
RestoreML: Practical Unsupervised Tuning of

Deployed Intelligent IoT Systems

Jinyang Li∗, Yizhuo Chen∗, Ruijie Wang, Tomoyoshi Kimura, Tianshi Wang, You Lyu, Hongjue Zhao,

Binqi Sun†, Shangchen Wu, Yigong Hu, Denizhan Kara, Beitong Tian, Klara Nahrstedt, Suhas Diggavi‡,

Jae H Kim§, Greg Kimberly§, Guijun Wang§, Maggie Wigness¶, Tarek Abdelzaher

Email: tarek@illinois.edu

University of Illinois Urbana-Champaign, USA
†Technical University of Munich, Germany
‡University of California, Los Angeles, USA

§Boeing Research & Technology, USA
¶DEVCOM Army Research Laboratory, USA

Abstract—As today’s edge AI systems age, the need for
incremental updates of intelligent sensor nodes (that fail or reach
the end of their useful lifetime) becomes a growing concern.
Replacement nodes may happen to use new versions of sensors,
may have different physical properties (e.g., inertia or stiffness),
or may run updated signal processing firmware, thereby changing
the characteristics of sensor waveforms (such as acoustic, seismic,
or acceleration measurements) made available to the downstream
AI model. New downloadable AI models might be less than a
perfect fit because they might be trained in an environment that
differs from the conditions of the old deployment. As a result
of such sensor and/or AI differences, new replacement nodes
may not perform optimally when deployed. They will need to be
fine-tuned after deployment. Recognizing this problem, this paper
introduces RestoreML, a novel algorithm designed to fine-tune
AI models in an unsupervised manner (i.e., without the need
for labeling or human intervention). The algorithm leverages
advances in test-time adaptation (TTA) to refine machine-learning
(ML) models with unlabeled data collected after deployment.
Innovations are introduced in the way deployment data are
sampled for model fine-tuning, and the way less reliable nodes
are automatically identified. RestoreML is implemented as a
middleware library and a broker that can be easily integrated
into existing applications. Evaluation results on a specially-
curated dataset, M3N-VC (that we make publicly available1),
demonstrate that RestoreML can significantly enhance model
performance after deployment, especially in node replacement
scenarios, outperforming state-of-the-art baselines.

Index Terms—Test-time Adaptation, Multi-Node IoT Sensing,
Vehicle Monitoring, Knowledge Distillation

I. INTRODUCTION

The paper addresses an often-overlooked problem in today’s

increasingly AI-driven IoT landscape – namely, the challenge

of reducing the logistic cost of AI that arises when it is time

to replace failed or malfunctioning intelligent nodes.

Replacement of traditional sensor or IoT nodes, such as

standard fire alarms, requires only functional compatibility of

the used sensors. In contrast, when sensors are connected to a

downstream edge AI component (possibly running elsewhere

∗ These authors contributed equally to this work.
1Out dataset M3N-VC is publicly available at: https://github.com/restoreml/

m3n-vc and https://doi.org/10.5281/zenodo.15215210

in the system, such as on an edge server), replacing or

upgrading the sensor may cause subtle incompatibilities with

the downstream AI. Even if a new AI model is downloaded

to match the new sensor, it may have subtle differences in

training that make it less compatible with the old deployment

environment. Such subtle incompatibilities, arising from the

replacement, may degrade intelligent system performance. To

restore good performance, model fine-tuning may be needed.

Ordinarily, fine-tuning requires labeled data and, thus, human

intervention. Instead, this paper explores an unsupervised

approach.

We cast this challenge as a special case of the domain shift

problem [1]. Domain shift broadly refers to a discrepancy

between the data distribution in the deployment environ-

ment (target domain) and that of the training dataset (source

domain). Domain adaptation commonly refers to adapting

the models to the shifted target domains [2]–[4]. When the

adaptation algorithm has no access to labeled data from the

target domain, the problem is often referred to as test-time

adaptation (TTA) [5]. Our intelligent IoT node replacement

problem constitutes a challenging category of TTA problems,

where (i) the target domain data are not accessible in the

training phase (e.g., because the original training has no

access to the characteristics of future replacement sensors), (ii)

the available target domain data are unlabeled (no manual

labeling in the field), and (iii) the source domain data are

not available upon deployment (we might not have access

to the training data of the original node’s vendor). Prior

TTA methods addressed this problem using techniques such

as minimizing prediction entropy [6], adapting normalization

layers [7], or performing data augmentation [8]. However, as

will be empirically demonstrated in Section V, these methods

exhibit limited performance in our IoT application scenario

because they do not exploit the multi-view nature of the IoT

system and often require well-calibrated uncertainty estima-

tion, which is hard to ensure for IoT models with limited

training data.

Instead, the novel contribution of RestoreML lies in exploit-

ing three common characteristics of IoT systems to improve

109

2025 21st International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT)

2325-2944/25/$31.00 ©2025 IEEE
DOI 10.1109/DCOSS-IoT65416.2025.00023

20
25

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 D

ist
rib

ut
ed

 C
om

pu
tin

g
in

 S
m

ar
t S

ys
te

m
s a

nd
 th

e
In

te
rn

et
 o

f T
hi

ng
s (

DC
OS

S-
Io

T)
 |

 9
79

-8
-3

31
5-

43
72

-3
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
OI

: 1
0.

11
09

/D
CO

SS
-IO

T6
54

16
.2

02
5.

00
02

3

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

over existing TTA solutions: (1) IoT systems are often multi-

node or multi-view, offering multiple observations of the same

event. (2) Since wholesale infrastructure replacements are

relatively rare, incremental updates are more common, which

ultimately increases the diversity of deployed node versions,

generations, and technologies, allowing for solutions that

leverage diversity to improve performance. (3) The monitored

events tend to persist spatially and temporally, allowing AI

predictions to be calculated over an appropriate window in

space and time.

