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In this work, a high-fidelity virtual testbed modeling a networked diesel generator, similar to those used commercially
and by the military, is described. This testbed consists of a physical system model of a generator, a digital control system,
a remote monitoring system, and physical and networked connections. The virtual testbed allows researchers to emulate
a cyber-physical system and perform cyber attacks against the system without the monetary and safety risks associated
with a testbed created from physical components. The testbed was used to feasibly simulate network, hardware Trojan,
and software Trojan attacks against the diesel generator, and to observe the cyber and physical outcomes.
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I. Introduction

Hospitals, businesses, and other commercial buildings
often use networked generators to provide power to critical
systems in the event of an electrical outage. Manufacturers
lose money in the time they cannot produce, hospitals
must have a continuous source of power to operate critical
equipment, and nuclear power plants require a constant
source of electricity to operate reactor coolant pumps.
Because of their importance in times of need, networked
generator systems are targets of interest to cyber criminals
and nation states. A cyber attack could cause damage to
the generator or its physically connected subsystems, lead-
ing to power loss and inability to use connected devices.
Researchers have worked to understand the vulnerabilities
and impacts of cyber attacks against systems using test-
beds. Due to monetary and safety concerns, virtual test-
beds are preferred over their physical counterparts for
cyber-physical attack simulations. This approach has been
shown effective in modeling cyber attacks on electrical
systems.'

The focus of this work is the development of a virtual,
modular testbed to provide a high- fidelity model of the
cyber and physical components of a networked generator
system that incorporates features lacking in similar test-
beds. A modular virtualization approach was first

introduced by Alves et al. in 2016 and further refined in
2018.%% Use of a testbed allows development of high-
fidelity testbeds without requiring a large laboratory setup.
Testbeds consist of virtualized components, including a
physical system model, a cyber-physical link, a controller,
a virtual network, and a human machine interface. The
goal of this present work is to build upon the work of
Alves et al. to create a generator testbed for studying
threat vectors, attack outcomes, and security controls with-
out risk of damage to a costly physical system.’

Previous works include a publication by Korkmaz et al.
that describes a testbed comprising a physical generator,
programmable logic controller (PLC), and computer with a
human machine interface.* Because the Korkmaz model is
not virtual, however, it is expensive to reproduce, requires
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continued maintenance, and cannot be easily shared.
Ashok et al. modeled a microgrid, including multiple gen-
erators, loads, attack nodes, and a control center, using a
Real Time Digital Simulator (RTDS) and Automatic
Generation Control (AGC).” This testbed was used to
study the impacts of network-borne attacks against the
microgrid. The RTDS simulator provided the ability to
model the physical system with high fidelity, but results in
a costly testbed without portability.

In addition to the previous works on generator testbeds,
which lack fully implemented virtualization, it is helpful
to review works related to testbeds for power systems and
other relevant systems. Researchers have developed multi-
ple testbeds to simulate cyber attacks against power sys-
tems. The Testbed for Analyzing Security of SCADA
Control Systems (TASSCS) is a sophisticated testbed
developed to simulate the effects of network-based cyber
attacks. TASSCS provides high fidelity simulation of
SCADA networks using MODBUS and DNP3 protocols.
The testbed’s network is simulated through the network
library Opnet. TASSCS does not simulate a complete PLC
or a digital control system (DCS). Therefore, DCS vulner-
abilities cannot be tested.® In contrast, the approach in this
present work does incorporate a DCS for greater fidelity.
Adhikari et al. developed a testbed for bulk electric trans-
mission systems with wide area measurement components
using a RTDS and hardware-in-the-loop protection relays,
phasor measurement units, and phasor data concentrators.’
The testbed demonstrated its use for the study of faults
and network-based cyber attacks, but did not focus on a
specific generator subsystem with high fidelity.

For virtual testbeds in general, Reaves and Morris
developed a testbed framework for data collection and
intrusion detection research.® Their testbed was built to
study a high-fidelity gas pipeline, but the framework may
be used for other types of cyber-physical systems, such as
power systems. Although the testbed developed by Reaves
and Morris is modular and portable, Python scripts were
used as controllers instead of virtualizing an actual DCS,
and physical system components were modeled with sim-
ple equations derived from curve fits of behaviors
observed from a laboratory scale gas pipeline.® The
Reaves testbed does not match true physical system beha-
vior when the simulated system state deviates from state
initially observed on the laboratory scale reference system.

