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Abstract—As today’s edge Al systems age, the need for
incremental updates of intelligent sensor nodes (that fail or reach
the end of their useful lifetime) becomes a growing concern.
Replacement nodes may happen to use new versions of sensors,
may have different physical properties (e.g., inertia or stiffness),
or may run updated signal processing firmware, thereby changing
the characteristics of sensor waveforms (such as acoustic, seismic,
or acceleration measurements) made available to the downstream
Al model. New downloadable AI models might be less than a
perfect fit because they might be trained in an environment that
differs from the conditions of the old deployment. As a result
of such sensor and/or Al differences, new replacement nodes
may not perform optimally when deployed. They will need to be
fine-tuned after deployment. Recognizing this problem, this paper
introduces RestoreML, a novel algorithm designed to fine-tune
Al models in an unsupervised manner (i.e., without the need
for labeling or human intervention). The algorithm leverages
advances in test-time adaptation (TTA) to refine machine-learning
(ML) models with unlabeled data collected after deployment.
Innovations are introduced in the way deployment data are
sampled for model fine-tuning, and the way less reliable nodes
are automatically identified. RestoreML is implemented as a
middleware library and a broker that can be easily integrated
into existing applications. Evaluation results on a specially-
curated dataset, M3N-VC (that we make publicly available'),
demonstrate that RestoreML can significantly enhance model
performance after deployment, especially in node replacement
scenarios, outperforming state-of-the-art baselines.

Index Terms—Test-time Adaptation, Multi-Node IoT Sensing,
Vehicle Monitoring, Knowledge Distillation

I. INTRODUCTION

The paper addresses an often-overlooked problem in today’s
increasingly Al-driven IoT landscape — namely, the challenge
of reducing the logistic cost of Al that arises when it is time
to replace failed or malfunctioning intelligent nodes.

Replacement of traditional sensor or IoT nodes, such as
standard fire alarms, requires only functional compatibility of
the used sensors. In contrast, when sensors are connected to a
downstream edge Al component (possibly running elsewhere

* These authors contributed equally to this work.
!Out dataset M3N-VC is publicly available at: https:/github.com/restoreml/
m3n-vc and https://doi.org/10.5281/zenodo.15215210

in the system, such as on an edge server), replacing or
upgrading the sensor may cause subtle incompatibilities with
the downstream Al Even if a new Al model is downloaded
to match the new sensor, it may have subtle differences in
training that make it less compatible with the old deployment
environment. Such subtle incompatibilities, arising from the
replacement, may degrade intelligent system performance. To
restore good performance, model fine-tuning may be needed.
Ordinarily, fine-tuning requires labeled data and, thus, human
intervention. Instead, this paper explores an unsupervised
approach.

We cast this challenge as a special case of the domain shift
problem [1]. Domain shift broadly refers to a discrepancy
between the data distribution in the deployment environ-
ment (target domain) and that of the training dataset (source
domain). Domain adaptation commonly refers to adapting
the models to the shifted target domains [2]-[4]. When the
adaptation algorithm has no access to labeled data from the
target domain, the problem is often referred to as test-time
adaptation (TTA) [5]. Our intelligent IoT node replacement
problem constitutes a challenging category of TTA problems,
where (i) the rarget domain data are not accessible in the
training phase (e.g., because the original training has no
access to the characteristics of future replacement sensors), (ii)
the available target domain data are unlabeled (no manual
labeling in the field), and (iii) the source domain data are
not available upon deployment (we might not have access
to the training data of the original node’s vendor). Prior
TTA methods addressed this problem using techniques such
as minimizing prediction entropy [6], adapting normalization
layers [7], or performing data augmentation [8]. However, as
will be empirically demonstrated in Section V, these methods
exhibit limited performance in our IoT application scenario
because they do not exploit the multi-view nature of the IoT
system and often require well-calibrated uncertainty estima-
tion, which is hard to ensure for IoT models with limited
training data.

Instead, the novel contribution of RestoreML lies in exploit-
ing three common characteristics of IoT systems to improve
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over existing TTA solutions: (1) IoT systems are often multi-
node or multi-view, offering multiple observations of the same
event. (2) Since wholesale infrastructure replacements are
relatively rare, incremental updates are more common, which
ultimately increases the diversity of deployed node versions,
generations, and technologies, allowing for solutions that
leverage diversity to improve performance. (3) The monitored
events tend to persist spatially and temporally, allowing Al
predictions to be calculated over an appropriate window in
space and time.

Accordingly, our solution is novel in exploiting correlations
in distributed measurements, exploiting the diversity of nodes
used, and leveraging the persistence of stimuli over time
and space to design TTA mechanisms that do not require
well-calibrated uncertainty estimation. More specifically, we
design RestoreML as a collaborative knowledge distillation
technique [9] that operates by collecting and weighing predic-
tions made by individual node models within a given spatial-
temporal window and uses the resulting ensemble prediction
as a soft label to fine-tune the individual models that need
fine-tuning. The technique is novel in two respects. First,
RestoreML uses a new algorithm for deciding how deployment
data are sampled for model fine-tuning purposes that has a
crucial effect on performance by minimizing bias and reducing
the chances of catastrophic forgetting. Second, it is optimized
to quickly accommodate and “teach” new nodes, which re-
quires automated means for identifying misbehaving models
to avoid ensemble contamination with results from poorly
tuned sensors in the absence of well-calibrated uncertainty
estimation.

