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Abstract—The paper argues for the feasibility and utility of
micro foundation models (µFMs), a key direction for future smart
IoT/CPS systems that exploits advances in self-supervised pre-
training to support multiple downstream tasks. We demonstrate
key beneficial properties such as latent representation indepen-
dence from the downstream task, robustness to domain shifts, and
ability to learn from unlabeled data. Importantly, we demonstrate
the emergence of these properties after pre-training with only
moderate amounts of unlabeled data, earning the name µFMs. To
make the argument, evaluate model efficacy, and surface some of
the underlying challenges, this paper describes a vibration-based
µFM, called VibroFM, pre-trained with moderate amounts of
unlabeled acoustic and seismic sensing data, to support target clas-
sification and tracking applications. VibroFM is pre-trained in an
environment-agnostic fashion using unlabeled sensor data. It can
then be fine-tuned to a given deployment using a small amount of
in-situ labeled data. The paper shows that VibroFM (i) improves
the robustness of several downstream tasks, (ii) efficiently adapts
to different environmental conditions (using only small amounts
of fine-tuning), and (iii) allows few-shot generalization to unseen
targets. We further show that VibroFM can execute in real
time on embedded sensor nodes. We compare the robustness and
performance of VibroFM to conventional supervised deep neural
networks, showing the advantages of the former. Combined with
the feasibility of executing µFMs in resource-limited settings and
the sufficiency of only moderate amounts of data for their pre-
training, we conclude the importance of micro foundation models
as a promising research direction for the IoT/CPS community.

Index Terms—Foundation Model, Self-Supervised Learning,
Internet of Things

I. INTRODUCTION

The paper defines and argues for the importance of a class of

domain-specific foundation models we call micro foundation

models (µFMs) needed to overcome some of the training

and robustness challenges of intelligent IoT/CPS systems. We

argue for the feasibility of pre-training µFMs from scratch on

resources available to a broad range of institutions, in contrast

to the prohibitive amounts of resources needed to train the

next generation of, say, large language models (LLMs) or

vision language models (VLMs). To make these arguments,

we present and evaluate VibroFM, a new vibration-based

µFM developed and trained by the authors to support target

classification and tracking applications based on acoustic and

seismic sensing.

The success of foundation models (FMs) [1] in the areas

of natural language processing and computer vision has led

to generalizations of the foundation model concept to other

domains, where significant amounts of unlabeled data exist

that can be used for self-supervised pre-training. One such

domain is IoT applications. While many of today’s foundation

models, such as GPT-4 [2] and LLava [3], are very large,

calling for amounts of pre-training resources that exceed the

capacity of most research institutions, the paper shows that

properties of foundation models, such as robust generalization

and independence from downstream tasks, emerge at a much

smaller scale, thus imparting application benefits at realistic

cost. To illustrate this point, VibroFM (originally presented by

the authors as a workshop publication [4]) is (i) extended with

a new (lighter) encoder, (ii) used to investigate the impact of

pre-training data volume on resulting model quality, and (iii)

adapted in the evaluation to multiple downstream inference

tasks and new targets, concluding that the pursuit of µFMs

is both technically feasible and operationally beneficial, as

key foundation model properties emerge at only a moderate

training scale.

We choose acoustic and seismic sensing data modalities

because of the core IoT-centric challenges that these modalities

exemplify. Namely, such modalities are particularly sensitive

to environmental factors, conflating target signatures with

environmental effects. Even in the same application domain,

such as target tracking, a target (e.g., some vehicle on a

road) may generate different acoustic and seismic signatures

depending on a variety of environmental factors, such as the

type of terrain (paved road, gravel, sand, etc.), background

noise (rain, wind, construction, traffic, etc.) and various natural

and/or human disturbances. Training an inference task (e.g., a

target classifier) to handle all such contingencies is a daunting

undertaking. These challenges have no direct correspondence

in several mainstream AI contexts such as text inputs (for
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LLMs), where a label, such as “Ford Mustang”, always

denotes the same car regardless of the context in which the

car is described. The confounding effects of the environmental

context are also less prominent in vision, where the car will

have similar visual features regardless of the type of road it is

on and regardless of the background landscape. In that sense,

IoT time-series data modalities are arguably more challenging

as both the target and environment features get superimposed

onto the same input stream.

The challenge with disentangling time-series data (e.g.,

acoustic and seismic data) into the underlying signatures of

different targets and environmental factors often frustrates

traditional supervised learning solutions. Such solutions (for

intelligent IoT applications) are label-hungry. Labeled data

must be collected not only on a sufficient set of targets but also

in a sufficiently representative set of environmental conditions.

In the absence of sufficient amounts of labeled data, supervised

DNN training techniques suffer from overfitting, thereby dra-

matically reducing the robustness of run-time inference [5]. In

contrast, by obviating the need for labeled data in pre-training

(requiring small amounts of labels for fine-tuning), we show

that VibroFM improves inference robustness and adaptation to

domain shifts, environmental noise, and new targets.

The rest of the paper is organized as follows. We discuss

micro foundation models in more detail in Section II, followed

by a description of our running case study and experimental

set-up in Section III. Section IV presents evaluation results

of model robustness, run-time efficiency, and effect of pre-

training data size. Section V discusses the main takeaway

points from this paper. Section VI covers related work. The

paper concludes with Section VII.

