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Abstract. Numerous drought indices originate from the
Standardized Precipitation Index (SPI) and use a moving-
average structure to quantify drought severity by measuring
normalized anomalies in hydroclimate variables. This study
examines the theoretical probability of annual minima based
on such a process. To accomplish this, we derive a stochas-
tic model and use it to simulate 10 x 10° years of daily or
monthly SPI values in order to determine the distribution
of annual exceedance probabilities. We believe this is the
first explicit quantification of annual extreme exceedances
from a moving-average process where the moving-average
window is proportionally large (5 %—200 %) relative to the
year, as is the case for many moving-window drought in-
dices. The resulting distribution of annual minima follows
a generalized normal distribution rather than the general-
ized extreme-value (GEV) distribution, as would be expected
from extreme-value theory. From a more applied perspec-
tive, this study provides the expected annual return periods
for the SPI or related drought indices with common accumu-
lation periods (moving-window length), ranging from 1 to
24 months. We show that the annual return period differs de-
pending on both the accumulation period and the temporal
resolution (daily or monthly). The likelihood of exceeding
an SPI threshold in a given year decreases as the accumula-
tion period increases. This study provides clarification and
a caution for the use of annual return period terminology
(e.g. the 100-year drought) with the SPI and a further caution
for comparing annual exceedances across indices with differ-
ent accumulation periods or resolutions. The study also dis-
tinguishes between theoretical values, as calculated here, and
real-world exceedance probabilities, where there may be cli-

matological autocorrelation beyond that created by the mov-
ing average.

1 Introduction

The Standardized Precipitation Index (SPI) (Guttman, 1999;
McKee et al., 1993) is used to measure meteorological
drought operationally by many organizations, including the
WMO and numerous drought monitors (Cammalleri et al.,
2021; Hao et al., 2014; Heim and Brewer, 2012; Lawrimore
et al., 2002; Sheffield et al., 2014; Svoboda et al., 2002;
WMO and GWP, 2016). This index is particularly useful be-
cause it requires only precipitation data and mirrors com-
monly agreed-upon definitions of meteorological drought,
a sustained and spatially extensive period of below-average
water availability (Heim, 2002; Lloyd-Hughes, 2014; Tallak-
sen and Van Lanen, 2023). The SPI measures accumulated or
mean precipitation during a moving window and normalizes
this quantity relative to the historical climatology for that day
of the year, thereby producing a normalized anomaly. The
SPI is typically referred to using its accumulation period, the
backwards-looking moving window, measured in months.
The SPI-3 therefore represents precipitation anomalies based
on the previous 3 months. The SPI can also be calculated at a
daily temporal resolution, though the naming convention still
typically refers to months, for example, using a 90 d moving
window to calculate the SPI-3. Accumulated precipitation is
bounded by zero and is typically positively skewed, com-
monly leading to the use of independently calibrated gamma
distributions (Guttman, 1999; Lloyd-Hughes and Saunders,
2002; Stagge et al., 2015a; Stagge and Sung, 2022) to rep-
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resent climatology and transform accumulated precipitation
into percentiles. These percentiles are ultimately transformed
to anomalies of the standard normal distribution, with a mean
of 0 and a standard deviation of 1.

The fundamental SPI concept has since been expanded
to a family of normalized drought indices, each quantify-
ing anomalies from different portions of the hydrologic cy-
cle. For example, normalized drought indices have mea-
sured anomalies in the climatic water balance, soil moisture,
groundwater, and streamflow, referred to, respectively, as the
Standardized Precipitation Evapotranspiration Index (SPEI,
Begueria et al., 2014; Vicente-Serrano et al., 2010), the Stan-
dardized Soil Moisture Index (SSI, Sheffield et al., 2014),
the Standardized Groundwater Level Index (SGI, Bloom-
field and Marchant, 2013), and the Standardized Runoff In-
dex (SRI, Shukla and Wood, 2008). The principles devel-
oped in this study are applicable to all normalized drought
indices that employ a moving-average structure, but we will
occasionally refer to the SPI as the simplest example of this
broader class. It should be noted that these indices sometimes
use instantaneous values, to which a moving window is not
applied and the findings in this study are less relevant.

Values from normalized drought indices follow the stan-
dard normal distribution (mean =0, standard deviation =1)
within the reference calibration period, resulting in relatively
interpretable percentiles. These percentiles have then been
used to develop thresholds. For example, the US Drought
Monitor uses five categories classified from DO to D4 based
on SPI thresholds of —0.5, —0.8, —1.3, —1.5, and —2 (Xia
et al., 2014). These thresholds correspond very roughly with
percentiles of <30 %, 20 %, 10 %, 5 %, and 2 %, which al-
lows them to be compared with other percentile-based in-
dices. In this study, we will use the USDM SPI thresholds
as reference points, though using the exact corresponding
percentiles. For example, an extreme drought (D3) is as-
sumed to occur for SPI values of —1.5 to —2 or for val-
ues 1.5 to 2 SD (standard deviations) drier than what is typ-
ical for that time of year. The likelihood of a given day
falling within the D3 category is therefore 4.4 %, the differ-
ence between exceedance probabilities for —1.5 (6.7 %) and
—2 (2.3 %). These thresholds have statistical utility but are
arbitrary. For example, different thresholds have been used
previously (McKee et al., 1993), drought impacts are linked
to a wide range of thresholds (Blauhut et al., 2016; Stagge et
al., 2015b), and the US Drought Monitor’s blended Objective
Drought Indicator uses additional logic to classify droughts
(Anderson et al., 2013; Xia et al., 2014).