To empirically evaluate our method, allow reproducibility,
and facilitate future IoT research for the community, we
release our experimental data and algorithms. Our experi-
mental data are shared in the form of a large-scale novel
IoT vehicle monitoring dataset (18.26 hours, 31.25 GB),
which we call M3N-VC, (Multi-Modality Multi-Node Vehicle
Classification). M3N-VC consists of data collected in six
different environments. We use 6—8 nodes in each environment
to collect seismic and acoustic signals for multiple moving
vehicles. The dataset supports a variety of research topics,
including domain adaptation, multi-node pretraining, multi-
node tracking, and vehicle classification, among others.

Evaluation results demonstrate that, for the applications
and datasets considered in this study, our approach generally
improves model performance after deployment and achieves
superior performance compared to several existing state-of-
the-art test-time adaptation baselines. In summary, the contri-
butions of this paper are three-fold:

« We propose RestoreML, a novel collaborative knowledge
distillation-based TTA method customized for intelligent
IoT node replacement scenarios.

e We collect and release M3N-VC, a new large-scale
real-world multi-modality multi-node vehicle monitoring
dataset collected in diverse environments for our own
testing and to fuel future multi-node IoT sensing and
domain adaptation research.
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o The evaluation reveals RestoreML’s superior adaptation
performance.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents some background,
followed by the design details of RestoreML in Section IV.
The evaluation is presented in Section V. The paper concludes
with Section VI

II. RELATED WORK

Test-Time Adaptation (TTA) is a sub-topic of Domain Adap-
tation [2], [3], aiming at adapting a model pre-trained on the
source domain to the target domain. Unlike Continual Domain
Adaptation [10]-[13], TTA solely depends on unlabeled target
data without accessing the source data or target data labels.
Generative models such as CGAN [14] and VAE [15] were
adopted for enhancing the model adaptation capability [16],
[17] in test-time domain style. Wang et al. [6] proposed to
minimize the entropy of the predictions on target data and
only adjust the affine transformation parameters of the batch
normalization layer. Zhang et al. [8] extended this approach by
minimizing the entropy of augmentation-averaged predictions
during test time. Wulfmeier et al. [18] justified and unified
entropy minimization with other test-time losses by viewing
them as optimizing with respect to a pseudo-label, uniquely
defined for each source domain training loss. Recalculating
the parameters of the batch normalization layers to account for
covariance shift in the target domain was also introduced [7],
[19]. This idea was extended by taking batch normalization
parameters learned from the source domain as a prior for the
target domain batch normalization parameters [20]. Kingma
et al. [21] proposed to assign pseudo-labels for target domain
data and finetune the model with the pseudo-labels. However,
these methods primarily rely on single-node information and
overlook the multi-node nature of IoT applications. Moreover,
they are mainly designed for computer vision tasks with large-
scale datasets and assume models that offer well-calibrated
uncertainty estimates, which is difficult to guarantee in IoT
applications with limited training data. In contrast, our method
makes no assumptions on model calibration and leverages the
unique opportunities in multi-node [oT applications, making
it particularly well-suited for IoT deployments.

Collaborative Knowledge Distillation, or Mutual Learning,
aims at training multiple neural networks simultaneously and
transferring knowledge between them to boost performance.
Knowledge distillation was proposed to ensemble from multi-
ple models to enhance classification accuracy [22], [23]. Built
upon this, Zhu et al. [24] proposed to gather multiple models
into a single multi-branch neural network to facilitate feature
sharing and dynamically adjust the weight of the ensemble
using a gate neural network. Chen et al. [25] followed the
ensemble framework, with an additional leader model distilled
from the ensemble of all peers. Guo et al. [9] further system-
atically studied various ensemble policies specific to mutual
learning scenarios with the help of existing ground truth labels.
Li et al. [26] proposed to combine mutual distillation with
a temporal distillation from an ensemble of previous model
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Fig. 1. An overview of collaborative knowledge distillation, where critical steps are marked with numbers and are described in detail in Section IIIL.

snapshots to the current model as well as an entropy mini-
mization loss for semi-supervised learning tasks. Wu et al. [27]
proposed to adopt a meta-model-based ensemble policy in
mutual learning and combined it with temporal distillation.
Li et al. [28] proposed to introduce a proxy teacher distilled
from the original teacher that is also simultaneously distilled
mutually with the student model to enhance the performance
of the student model. However, these collaborative knowledge
distillation methods are proposed not for domain adaptation
purposes, but for enhancing the performance of traditional
supervised learning. In contrast, our method customizes col-
laborative knowledge distillation for TTA without annotations
for IoT node replacement scenarios.

Similar to our method, Zhang et al. [29] proposed an ensem-
ble method based on the Dempster—Shafer theory that is scaled
using a confidence score to generate soft labels for online
training. However, their work is designed for in-domain data
labeling and thus requires access to source domain training
data, which is not available in our case.

Also, we differ from federated learning [30]-[34] in that we
aim to train per-node local models in an unsupervised setting,
whereas federated learning aims to train a single global model
in a supervised setting.

III. BACKGROUND

To explain the workings of our algorithm, we first review
the general category of collaborative knowledge distillation
approaches and then introduce the specifics of our approach.
An overview of general collaborative distillation systems is
depicted in Figure 1.

Consider a system that consists of /N nodes (/N > 1), where
each node is an IoT device equipped with single or multiple
sensors continually monitoring the environment. To perform
intelligent sensing tasks, data from each node is processed by
one or more machine learning models, where the j-th model
running on data from the i-th node is denoted as 6; ;. Let there
be at most M models per node.