Accordingly, our solution is novel in exploiting correlations

in distributed measurements, exploiting the diversity of nodes

used, and leveraging the persistence of stimuli over time

and space to design TTA mechanisms that do not require

well-calibrated uncertainty estimation. More specifically, we

design RestoreML as a collaborative knowledge distillation

technique [9] that operates by collecting and weighing predic-

tions made by individual node models within a given spatial-

temporal window and uses the resulting ensemble prediction

as a soft label to fine-tune the individual models that need

fine-tuning. The technique is novel in two respects. First,

RestoreML uses a new algorithm for deciding how deployment

data are sampled for model fine-tuning purposes that has a

crucial effect on performance by minimizing bias and reducing

the chances of catastrophic forgetting. Second, it is optimized

to quickly accommodate and “teach” new nodes, which re-

quires automated means for identifying misbehaving models

to avoid ensemble contamination with results from poorly

tuned sensors in the absence of well-calibrated uncertainty

estimation.

To empirically evaluate our method, allow reproducibility,

and facilitate future IoT research for the community, we

release our experimental data and algorithms. Our experi-

mental data are shared in the form of a large-scale novel

IoT vehicle monitoring dataset (18.26 hours, 31.25 GB),

which we call M3N-VC, (Multi-Modality Multi-Node Vehicle

Classification). M3N-VC consists of data collected in six

different environments. We use 6–8 nodes in each environment

to collect seismic and acoustic signals for multiple moving

vehicles. The dataset supports a variety of research topics,

including domain adaptation, multi-node pretraining, multi-

node tracking, and vehicle classification, among others.

Evaluation results demonstrate that, for the applications

and datasets considered in this study, our approach generally

improves model performance after deployment and achieves

superior performance compared to several existing state-of-

the-art test-time adaptation baselines. In summary, the contri-

butions of this paper are three-fold:

• We propose RestoreML, a novel collaborative knowledge

distillation-based TTA method customized for intelligent

IoT node replacement scenarios.

• We collect and release M3N-VC, a new large-scale

real-world multi-modality multi-node vehicle monitoring

dataset collected in diverse environments for our own

testing and to fuel future multi-node IoT sensing and

domain adaptation research.

• The evaluation reveals RestoreML’s superior adaptation

performance.

The rest of this paper is organized as follows. Section II

reviews related work. Section III presents some background,

followed by the design details of RestoreML in Section IV.

The evaluation is presented in Section V. The paper concludes

with Section VI.

II. RELATED WORK

Test-Time Adaptation (TTA) is a sub-topic of Domain Adap-

tation [2], [3], aiming at adapting a model pre-trained on the

source domain to the target domain. Unlike Continual Domain

Adaptation [10]–[13], TTA solely depends on unlabeled target

data without accessing the source data or target data labels.

Generative models such as CGAN [14] and VAE [15] were

adopted for enhancing the model adaptation capability [16],

[17] in test-time domain style. Wang et al. [6] proposed to

minimize the entropy of the predictions on target data and

only adjust the affine transformation parameters of the batch

normalization layer. Zhang et al. [8] extended this approach by

minimizing the entropy of augmentation-averaged predictions

during test time. Wulfmeier et al. [18] justified and unified

entropy minimization with other test-time losses by viewing

them as optimizing with respect to a pseudo-label, uniquely

defined for each source domain training loss. Recalculating

the parameters of the batch normalization layers to account for

covariance shift in the target domain was also introduced [7],

[19]. This idea was extended by taking batch normalization

parameters learned from the source domain as a prior for the

target domain batch normalization parameters [20]. Kingma

et al. [21] proposed to assign pseudo-labels for target domain

data and finetune the model with the pseudo-labels. However,

these methods primarily rely on single-node information and

overlook the multi-node nature of IoT applications. Moreover,

they are mainly designed for computer vision tasks with large-

scale datasets and assume models that offer well-calibrated

uncertainty estimates, which is difficult to guarantee in IoT

applications with limited training data. In contrast, our method

makes no assumptions on model calibration and leverages the

unique opportunities in multi-node IoT applications, making

it particularly well-suited for IoT deployments.

Collaborative Knowledge Distillation, or Mutual Learning,

aims at training multiple neural networks simultaneously and

transferring knowledge between them to boost performance.

Knowledge distillation was proposed to ensemble from multi-

ple models to enhance classification accuracy [22], [23]. Built

upon this, Zhu et al. [24] proposed to gather multiple models

into a single multi-branch neural network to facilitate feature

sharing and dynamically adjust the weight of the ensemble

using a gate neural network. Chen et al. [25] followed the

ensemble framework, with an additional leader model distilled

from the ensemble of all peers. Guo et al. [9] further system-

atically studied various ensemble policies specific to mutual

learning scenarios with the help of existing ground truth labels.

Li et al. [26] proposed to combine mutual distillation with

a temporal distillation from an ensemble of previous model

110

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

Broker

Ensemble Server
Local Prediction Transfer

3
3

3

1

3

1
1

1

2
2

2

3
1

Historic Predictions

21

31t2

t1

Window

Ensemble Prediction

Feedback

1

1 3

Local sample

Available / missing

prediction

Ensemble prediction

2

3

Inference

Training

Samples
Model

Update

1

4

6
Prediction

Aggregation

Ready Set

Waiting Set

Buffer

5 Batching

Online Training

Data Preparation

Legend

3
3

3

1
1

1

1
1

1

2
2

2

+

Fig. 1. An overview of collaborative knowledge distillation, where critical steps are marked with numbers and are described in detail in Section III.

snapshots to the current model as well as an entropy mini-

mization loss for semi-supervised learning tasks. Wu et al. [27]

proposed to adopt a meta-model-based ensemble policy in

mutual learning and combined it with temporal distillation.