Confusion of interpretation can occur with regards to nor-
malized drought indices because hydrologists often quantify
extremes in terms of annual exceedance probabilities or their
reciprocal, the return period. However, annual exceedance
probabilities differ from the probability associated with a
normalized drought index series because each day follows
a standard normal distribution. For example, there is a 6.7 %
chance that the SPI on 1 January will fall into the D3 cate-
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gory or worse (see above), but there is also a 6.7 % chance of
falling into this drought category on 2 January and all sub-
sequent days of the year. Therefore, it is not correct to state
that there is a 6.7 % chance of experiencing a D3 drought or
worse (one SPI value less than —1.5) in a given year. The lat-
ter statement is what hydrologists typically define as return
period or annual exceedance probability, which is clearly dis-
tinct from the daily or monthly SPI probabilities. If SPI val-
ues were independent and identically distributed (i.i.d.), the
likelihood of a year with a single SPI value below a given
threshold would be given by

1—(1-p), )]

where p is the probability of exceedance for each time step,
and n is the length of the sample period: 12 months or 365 d.
The probability of at least one observation being below —1.5
in a given year then approaches 100 % for daily time steps
and is 56.4 % for monthly time steps. However, SPI time se-
ries are fundamentally not i.i.d., instead being subject to a
large amount of temporal autocorrelation due to the SPI’s
moving-average structure. The degree of temporal autocor-
relation depends on the length of the moving window or of
the accumulation period, which can be tuned to capture, al-
ternatively, short droughts with smaller periods or to capture
seasonal to multi-year droughts using longer periods. While
temporal autocorrelation invalidates annual exceedance esti-
mates from Eq. (1), the moving-average structure provides a
predictable and pre-defined structure that can be leveraged to
quantify the likelihood of annual exceedances.

Despite there being a robust field of research into moving-
average models as part of the autoregressive moving-
average (ARMA) family of time series models (Box and
Jenkins, 1970; Wilks, 2011), we were unable to identify prior
research quantifying the extreme behaviour of a moving-
average sequence where the moving window is long relative
to the time interval, as is the case for normalized drought
indices. Solutions exist for the simple AR(1) case (Hirtzel,
1985a, b) and for an AR(n) case, although the latter requires
high-dimension copulas and is unstable (Tsoukalas, 2022).
Prior extreme-value theory for moving averages (Davis and
Resnick, 1991; Rootzen, 1986) appears to break down under
the conditions of the normalized drought indices, as we out-
line here. The purpose of this study is therefore to quantify
the expected annual minima and their associated return pe-
riods from a theoretical moving- average series when simu-
lated from daily or monthly sequences with moving windows
that mimic common lengths for the SPI and other drought
indices. Before simulating these annual minima, we first de-
rive a stochastic model for an idealized moving-average se-
ries and show how, for several example sites, temporal auto-
correlation from observations broadly follows this idealized
model due to the underlying moving average. For the remain-
der of this study, we will focus on annual minima as relevant
for droughts; however, all findings apply equally for positive
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(maxima) extremes because the standard normal distribution
is symmetrical.

2 Methods

This study is organized by first developing a simulation
method to generate long sequences that meet two criteria:
(1) values for each day or month follow the standard nor-
mal distribution, with a mean of 0 and a standard deviation
of 1, and (2) values follow a uniformly weighted backwards-
looking moving average. Following this derivation, we sim-
ulate extremely long sequences from this process and extract
the annual minima for multiple thresholds. We also estimate
the first four moments of the annual minima and test several
extreme-value distributions to determine whether the annual
minima can be adequately represented by a continuous prob-
ability distribution. Using these fitted distributions, we de-
scribe the annual exceedance probabilities for any threshold.

This approach is designed only to explore the theoretical
behaviour of a simplified case, affected only by the struc-
tural persistence caused by the moving average. This ap-
proach does not consider additional climatological persis-
tence caused by a region’s climatology or by macroscale
drivers like atmospheric teleconnections. We make this dis-
tinction between structural and climatological persistence
throughout the study. Normalized drought indices in the real
world are impacted by a combination of these and other
factors (see Discussion), requiring site- and index-specific
analyses. But, as we show for a variety of case study sites
across climate regions, structural persistence typically repre-
sents the vast majority of temporal autocorrelation. There-
fore, here, we present the solution to the limiting case of
structural persistence only for clarification and as a bench-
mark for future comparisons.