Lastly, Cintuglu et al. published a survey of power sys-
tem testbeds to model ARP spoofing, denial of service
(DoS), malware, and malformed packet attacks.” Many
testbeds surveyed are virtual; however, they focus on the
power grid as a whole, not a generator subsystem and its
major components necessary for studying exploits. Some
of the testbeds incorporate simple generators, but only as a
basic power source. Other surveyed testbeds use non-
virtual generators.

This current work offers four major contributions. First,
a generator testbed was created that is fully virtualized. A
model of the physical system was built in MATLAB
Simulink and based upon Yeager and Willis’ work in
modeling emergency diesel generators.'® Sensors were
added to the model, and the generator’s governor, a con-
troller that regulates the speed of the engine, was removed
from the MATLAB Simulink model and implemented in
ladder logic running on the generator’s digital control sys-
tem as a discrete control algorithm. Second, a higher-
fidelity model of the generator was included, which allows
for more types of threat models to be evaluated. The
higher fidelity of representing the governor as a digital
control algorithm implemented as software in the DCS
enables the study of cyber attacks that affect parameters of
the algorithm. The digital control system has high fidelity
in representing a real generator system’s functions with
regard to monitoring of sensor data and response to faults.
A fault is defined as an abnormal occurrence or problem
due to damaged equipment.'’ This allows for other cyber
attack exploits that would trigger faults to be studied.
Third, this work examines case studies of cyberattacks
including two supply chain attacks: a simulated hardware
Trojan that is triggered by a time bomb, and a software
Trojan activated by a logic bomb. Network-based cyber
attacks were also performed. These cyber attacks were
modeled in order to observe the effect that they would
have on a generator system. Fourth, a novel attack against
the gain parameter of the generator’s control system, caus-
ing chaotic physical behavior, was included and is unique
from the well-known Aurora attack against a generator
system by affecting the DCS software directly.'? Table 1
summarizes the major contributions.

The remainder of this work is organized as follows:
Section 2 covers the testbed’s various modules and their
implementations; Section 3 describes a selected set of
attacks that were performed on the testbed; and Section 4
is the conclusion and discusses future work.

2. Testbed

This generator testbed was created using a modular
approach involving the five primary components of a
Supervisory Control and Data Acquisition (SCADA) sys-
tem according to a framework presented in recent work.’
These main components are (1) the physical system, (2) a
cyber-physical link, (3) the Distributed Control System or
DCS, (4) a network, and (5) the remote monitoring or con-
trol also known as a Human Machine Interface (HMI).
Figure 1 illustrates this architecture.

Each of these modules will be described in depth in the
following subsections along with their specific implemen-
tations for the generator system testbed.
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Table I. Major contributions of this work.

No. Contribution Description

| Overall virtual generator Testbed A generator testbed created that is fully virtualized as opposed to an actual
physical implementation.

2 Higher-fidelity control algorithm Higher fidelity of representing the governor as a digital control algorithm
implemented as software in the DCS.

3 Two supply-chain attacks (1) Simulated hardware Trojan triggered by a time bomb,
(2) Software Trojan activated by a logic bomb

4 Novel cyber-physical attack Command attack against the gain parameter of the generator’s control system,

inducing chaotic physical behavior

DCS: digital control system.

o o,

Remote
Physical Digital ap
Monitoring
System Control
and Control

Figure |I. Modular structure of a cyber-physical system.

2.1. Physical system

The physical system in this testbed consists of a MATLAB
Simulink model that simulates the basic operation of the
electromechanical aspects of the generator. This model is
based upon an example generator model designed by
Yeager and Willis and provided in the MATLAB soft-
ware.'® The model in Yeager and Willis was rated at 2400
volts line-to-line and 3.25 MVA (megavolt amps).'” These
characteristics remained unchanged for the purposes of
this testbed. The example was modified to include sensors
to measure RPM (revolutions per minute), oil pressure,
fuel level, and temperature for the engine as well as the
output power frequency, Vyus (Voltage root mean square),
and Irys (current root mean square). The generator in this
work is connected to a simple load, such as a motor for
running pumps. A model of a fuel tank was also added as
a subsystem to represent the fuel as if it were in a storage
tank similar to the case study described in Alves et al.
Only, in this case, Q;, is set to 0, and the Q,, is assumed
to be 1.04 gal/h, which is the average fuel rate of con-
sumption for the generator when it is on. It is also assumed
that there is an initial amount of fuel when the generator is
first switched on. To represent the thermodynamics of an
engine, which varies with the RPM, a MATLAB model
was integrated with the main generator model.'* The
resulting RPM  produced from the generator’s