Li et al. [28] proposed to introduce a proxy teacher distilled

from the original teacher that is also simultaneously distilled

mutually with the student model to enhance the performance

of the student model. However, these collaborative knowledge

distillation methods are proposed not for domain adaptation

purposes, but for enhancing the performance of traditional

supervised learning. In contrast, our method customizes col-

laborative knowledge distillation for TTA without annotations

for IoT node replacement scenarios.

Similar to our method, Zhang et al. [29] proposed an ensem-

ble method based on the Dempster–Shafer theory that is scaled

using a confidence score to generate soft labels for online

training. However, their work is designed for in-domain data

labeling and thus requires access to source domain training

data, which is not available in our case.

Also, we differ from federated learning [30]–[34] in that we

aim to train per-node local models in an unsupervised setting,

whereas federated learning aims to train a single global model

in a supervised setting.

III. BACKGROUND

To explain the workings of our algorithm, we first review

the general category of collaborative knowledge distillation

approaches and then introduce the specifics of our approach.

An overview of general collaborative distillation systems is

depicted in Figure 1.

Consider a system that consists of N nodes (N > 1), where

each node is an IoT device equipped with single or multiple

sensors continually monitoring the environment. To perform

intelligent sensing tasks, data from each node is processed by

one or more machine learning models, where the j-th model

running on data from the i-th node is denoted as θi,j . Let there

be at most M models per node.

Each node receives a stream of samples, where xi,t denotes

the sample collected at node i and time t. In time-series data, a

sample refers to data collected within a set time interval. Each

xi,t can be single- or multi-modal, depending on the sensors

used. Each model θi,j makes a inference instantly after the

xi,t is received, which can be written as

ŷi,j,t = f(xi,t; θi,j), (1)

where ŷi,j,t denotes the prediction, f(xi,tθi,j) denotes the

execution of model θi,j on xi,t.

After the inference, each node sends its predictions to a

logically centralized node, we henceforth call the broker. As

shown in 2 , the broker, upon receiving the individual node

predictions, provides a spatial-temporal ensemble prediction,

denoted as ȳi,t. Importantly, the ensemble prediction ȳi,t can

be different for each node when our system has different

ground truth labels for different nodes. For example, if mul-

tiple vehicles are running in a nearest-vehicle classification

system, each node may have its own different ground truth

(a different nearest vehicle) and, thus, different individual

predictions and ensemble predictions.

As described in 3 , the ensemble prediction ȳi,t is then sent

back to each node (that needs to be fine-tuned), serving as a

soft label to fine-tune its model. The ensemble prediction ȳi,t

is calculated as a weighted average of all predictions made

from: 1) all models j ∈ {1, . . . ,M}; 2) all nodes inside of a

neighboring spatial window of node i, denoted as Si; and 3)

all times inside of temporal window of time t, denoted as Tt,
which can be written as:

ȳi,t =
1

Zi,t

∑

j′∈{1,...,M}, i′∈Si, t′∈Tt

wi′,j′,t′ ŷi′,j′,t′ , (2)

where wi′,j′,t′ denotes the ensemble weight of the individual

prediction ŷi′,j′,t′ . Zi,t is a normalization factor calculated as

the sum of all participated wights:

Zi,t =
∑

j′∈{1,...,M}, i′∈Si, t′∈Tt

wi′,j′,t′ . (3)

Therefore, ȳi,t is guaranteed to fall into the probability sim-

plex.

111

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

As illustrated in 4 , each node then locally logs the ȳi,t

received from the broker and its associated sample xi,t. Each

node periodically runs an online model updating process to

update its ML models. In the updating process for model θi,j ,

according to 5 , node i first fetches a batch of (xi,t, ȳi,t) pairs

from its local storage, denoted as Ri,j . Then, as depicted in

6 , the node calculates a loss function on Ri,j , denoted as

Li,j , to update θi,j with stochastic gradient descent:

θ′i,j ← θi,j − η∇θLi,j , (4)

where η is the learning rate. θ′i,j is the updated model, which

should be more accurate in the target domain. θ′i,j would

then be used to calculate future predictions and ensembles,

which could reciprocally improve the accuracy of the ensemble

model, forming a positive feedback loop. Note that, ground

truth is not assumed to be known in deployment and is not

used by the algorithm.

IV. SYSTEM DESIGN

Building on the above generic description of collaborative

knowledge distillation (adapted in a straightforward manner to

the IoT domain), it remains to answer two central questions

that distinguish different approaches and constitute the core

of our contribution. First, since training performance depends

largely on the choice of data used for training, how to select

the batches, Ri,j , from the data logged in each round of online

updates? Poor selection can result in bias, catastrophic forget-

ting, and other learning inefficiencies. A well-suited answer

to the data selection question is a core differentiator of our

algorithm. Second, since training performance also depends

largely on the choice of nodes entrusted with contributions to

(soft) data labeling, how to automatically distinguish adequate

models from misbehaving ones, in the absence of supervision

and in the absence of model confidence information? Failure

to do so will result in poor training performance and, thus,

prediction quality degradation. These questions are addressed

in the following subsections, respectively.

A. Least-trained-balanced Sampling Policy

This subsection answers the following key question: which

data should be included in a given batch, Ri,j , for a more

effective AI model update?

One seemingly obvious approach might be to use the most

recently collected data since that data would constitute the

new observations not previously trained with. The problem

with this approach is that it does not ensure that the samples

used in the batch are independent. The most recent samples are

likely collected around the same time and are thus typically

correlated. For example, they might feature the same targets

or similar environmental conditions. Learning, in contrast,

requires that samples included with a batch be independent

and identically distributed (iid), drawn from a distribution that

sufficiently represents all conditions and targets of interest.

Failure to do so can result in problems such as a bias for

specific classes or catastrophic forgetting, where updates that

optimize the neural network for new conditions damage or

erase the knowledge of other previously learned conditions.