2.1 Relating SPI to moving-average processes

The SPI calculates a moving average or moving sum of pre-
cipitation, which is then normalized for each day or month
of the year relative to its historical climatology (Guttman,
1999; McKee et al., 1993). For the purposes of this study, we
stipulate that the simplest SPI time series is also a moving-
average series following the necessary standard normal dis-
tribution with a mean of 0 and a standard deviation of 1. The
potential implications of this assumption are explored further
in the Discussion. A random series of SPI-¢g values, where
q is the accumulation period, can therefore be generated us-
ing random daily or monthly incremental changes, called in-
novations, Z;, sampled from

Z, ~N(0,/q)iid. )

These progressively enter and leave a moving average,

q
SPI(r) = ! > 7. (©))
94
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Figure 1. Autocorrelation function (ACF) for an SPI-6 generating
process.

thereby generating an SPI(¢) series. This produces the requi-
site standard normal distribution while maintaining a mov-
ing window of g time steps. The SPI has a backwards-
looking “memory” of ¢ time steps (days or months), where
each is weighted equally. Within the autoregressive moving-
average (ARMA) framework (Box and Jenkins, 1970; Wilks,
2011), such a model can be written as a moving-average pro-
cess, MA(g —1). In this notation, the moving window is writ-
ten as g — | rather than g because g — 1 represents the number
of time lags in addition to the innovation added in the current
step, i.e. at a time lag of zero. Writing the model in standard
ARMA notation allows the application of a deep body of lit-
erature regarding the properties of ARMA models. Using this
standard notation, the MA(g — 1) process has ¢ — 1 MA co-
efficients of 1 and innovations with a standard deviation of
+/q/q- For example, it is possible to simulate an SPI-6 se-
quence using an MA(5) with MA coefficients of [1, 1, 1, 1, 1]
and innovations randomly sampled from an i.i.d. Gaussian
distribution N (0, %2).

The autocorrelation function (ACF) for such a theoretical
SPI-q series, represented by an MA(g — 1) process, has a lin-
ear decay of 1/¢ per time lag (Fig. 1). The ACF becomes zero
past g lags because these innovations are no longer part of the
moving average. Expanding on the previous SPI-6 example,
temporal autocorrelation falls from 1 at lag 0 to 0.1666 at
lag 5, followed by zero autocorrelation for lags of 6 months
and beyond (Fig. 1). The same would occur for a 6-month
SPI-6 series using a daily temporal resolution, but autocorre-
lation would decay linearly towards zero after 182 d (approx-
imately 6 months).

Moving-average processes with discrete time lags can be
converted to an infinite-order autoregressive process if the
MA model is invertible (Granger and Andersen, 1978). For
an ARMA process to be invertible, all roots of the charac-
teristic polynomial must lie outside the complex unit cir-
cle (> 1) (Davidson, 1981; Granger and Andersen, 1978;
Hallin, 1984). Roots of the MA(g — 1) process defined here
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are exactly on the unit circle, making this theoretical model
not invertible to an equivalent AR(co0) model.

2.2 Stochastic simulation from MA model

Normalized drought index time series were simulated us-
ing the moving-average model (Eqgs. 2 and 3), with unique
simulations being run using daily and monthly temporal res-
olutions. Monthly simulations were performed using accu-
mulation periods of 1, 2, 3, 6, 9, 12, and 24 months to ad-
dress the most commonly used moving windows for the SPI.
Daily simulations recreated these accumulation periods with
an additional half-month window: 15, 30, 60, 90, 182, 274,
365, and 730d. This permits a direct comparison of daily
simulations with their monthly counterparts using the typi-
cal SPI-g naming scheme. This range is similar to the 1-60-
month range considered by the US Drought Monitor (Svo-
boda et al., 2002; Xia et al., 2014), but we chose not to ex-
tend beyond 2 years (24 months). We also chose to include
a 15 d window for completeness, both to show behaviour un-
der extreme conditions and because some measures of flash
drought rely on rapid decreases in water balance or soil mois-
ture over 14 or 15 d periods (Christian et al., 2019; Lisonbee
et al., 2022).

For daily and monthly experiments, we simulated a to-
tal of 10x10° years using 20 repeated simulations of
500000 years. The result was 3.65x10° total days and
0.12x10° months. A total of 20 repeated simulations were
used to test uncertainty and the impact of initial conditions
while remaining conscientious of computational memory.
Once it was determined that there were nearly imperceptible
differences between statistical characteristics for the repeated
simulations, the 20 simulations were combined to create the
full 10x10° year dataset. While this creates 19 small dis-
continuities at the interface between the 20 simulations, this
effect was minimal when viewed across the 0.12-3.65 billion
individual time steps

2.3 Temporal autocorrelation at case study sites

While the purpose of this study is primarily to determine the
extreme behaviour from the moving-average structure under-
lying many drought indices, it is illustrative to understand
how closely observed drought indices follow this idealized
structure. To test this, we first derive SPI time series for
the 1, 3, 6, 12, and 24 month moving windows using daily
data from the Global Soil Wetness Project Phase 3 (GSWP3)
(Kim, 2017; Dirmeyer et al., 2006). The GSWP3 forcing
dataset is based on a the 20th Century Reanalysis dataset
(Compo et al., 2011), with dynamical downscaling to main-
tain both high- and low-frequency signals and additional
bias correction based on the GPCC (Meyer-Christoffer et
al., 2015) for precipitation. The GSWP3 dataset used here
includes daily precipitation for the period 1901-2010 at a
global resolution of 0.5° x 0.5°. While a more comprehen-
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sive investigation is needed in the future to examine multi-
ple variables, e.g. SPI, SPEI, SSI, and SGI, at sites across
the world, we have chosen to focus on 23 case study grid
cells, aiming to span as many K&ppen—Geiger climate zones
(Peel et al., 2007) as feasible and to examine three to five
sites in each of the six continents (Fig. S5). SPI was calcu-
lated following the stationary-spline approach of Stagge and
Sung (2022) by fitting a seasonally cyclic spline to the pa-
rameters of the gamma distribution for positive precipitation
and to those of the logistic distribution for the probability of
zero precipitation.