Each node receives a stream of samples, where x; ; denotes
the sample collected at node 4 and time ¢. In time-series data, a
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sample refers to data collected within a set time interval. Each
x;+ can be single- or multi-modal, depending on the sensors
used. Each model 6; ; makes a inference instantly after the
x;; is received, which can be written as

ey

where 9; ;, denotes the prediction, f(x;:6; ;) denotes the
execution of model 6; ; on x; ;.

After the inference, each node sends its predictions to a
logically centralized node, we henceforth call the broker. As
shown in @, the broker, upon receiving the individual node
predictions, provides a spatial-temporal ensemble prediction,
denoted as ¥; ;. Importantly, the ensemble prediction ¥; ; can
be different for each node when our system has different
ground truth labels for different nodes. For example, if mul-
tiple vehicles are running in a nearest-vehicle classification
system, each node may have its own different ground truth
(a different nearest vehicle) and, thus, different individual
predictions and ensemble predictions.

As described in @), the ensemble prediction Yi.+ 1s then sent
back to each node (that needs to be fine-tuned), serving as a
soft label to fine-tune its model. The ensemble prediction ¥; ¢
is calculated as a weighted average of all predictions made
from: 1) all models j € {1,...,M}; 2) all nodes inside of a
neighboring spatial window of node i, denoted as S;; and 3)
all times inside of temporal window of time ¢, denoted as Ty,
which can be written as:

Yijt = f(mi,t; 92‘,]')7

1
7 >

b e1,. MY, V€S, VET:

Yit = Wer g o Yot jrprs (2)
where w;: 4+ denotes the ensemble weight of the individual
prediction ;s j/ 4. Z; ¢ is a normalization factor calculated as

the sum of all participated wights:

Ziy = >

jre{l,...,M}, i'€S;, t'€Ts

3)

Wy o ¢

Therefore, y; ; is guaranteed to fall into the probability sim-
plex.
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As illustrated in @), each node then locally logs the y; ¢
received from the broker and its associated sample x; ;. Each
node periodically runs an online model updating process to
update its ML models. In the updating process for model 6; ;,
according to @, node i first fetches a batch of (4,t,Yi,¢) pairs
from its local storage, denoted as R; ;. Then, as depicted in
0. the node calculates a loss function on R; ;, denoted as
L; ;, to update 6; ; with stochastic gradient descent:

“

where 7 is the learning rate. 92, ; is the updated model, which
should be more accurate in the target domain. 6; ; would
then be used to calculate future predictions and ensembles,
which could reciprocally improve the accuracy of the ensemble
model, forming a positive feedback loop. Note that, ground
truth is not assumed to be known in deployment and is not
used by the algorithm.

Qg,j — 0,»,]- — ’I7V9£z'7j,

IV. SYSTEM DESIGN

Building on the above generic description of collaborative
knowledge distillation (adapted in a straightforward manner to
the IoT domain), it remains to answer two central questions
that distinguish different approaches and constitute the core
of our contribution. First, since training performance depends
largely on the choice of data used for training, how to select
the batches, R; ;, from the data logged in each round of online
updates? Poor selection can result in bias, catastrophic forget-
ting, and other learning inefficiencies. A well-suited answer
to the data selection question is a core differentiator of our
algorithm. Second, since training performance also depends
largely on the choice of nodes entrusted with contributions to
(soft) data labeling, how to automatically distinguish adequate
models from misbehaving ones, in the absence of supervision
and in the absence of model confidence information? Failure
to do so will result in poor training performance and, thus,
prediction quality degradation. These questions are addressed
in the following subsections, respectively.

A. Least-trained-balanced Sampling Policy

This subsection answers the following key question: which
data should be included in a given batch, R; ;, for a more
effective Al model update?

One seemingly obvious approach might be to use the most
recently collected data since that data would constitute the
new observations not previously trained with. The problem
with this approach is that it does not ensure that the samples
used in the batch are independent. The most recent samples are
likely collected around the same time and are thus typically
correlated. For example, they might feature the same targets
or similar environmental conditions. Learning, in contrast,
requires that samples included with a batch be independent
and identically distributed (iid), drawn from a distribution that
sufficiently represents all conditions and targets of interest.
Failure to do so can result in problems such as a bias for
specific classes or catastrophic forgetting, where updates that
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optimize the neural network for new conditions damage or
erase the knowledge of other previously learned conditions.

The most straightforward training data selection policy that
ensures an iid training data distribution in a batch is random
sampling. The policy randomly chooses a batch of samples
from all locally stored ones. Unfortunately, random sampling
results in unsatisfactory performance as well. Its inadequacy
is attributed to two different reasons. First, the data received
in real-life scenarios can be highly unbalanced (for example,
most vehicles might be of a particular class). The random
sampling policy will repetitively update the individual models
on the unbalanced data, which may cause the individual
models to get gradually biased toward the popular classes
while impairing recognition of other classes. Second, using a
random sampling policy, samples received earlier are chosen
more often than those received later, potentially making the
models overfit on earlier samples and consequently unable to
classify the rest of the data robustly.

To solve these problems, we introduce the least-trained-
balanced sampling strategy to enhance the training stability
and the utility of the logged data. Specifically, we propose to
assign each (x;+,9; ) pair to the class whose probability in
Yi,¢ is the largest, and maintain a counter of how many times
each (x;,y;:) pair is trained in previous online updating
rounds. When we need to assemble a batch of data, we choose
an equal number of samples for each class and make sure
that, within each class, the chosen samples are least trained in
previous rounds. As we show in the evaluation section, under
the least-trained-balanced sampling strategy, our individual
models are updated with samples chosen from all classes
and at all times equally, resulting in model performance
improvements.