electromechanical model is fed as input into the thermody-
namic model. By incorporating the thermodynamic model,
the dynamic behavior of the temperature of the engine can
be better represented. Additionally, the original example
generator model contained a control system for the
engine’s governor, which regulates the fuel injection
within the engine. The rate at which fuel is injected
impacts the speed at which the engine operates, and, there-
fore, the frequency because the generator is a synchronous
machine. This control system was removed from the
Simulink model and redesigned in the DCS’s ladder logic
in order to better emulate a real system and allow for a
logical separation of the physical model and its digital con-
trol system, which is normally implemented on a computer
or embedded system in industry. Also, the physical system
incorporated a set of actuators and sensors that communi-
cate with the digital control system; these are listed in
Table 2 in addition to related internal state registers.

2.2. Cyber-physical link

The cyber-physical link facilitates communication between
the physical system and the DCS to allow for the transmis-
sion of sensor data from the physical system to the DCS,
and also actuator commands from the DCS to the physical
system. For the purposes of the testbed, this link is imple-
mented as User Datagram Protocol (UDP) packets sent
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Table 2. Generator Instrumentation — registers associated with sensors and actuators.

Registers Description Range
Sensors Vrms Output voltage RMS -
Irms Output current RMS -
Frequency Output frequency 59.5 - 60.5 Hz.
(49.5 - 50.5 Hz.)
RPM Revolutions per minute of engine 0 -20,000 RPM
Fuel level Engine fuel level 0 - 100%
Oil pressure Engine oil pressure 10 PSI - 90 PSI
Temperature Engine temperature 0 - 300°C
Actuators Com_Act Fuel Injection -
Onoff Toggle generator {0, 1}
Breaker Connection to load though breaker {0, I}
Internal Override If enabled, prevents shutdown from faults {0, I}
Fault Engine state {0, I}
Gain Gain used in engine governor control system -
Freq. Switch Toggle between 60 and 50 Hz output {0, 1}

over a virtual network that connects the host machine on
which the MATLAB simulation is running to the virtual
machine that serves as the DCS. The purpose of this con-
nection is not to emulate a network, but to use the send
and forget property of UDP to emulate a wired connection
transferring information between the DCS and physical
system. Each of the sensors and actuators from Table 2 is
assigned a UDP port on the DCS, and data to and from the
physical model is sent and received by the corresponding
port. This is implemented on the physical system using the
Linux UDP Send and Receive blocks built into MATLAB
Simulink. In this virtualization approach, the UDP packets
sent by the physical model are relayed by an interface pro-
gram running on the DCS virtual machine to the main
DCS software. The values passed are then stored in regis-
ters in the DCS. This is the approach described in depth by
Alves et al.'?

2.3. Digital control system

The DCS is implemented on a Linux virtual machine
equipped with OpenPLC, an open-source PLC (program-
mable logic controller) software package that executes
control code written in ladder logic, an IEC-61131-3 stan-
dard language.'"* This DCS serves to monitor the sensor
data, including the temperature of the engine and the speed
of the engine shaft in RPM, as well as other information.
Additionally, the DCS regulates the speed of the engine
by means of a control algorithm, and control signals are
sent from the DCS to actuators on the physical system to
dictate engine speed and other operating conditions.

Figure 2 depicts the portion of the main ladder logic of
the DCS, which controls the engine governor and checks
the validity of sensor data. The sensor readings are passed
through comparator blocks within the ladder logic; if these

values leave a valid range, the DCS triggers a fault because
there is a potential for the system to be physically damaged.
Because safe operating ranges vary from system to system,
these valid ranges are stored within the DCS as editable reg-
isters to allow operators to set the variables as needed. What
follows is an explanation of each of the rungs in the ladder
logic beginning at the top and proceeding to the bottom.