The most straightforward training data selection policy that

ensures an iid training data distribution in a batch is random

sampling. The policy randomly chooses a batch of samples

from all locally stored ones. Unfortunately, random sampling

results in unsatisfactory performance as well. Its inadequacy

is attributed to two different reasons. First, the data received

in real-life scenarios can be highly unbalanced (for example,

most vehicles might be of a particular class). The random

sampling policy will repetitively update the individual models

on the unbalanced data, which may cause the individual

models to get gradually biased toward the popular classes

while impairing recognition of other classes. Second, using a

random sampling policy, samples received earlier are chosen

more often than those received later, potentially making the

models overfit on earlier samples and consequently unable to

classify the rest of the data robustly.

To solve these problems, we introduce the least-trained-

balanced sampling strategy to enhance the training stability

and the utility of the logged data. Specifically, we propose to

assign each (xi,t, ȳi,t) pair to the class whose probability in

ȳi,t is the largest, and maintain a counter of how many times

each (xi,t, ȳi,t) pair is trained in previous online updating

rounds. When we need to assemble a batch of data, we choose

an equal number of samples for each class and make sure

that, within each class, the chosen samples are least trained in

previous rounds. As we show in the evaluation section, under

the least-trained-balanced sampling strategy, our individual

models are updated with samples chosen from all classes

and at all times equally, resulting in model performance

improvements.

In practice, when sensor hardware, signal processing chains,

or AI models undergo significant updates, our current scheme

resets the model’s data reservoir. This reset triggers a fresh

adaptation cycle, allowing the system to adapt specifically to

the characteristics introduced by the updated configuration.

Future work could further refine this strategy by dynamically

adjusting the temporal distribution of samples post-reset, pri-

oritizing recent or significantly changed operational conditions

to accelerate model adaptation.

B. Automatic Ensemble Weights Determination

Another important choice in our system design is to de-

termine the ensemble weights wi′,j′,t′ for all nodes, such

that predictions of less confident models are weighted lower.

Unfortunately, as mentioned earlier, accurate estimation of

model confidence requires good model calibration, which is

often hard to achieve. Thus, a key design decision of our

algorithm (and one of its key advantages) is not to require

confidence estimation. Instead, weights are assigned in the

absence of confidence information. A straightforward policy

to do so is to assign equal weights for all participating

models, which has been shown to deliver satisfactory empirical

performance and desirable theoretical properties in some ML

literature [35], [36]. However, this all-equal weighting policy

112

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

has limitations in our scenario, where some individual models

may suffer from drastic performance degradation in the target

domain – for example, when some models receive data from an

updated/replaced sensor that differs from the ones used in their

original training. These unreliable models should be automat-

ically identified, and their contributions should be eliminated

from the ensemble calculations for better training accuracy.

Ideally, since we do not know if a sensor (or other component)

replacement has caused problems with downstream AI, and

since we would like to accommodate other reasons for AI

quality deterioration, a general solution is sought that does

not require rule-based feature engineering.

Thus, we propose an adaptive weighting method, where we

quantitatively measure the reliability (or, rather, lack thereof)

of each model θi,j by calculating the level of disagreement

between θi,j and the ensemble, denoted as ai,j,t, and then

eliminate some of the most unreliable models from the ensem-

ble. The disagreement, ai,j,t, can be calculated as the averaged

Kullback-Leibler divergence between ensemble predictions

and predictions of θi,j , which can be written as:

ai,j,t =
1

t− 1

t−1
∑

t′=1

DKL(ȳi,t′ ||ŷi,j,t′)

=
1

t− 1
DKL(ȳi,t−1||ŷi,j,t−1) +

t− 2

t− 1
ai,j,t−1

(5)

where DKL(·||·) is the Kullback–Leibler divergence.

A higher level of disagreement suggests misbehavior, as

what might be expected, for example, when part replacements

are introduced, causing mismatches between sensing hardware

and downstream AI models. Thus, we only retain the top K

models with the lowest ai,j,t in our ensemble and assign equal

weights to them, which can be written as:

wi,j,t =

{

1, if ai,j,t ∈ minK
(

{ai,j,t}
N,M
i=1,j=1

)

,

0, otherwise.
(6)

where minK(·) denotes the set of K minimal values in a

given set, {ai,j,t}
N,M
i=1,j=1

denotes all ai,j,t at time t. Our

proposed method can be seen as a generalization to the

all-equal weighting policy and can be reduced to all-equal

weighting when K = |{ai,j,t}
N,M
i=1,j=1

|.

C. Implementation Notes

We fully implemented the proposed test-time adaptation

system with all the above components based on a pub/sub-

based middleware [37]. In particular, for the vehicle classi-

fication task, we design each node as a Raspberry Pi 4B+,

equipped with a geophone for seismic sensing, a microphone

for acoustic data collection, and a GPS module for node

localization and time synchronization. A portable battery bank

powers each node.

In the target application scenario, each node runs its own

classifier models, independently making inference based on

data from its local sensors. Importantly, nodes may produce

predictions asynchronously and at varying time intervals. As

illustrated in Figure 1, the nodes communicate only predicted

TABLE I
Deployment environment characteristics.

Vehicle abbreviations: C (CX-30), G (GLE-350), M (Mustang), X (MX-5)

ID Terrain Weather Targets # Nodes Length

H08 Asphalt & gravel Sunny C, G, M, X 6 2.77 h
H24 Asphalt & gravel Rainy C, G, M, X 6 3.43 h
S31 Dirt & gravel Sunny C, G, M, X 6 2.78 h
A06 Asphalt Sunny C, G, X 6 2.14 h
I29 Concrete Windy C, G, M, X 8 4.14 h
I22 Concrete Sunny C, M, X 8 3.00 h

labels (minimal-sized messages) to a central broker, signif-

icantly reducing communication overhead. The broker then

computes an ensemble decision based on available predic-

tions collected within a specified spatiotemporal window. To

further enhance robustness, the broker employs a threshold-

based approach for the spatiotemporal ensemble window: an

ensemble prediction is computed and disseminated back to the

participating nodes only if a sufficient number of predictions

have been received within that window. This design inherently

accounts for communication constraints, varying prediction

rates, and potential message losses, making the system resilient

to intermittent connectivity commonly encountered in IoT

deployments.