For each observed SPI time series, we then calculated the
lagged correlation at 1d increments using Pearson correla-
tion. To compare observed autocorrelation with that expected
from an idealized moving-average process, we generated
1000 independent replicates of 110-year daily time series fol-
lowing Egs. (2) and (3), calculating the lagged correlation for
each using an identical approach to that used for the observed
time series. The inner 95 % percentile of all replicates was
used to approximate the 95 % confidence interval, while the
mean showed the expected autocorrelation. Lagged autocor-
relation from the observed SPI was contrasted with that from
the idealized moving-average replicates to show how typical
SPI series mimic the idealized series and to illustrate how
much autocorrelation is caused by the moving-average struc-
ture relative to climatological persistence for these example
sites. We present four sites in North America in the text but
show all other sites as figures in the Supplement.

2.4 Annual minima analysis

Block annual minima were extracted from the simulated
daily and monthly time series using an annual period. Cal-
endar years, rather than water years, were used for ease of
interpretation and because the synthetic SPI series does not
distinguish seasonality.

To find a univariate probability distribution that reasonably
approximates the simulated annual minima, we first com-
pared the sample L-moment ratios with theoretical values for
common univariate distributions (Hosking and Wallis, 1995;
Peel et al., 2001). For the purposes of this analysis, the sign
of annual minima was changed to better fit distributions typi-
cally designed for maxima extremes. This sign change is rea-
sonable because, while seasonal precipitation or other mea-
sured variables may be skewed, the transformed SPI distri-
bution is symmetrical, normally distributed about zero, and
the simulated SPI did not distinguish seasonality. L-moment
plots were developed for the entire 10x10° year simulated
series and for each of the 20 subset simulations to estimate
uncertainty around the L-moment estimate. In addition, we
evaluated quantile—quantile (q—q) plots, showing the empiri-
cal quantiles from the sample compared with the theoretical
quantiles determined from the candidate distribution.

Once an appropriate univariate distribution was found,
we fit this distribution using both maximum-likelihood es-
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timation (MLE) and L moments, which have previously
been shown to produce equivalent fits, particularly for large
datasets (Begueria et al., 2014). Estimates across both meth-
ods were nearly equivalent. For all subsequent analyses, we
report L-moment estimates. Goodness of fit was verified us-
ing q—q plots and the Akaike information criterion (AIC)
(Akaike, 1998; Cavanaugh and Neath, 2019). From the fitted
distributions, exceedance probabilities were estimated, along
with their corresponding annual return periods for a range
of SPI values using the L-moment estimates. Empirical es-
timates for several key exceedance probabilities were calcu-
lated as validation.

3 Results
3.1 Annual minima best fit distribution

To enable the development of continuous exceedance proba-
bility and return period curves, we sought to find a univariate
probability distribution that provided a good fit for the an-
nual minima. L-moment ratios closely match the theoretical
moments of the three-parameter generalized normal distribu-
tion (Peel et al., 2001), also known as the three-parameter
lognormal distribution (Fig. 2), indicating that this distribu-
tion best fits the data. This holds true across all accumulation
periods, regardless of whether one is using monthly (Fig. 2)
or daily underlying data (Fig. S1 in the Supplement). As the
accumulation period increases towards 24 months, the an-
nual minima appear to be increasingly like the normal, with L
skewness decreasing towards zero and L kurtosis approach-
ing the theoretical value of 0.1226 for normally distributed
data. The generalized normal distribution is capable of repre-
senting the more skewed distributions for short accumulation
periods and the more symmetrical distributions for longer ac-
cumulation periods, all while closely matching the simulated
annual minima (Fig. 2). This extremely close fit supports
the use of the generalized normal distribution as opposed to
other potential distributions to capture the magnitude of an-
nual minima. This extremely close fit for 10 million simu-
lated observations, provides strong evidence. L-moment ra-
tios were extremely stable, with nearly imperceptible differ-
ences between the 20 simulations (Fig. S2). The interquartile
ranges (IQRs) for L-skewness and L-kurtosis estimates from
daily simulations were 0.0007-0.0015 and 0.0003-0.0007,
respectively, amounting to uncertainties of 0.8 %—6 % and
0.3 %—0.5 %, measured by the IQR divided by the median.

The cumulative distribution function for the generalized
normal distribution can be described by the standard normal
distribution ®(Y) with an additional transformation, where
Yis

Y = —«"'log (1 - KO‘T_S)) where k # 0

S @)

where k =0
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In the above, & is the location parameter, « is a scale param-
eter, and « is a shape parameter (Das, 2018; Hosking and
Wallis, 1997). When « = 0, the distribution reverts back to
the normal distribution, with a mean of £ and a standard
deviation of «. This distribution is equivalent to the three-
parameter lognormal distribution or a normal distribution fit
in natural log space with parameters fi1og, Olog, and ¢, repre-
senting the location in log space, the scale in log space, and
a lower distribution bound (Das, 2018). For conversion be-
tween the parameters of the two, one can use the following
relationships: kK = —0jog, & = ologe“log, and £ = ¢ + eM1og,
The generalized normal distribution has been used in hydrol-
ogy and meteorology studies (Basu and Srinivas, 2013; Das,
2018; Sangal and Biswas, 1970) for extreme-value analysis.