The purpose of the first and second rungs are for
detecting if the voltage or current exceeds a maximum
voltage and current, respectively. In such events, the gen-
erator triggers a fault. The third rung of the ladder logic
shown uses both a less than block (LT) to compare the oil
pressure (Oil) with the minimum (oil_min), and a greater
than block (GT) to compare the pressure with the maxi-
mum pressure (oil_max). If either block’s output is
“true”, the physical model’s oil pressure is outside the
safe operating range, and a fault is triggered by setting (S),
the Boolean fault variable, to a value of “‘true.” The fourth
rung down uses a greater than block to verify that the cur-
rent engine temperature (Temp) has not risen above the
maximum temperature (temp_max). If the temperature is
too high, a fault is triggered. In the fifth rung of logic, the
RPM is compared with the fastest allowable engine speed
(RPM_max) via a greater than block. The fifth rung
checks the Fault and Override variables to determine the
generator’s state (onoff). If no fault has been triggered
(Fault = ““false’’) and the fault override has not been set
(Override = ““false”), the generator will remain on. If a
fault is triggered and the override is not set, however, the
generator will cut off. On other hand, the generator will
remain on if the override is set despite any faults that
occur. Also, the last rung’s purpose is for the fault to be
reset when desired by the user if a fault has occurred.
Below these rungs is a selector block, which allows one of
two given values for the reference to pass as the value for
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Figure 2. Ladder Logic, including the Governor Controller.
GT: greater than; irms: current root mean square; irms_max:
maximum current root mean square; Oil: oil pressure; oil_max:
maximum oil pressure; oil_min: minimal oil pressure; RPM:
revolutions per minute; vrms: voltage root mean square;
vrms_max: maximum voltage root mean square.

reference depending on the user’s selection (boolean vari-
able “switch™) of the set point for frequency (60 Hz or 50
Hz).

In addition, included in the ladder logic is a block that
serves as the controller, written in ST (Structured Text)
code. This code is a high-level programming language as
part of the IEC-61131-3 standard. An algorithm was cre-
ated in this controller that implements the digital controller
for regulating the speed of the engine. As seen at the bot-
tom of Figure 2, the controller is implemented as a block
in the ladder logic. This block takes the angular velocity

(omega in the ladder logic) of the engine and the reference
angular velocity as input. The controller then determines,
based upon the transfer function, whether to increase,
decrease, or maintain the speed at which fuel is injected
into the engine. This value is output as the variable
act_com in Figure 2.'° This bottom subsystem (as seen in
Figure 2) of the DCS uses a function block to implement a
governor to regulate the speed of the engine shaft by con-
trolling the fuel injection rate. This block is functionally
equivalent to the dashed box in Figure 3.

W.er (a variable that corresponds with ‘“Reference” in
the ladder logic) represents the reference, or desired, angu-
lar velocity of the engine shaft, while W (a variable that
corresponds with Omega in the ladder logic) represents
the current angular velocity. W is read by a sensor and
passed through a zero-order hold, which is needed to con-
vert the resulting value from a continuous-time value to a
discrete one. Within the portion of the governor imple-
mented in the DCS, the current velocity, which is given
from sampled sensor readings, is subtracted from the refer-
ence velocity to determine the error, or the difference
between the ideal and actual values. The resulting value is
then passed through a discrete transfer function as repre-
sented as a block within the dashed area of Figure 3. This
transfer function uses Equation 1:

9.518z — 8.448
z2 — 0.2977z + 0.3679

Hy = (1)

The output of that function is multiplied by the gain, an
adjustable parameter stored in a register within the DCS.
The output of the gain is transmitted to the physical model
and passed through the actuator block to produce the tor-
que value, which is multiplied by W, the angular velocity.
The product of this multiplication is P,,, the mechanical
power, which is used by the Simulink model to determine
the electrical output of the engine. The work by Yeager
and Willis describes a continuous-time transfer function
for this governor,'® which this work discretized so that the
transfer function can be implemented on the DCS. Because
the DCS is a digital system, it is important to note that the
DCS has a sampling period. Essentially, an input to the
system is sampled at a period determined appropriate by
the designer of the system. Updates to internal state vari-
ables and outputs, which may be determined partially by
the inputs, are performed at the sampling period. If a
higher sampling rate is selected, then the digital transfer
function will behave more accurately like its continuous-
time counterpart. Parameters of the transfer function were
determined for a digital system with a sampling period of
20 ms. Special methods can be applied to convert a contin-
uous transfer function to a discrete transfer function at a
given sampling period. MATLAB provides commands that
can carry out this operation.'”
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Figure 3. Block diagram of implementation of transfer function in Equation 1.

DCS: digital control system; Pm: mechanical power; W: variable
corresponding with “Reference” in the ladder logic.

corresponding with Omega in the ladder logic; Wref: variable
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Figure 4. HMI designed for the generator model.

HMI: human machine interface; irms: current root mean square; RPM: revolutions per minute; vrms: voltage root mean square.

2.4. Network

The network between the testbed’s DCS and the HMI is
implemented as a virtual network. Communication between
these systems is done using the MODBUS TCP/IP protocol,
which is commonly used in ICSs. To have other computers,
other virtual machines may be added to the network. These
additional computers could include a threat actor or control
devices for other networked systems.