The implementation comprises approximately 9,000 lines

of Python code for the high-level logic, data processing, and

neural network components. Additionally, we wrote around

1,300 lines of Rust code for performance-critical sections,

particularly those involving low-level system interactions and

sensor processes.

V. EVALUATION

To evaluate performance, we tested RestoreML in three

controlled experimental conditions. Two involve a multi-node

vehicle classification system based on acoustic and seismic

sensing. The system recognizes the makes and models of

vehicles based on their acoustic and seismic signatures. Each

sensor node consists of a battery-powered Raspberry Pi 4 with

a microphone and a geophone. Four different vehicle models

were driven by the authors and the classification results were

recorded. The third condition involves an acoustic event de-

tection task that inputs the audio of human activities captured

by eight microphones in an office setting. Twelve activities

were performed (e.g., “eat”, “meet”, “enter”, “sit”, etc.) that

are not mutually exclusive. The output is one or more labels,

depending on the current activities performed. In all cases, the

RestoreML broker runs on an edge server, while classifiers

run on local sensing nodes. The server aggregates individual

node classification results into ensemble predictions, which are

returned to the nodes for pairing with sensor data during TTA.

The overall data flow is consistent with Figure 1. Below, we

describe these experiments and their results.

A. Vehicular Experiments

Table I shows the environments in which the vehicle

classification experiments were performed. To illustrate the

independence of our TTA approach from the specific neural

113

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

TABLE II
Performance comparison of applying different TTA methods on target domains S31 and H08. DS-S, DS-A, and Ens. denote the performance of DS-S,
DS-A, and the ensemble models. Worst is the worst performance of the node (the largest domain shift). Avg. is the average performance of the models.

Number of parameters: DS-S (0.33M), DS-A (0.33M).

S31 H08

Method DS-S DS-A Ens. DS-S DS-A Ens.

Worst Avg. Worst Avg. Worst Avg. Worst Avg.

NoAdapt 9.9 10.2 83.8 84.8 89.7 43.6 49.1 77.1 81.6 90.5
Oracle 41.7 44.8 91.9 92.6 95.6 55.1 61.1 78.4 84.8 94.7

RestoreML 41.2 45.4 89.9 91.0 94.4 55.1 59.2 78.0 84.1 91.8
RestoreML-Last+BN 18.9 24.4 85.7 86.9 91.0 46.5 55.1 77.8 82.6 91.1
RestoreML-Last 12.1 19.5 85.4 86.1 90.5 44.8 52.4 77.5 82.4 90.9
RestoreML-BN 16.5 23.0 85.5 86.4 90.8 46.0 55.0 77.6 82.5 91.0

Adaptive-BN 9.9 10.4 84.1 85.0 89.9 42.8 48.4 77.2 81.7 90.6
TENT 9.9 11.5 83.3 84.8 90.8 34.6 41.2 70.3 76.9 90.0
TENT-BN 10.6 12.0 85.1 85.6 90.6 41.9 47.1 76.8 81.8 90.2
Pseudo-label 10.2 11.9 83.1 84.6 90.6 36.1 41.3 73.3 78.3 89.3
MEMO 9.7 9.8 83.0 83.8 88.8 10.9 21.0 70.1 76.0 87.6
CoTTA 9.8 10.1 41.8 44.2 42.7 24.7 30.7 53.1 61.7 64.3

TABLE III
Performance comparison of applying different TTA methods on target domain I22, I29, and A06. VibroFM and Ensemble denote the performance of

VibroFM, and the ensemble models. Worst denotes the worst performance among the models, typically acquired from the node with the worst domain shift.
Avg. denotes the average performance of the models. Number of parameters: VibroFM (11.78M).

I22 I29 A06

Method VibroFM Ensemble VibroFM Ensemble VibroFM Ensemble

Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg.

NoAdapt 61.3 72.6 69.0 79.3 40.6 72.8 65.4 84.0 67.2 71.3 80.8 85.0
Oracle 69.4 83.6 78.1 89.7 40.6 79.6 68.5 89.1 74.2 82.4 86.6 91.3

RestoreML 64.9 79.3 67.5 83.8 40.6 77.0 64.8 84.9 70.6 80.2 76.9 87.4
TENT 26.9 55.4 42.5 57.5 22.4 67.1 50.5 74.2 67.9 76.9 79.0 86.7
Pseudo-label 45.6 67.3 63.0 72.5 40.6 72.2 62.6 78.0 67.6 75.9 78.5 86.0

network architecture, the sensing modalities, and the initial

neural network model training approach used, we adopt three

different neural network models for vehicle classification (to

be adapted with TTA): (1) DS-A: a DeepSense [38] model

initially trained on labeled acoustic signals; (2) DS-S: a

DeepSense model initially trained on labeled seismic signals;

and (3) VibroFM [39]: a large Transformer [40] based IoT

foundation model that is first pre-trained on a large-scale

unlabeled dataset using self-supervised learning and then fine-

tuned on a labeled dataset, using both acoustic and seismic

signals. All three models take 2-second data windows as input

and output a single (nearest) target class per window.

To experiment with domain shift in IoT deployment, we

train the neural network model using data from one environ-

ment and then explore the success of our test-time adaptation

algorithm in adapting the model to another environment.