Notably, the annual minima values do not converge to-
wards the generalized extreme-value (GEV) distribution
(Fig. 2), as might be expected for extreme values with tempo-
ral autocorrelation (Berman, 1964; Davis and Resnick, 1991;
Hirtzel, 1985b; Leadbetter et al., 1983; Rootzen, 1986). The
Berman theorem (Berman, 1964; Coles, 2001) states that the
maxima statistics of stationary Gaussian sequences with au-
tocorrelations should converge towards a Gumbel distribu-
tion (GEV type I). We believe that this deviation from ex-
pectation is due to the clustering of extremes, which violates
Berman’s theorem. This proposed explanation is expanded
upon in the Discussion.

Deviations from the GEV distribution are most notice-
able for longer accumulation periods, like the SPI-24, which
has sample L-skewness and L-kurtosis values of 0.0035
and 0.123, respectively (Fig. 2). These are nearly identical to
theoretical values for the normal distribution (0 and 0.1226)
and, thus, for the generalized normal distribution, whereas
the GEV distribution cannot produce distributions with zero
skewness (Fig. 2). While the deviation from the GEV dis-
tribution becomes smaller for shorter accumulation periods,
it is notable how closely the empirical L moments from
the simulations follow the generalized normal distribution
(Fig. 2).

Quantile—quantile plots were used to further verify fitting
skill, with all simulated extremes falling neatly along the dis-
tribution, with only slight deviations at the most extreme val-
ues (return periods > 1 x 10°) and no consistent patterns of
bias (Fig. S3). The generalized normal distribution therefore
accurately reproduces empirical quantiles, with little notice-
able bias even at the extremes. These strong fits appear to
be similarly accurate for short and long accumulation pe-
riods, though AIC values increase slightly (become worse)
for longer accumulation periods (Fig. S4a). The AIC con-
firms that the generalized normal distribution produces a bet-
ter fit than the GEV across all moving-average lengths, il-
lustrated by a lower value (negative difference) in terms of
AIC (Fig. S4b). Based on all of this evidence, all subsequent
analyses are therefore based on the generalized normal dis-
tribution, except where empirical estimates are used as a val-
idation.

Hydrol. Earth Syst. Sci., 29, 719-732, 2025



724 J. H. Stagge et al.: Expected annual minima from an idealized moving-average drought index

L-kurtosis
o
o

o
o
o

Accum Period

0.00 0.05 0.10
L-skewness

(Months)
o1
2
3
6
9
® 12
® 24
Distribution
———— GEV
——- Gen Logistic
Gen Normal
. ———— Pearson lll
015 L. Weibull
H Gumbel
A Normal

Figure 2. L-moment ratios for annual extremes from monthly simulated series. Coloured points refer to fitted moments across varying
accumulation periods, while lines correspond to theoretical distributions. Note that this figure shows distributions with a flipped sign. True
skewness for annual minima is negative. An equivalent figure for daily simulations is shown in the Supplement (Fig. S1).

3.2 Observed vs. theoretical autocorrelation

The pattern of temporal autocorrelation for real-world SPI
time series follows the pattern from the idealized moving-
average time series, with a mostly linear decrease towards
zero at the moving-window length, followed by fluctuations
around zero (Figs. 3 and S6-S10). This implies that the struc-
tural persistence, occurring due to the moving average, is
more important than climatological persistence in many lo-
cations and climate regions. The first row of Fig. 3 shows the
first 20 of the 1000 replicates used to generate the 95 % in-
terval. The red line (observed) generally remains within this
95 % interval for climates ranging from cold, hot summers
(Winnipeg, group Dfb) to temperate (Columbus, group Cfa)
to tropical monsoon (Miami, group Am) and hot deserts
(Tucson, group BSh). This pattern holds for all other case
study sites analysed outside of North America (Figs. S6—
S10). Temporal autocorrelation beyond the limits shown here
continues to fluctuate around zero but generally remains
within the 95 % interval. Where there are deviations from the
theoretical persistence, this could be evidence of randomness
or of some climatological persistence. This can be investi-
gated more thoroughly in future studies (Sect. 4.1).

3.3 Annual extreme values

Using the fitted generalized normal distribution, we explored
the distribution and return periods for annual minima of the
idealized moving- average time series described by Eqgs. (2)
and (3). For longer accumulation periods, the distribution of
annual minima becomes less skewed, with a shift in the mean
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towards zero (Figs. 4 and S2). Conversely, short accumu-
lation periods have more skewness and are shifted towards
the negative (more extreme). For daily data, the distribution
mean increases from —2.53 for a 1-month accumulation pe-
riod (SPI-1) to —0.77 for a 24-month period (SPI-24) (Figs. 5
and S2). For monthly data, this shift in the mean value for the
annual minima increases from —1.63 to —0.61 for the SPI-1
and SPI-24. Differences between the daily and monthly res-
olutions are discussed in the next section.

Concurrently with an increase in the distribution mean for
the SPI annual minima, distributions transition from skewed
left for short accumulation periods towards more normally
distributed (negligible skew) for long accumulation periods
(Figs. 5 and S4). Variance also increases with an increased
accumulation period. All distribution parameters and mo-
ments are presented in the Supplement (Figs. S12 and S13,
Table S1).