2.5. Human machine interface

The HMI, shown in Figure 4, is used to allow a user to
monitor and manage the DCS over a network. For this

testbed, it is built using ScadaBR, an open source program
designed for HMI production, and run in an internet brow-
ser window on the host computer.

In the model’s HMI, generator sensor data is displayed
through simulated analog dials and digital displays; both
types of displays include the exact sensor reading in their
bottom left. The chart in the bottom right of the HMI dis-
plays sensor readings over time, allowing the operator to
observe history and trends in fuel and oil levels, RPM, and
temperature.

Across the top of the HMI, there are two large dials:
one for the generator’s RPM and one for its fuel level as a
percentage. The four smaller dials are, clockwise from top



Werth et al.

29

Table 3. Modbus function codes and the value types
requested.

Codeto Codeto  Value Read Data Type

Read Write

0l 05 Coil status Digital output (I bit)

02 N/A Input status Digital input (| bit)

03 06 Holding Analog output (16 bit)
register

04 N/A Input register  Analog input (16 bit)

left, the output frequency, current root mean square (Ixyms),
voltage root mean square zero (Vrmso, an adjusted V),
and voltage root mean square (Vgrys). To the right of these
small dials is the generator’s temperature gauge, displayed
as a thermometer with nine different temperature levels. In
the HMI’s bottom left, there are three sets of buttons and
displays; these are for switching the generator’s frequency,
on/off status, and override. The buttons are color coded to
allow for easier identification of the modes by the operator.
Below these is another small dial which displays the gen-
erator’s gain. This dial would not be included on the gen-
erator’s HMI in the field, but it is useful in testing.

The HMI includes a network interface and communi-
cates with the digital controller over the network using the
Modbus/TCP protocol. The HMI sends Modbus read
requests to the digital controller once per second to obtain
sensor information. The requests consist of the DCS’s
identifier, the function code, the data address to read, the
number of registers or statuses to read, and a cyclic redun-
dancy check (CRC).'® The DCS responds with a corre-
sponding Modbus response of the same identifier and
function code, followed by the number of bytes to follow,
the requested information, and CRC. Of the four types of
values on the DCS, only two are outputs that can be writ-
ten to. To modify these, a packet similar to the read
requests is sent. This packet also contains the DCS’s iden-
tifier, function code, the data address to access, and a
CRC, as well as the value to write. The function codes
used in these exchanges are shown in Table 3.

2.6. Versatility and usefulness of virtualization
approach

The testbed is versatile in that the testbed allows changes
in sensors, actuators, and other components by using the
virtualization framework described by Alves et al. for
SCADA testbeds.” The configuration file for DCS inputs
and output can be modified by the user to specify what
general I/O are to be used by the DCS or PLC so that new
sensors and actuators may be added (both analog and digi-
tal). Also, the simulator, in this case MATLAB, can be

modified to add and remove sensors and actuators in the
model to correspond with the configuration file. An addi-
tional generator can be added to the topology as needed
and other changes may be made to the load, etc. Virtual
machines that serve as PLCs, HMIs, rogue devices, and
other computers may be added as nodes to the virtual net-
work as needed by the user. OpenPLC, which is used in
this work as the DCS, does support multiple SCADA pro-
tocols, such as Modbus, DNP3, and Ethernet/IP, and also
new drivers for protocols to be added. This methodology
for virtual testbeds was shown to be representative of an
actual testbed as seen in the main works discussing the
framework.” The works discuss a comparison between
actual and virtual testbeds, and demonstrate that the test-
beds are similar in their response to the same attacks.
Therefore, this virtual testbed capability is useful as a way
to understand how cyber physical systems would actually
behave in the real world and with greater cost effective-
ness. As for packets that are sent to various nodes, how
they behave depends on the driver for processing Modbus
packets. If the same driver is used in the virtual testbed as
in the actual testbed, it will respond as expected for a real
system. If a malicious rogue device on the network were
to send Modbus command packets to the DCS at a high
frequency to change the settings of a register in the DCS,
a legitimate user may have difficulty also changing the
setting while this is happening. The user, who may be able
to send command packets to change settings only periodi-
cally at a lower frequency from the HMI, would be over-
ruled for the setting by the rogue device. The work by Das
and Morris, which uses the virtual modular framework,
includes this scenario, demonstrating the framework’s versa-
tility in exploring changes of timing in Modbus packets.'” If
a malformed packet is received by the PLC, how the PLC
responds depends on the driver implementation for process-
ing packets and also specifically for Modbus. The virtual
PLCs in this work use the Modbus implementation of
OpenPLC. In this case, if a packet were to be malformed in
the application layer of the OSI stack where Modbus resides
for Modbus/TCP, then the Modbus packet will not be pro-
cessed properly and an appropriate error code will be
given.”’ This is to be expected in real SCADA systems that
use the Modbus protocol. Corruptions of the packets in gen-
eral, and, more specifically, in the lower layers of the OSI
stack would be handled by the standard networking libraries
that OpenPLC uses.