In practice, when sensor hardware, signal processing chains,
or Al models undergo significant updates, our current scheme
resets the model’s data reservoir. This reset triggers a fresh
adaptation cycle, allowing the system to adapt specifically to
the characteristics introduced by the updated configuration.
Future work could further refine this strategy by dynamically
adjusting the temporal distribution of samples post-reset, pri-
oritizing recent or significantly changed operational conditions
to accelerate model adaptation.

B. Automatic Ensemble Weights Determination

Another important choice in our system design is to de-
termine the ensemble weights w; ;. for all nodes, such
that predictions of less confident models are weighted lower.
Unfortunately, as mentioned earlier, accurate estimation of
model confidence requires good model calibration, which is
often hard to achieve. Thus, a key design decision of our
algorithm (and one of its key advantages) is not to require
confidence estimation. Instead, weights are assigned in the
absence of confidence information. A straightforward policy
to do so is to assign equal weights for all participating
models, which has been shown to deliver satisfactory empirical
performance and desirable theoretical properties in some ML
literature [35], [36]. However, this all-equal weighting policy
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has limitations in our scenario, where some individual models
may suffer from drastic performance degradation in the target
domain — for example, when some models receive data from an
updated/replaced sensor that differs from the ones used in their
original training. These unreliable models should be automat-
ically identified, and their contributions should be eliminated
from the ensemble calculations for better training accuracy.
Ideally, since we do not know if a sensor (or other component)
replacement has caused problems with downstream Al, and
since we would like to accommodate other reasons for Al
quality deterioration, a general solution is sought that does
not require rule-based feature engineering.

Thus, we propose an adaptive weighting method, where we
quantitatively measure the reliability (or, rather, lack thereof)
of each model 6; ; by calculating the level of disagreement
between 0; ; and the ensemble, denoted as a; j:, and then
eliminate some of the most unreliable models from the ensem-
ble. The disagreement, a; ; ¢, can be calculated as the averaged
Kullback-Leibler divergence between ensemble predictions
and predictions of 6; ;, which can be written as:

t—1

Z Dy (G, |[9i,5,0)

t'=1

1
Aigt = 71
t—1
) (&)
D (Gi G e i
1 KL (Yit—1]Fi 1) + F =1 Yidt—1
where Dy (+||-) is the Kullback-Leibler divergence.

A higher level of disagreement suggests misbehavior, as
what might be expected, for example, when part replacements
are introduced, causing mismatches between sensing hardware
and downstream AI models. Thus, we only retain the top K
models with the lowest a; ; ¢ in our ensemble and assign equal
weights to them, which can be written as:

1, if a;;+ € ming ({ai,j,t}f\iyj:ﬂ,

0. (6

Wi, = .
b otherwise.

where ming (-) denotes the set of K minimal values in a

given set, {am’t}fvz’f'_{j:l denotes all a;;; at time ¢. Our

proposed method can be seen as a generalization to the

all-equal weighting policy and can be reduced to all-equal

weighting when K = |{ai7j7t}£\f:’%:1\.

C. Implementation Notes

We fully implemented the proposed test-time adaptation
system with all the above components based on a pub/sub-
based middleware [37]. In particular, for the vehicle classi-
fication task, we design each node as a Raspberry Pi 4B+,
equipped with a geophone for seismic sensing, a microphone
for acoustic data collection, and a GPS module for node
localization and time synchronization. A portable battery bank
powers each node.

In the target application scenario, each node runs its own
classifier models, independently making inference based on
data from its local sensors. Importantly, nodes may produce
predictions asynchronously and at varying time intervals. As
illustrated in Figure 1, the nodes communicate only predicted
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TABLE I
Deployment environment characteristics.
Vehicle abbreviations: C (CX-30), G (GLE-350), M (Mustang), X (MX-5)

ID Terrain Weather Targets # Nodes  Length
HO8  Asphalt & gravel Sunny C,G M X 6 2.77 h
H24  Asphalt & gravel Rainy C, G M X 6 343 h
S31 Dirt & gravel Sunny C,G M X 6 278 h
A06 Asphalt Sunny C G, X 6 2.14h
129 Concrete Windy C,G, M X 8 4.14 h
122 Concrete Sunny CM X 8 3.00 h

labels (minimal-sized messages) to a central broker, signif-
icantly reducing communication overhead. The broker then
computes an ensemble decision based on available predic-
tions collected within a specified spatiotemporal window. To
further enhance robustness, the broker employs a threshold-
based approach for the spatiotemporal ensemble window: an
ensemble prediction is computed and disseminated back to the
participating nodes only if a sufficient number of predictions
have been received within that window. This design inherently
accounts for communication constraints, varying prediction
rates, and potential message losses, making the system resilient
to intermittent connectivity commonly encountered in IoT
deployments.

The implementation comprises approximately 9,000 lines
of Python code for the high-level logic, data processing, and
neural network components. Additionally, we wrote around
1,300 lines of Rust code for performance-critical sections,
particularly those involving low-level system interactions and
SEnsor processes.