We compare our method with seven TTA baselines, namely:

(1) No adaptation: a trivial baseline where no domain adapta-

tion is performed; (2) Adaptive-BN [20]: dynamically adjust-

ing batch normalization layer parameters on target domain; (3)

TENT-all [6]: minimizing the entropy of prediction, tuning all

layers; (4) TENT-BN [6]: minimizing entropy of prediction,

tuning only batch normalization layers; (5) Pseudo-label [21]:

fine-tine the model with the class with highest probability;

(6) MEMO [8]: minimizing entropy with data augmentation;

and (7) CoTTA [13]: fine-tune with a moving-averaged teacher

with dynamic parameter reset.

Apart from the baselines, we also include three ablations of

RestoreML in the comparison to evaluate our method when

only part of the model can be trained due to computational

power constraints. They are (1) RestoreML-Last: where only

the last layer of the models is fine-tuned using TTA; (2)

RestoreML-BN: where only the batch normalization layer of

the models is fine-tuned using TTA; and (3) RestoreML-

Last+BN: where only the last layer and batch normalization

layers of the models are fine-tuned using TTA. We also

include an Oracle method to show an upper bound of

TTA performance, where ground-truth labels for the target

domain data are used to fine-tune the models. Since we focus

on measuring the performance of the classification task, we

choose the commonly used Macro-F1 score throughout this

paper.

1) Adapting Supervised Models Outdoors: In the first ex-

periment, we use our algorithm to adapt two classifiers trained

in a supervised manner, namely, an acoustic classifier DS-A

and a seismic classifier DS-S. In this experiment, we train DS-

S (0.33M parameters) and DS-A (0.33M parameters) models

on the H24 environment in a supervised way, which serves as

114

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

the source domain (please refer to Table I for a description

of H24). Then, we test these trained models in the H08

and S31 environments. The former differs from the source

domain in weather conditions, whereas the latter differs in

terrain type (see Table I for details). Sensors in the target

environments were deployed close together. Vehicles of four

classes were driven past these sensors one at a time. We set the

spatial ensemble window to include all nodes and the temporal

ensemble window to two seconds. The results are shown in

Table II. The DS-S model achieves relatively lower classifica-

tion performance compared to DS-A, including under Oracle

conditions. This lower performance is primarily due to the

limited discriminative power of seismic signals alone in this

deployment. However, despite the lower standalone accuracy,

incorporating DS-S sensors into the classification system re-

mains beneficial. Specifically, seismic sensors are significantly

less affected by environmental disturbances such as wind

noise and background acoustic interference, thus providing

complementary information that can enhance overall system

robustness. Additionally, the notable performance discrepancy

observed between stations S31 and H08 is attributable to

differences in local environmental conditions and background

noise levels affecting each sensor site differently. In both cases,

however, the overall results reveal that RestoreML consistently

achieves the best performance on all metrics in both target

domains among all TTA techniques. RestoreML’s performance

surpasses baselines by a large margin and closely approaches

the Oracle method. Besides, RestoreML with only the last

layer or batch normalization layers fine-tuned also exhibit

superior performance compared to baselines, showing Re-

storeML’s strong capability on resource-constrained platforms.

2) Adapting Self-Supervised Models Outdoors: Next, we

explore TTA in the context of a self-supervised model. In

this experiment, we pre-train and fine-tune a self-supervised

AI model, VibroFM (11.78M parameters), using data from all

three environments mentioned above, H08, H24, and S31, and

then test it in three new target environments: (1) I22, (2) I29,

(3) A06 (see Table I for descriptions). Three notable aspects

make this experiment more challenging than the previous

one: (1) The I22, I29, and A06 sensor deployments are more

spread out (i.e., the sensors are further apart). Thus, different

sensor nodes do not observe the same target(s) simultane-

ously, which increases the challenge of producing accurate

ensemble predictions. (2) We allowed up to two vehicles to

move simultaneously, such that ground truth labels could be

different for different nodes. (3) I22 and I29 feature new nodes

joining the system after deployment (i.e., hardware not used in

collecting training data). They represent newly restored nodes

with a different device but are still running the old model,

which may increase the difficulty of TTA. Due to the larger

scale of the target deployments in this experiment, we choose

a temporal ensemble window of 10 seconds and a separate

spatial ensemble window for each node that includes its direct

neighbors only. We exclude the baselines Adaptive-BN and

TENT-BN that rely on batch normalization layers, since those

layers are not present in the VibroFM model used in this

TABLE IV
Classification F1 (%) on MM Office. Number of parameters: BEATs

(90.35M), DS (0.33M)

Method
BEATs DS

WN Avg. WN Avg.

NoAdapt 67.4 72.9 74.9 81.2
Oracle 78.2 78.7 99.1 99.4

RestoreML 74.4 75.3 87.8 88.2

TENT 36.1 35.6 47.5 52.0
Pseudo-label 36.8 43.0 47.5 48.3

experiment, rendering those baselines inapplicable. We also

exclude MEMO and CoTTA due to their poor performance

relative to other baseline, as seen in Table II. Hence, they

warrant no further consideration.

Table III presents the results of this experiment. As ob-

served, RestoreML achieved the highest F1 on most metrics

compared to baselines, showcasing its versatility on large pre-

trained foundation models.

B. Adapting Indoors

To demonstrate the versatility of RestoreML, we addition-

ally evaluate it in an acoustic event detection task in an office

environment [41]. Two AI models are used for this task.

(1) BEATs [42] (90.35M parameters), a state-of-the-art self-

supervised learning framework for audio representation pre-

training. We use the BEATs model pre-trained2 on AudioSet-

2M as the backbone, and fine-tune for linear classification.

(2) DeepSense [38] (0.33M parameters), a CNN-RNN-based

network. We trained an end-to-end classifier using DeepSense.

Four nodes are used at test time, each assigned to process data

from one of the microphones in the right room. The models

on these nodes share identical initial weights, fine-tuned using

data from the left room. All nodes perform inference and

adaptation collaboratively using RestoreML.