3. Experiments with cyber attacks

Diesel generators have been a subject of discussion in
cyber-security research for more than a decade, including
experiments by Idaho National Laboratory in which the
relays connecting a generator to a power grid were hacked.
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Figure 5. Speed of shaft — normal conditions (left) vs attack on
gain (right).

By turning the relays on and off, the generator and grid
became unsynchronized, causing physical damage to the
generator.'? This experiment helped bring to light that
generators and their associated networks and equipment
are vulnerable to cyber attacks.

The purpose of this testbed is to implement additional
cyber-physical attacks and observe their effects on the sys-
tem as a whole. To verify the performance and feasibility
of the testbed for these means that examples of two major
categories of attacks — network based and supply chain —
were simulated. The attacks in these categories were cho-
sen in part because of the adverse effects they can have on
networked systems, and in part due to their potential to
cause even physical damage.

3.1. Network-based attack scenarios

The following network attacks, in which the attacker is
assumed to have access to the ICS network through a
rogue device or an unauthorized node, were performed
between the DCS and HMI: injection, denial of service,
and alteration.

3.1.1. Injection attack. One network-based attack performed
was an injection attack against the gain in the control sys-
tem. The generator’s gain is stored as an accessible value
on the DCS, so an attacker who has access to the network
can inject a single command packet to change the value of
the register.'® During normal conditions, the generator’s
governor causes the angular velocity (w, or omega) of the
shaft in the generator to converge to the desired setpoint
(Figure 5, left). This is necessary to produce output at the
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Figure 6. Resulting waveform — normal conditions (left) vs
attack on gain (right).

correct frequency in a short amount of time and to ensure
that the resulting waveform is stable (Figure 6, left).

When the injected packet sends a command to the DCS
to change the gain to be three times as large as the original
value, the control system is unable to settle on the desired
angular velocity. Instead, its behavior becomes chaotic
(Figure 5, right) due to its inability to settle upon a constant
frequency output. The resulting voltage waveform is irre-
gular in shape, with chaotic frequency output (Figure 6,
right), indicating poor power quality. The variations in fre-
quency are great enough to inhibit other connected power
sources from remaining synchronized, which could harm
the devices being powered by the generator. In industry, a
frequency variation of 1.5 Hz is often considered proble-
matic, with variations of 4 Hz or more resulting in damage
to attached equipment, even if no other synchronized gen-
erators are in use.'” When the attack occurred, the fre-
quency variation became greater than 30 Hz in 10 s, which
far exceeds what is allowed for power systems in the elec-
tric grid.

3.1.2. Flooding denial of service. Denial of service attacks
were performed using hping3 to send an overwhelming
number of packets to the HMI, resulting in the HMI not
receiving up-to-date system information from the DCS
since the flooding of packets overwhelms the network dur-
ing the attack. Figure 7 depicts the temperature of the
engine versus time as seen from the perspective of the
HMI. The temperature is rising as the engine has started.
Due to the DoS attack, which occurs between 20 and 40 s
into the simulation, new temperature sensor readings are
not received by the HMI. This is seen in Figure 7 in the
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Figure 7. HMI perspective of temperature during DoS attack.
DoS: denial of service; HMI: human machine interface.

section of the curve without markers indicating no received
HMI data, between 20 and 40 s. A DoS attack like this can
prevent situational awareness from the HMI’s perspective.
Therefore, the attack can prevent the user at the HMI from
knowing the true situation for critical variables, such as
engine temperature. In this case, when the DoS attack ends
the temperature readings from the HMI’s perspective
resume as expected. However, such behavior is not always
the case, as can be seen in the next DoS example.

In another scenario of a DoS attack that is more conse-
quential than the previous, an injection attack is performed
on the gain parameter of the control algorithm to set the
gain to a larger value (Figure 8) immediately before the
DoS attack is started. This, in turn, causes instability and
chaotic behavior in the engine and the resulting output fre-
quency, which a user would not be able to see. The
Attacker’s purpose for the DoS attack is to ensure that the
HMI, and, therefore, the user, lacks situational awareness
and is unable to respond.