V. EVALUATION

To evaluate performance, we tested RestoreML in three
controlled experimental conditions. Two involve a multi-node
vehicle classification system based on acoustic and seismic
sensing. The system recognizes the makes and models of
vehicles based on their acoustic and seismic signatures. Each
sensor node consists of a battery-powered Raspberry Pi 4 with
a microphone and a geophone. Four different vehicle models
were driven by the authors and the classification results were
recorded. The third condition involves an acoustic event de-
tection task that inputs the audio of human activities captured
by eight microphones in an office setting. Twelve activities
were performed (e.g., “eat”, “meet”, “enter”, “sit”, etc.) that
are not mutually exclusive. The output is one or more labels,
depending on the current activities performed. In all cases, the
RestoreML broker runs on an edge server, while classifiers
run on local sensing nodes. The server aggregates individual
node classification results into ensemble predictions, which are
returned to the nodes for pairing with sensor data during TTA.
The overall data flow is consistent with Figure 1. Below, we
describe these experiments and their results.

A. Vehicular Experiments

Table I shows the environments in which the vehicle
classification experiments were performed. To illustrate the
independence of our TTA approach from the specific neural
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TABLE 11
Performance comparison of applying different TTA methods on target domains S31 and HO8. DS-S, DS-A, and Ens. denote the performance of DS-S,
DS-A, and the ensemble models. Worst is the worst performance of the node (the largest domain shift). Avg. is the average performance of the models.
Number of parameters: DS-S (0.33M), DS-A (0.33M).

S31 HO8
Method DS-S DS-A Ens. DS-S DS-A Ens.
Worst  Avg.  Worst  Avg. Worst  Avg.  Worst  Avg.
NoAdapt 9.9 10.2 83.8 848 89.7 436 49.1 77.1 81.6  90.5
Oracle 41.7 44.8 91.9 926 956 55.1 61.1 78.4 84.8 947
RestoreML 412 454 899 91.0 944 551 59.2 78.0 841 918
RestoreML-Last+BN 18.9 24.4 85.7 869 910 465 55.1 77.8 82.6 91.1
RestoreML-Last 12.1 19.5 85.4 86.1 905 448 52.4 71.5 824 909
RestoreML-BN 16.5 23.0 85.5 86.4 90.8 46.0 55.0 77.6 825 910
Adaptive-BN 9.9 10.4 84.1 850 899 428 48.4 77.2 81.7  90.6
TENT 9.9 11.5 83.3 848 90.8 346 41.2 70.3 76.9  90.0
TENT-BN 10.6 12.0 85.1 856 90.6 419 47.1 76.8 81.8 902
Pseudo-label 10.2 11.9 83.1 84.6 90.6 36.1 41.3 73.3 783 893
MEMO 9.7 9.8 83.0 838 838 109 21.0 70.1 76.0 87.6
CoTTA 9.8 10.1 41.8 442 427 247 30.7 53.1 61.7 643
TABLE III

Performance comparison of applying different TTA methods on target domain 122, 129, and A06. VibroFM and Ensemble denote the performance of
VibroFM, and the ensemble models. Worst denotes the worst performance among the models, typically acquired from the node with the worst domain shift.
Avg. denotes the average performance of the models. Number of parameters: VibroFM (11.78M).

122 129 A06

Method VibroFM Ensemble VibroFM Ensemble VibroFM Ensemble

Worst  Avg.  Worst  Avg. Worst  Avg.  Worst  Avg. Worst  Avg.  Worst  Avg.
NoAdapt 61.3 72.6 69.0 79.3 40.6 72.8 65.4 84.0 67.2 71.3 80.8 85.0
Oracle 69.4 83.6 78.1 89.7 40.6 79.6 68.5 89.1 74.2 82.4 86.6 91.3
RestoreML 64.9 79.3 67.5 83.8 40.6 77.0 64.8 84.9 70.6 80.2 76.9 87.4
TENT 26.9 554 425 57.5 22.4 67.1 50.5 74.2 67.9 76.9 79.0 86.7
Pseudo-label ~ 45.6 67.3 63.0 72.5 40.6 72.2 62.6 78.0 67.6 75.9 78.5 86.0

network architecture, the sensing modalities, and the initial
neural network model training approach used, we adopt three
different neural network models for vehicle classification (to
be adapted with TTA): (1) DS-A: a DeepSense [38] model
initially trained on labeled acoustic signals; (2) DS-S: a
DeepSense model initially trained on labeled seismic signals;
and (3) VibroFM [39]: a large Transformer [40] based IoT
foundation model that is first pre-trained on a large-scale
unlabeled dataset using self-supervised learning and then fine-
tuned on a labeled dataset, using both acoustic and seismic
signals. All three models take 2-second data windows as input
and output a single (nearest) target class per window.

To experiment with domain shift in IoT deployment, we
train the neural network model using data from one environ-
ment and then explore the success of our test-time adaptation
algorithm in adapting the model to another environment.

We compare our method with seven TTA baselines, namely:
(1) No adaptation: a trivial baseline where no domain adapta-
tion is performed; (2) Adaptive-BN [20]: dynamically adjust-
ing batch normalization layer parameters on target domain; (3)
TENT-all [6]: minimizing the entropy of prediction, tuning all
layers; (4) TENT-BN [6]: minimizing entropy of prediction,
tuning only batch normalization layers; (5) Pseudo-label [21]:
fine-tine the model with the class with highest probability;

(6) MEMO [8]: minimizing entropy with data augmentation;
and (7) CoTTA [13]: fine-tune with a moving-averaged teacher
with dynamic parameter reset.

