IP address to the

requesting node. The requesting node can then put this

information in its ARP table. The rogue device takes

advantage of the ARP protocol by essentially telling the

node that the rogue device’s MAC address is associated

with a certain IP address. If the node then sends packets to

that IP address, the packets will actually be routed and

intercepted by the rogue device, which can choose to

observe or modify the packets before passing them along

to the intended recipient, if at all.20,21

Figure 9 plots curves of the generator voltage as seen

by the HMI and the actual voltage (sampled from

MATLAB Simulink). Prior to the attack, the HMI’s dis-

play showed the VRMS as 1377 V. This is the correct read-

ing. After the Ettercap attack was started (at approximate

time 40 s), the VRMS display in the HMI changes to 1003

V, while the actual voltage is still 1377 V. The attack

altered the value as the packets were transmitted, meaning

that the operator could only see the modified value of

1003 V and was unaware that the system was not operat-

ing at that voltage. This could lead to the operator unne-

cessarily increasing the output voltage and potentially

Figure 7. HMI perspective of temperature during DoS attack.
DoS: denial of service; HMI: human machine interface.

Figure 8. HMI perspective under injection attack on gain and
DoS attack.
DoS: denial of service; HMI: human machine interface.
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damaging connected equipment. This simulated behavior

matches the expected behavior of an HMI when subjected

to the MITM alteration attack.

3.2. Supply-chain attack scenarios

Supply chain attacks are a result of malicious software or

hardware being introduced in the manufacturing process

for computers, microcontrollers, and other electronic

devices. Two Trojan horse attacks, in which malicious

logic is hidden within the device, were performed in these

experiments.

3.2.1. Ladder logic Trojan (software based). To emulate a

software supply chain attack, the authors implemented a

software Trojan in the ladder logic running on the DCS.22

In this attack, the original ladder logic (Figure 10) was

modified to include an additional function block (Figure

11). This software Trojan is triggered after the override is

turned on and off five times; this allows for it to not trigger

until after the system has been tested and in use for a long

enough period of time such that the normal users would

consider the equipment to be functioning properly and

would therefore trust the equipment. After the fifth set and

reset cycle, the output of the Trojan (functionBlock00) is

set to zero so that the override will no longer apply.

During normal operation, a system fault, such as low oil

pressure, triggers the system to shut down to protect the

generator and allow for maintenance. The override is

designed to allow the generator to ignore minor faults and

remain in operation; it is enacted on generators in critical

situations, such as when powering crucial devices at a hos-

pital during a power outage or machinery. With this Trojan

enacted, however, the DCS signals the generator to shut

down in the case of a minor fault; this attack is modeled

after the ladder logic bombs introduced by Govil.23 This

involves subtle changes in the original ladder logic with

the goal of causing malicious behavior or impact for appli-

cations it was designed to control. Because the attack is

not immediately implemented, this method has an advan-

tage in that it is not in effect when the system is first used,

making the Trojan harder to detect and perhaps allowing it

to bypass normal authentication methods.

3.2.2. Simulated Trojan on sensor (hardware based). A hard-

ware Trojan was also implemented to verify how small

changes in the logic of the hardware can have detrimental

Figure 9. MitM attack affecting voltage reading as seen by HMI.
HMI: human machine interface: MitM; Man-in-the-Middle; RMS:
root mean square.

Figure 10. Original override ladder logic.

Figure 11. Override ladder logic with software Trojan.
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effects on the functionality of the generator system. Under

normal operations, analog data from the sensor is passed

through an analog to digital converter and then directly to

the microcontroller to be processed. This Trojan was

inspired by Chakraborty et al. and incorporates a logical

OR gate and multiplexer, as seen in Figure 12.24

Initially, the sensor data is passed unmodified through

the top pathway in the circuitry shown in Figure 12 and

into the first input of the multiplexer before being sent to

the DCS. Once the Trojan is activated, the sensor data

goes through the bottom pathway and is passed through

the first input of the OR gate. This gate adds a value to the

true sensor reading by performing a binary OR of some of

the bits of the sensor data with ones. The most significant

bits of the sensor data are usually zero in normal circum-

stances, so passing them through the OR gate with a 16-bit

bitmask (BITMASK), some of whose most significant

digits are ones will create a larger output. Because the

resulting value read by the DCS is higher than the maxi-

mum value in the valid range (300�C or 574 K), a fault is

flagged, followed by the automatic shutdown of the gen-

erator set. The multiplexer selector can be made to switch

the output based upon an external trigger; in this case a

timer was used. This hardware Trojan was designed to be

activated 15 s into the simulation. This latency is intended

to make the Trojan more difficult to detect.

Researchers implemented this Trojan in a temperature

sensor on the generator in MATLAB Simulink. The DCS

is programmed with a range of safe temperatures for gen-

erator operation; if the temperature reading falls outside of

this range, the DCS will trigger a fault that will shut down

the generator. By artificially inflating the temperature data,

this attack causes the DCS to read a temperature that is too

high, resulting in an unnecessary system shut down. The

temperature value shown in the Simulink model is actually

within the safe operating range, but the DCS is observing

a fault condition.

Figure 13 shows the correct (actual) and altered (per-

ceived) temperature sensor readings versus time, with a

large increase in the perceived value when the Trojan is

triggered at 15s. Figure 14 shows the AC voltage over

time, with the generator being shut down at 15 s due to the

programming of the generator in response to a fault. The

fault feature is intended to prevent damage by high tem-

peratures, but when taken advantage of by an attacker, the

generator is disabled unnecessarily.

Figure 12. Hardware Trojan affecting temperature sensor
reading.
ADC: analog to digital converter.

Figure 13. Actual and perceived temperature readings vs.
time, with hardware Trojan activated at 15s.

Figure 14. Output voltage vs. time, with hardware Trojan
activated at 15 s.

Werth et al. 33



4. Conclusions and future work

Diesel generators are critical to the operation of numerous

systems, including providing power to reactor coolant

pumps at nuclear power plants and to essential services at

hospitals during electrical outages.10,26 For many decades,

the military has used standalone generators. However,

more recent military generators are equipped with net-

working capability. For convenience, it has been desired to

be able to remotely monitor the status of generators. Also,

because of an interest in micro grids, networked systems

are needed for coordination of assets.25 It is therefore rele-

vant to study the vulnerabilities of generators from a

cybersecurity perspective and the impacts of cyber attacks.

In contrast to previous works, this work presents a fully

virtual high-fidelity testbed composed of a physical model,

DCS, remote monitoring system, and the necessary con-

nections. A major contribution of this work is fidelity in its

digital control system functions, which includes respond-

ing to faults and in its control system algorithm. The inte-

gration of other dynamical systems in the testbed, such as

the fuel tank and thermodynamic engine model, also serve

to improve the overall testbed’s fidelity. This testbed pro-

vides an opportunity for researchers to implement and

observe the effects of cyber attacks without damaging

actual, costly systems. The understanding gained from

these activities is essential for creating appropriate mitiga-

tion strategies to ensure operation of the equipment.

Understanding the cyber attacks that may occur with a

generator and its associated equipment is important for

users, particularly because multiple researchers have

demonstrated that cyber attacks can cause physical damage

to a generator.

Denial of service, alteration, injection, and hardware

and software Trojans were implemented within the testbed

and the simulated impact of these attacks matched

expected behavior resulting from these attacks when

applied against a real system.

The testbed presented in this paper may be used to con-

duct risk assessments and to develop and evaluate cyberse-

curity controls and threat mitigation strategies.

Additionally, the testbed may be used for cybersecurity

training and potential as a honeypot to mitigate against

threat actors.
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