3.1.3. Man-in-the-middle alteration. In a Man-in-the-Middle
(MitM) alteration attack, packets travelling from their orig-
inal source are intercepted by an attacker who modifies the
packets. The attacker then sends these altered packets to
the intended destination while disguising that the packets
are not coming directly from the legitimate source. For the
network configuration, the HMI and the DCS are assumed
to be connected to the same network, specifically the same
switch. There is also a rogue device that is connected to
the network and is responsible for the MitM attack. To per-
form this testbed attack, an Ettercap filter was created to
read Modbus packets sent from the DCS to the HMI and

Figure 8. HMI perspective under injection attack on gain and
DoS attack.
DoS: denial of service; HMI: human machine interface.

change the value of the voltage readings in the packet pay-
load. The method by which Ettercap achieves the attack is
to use Address Resolution Protocol (ARP) poisoning.

The rogue device conducts ARP poisoning by broad-
casting fraudulent ARP packets to victims and changing
their ARP table entries. Ordinarily, the ARP protocol
allows nodes with IP addresses on the network to discover
the MAC addresses of other devices associated with spe-
cific IP addresses. This discovery is achieved by broad-
casting the request to all other nodes. The node with the
corresponding IP address will send its IP address to the
requesting node. The requesting node can then put this
information in its ARP table. The rogue device takes
advantage of the ARP protocol by essentially telling the
node that the rogue device’s MAC address is associated
with a certain IP address. If the node then sends packets to
that IP address, the packets will actually be routed and
intercepted by the rogue device, which can choose to
observe or modify the packets before passing them along
to the intended recipient, if at all.?%*'

Figure 9 plots curves of the generator voltage as seen
by the HMI and the actual voltage (sampled from
MATLAB Simulink). Prior to the attack, the HMI’s dis-
play showed the Vg as 1377 V. This is the correct read-
ing. After the Ettercap attack was started (at approximate
time 40 s), the Vyyg display in the HMI changes to 1003
V, while the actual voltage is still 1377 V. The attack
altered the value as the packets were transmitted, meaning
that the operator could only see the modified value of
1003 V and was unaware that the system was not operat-
ing at that voltage. This could lead to the operator unne-
cessarily increasing the output voltage and potentially
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Figure 9. MitM attack affecting voltage reading as seen by HMI.
HMI: human machine interface: MitM; Man-in-the-Middle; RMS:
root mean square.

damaging connected equipment. This simulated behavior
matches the expected behavior of an HMI when subjected
to the MITM alteration attack.

3.2. Supply-chain attack scenarios

Supply chain attacks are a result of malicious software or
hardware being introduced in the manufacturing process
for computers, microcontrollers, and other electronic
devices. Two Trojan horse attacks, in which malicious
logic is hidden within the device, were performed in these
experiments.

3.2.1. Ladder logic Trojan (software based). To emulate a
software supply chain attack, the authors implemented a
software Trojan in the ladder logic running on the DCS.*
In this attack, the original ladder logic (Figure 10) was
modified to include an additional function block (Figure
11). This software Trojan is triggered after the override is
turned on and off five times; this allows for it to not trigger
until after the system has been tested and in use for a long
enough period of time such that the normal users would
consider the equipment to be functioning properly and
would therefore trust the equipment. After the fifth set and
reset cycle, the output of the Trojan (functionBlock00) is
set to zero so that the override will no longer apply.

During normal operation, a system fault, such as low oil
pressure, triggers the system to shut down to protect the
generator and allow for maintenance. The override is
designed to allow the generator to ignore minor faults and
remain in operation; it is enacted on generators in critical
situations, such as when powering crucial devices at a hos-
pital during a power outage or machinery. With this Trojan
enacted, however, the DCS signals the generator to shut
down in the case of a minor fault; this attack is modeled
after the ladder logic bombs introduced by Govil.>* This
involves subtle changes in the original ladder logic with
the goal of causing malicious behavior or impact for appli-
cations it was designed to control. Because the attack is
not immediately implemented, this method has an advan-
tage in that it is not in effect when the system is first used,
making the Trojan harder to detect and perhaps allowing it
to bypass normal authentication methods.