Apart from the baselines, we also include three ablations of
RestoreML in the comparison to evaluate our method when
only part of the model can be trained due to computational
power constraints. They are (1) RestoreML-Last: where only
the last layer of the models is fine-tuned using TTA; (2)
RestoreML-BN: where only the batch normalization layer of
the models is fine-tuned using TTA; and (3) RestoreML-
Last+BN: where only the last layer and batch normalization
layers of the models are fine-tuned using TTA. We also
include an Oracle method to show an upper bound of
TTA performance, where ground-truth labels for the target
domain data are used to fine-tune the models. Since we focus
on measuring the performance of the classification task, we
choose the commonly used Macro-F1 score throughout this
paper.

1) Adapting Supervised Models Outdoors: In the first ex-
periment, we use our algorithm to adapt two classifiers trained
in a supervised manner, namely, an acoustic classifier DS-A
and a seismic classifier DS-S. In this experiment, we train DS-
S (0.33M parameters) and DS-A (0.33M parameters) models
on the H24 environment in a supervised way, which serves as
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the source domain (please refer to Table I for a description
of H24). Then, we test these trained models in the HO8
and S31 environments. The former differs from the source
domain in weather conditions, whereas the latter differs in
terrain type (see Table I for details). Sensors in the target
environments were deployed close together. Vehicles of four
classes were driven past these sensors one at a time. We set the
spatial ensemble window to include all nodes and the temporal
ensemble window to two seconds. The results are shown in
Table II. The DS-S model achieves relatively lower classifica-
tion performance compared to DS-A, including under Oracle
conditions. This lower performance is primarily due to the
limited discriminative power of seismic signals alone in this
deployment. However, despite the lower standalone accuracy,
incorporating DS-S sensors into the classification system re-
mains beneficial. Specifically, seismic sensors are significantly
less affected by environmental disturbances such as wind
noise and background acoustic interference, thus providing
complementary information that can enhance overall system
robustness. Additionally, the notable performance discrepancy
observed between stations S31 and HO8 is attributable to
differences in local environmental conditions and background
noise levels affecting each sensor site differently. In both cases,
however, the overall results reveal that RestoreML consistently
achieves the best performance on all metrics in both target
domains among all TTA techniques. RestoreML’s performance
surpasses baselines by a large margin and closely approaches
the Oracle method. Besides, RestoreML with only the last
layer or batch normalization layers fine-tuned also exhibit
superior performance compared to baselines, showing Re-
storeML’s strong capability on resource-constrained platforms.

2) Adapting Self-Supervised Models Outdoors: Next, we
explore TTA in the context of a self-supervised model. In
this experiment, we pre-train and fine-tune a self-supervised
Al model, VibroFM (11.78M parameters), using data from all
three environments mentioned above, HO8, H24, and S31, and
then test it in three new target environments: (1) 122, (2) 129,
(3) AO6 (see Table I for descriptions). Three notable aspects
make this experiment more challenging than the previous
one: (1) The 122, 129, and A06 sensor deployments are more
spread out (i.e., the sensors are further apart). Thus, different
sensor nodes do not observe the same target(s) simultane-
ously, which increases the challenge of producing accurate
ensemble predictions. (2) We allowed up to two vehicles to
move simultaneously, such that ground truth labels could be
different for different nodes. (3) 122 and 129 feature new nodes
joining the system after deployment (i.e., hardware not used in
collecting training data). They represent newly restored nodes
with a different device but are still running the old model,
which may increase the difficulty of TTA. Due to the larger
scale of the target deployments in this experiment, we choose
a temporal ensemble window of 10 seconds and a separate
spatial ensemble window for each node that includes its direct
neighbors only. We exclude the baselines Adaptive-BN and
TENT-BN that rely on batch normalization layers, since those
layers are not present in the VibroFM model used in this
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TABLE IV
Classification F1 (%) on MM Office. Number of parameters: BEATS
(90.35M), DS (0.33M)

Method BEATs DS
WN Avg. WN  Avg.
NoAdapt 674 729 749 812
Oracle 782 787 99.1 994
RestoreML 744 753 878 88.2
TENT 36.1 356 475 520
Pseudo-label 36.8 43.0 47.5 483

experiment, rendering those baselines inapplicable. We also
exclude MEMO and CoTTA due to their poor performance
relative to other baseline, as seen in Table II. Hence, they
warrant no further consideration.

Table III presents the results of this experiment. As ob-
served, RestoreML achieved the highest F1 on most metrics
compared to baselines, showcasing its versatility on large pre-
trained foundation models.

B. Adapting Indoors

To demonstrate the versatility of RestoreML, we addition-
ally evaluate it in an acoustic event detection task in an office
environment [41]. Two AI models are used for this task.
(1) BEATs [42] (90.35M parameters), a state-of-the-art self-
supervised learning framework for audio representation pre-
training. We use the BEATs model pre-trained? on AudioSet-
2M as the backbone, and fine-tune for linear classification.
(2) DeepSense [38] (0.33M parameters), a CNN-RNN-based
network. We trained an end-to-end classifier using DeepSense.
Four nodes are used at test time, each assigned to process data
from one of the microphones in the right room. The models
on these nodes share identical initial weights, fine-tuned using
data from the left room. All nodes perform inference and
adaptation collaboratively using RestoreML.

The classification F1 scores of RestoreML and baselines
(TENT and Pseudo-label) are shown in Table IV. Note that
DeepSense is an end-to-end trained, much smaller network
than the pre-trained BEATs model and allows fine-tuning of
the entire network. This ability to fine-tune the full model
enables DeepSense to perform better adaptation. RestoreML
outperforms the baselines across tasks, highlighting its versa-
tility and effectiveness in various settings and with different
neural networks.