The aforementioned distribution changes due to the accu-
mulation period produce differences in the probability of an-
nual threshold exceedances and their associated return pe-
riod (Figs. 4 and 5). In Fig. 5, lines represent the proba-
bility of threshold exceedances derived from the fitted dis-
tribution, while vertical lines correspond to USDM thresh-
olds. If one was to focus on the D4 exceptional drought
threshold (SPI < —2.0) for a daily time series, the annual
probability of a single SPI-3 exceedance of this threshold
is 37.7 %, a return period of 2.65 years, while this proba-
bility decreases to 9.27 % for the SPI-24, corresponding to
once every 10.79 years (Fig. 5a, Table 1). The discrepancy
becomes even greater for extremely short accumulation peri-
ods. For example, the probability of at least one value being
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Figure 3. Lagged correlation for the SPI-1, 3, 6, 12, and 24 moving windows. The first row shows 20 replicates from random simulation,
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autocorrelation from 1000 replicate simulations, while the grey regions show the 95 % interval from these replicates. Dotted lines show the
moving-window length. Note that each subfigure has a different x axis to better focus on the moving window.

below —2 for the SPI-0.5 (15d period) is 87.6 % (return pe-
riod of 1.14 years). In other words, a drought agency would
declare a D4 drought every year if monitoring the SPI-0.5 but
only once a decade if monitoring the SPI-24.

Another way to interpret Fig. 5 is to make a horizontal
comparison. The 2-year return period should be exceeded
once every other year when measuring a sufficiently long

https://doi.org/10.5194/hess-29-719-2025

record. The threshold associated with this relatively com-
monplace occurrence varies from —2.5, considered to be an
extreme (D3) drought for the SPI-0.5, to —0.764, considered
to be only a moderate (D1) drought for the SPI-24 (Fig. 5a).
The idea of experiencing an extreme short drought (0.5-
month accumulation period) at least once every other year
may be challenging for interpretation by the public. Again,
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Table 1. Annual return periods (in years) using daily simulation for various SPI thresholds and accumulation periods.

Accumulation period

Return period (years) for SPI threshold

Months Days -4 =35 -3 =25 -2 —-15 -1 =05 0

0.5 15 185 282 597 199 114 101 100 1.00 1.00
1 30 2890 454 961 297 143 106 1.00 1.00 1.00
2 60 473 768 164 483 205 126 1.04 1.00 1.00
3 90 659 107 229 660 265 148 1.11 1.02 1.00
6 182 1060 182 40.1 1.5 432 215 139 111 1.02
9 274 1440 251 556 158 578 273 1.65 122 1.06
12 365 1820 315 694 196 704 324 188 133 1.11
24 730 3520 569 118 31.6 10.8 465 250 163 1.26

this difference is solely due to the structural behaviour of the
SPI’s moving average and is important to understand when
comparing SPI extreme occurrences from different accumu-
lation periods.

Return periods for extreme SPI values rapidly increase be-
yond —3.5 (Fig. S14). Return periods from daily data for an
SPI of —4 range from 185 to 3520 years, depending on the
accumulation period, and from 14 600 to 291 000 years for
an SPI equal to —5. These values differ from those generated
by Stagge et al. (2016), who focused on recurrence within a

Hydrol. Earth Syst. Sci., 29, 719-732, 2025

given day of the year rather than on annual minima. How-
ever, both our study and that of Stagge et al. (2016) con-
vey the same concern that using the SPI or other normalized
drought indices to quantify tail behaviour at such extremely
low probabilities is dubious given common record lengths of
100 years or less.

The difference in return period for annual SPI minima
from a theoretical time series as noted here is solely due
to the structural persistence caused by the size of the mov-
ing window. In case study sites using the SPI, structural
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Figure 6. Fitted distribution of annual minima from daily (a) and
monthly (b) time series. Colours and vertical lines are identical to
Figs. 4 and 5.

persistence appears to play the predominant role in tempo-
ral autocorrelation (Fig. 3). The effect of structural persis-
tence on annual minima can be partially explained because
shorter accumulation periods necessarily have larger innova-
tions (,/q/q), leading to more erratic behaviour while main-
taining the same overall standard normal distribution for each
day of the year. As accumulation periods become larger,
the moving average incorporates more individual days or
months, requiring more sustained anomalies to produce ex-
treme values. For the longest accumulation periods, where
the moving- average window becomes longer than a year, the
resulting time series slowly transitions from positive to neg-
ative or vice versa over the course of multiple years, thereby
even producing occasional years in which the annual minima
are greater than zero (Figs. 4 and 5).

3.4 Effect of temporal resolution

The temporal resolution of the underlying data (monthly or
daily) has a strong impact on the annual minima of the sim-
ulated SPI. Using daily data shifts the distribution of the
annual minima to become more extreme (more negative)
across all accumulation periods, though the effect is strongest
for short accumulation periods (Figs. 6 and 7). In turn, this
makes return periods for monthly resolution data longer, even
when considering the same threshold (Fig. 7). For example,
the SPI-3 is likely to exceed —2 at least once every 2.65 years
(p = 0.378) when using daily data but will likely only exceed
this threshold once every 5.40 years (p = 0.185) when using
monthly data (Tables 1 and 2). For the SPI-12, return periods
for daily and monthly series become 7.04 and 10.44 years, re-
spectively, for the —2 threshold. This is tied to the number of
random samples (12 vs. 365) and the increased likelihood of
a random extreme outlier despite moving windows of equal
lengths.