The classification F1 scores of RestoreML and baselines

(TENT and Pseudo-label) are shown in Table IV. Note that

DeepSense is an end-to-end trained, much smaller network

than the pre-trained BEATs model and allows fine-tuning of

the entire network. This ability to fine-tune the full model

enables DeepSense to perform better adaptation. RestoreML

outperforms the baselines across tasks, highlighting its versa-

tility and effectiveness in various settings and with different

neural networks.

To illustrate model performance improvements during TTA,

Figure 2 illustrates how RestoreML adapts models of different

initial quality. In this run, initially, three out of four nodes (n0,

n1, and n2) start out relatively well-tuned to the deployment

environment, while one node, n3, experiences degradation. As

shown in the curve, n3’s classification F1 score improves by

approximately 10% over time, eventually catching up with the

other nodes without negatively impacting their performance.

Evaluation results presented above confirm that our pro-

posed TTA solution offers a practical means for fine-tuning

2https://github.com/microsoft/unilm/tree/master/beats

115

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000 1200
Timestamp

80

85

90

F 1
 (%

)
n0 (90.4%) n1 (88.1%) n2 (86.4%) n3 (78.8%)

Fig. 2. Illustration of model adaptation over time. A newly introduced, less-
adapted node (n3) improves over time by learning from well-adapted, older
nodes. The node legend is ordered based on initial performance.

IoT nodes in the field in an unsupervised manner, especially

in situations calling for fine-tuning of replacement nodes (i.e.,

where only a minority of nodes need to be adapted at any

given time). Initial evidence suggests that the solution can

work with different AI models and results in performance

improvement across multiple applications and modalities. Our

released dataset will hopefully facilitate further research on

the topic.

VI. CONCLUSION

This paper introduced RestoreML, a test-time adaptation

technique that facilitates model fine-tuning post-deployment

without requiring labeled data. We proposed a least-trained-

balanced sampling policy and a dynamic weights determi-

nation algorithm to overcome TTA challenges presented by

IoT monitoring systems, while exploiting IoT deployment

characteristics. Our comparison with the baselines and ablation

studies validate the superior performance of RestoreML. While

this paper offers a proof of concept for the success of TTA

in IoT settings, further exploration would be beneficial to

fully uncover the potential of RestoreML and improve its

behavior. A more systematic exploration is needed of the

effects of deployment properties (e.g., area covered by sensor

network), background noise characteristics, number of concur-

rent items or activities to classify, AI model and model size

used, size of training data, and the duration of TTA. Since

TTA requires local storage, effective policies are also needed

for data replacement/eviction when local storage limits are

reached. These topics constitute rich opportunities for follow-

up research and are delegated to future work.

ACKNOWLEDGEMENTS

Research reported in this paper was sponsored in part by

DEVCOM ARL under Cooperative Agreement W911NF-17-

2-0196 (ARL IoBT CRA), and in part by NSF CNS 20-38817,

and the Boeing Company. It was also supported in part by

ACE, one of the seven centers in JUMP 2.0, a Semiconductor

Research Corporation (SRC) program sponsored by DARPA.

The views and conclusions contained in this document are

those of the authors, not the Army Research Laboratory or

the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation herein.

REFERENCES

[1] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual cate-
gory models to new domains,” in Computer Vision–ECCV 2010: 11th

European Conference on Computer Vision, Heraklion, Crete, Greece,

September 5-11, 2010, Proceedings, Part IV 11. Springer, 2010, pp.
213–226.

[2] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE signal processing

magazine, vol. 32, no. 3, pp. 53–69, 2015.
[3] X. Liu, C. Yoo, F. Xing, H. Oh, G. El Fakhri, J.-W. Kang, J. Woo et al.,

“Deep unsupervised domain adaptation: A review of recent advances
and perspectives,” APSIPA Transactions on Signal and Information

Processing, vol. 11, no. 1, 2022.
[4] C. Fang, S. Liu, Z. Zhou, B. Guo, J. Tang, K. Ma, and Z. Yu,

“Adashadow: Responsive test-time model adaptation in non-stationary
mobile environments,” in Proceedings of the 22nd ACM Conference on

Embedded Networked Sensor Systems, 2024, pp. 295–308.
[5] J. Liang, R. He, and T. Tan, “A comprehensive survey on test-time

adaptation under distribution shifts,” International Journal of Computer

Vision, pp. 1–34, 2024.
[6] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent:

Fully test-time adaptation by entropy minimization,” arXiv preprint

arXiv:2006.10726, 2020.
[7] Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and

J. Snoek, “Evaluating prediction-time batch normalization for robustness
under covariate shift,” arXiv preprint arXiv:2006.10963, 2020.

[8] M. Zhang, S. Levine, and C. Finn, “Memo: Test time robustness
via adaptation and augmentation,” Advances in Neural Information

Processing Systems, vol. 35, pp. 38 629–38 642, 2022.
[9] Q. Guo, X. Wang, Y. Wu, Z. Yu, D. Liang, X. Hu, and P. Luo, “Online

knowledge distillation via collaborative learning,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11 020–11 029.

[10] D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, “Online deep learning: Learn-
ing deep neural networks on the fly,” arXiv preprint arXiv:1711.03705,
2017.

[11] A. Bobu, E. Tzeng, J. Hoffman, and T. Darrell, “Adapting to continu-
ously shifting domains,” 2018.

[12] M. Wulfmeier, A. Bewley, and I. Posner, “Incremental adversarial
domain adaptation for continually changing environments,” in 2018

IEEE International conference on robotics and automation (ICRA).
IEEE, 2018, pp. 4489–4495.

[13] Q. Wang, O. Fink, L. Van Gool, and D. Dai, “Continual test-time domain
adaptation,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2022, pp. 7201–7211.
[14] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”

arXiv preprint arXiv:1411.1784, 2014.
[15] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.
[16] R. Li, Q. Jiao, W. Cao, H.-S. Wong, and S. Wu, “Model adaptation:

Unsupervised domain adaptation without source data,” in Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 9641–9650.