To illustrate model performance improvements during TTA,
Figure 2 illustrates how RestoreML adapts models of different
initial quality. In this run, initially, three out of four nodes (n0,
nl, and n2) start out relatively well-tuned to the deployment
environment, while one node, n3, experiences degradation. As
shown in the curve, n3’s classification F1 score improves by
approximately 10% over time, eventually catching up with the
other nodes without negatively impacting their performance.

Evaluation results presented above confirm that our pro-
posed TTA solution offers a practical means for fine-tuning

Zhttps://github.com/microsoft/unilm/tree/master/beats
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Fig. 2. Illustration of model adaptation over time. A newly introduced, less-
adapted node (n3) improves over time by learning from well-adapted, older
nodes. The node legend is ordered based on initial performance.

IoT nodes in the field in an unsupervised manner, especially
in situations calling for fine-tuning of replacement nodes (i.e.,
where only a minority of nodes need to be adapted at any
given time). Initial evidence suggests that the solution can
work with different AI models and results in performance
improvement across multiple applications and modalities. Our
released dataset will hopefully facilitate further research on
the topic.

VI. CONCLUSION

This paper introduced RestoreML, a test-time adaptation
technique that facilitates model fine-tuning post-deployment
without requiring labeled data. We proposed a least-trained-
balanced sampling policy and a dynamic weights determi-
nation algorithm to overcome TTA challenges presented by
IoT monitoring systems, while exploiting IoT deployment
characteristics. Our comparison with the baselines and ablation
studies validate the superior performance of RestoreML. While
this paper offers a proof of concept for the success of TTA
in IoT settings, further exploration would be beneficial to
fully uncover the potential of RestoreML and improve its
behavior. A more systematic exploration is needed of the
effects of deployment properties (e.g., area covered by sensor
network), background noise characteristics, number of concur-
rent items or activities to classify, AI model and model size
used, size of training data, and the duration of TTA. Since
TTA requires local storage, effective policies are also needed
for data replacement/eviction when local storage limits are
reached. These topics constitute rich opportunities for follow-
up research and are delegated to future work.

ACKNOWLEDGEMENTS

Research reported in this paper was sponsored in part by
DEVCOM ARL under Cooperative Agreement W911NF-17-
2-0196 (ARL IoBT CRA), and in part by NSF CNS 20-38817,
and the Boeing Company. It was also supported in part by
ACE, one of the seven centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.
The views and conclusions contained in this document are
those of the authors, not the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized

116

to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

REFERENCES

[1] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual cate-
gory models to new domains,” in Computer Vision—-ECCV 2010: 11th
European Conference on Computer Vision, Heraklion, Crete, Greece,
September 5-11, 2010, Proceedings, Part IV 11. Springer, 2010, pp.
213-226.

V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE signal processing
magazine, vol. 32, no. 3, pp. 53-69, 2015.

X. Liu, C. Yoo, F. Xing, H. Oh, G. El Fakhri, J.-W. Kang, J. Woo et al.,
“Deep unsupervised domain adaptation: A review of recent advances
and perspectives,” APSIPA Transactions on Signal and Information
Processing, vol. 11, no. 1, 2022.

C. Fang, S. Liu, Z. Zhou, B. Guo, J. Tang, K. Ma, and Z. Yu,
“Adashadow: Responsive test-time model adaptation in non-stationary
mobile environments,” in Proceedings of the 22nd ACM Conference on
Embedded Networked Sensor Systems, 2024, pp. 295-308.

J. Liang, R. He, and T. Tan, “A comprehensive survey on test-time
adaptation under distribution shifts,” International Journal of Computer
Vision, pp. 1-34, 2024.

D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent:
Fully test-time adaptation by entropy minimization,” arXiv preprint
arXiv:2006.10726, 2020.

Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and
J. Snoek, “Evaluating prediction-time batch normalization for robustness
under covariate shift,” arXiv preprint arXiv:2006.10963, 2020.

M. Zhang, S. Levine, and C. Finn, “Memo: Test time robustness
via adaptation and augmentation,” Advances in Neural Information
Processing Systems, vol. 35, pp. 38 629-38 642, 2022.

Q. Guo, X. Wang, Y. Wu, Z. Yu, D. Liang, X. Hu, and P. Luo, “Online
knowledge distillation via collaborative learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 11020-11029.

D. Sahoo, Q. Pham, J. Lu, and S. C. Hoi, “Online deep learning: Learn-
ing deep neural networks on the fly,” arXiv preprint arXiv:1711.03705,
2017.

A. Bobu, E. Tzeng, J. Hoffman, and T. Darrell, “Adapting to continu-
ously shifting domains,” 2018.

M. Wulfmeier, A. Bewley, and I. Posner, “Incremental adversarial
domain adaptation for continually changing environments,” in 2018
IEEE International conference on robotics and automation (ICRA).
IEEE, 2018, pp. 4489-4495.

Q. Wang, O. Fink, L. Van Gool, and D. Dai, “Continual test-time domain
adaptation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 7201-7211.

M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

R. Li, Q. Jiao, W. Cao, H.-S. Wong, and S. Wu, “Model adaptation:
Unsupervised domain adaptation without source data,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 9641-9650.

H.-W. Yeh, B. Yang, P. C. Yuen, and T. Harada, “Sofa: Source-data-free
feature alignment for unsupervised domain adaptation,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, pp. 474-483.

S. Goyal, M. Sun, A. Raghunathan, and J. Z. Kolter, “Test time
adaptation via conjugate pseudo-labels,” Advances in Neural Information
Processing Systems, vol. 35, pp. 6204-6218, 2022.

Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normaliza-
tion for practical domain adaptation,” arXiv preprint arXiv:1603.04779,
2016.

S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and
M. Bethge, “Improving robustness against common corruptions by
covariate shift adaptation,” Advances in neural information processing
systems, vol. 33, pp. 11539-11551, 2020.

D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges
in representation learning, ICML, vol. 3, no. 2. Atlanta, 2013, p. 896.

[4]

(13]

(14]
[15]

[16]

[21]

Authorized licensed use limited to: University of lllinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.



[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[33]

Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual
learning,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 4320—4328.

R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E.
Hinton, “Large scale distributed neural network training through online
distillation,” arXiv preprint arXiv:1804.03235, 2018.

X. Zhu, S. Gong et al., “Knowledge distillation by on-the-fly native
ensemble,” Advances in neural information processing systems, vol. 31,
2018.

D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen, “Online knowledge
distillation with diverse peers,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 34, no. 04, 2020, pp. 3430-3437.

J. Li, S. Wu, C. Liu, Z. Yu, and H.-S. Wong, “Semi-supervised deep
coupled ensemble learning with classification landmark exploration,”
IEEE Transactions on Image Processing, vol. 29, pp. 538-550, 2019.
G. Wu and S. Gong, “Peer collaborative learning for online knowledge
distillation,” in Proceedings of the AAAI Conference on artificial intel-
ligence, vol. 35, no. 12, 2021, pp. 10302-10310.

L. Li and Z. Jin, “Shadow knowledge distillation: Bridging offline and
online knowledge transfer,” Advances in Neural Information Processing
Systems, vol. 35, pp. 635-649, 2022.

L. Zhang, D. Zheng, M. Yuan, F. Han, Z. Wu, M. Liu, and X.-Y.
Li, “Multisense: Cross-labelling and learning human activities using
multimodal sensing data,” ACM Transactions on Sensor Networks,
vol. 19, no. 3, pp. 1-26, 2023.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273—
1282.

C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” Knowledge-Based Systems, vol. 216, p. 106775,
2021.

C. Wang, G. Yang, G. Papanastasiou, H. Zhang, J. J. Rodrigues,
and V. H. C. De Albuquerque, “Industrial cyber-physical systems-
based cloud iot edge for federated heterogeneous distillation,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 8, pp. 5511-5521,
2020.

P. Qi, X. Zhou, Y. Ding, Z. Zhang, S. Zheng, and Z. Li, “Fedbkd:
Heterogenous federated learning via bidirectional knowledge distillation
for modulation classification in iot-edge system,” IEEE Journal of
Selected Topics in Signal Processing, vol. 17, no. 1, pp. 189-204, 2022.

117

(34]

[36]

(37]

[39]

[40]

(41]

K. Ozkara, N. Singh, D. Data, and S. Diggavi, “QuPeD:
Quantized Personalization via Distillation with Applications to
Federated Learning,” in Advances in Neural Information Processing
Systems, vol. 34. Curran Associates, Inc., 2021, pp. 3622—
3634. [Online]. Available: https://proceedings.neurips.cc/paper/2021/
hash/1dba3025b159c¢d9354da65¢2d0436a31- Abstract.html

A. Mohammed and R. Kora, “A comprehensive review on ensemble
deep learning: Opportunities and challenges,” Journal of King Saud
University-Computer and Information Sciences, vol. 35, no. 2, pp. 757-
774, 2023.

M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and P. N. Suganthan,
“Ensemble deep learning: A review,” Engineering Applications of Arti-
ficial Intelligence, vol. 115, p. 105151, 2022.

J. Li, Y. Chen, T. Kimura, T. Wang, R. Wang, D. Kara, Y. Hu, L. Wu,
W. A. Hanafy, A. Souza, P. Shenoy, M. Wigness, J. Bhattacharyya,
J. Kim, G. Wang, G. Kimberly, J. Eckhardt, D. Osipychev, and T. Ab-
delzaher, “Acies-OS: A content-centric platform for edge Al twinning
and orchestration,” in 2024 33rd International Conference on Computer
Communications and Networks (ICCCN). Big Island, HI, 2024, pp.
1-1.

S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A
unified deep learning framework for time-series mobile sensing data
processing,” in Proceedings of the 26th international conference on
world wide web, 2017, pp. 351-360.

T. Kimura, J. Li, T. Wang, D. Kara, Y. Chen, Y. Hu, R. Wang,
M. Wigness, S. Liu, M. Srivastava er al., “On the efficiency and
robustness of vibration-based foundation models for iot sensing: A case
study,” arXiv preprint arXiv:2404.02461, 2024.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on

computer vision, 2021, pp. 10012-10022.
M. Yasuda, Y. Ohishi, S. Saito, and N. Harado, “Multi-View And

Multi-Modal Event Detection Utilizing Transformer-Based Multi-Sensor
Fusion,” in ICASSP 2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2022, pp.
4638-4642.

S. Chen, Y. Wu, C. Wang, S. Liu, D. Tompkins, Z. Chen, W. Che,
X. Yu, and F. Wei, “BEATs: Audio Pre-Training with Acoustic
Tokenizers,” in Proceedings of the 40th International Conference
on Machine Learning. PMLR, Jul. 2023, pp. 5178-5193. [Online].
Available: https://proceedings.mlr.press/v202/chen23ag.html

Authorized licensed use limited to: University of lllinois. Downloaded on October 15,2025 at 00:45:56 UTC from IEEE Xplore. Restrictions apply.