3.2.2. Simulated Trojan on sensor (hardware based). A hard-
ware Trojan was also implemented to verify how small
changes in the logic of the hardware can have detrimental

Fage Owsmice onoe
I 1 | | .| { =) I
l 1 I I I A I
Figure 10. Original override ladder logic.
Fault
| /| b I
functionBlock00 /) '
Override functionBlock0
{ } Trin TrOut

Figure |1 1. Override ladder logic with software Trojan.
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effects on the functionality of the generator system. Under
normal operations, analog data from the sensor is passed
through an analog to digital converter and then directly to
the microcontroller to be processed. This Trojan was
inspired by Chakraborty et al. and incorporates a logical
OR gate and multiplexer, as seen in Figure 12.%*

Initially, the sensor data is passed unmodified through
the top pathway in the circuitry shown in Figure 12 and
into the first input of the multiplexer before being sent to
the DCS. Once the Trojan is activated, the sensor data
goes through the bottom pathway and is passed through
the first input of the OR gate. This gate adds a value to the
true sensor reading by performing a binary OR of some of
the bits of the sensor data with ones. The most significant
bits of the sensor data are usually zero in normal circum-
stances, so passing them through the OR gate with a 16-bit
bitmask (BITMASK), some of whose most significant
digits are ones will create a larger output. Because the
resulting value read by the DCS is higher than the maxi-
mum value in the valid range (300°C or 574 K), a fault is
flagged, followed by the automatic shutdown of the gen-
erator set. The multiplexer selector can be made to switch
the output based upon an external trigger; in this case a
timer was used. This hardware Trojan was designed to be
activated 15 s into the simulation. This latency is intended
to make the Trojan more difficult to detect.

Researchers implemented this Trojan in a temperature
sensor on the generator in MATLAB Simulink. The DCS
is programmed with a range of safe temperatures for gen-
erator operation; if the temperature reading falls outside of
this range, the DCS will trigger a fault that will shut down
the generator. By artificially inflating the temperature data,
this attack causes the DCS to read a temperature that is too
high, resulting in an unnecessary system shut down. The
temperature value shown in the Simulink model is actually

Figure 13. Actual and perceived temperature readings vs.
time, with hardware Trojan activated at |5s.
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Figure 14. Output voltage vs. time, with hardware Trojan
activated at 15 s.

within the safe operating range, but the DCS is observing
a fault condition.

Figure 13 shows the correct (actual) and altered (per-
ceived) temperature sensor readings versus time, with a
large increase in the perceived value when the Trojan is
triggered at 15s. Figure 14 shows the AC voltage over
time, with the generator being shut down at 15 s due to the
programming of the generator in response to a fault. The
fault feature is intended to prevent damage by high tem-
peratures, but when taken advantage of by an attacker, the
generator is disabled unnecessarily.
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4. Conclusions and future work

Diesel generators are critical to the operation of numerous
systems, including providing power to reactor coolant
pumps at nuclear power plants and to essential services at
hospitals during electrical outages.'®*® For many decades,
the military has used standalone generators. However,
more recent military generators are equipped with net-
working capability. For convenience, it has been desired to
be able to remotely monitor the status of generators. Also,
because of an interest in micro grids, networked systems
are needed for coordination of assets.? It is therefore rele-
vant to study the vulnerabilities of generators from a
cybersecurity perspective and the impacts of cyber attacks.
In contrast to previous works, this work presents a fully
virtual high-fidelity testbed composed of a physical model,
DCS, remote monitoring system, and the necessary con-
nections. A major contribution of this work is fidelity in its
digital control system functions, which includes respond-
ing to faults and in its control system algorithm. The inte-
gration of other dynamical systems in the testbed, such as
the fuel tank and thermodynamic engine model, also serve
to improve the overall testbed’s fidelity. This testbed pro-
vides an opportunity for researchers to implement and
observe the effects of cyber attacks without damaging
actual, costly systems. The understanding gained from
these activities is essential for creating appropriate mitiga-
tion strategies to ensure operation of the equipment.
Understanding the cyber attacks that may occur with a
generator and its associated equipment is important for
users, particularly because multiple researchers have
demonstrated that cyber attacks can cause physical damage
to a generator.

Denial of service, alteration, injection, and hardware
and software Trojans were implemented within the testbed
and the simulated impact of these attacks matched
expected behavior resulting from these attacks when
applied against a real system.

The testbed presented in this paper may be used to con-
duct risk assessments and to develop and evaluate cyberse-
curity controls and threat mitigation strategies.
Additionally, the testbed may be used for cybersecurity
training and potential as a honeypot to mitigate against
threat actors.
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