[17] H.-W. Yeh, B. Yang, P. C. Yuen, and T. Harada, “Sofa: Source-data-free
feature alignment for unsupervised domain adaptation,” in Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, pp. 474–483.

[18] S. Goyal, M. Sun, A. Raghunathan, and J. Z. Kolter, “Test time
adaptation via conjugate pseudo-labels,” Advances in Neural Information

Processing Systems, vol. 35, pp. 6204–6218, 2022.
[19] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normaliza-

tion for practical domain adaptation,” arXiv preprint arXiv:1603.04779,
2016.

[20] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and
M. Bethge, “Improving robustness against common corruptions by
covariate shift adaptation,” Advances in neural information processing

systems, vol. 33, pp. 11 539–11 551, 2020.
[21] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised

learning method for deep neural networks,” in Workshop on challenges

in representation learning, ICML, vol. 3, no. 2. Atlanta, 2013, p. 896.

116

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

[22] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual
learning,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2018, pp. 4320–4328.
[23] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E.

Hinton, “Large scale distributed neural network training through online
distillation,” arXiv preprint arXiv:1804.03235, 2018.

[24] X. Zhu, S. Gong et al., “Knowledge distillation by on-the-fly native
ensemble,” Advances in neural information processing systems, vol. 31,
2018.

[25] D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen, “Online knowledge
distillation with diverse peers,” in Proceedings of the AAAI conference

on artificial intelligence, vol. 34, no. 04, 2020, pp. 3430–3437.
[26] J. Li, S. Wu, C. Liu, Z. Yu, and H.-S. Wong, “Semi-supervised deep

coupled ensemble learning with classification landmark exploration,”
IEEE Transactions on Image Processing, vol. 29, pp. 538–550, 2019.

[27] G. Wu and S. Gong, “Peer collaborative learning for online knowledge
distillation,” in Proceedings of the AAAI Conference on artificial intel-

ligence, vol. 35, no. 12, 2021, pp. 10 302–10 310.
[28] L. Li and Z. Jin, “Shadow knowledge distillation: Bridging offline and

online knowledge transfer,” Advances in Neural Information Processing

Systems, vol. 35, pp. 635–649, 2022.
[29] L. Zhang, D. Zheng, M. Yuan, F. Han, Z. Wu, M. Liu, and X.-Y.

Li, “Multisense: Cross-labelling and learning human activities using
multimodal sensing data,” ACM Transactions on Sensor Networks,
vol. 19, no. 3, pp. 1–26, 2023.

[30] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[31] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, p. 106775,
2021.

[32] C. Wang, G. Yang, G. Papanastasiou, H. Zhang, J. J. Rodrigues,
and V. H. C. De Albuquerque, “Industrial cyber-physical systems-
based cloud iot edge for federated heterogeneous distillation,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5511–5521,
2020.

[33] P. Qi, X. Zhou, Y. Ding, Z. Zhang, S. Zheng, and Z. Li, “Fedbkd:
Heterogenous federated learning via bidirectional knowledge distillation
for modulation classification in iot-edge system,” IEEE Journal of

Selected Topics in Signal Processing, vol. 17, no. 1, pp. 189–204, 2022.

[34] K. Ozkara, N. Singh, D. Data, and S. Diggavi, “QuPeD:
Quantized Personalization via Distillation with Applications to
Federated Learning,” in Advances in Neural Information Processing

Systems, vol. 34. Curran Associates, Inc., 2021, pp. 3622–
3634. [Online]. Available: https://proceedings.neurips.cc/paper/2021/
hash/1dba3025b159cd9354da65e2d0436a31-Abstract.html

[35] A. Mohammed and R. Kora, “A comprehensive review on ensemble
deep learning: Opportunities and challenges,” Journal of King Saud

University-Computer and Information Sciences, vol. 35, no. 2, pp. 757–
774, 2023.

[36] M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan,
“Ensemble deep learning: A review,” Engineering Applications of Arti-

ficial Intelligence, vol. 115, p. 105151, 2022.
[37] J. Li, Y. Chen, T. Kimura, T. Wang, R. Wang, D. Kara, Y. Hu, L. Wu,

W. A. Hanafy, A. Souza, P. Shenoy, M. Wigness, J. Bhattacharyya,
J. Kim, G. Wang, G. Kimberly, J. Eckhardt, D. Osipychev, and T. Ab-
delzaher, “Acies-OS: A content-centric platform for edge AI twinning
and orchestration,” in 2024 33rd International Conference on Computer

Communications and Networks (ICCCN). Big Island, HI, 2024, pp.
1–1.

[38] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A
unified deep learning framework for time-series mobile sensing data
processing,” in Proceedings of the 26th international conference on

world wide web, 2017, pp. 351–360.
[39] T. Kimura, J. Li, T. Wang, D. Kara, Y. Chen, Y. Hu, R. Wang,

M. Wigness, S. Liu, M. Srivastava et al., “On the efficiency and
robustness of vibration-based foundation models for iot sensing: A case
study,” arXiv preprint arXiv:2404.02461, 2024.

[40] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on

computer vision, 2021, pp. 10 012–10 022.
[41] M. Yasuda, Y. Ohishi, S. Saito, and N. Harado, “Multi-View And

Multi-Modal Event Detection Utilizing Transformer-Based Multi-Sensor
Fusion,” in ICASSP 2022 - 2022 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), May 2022, pp.
4638–4642.

[42] S. Chen, Y. Wu, C. Wang, S. Liu, D. Tompkins, Z. Chen, W. Che,
X. Yu, and F. Wei, “BEATs: Audio Pre-Training with Acoustic
Tokenizers,” in Proceedings of the 40th International Conference

on Machine Learning. PMLR, Jul. 2023, pp. 5178–5193. [Online].
Available: https://proceedings.mlr.press/v202/chen23ag.html

117

Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.