There is little difference between the higher moments
(variance, skewness, kurtosis) when comparing the distribu-
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tion of annual extremes generated from daily or monthly data
(Figs. S12 and S13) despite the moving window representing
the same proportion of the year. Seemingly, the only differ-
ence is in the distribution mean, which is shifted to the more
extreme (lower) when using daily data (Figs. S12 and S13).
Because monthly and daily SPI data are often used inter-
changeably, the effect of the temporal resolution on annual
minima is important for practitioners and drought monitor-
ing agencies to acknowledge as it is purely an artefact of the
calculation procedure and not of the climate.

4 Discussion
4.1 Structural persistence vs. real-world persistence

This study is, to our knowledge, the first attempt to quantify
the return frequency of annual minima from a standardized
drought index following a moving-average structure. To ac-
complish this, we defined the behaviour of a stochastic model
that mimics the moving average of the SPI (Egs. 2 and 3). In
practice, the SPI and other drought indices can deviate from
this general model in several ways, described next. There-
fore, these results represent annual minima return periods for
a highly idealized system as a bounding case, considering
only structural persistence and Gaussian (symmetrical) inno-
vations.

Normalized drought indices derived from gauge data
can be subject to climatological persistence in addition
to structural persistence. Structural persistence is caused
by the moving-window structure, whereas climatological
persistence is caused by climatological patterns, including
frontal systems at shorter timescales and teleconnections
like El Nifio or the North Atlantic Oscillation at longer
timescales. Another potential deviation from our theoretical
SPI model is the seasonal regime, which may cause certain
seasons to be more strongly correlated or to undergo rapid
overturning of conditions. A final deviation from the real
world is our assumption of symmetrical innovations (Eq. 2),
which may not always hold true. This is particularly relevant
for regions with low absolute precipitation, where individual
large storm events may produce more extreme positive inno-
vations than negative innovations.

Despite the potential for deviations from the idealized
moving-average model that is the focus of this study, we
found that most observed SPI series follow the expected
structural persistence (Fig. 3). This finding suggests that
these results are relevant for most SPI series, though one
should check the persistence structure if they are to use this
approach. Though the 23 global sites tested here do not show
major climatological persistence, there may be regions with
notable deviations from the assumed structural persistence
created by the moving window. Testing of the persistence
structure for SPI, SPEIL, and other moving-average drought
indices on a global, gridded scale would be needed to fully
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Table 2. Annual return periods (in years) using monthly simulation for various SPI thresholds and accumulation periods.

Accumulation
period Return period (years) for SPI threshold
Months -4 =35 -3 =25 -2 —-15 -1 =05 0
1 2660 378  64.5 14 411 177 1.15 1.01 1.00
2 2830 391 676 153 47 205 127 1.05 1.00
3 2950 415 739 172 54 234 139 1.09 1.01
6 3290 489 927 228 734 313 175 124 1.06
9 3260 526 107 274 9.02 381 205 139 1.12
12 3840 613 124 318 104 437 231 151 1.19
24 6020 918 180 452 145 585 296 183 134
1000 T
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Figure 7. Return period comparison between daily (solid) and monthly (dotted) underlying data, where the SPI value is presented on the x
axis and the return period is shown on the y axis in a log scale. USDM thresholds are shown, as in previous figures.

confirm this finding and should be addressed in future re-
search.

4.2 Theoretical basis against GEV

Extreme-value theory, based on the work of Berman (1964),
suggests that, for time series with high autocorrelation, in-
cluding the moving average, the annual minima should
asymptotically converge towards a member of the GEV
distribution, namely the Gumbel distribution (Davis and
Resnick, 1988; Eichner et al., 2006; Hirtzel, 1985b; Husler,
1990; Leadbetter et al., 1983; Rootzen, 1986). Notably, our
simulations deviate from this, instead converging towards the
generalized normal distribution (Figs. 2 and S1).

One potential explanation for this deviation is that
the moving-average structure imparts extremal clustering
(Coles, 2001; Moloney et al., 2019) to the time series, which
violates the assumptions underlying the Berman theorem.
Extremal clustering, the tendency for a time series to clus-
ter at extreme levels, is quantified by the extremal index 6
(Coles, 2001; Moloney et al., 2019). Clustering of extremes
differs from temporal autocorrelation as it only considers
clustering for events above a given extreme threshold (Auld
and Papastathopoulos, 2021; Lindgren et al., 1983; Moloney
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et al., 2019). The extremal index 6 ranges from O to 1, repre-
senting completely independent extremes (@ = 1), and pro-
gressively smaller values of 6, representing larger degrees
of extremal clustering. The Berman theorem (Berman, 1964)
and its subsequent derivations for moving-average sequences
(Rootzen, 1986) are predicated on minimal extremal clus-
tering. However, the moving averages used in normalized
drought indices have increasing levels of extremal cluster-
ing for longer accumulation periods (Fig. S15, lower 6 with
higher accumulation). These levels of extremal clustering are
still relatively minor but may partially explain the deviation
from the GEV towards the generalized normal distribution,
especially for longer accumulation periods (Fig. 2). More re-
search would be required to confirm this hypothesized cause.

From a physical perspective, it is logical that moving-
average drought indices have increased extremal cluster-
ing, particularly for long accumulation periods, because the
longer moving-window approaches or surpasses the size of
the annual block. Long moving-average windows produce
relatively small incremental changes, which makes it un-
likely to reach extreme minima in a given year without the
preceding year already being quite low. This, in addition to
smearing drought events across neighbouring calendar years,
leads to greater levels of extremal clustering and lower val-
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ues of 6 (Fig. S15). Eichner et al. (2006) noted similar be-
haviour for annual block maxima derived from an autocorre-
lated series, finding that distributions become more normally
distributed with higher degrees of correlation.

5 Conclusions

This study represents an advancement in the understanding
of annual extremes derived from moving-average time se-
ries, of which normalized drought indices like the SPI are
an important type. The SPI and other normalized drought
indices are used by drought monitoring agencies through-
out the world to quantify the relative severity of droughts
and to classify conditions into discrete drought states. Be-
cause of the importance placed on these indices, this study
explored the behaviour of a theoretical, idealized moving-
window sequence with respect to annual minima. The ma-
jor advances shown here can be viewed from two perspec-
tives: an improved theoretical understanding of moving- win-
dow sequences and practical findings for the application of
drought indices by drought monitoring agencies when set-
ting decision thresholds or when communicating risk to the
public.

From a theoretical perspective, this study presents a
stochastic model to simulate a moving-average process
where the moving-average window is proportionally large
(5 %—200 %) relative to the year (Eqs. 2 and 3). This pro-
duced the first, to our knowledge, explicit quantification
of annual extreme exceedances from such a sequence. We
showed that the distribution of annual minima follows a gen-
eralized normal distribution rather than the GEV distribution,
which was the initial expectation from extreme-value theory.
This deviation is likely due to extremal clustering.

From an applied perspective, this study provides the ex-
pected annual return periods for the SPI or related drought
indices, with common accumulation periods ranging from
1 to 24 months (Fig. 5, Tables 1 and 2). We show that the
likelihood of exceeding an SPI threshold in a given year
decreases (annual return period increases) as the accumula-
tion period increases. The corollary of this finding is also
true; the SPI threshold associated with a given annual re-
turn period becomes less extreme (closer to zero) for indices
with longer accumulation periods. Practitioners have implic-
itly understood this relationship, even from the first defini-
tion of the SPI (McKee et al., 1993), which included a fig-
ure showing the number of unique droughts per 100 years
decreasing with longer accumulation periods for a gauge in
Fort Collins, CO, USA. Likewise, the European Drought Ob-
servatory’s Combined Drought Index uses a more extreme
threshold for short accumulation periods (SPI1 < —2) than
for longer accumulation periods (SPI3 < —1) when classify-
ing drought regions, which is in line with our findings, which
suggest that these thresholds should have similar annual re-
turn periods (1-1.5 years) for daily data (Fig. 5, Table 1).
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Despite an implicit understanding by drought practitioners,
this study is the first to explicitly calculate the return period
for a theoretical normalized drought index using a moving
average. Drought managers can use this knowledge to better
interpret exceedances of the SPI or other drought metrics.

A second practical finding is that annual minima from a
normalized drought index (e.g. the SPI or SPEI) depend on
whether one uses daily or monthly data, even for the same
accumulation period. Drought practitioners have largely un-
derstood that daily data are noisier and, thus, more subject to
single-day deviations towards extremes, but this effect has
not been quantified explicitly to date. Further, researchers
tend to use daily or monthly resolution data interchangeably
if the accumulation periods are equivalent, which, as we have
shown here, produce different results when viewed as annual
exceedances.

We therefore propose several recommendations. The first
is a general recommendation for users of the SPI and related
drought indices to be careful with language and thoughtful
about interpretation when using a normalized drought index
to determine whether a given event is particularly extreme.
Our goal is to clarify the difference between the probability
of the SPI exceeding —2 on a specific day and the probability
of it exceeding —2 in a given year (commonly called the re-
turn period). The former is the definition of the SPI, whereas
the latter is covered in this study. This distinction should
be clear when considering the fact that the likelihood of
SPI < —2 on any given day is 2.3 %, but the likelihood of ex-
periencing SPI < —2 in a year ranges from 6.9 % to 87.7 %,
depending on the accumulation period and the temporal res-
olution. This leads to the second recommendation, which is
that practitioners should exercise caution when comparing
the likelihood or severity of a particularly extreme SPI value
using a short accumulation period with that of one using a
long accumulation period. It is most appropriate to compare
an index with itself, and, if one must make cross-index com-
parisons, there may be a need to use different thresholds, as
is done by the European Drought Observatory’s Combined
Drought Index.

Our final recommendation is for more research to explore
the findings shown here. For example, more research should
explore the degree to which climatological persistence and
seasonality affect temporal autocorrelation across a range of
climate regions and drought indices, expanding on the exam-
ple sites and SPI values tested in Sect. 3.2. The theoretical
case developed here should act as a baseline under an ideal-
ized moving-average time series. However, deviations from
this may be illustrative. While this result was meant as the
simplest case, using the block annual minima for an ideal-
ized time series, future research could explore more drought-
specific indices like duration.
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