II. µFMS: SCOPE, ADVANTAGES, AND PRE-TRAINING

In this section, we define our concept of micro foundation

models, describe pre-training (and fine-tuning) approaches,

and identify some of the challenges and research opportunities

in that space.

A. Definition

Foundation models are task-independent neural network mod-

els trained in a self-supervised fashion on large amounts of

unlabeled data to encapsulate knowledge in a given field. Large

language models (LLMs) are a common example of foun-

dation models, but the concept extends to other application

domains, such as security [6], [7], networking [8]–[10], and

meteorology [11], to name a few. We assume that the reader

is already familiar with the concept of foundation models. A

great description of this concept is found in the original paper

that popularized it [1]. For the purposes of this paper, we define

micro foundation models as foundation models that satisfy the

following constraints:

• Domain-specific: We consider domain-specific models.

An example would be a foundation model for medical

image analysis, urban traffic monitoring, human activity

recognition, network security, or a similarly targeted

domain. In an IoT/CPS context, this allows the model

to specialize in knowledge pertinent to the target domain

only, thus improving tractability.

• Modality-specific: The model uses, as input, only a

small pre-specified range of sensing modalities. This is

especially important for IoT/CPS applications, where the

number of possible sensing modalities can be vast, thus

calling for specialization to allow effective pre-training.

• Self-supervised: They are pre-trained in a self-supervised

manner (i.e., using unlabeled data). This is a core prop-

erty of all foundation models and is a key enabler that

allows us to circumvent the need for scarce labeled data.

• Task-agnostic: Their pre-training is agnostic to down-

stream (inference) tasks. This is another core property

that separates foundation models from machine learning

solutions customized for an individual task. For exam-

ple, a µFM for urban traffic monitoring might need to

enable (i) classification of different objects in the urban

environment, (ii) localization of these objects, (iii) speed

estimation, etc. The same underlying model (with the

possible exception of a small task-specific head or layer)

should support all these tasks. We call this property task-

agnostic as opposed to task-independent because we want

to allow for some application-specific bias in training.

For example, if the set of application tasks has to do

generally with foreground objects, it may be OK for pre-

training to ignore background features. In other words,

some inductive bias, informed by the application domain,

is acceptable.

• Moderately-sized: They use a moderate number of model

parameters (in the millions, not billions) and correspond-

ingly moderate amounts of data for pre-training. Beyond

that, we are intentionally vague on the notion of moderate

as it might be application-specific.

B. Advantages

Unlike supervised training techniques that directly teach a neu-

ral network how to perform a particular inference task, pre-

training a foundation model aims to teach the neural network a

better internal representation of domain-specific and modality-

specific data. The internal representation encodes higher-level

semantics or “knowledge” of the domain, extracted from

the specified data modality as input. As mentioned above,

three further features characterize the pre-training of (micro)

foundation models. First, pre-training is self-supervised; no

labeled data are needed. Second, it is task-agnostic; it does

not know the downstream inference task(s) and, as such,

can in principle support several different tasks, deployments,

or environments. Finally, specific to µFMs, we explore pre-

training with moderate amounts of data. We demonstrate the

emergence of useful model properties despite the moderate

pre-training data scales. The feasibility of pre-training with

moderate amounts of data without data labels and without

knowing the exact downstream task(s) makes the approach

attractive to IoT applications. First, unlabeled data are a lot

easier to collect in IoT settings than labeled data (due to

the lack of interpretability of many data modalities, such
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as vibration or RF signatures, and thus difficulties labeling

collected data after the fact). Self-supervised pre-training

is therefore highly advantageous. Second, the independence

of pre-training from downstream tasks makes the approach

easily customizable to changes in model use and deployment

conditions. We show that the pre-trained model can be fine-

tuned with only a minimal amount of labeled data for a spe-

cific downstream deployment, allowing for more robust task

performance than baseline (supervised) approaches. Third,

the moderate size of micro foundation models makes them

compatible with the computational limitations of IoT devices.

Rapid advances in machine learning have led to increasingly

larger DNNs [12]. However, many IoT devices remain limited

by their resource constraints [13]. These devices, from simple

sensors to complex wearables, often lack the necessary pro-

cessing power, memory, and energy efficiency to support the

operation of large-scale DNNs in real time. This discrepancy

poses significant challenges for deploying advanced DNNs in

IoT applications [14]. We show that the pre-trained model we

use is capable of real-time execution on a Raspberry-Pi class of

devices. It is also shown to have a higher fine-tuning efficiency

and a lower memory consumption, while offering more robust

performance, compared to its supervised counterparts.

C. Model Pre-training

Pre-training foundation models can be conceptualized as an

act of encoding or mapping input domain data into a multi-

dimensional latent space that is better organized semantically.

This is usually referred to as input data embedding. The

improved semantic organization simplifies solving downstream

inference tasks. For example, if input measurements of similar

phenomena land closer in some dimension of the latent space

then it becomes easier to identify a phenomenon simply

based on its embedding location. While many techniques were

proposed recently for self-supervised pre-training of founda-

tion models, two are particularly widespread: (i) learning to

reconstruct masked [15], [16] (or distorted [17]) inputs and

(ii) contrastive learning [18]–[21]. They differ in the way they

train the model useful concepts from the domain, without the

need for labeled data.

Specifically, masking/distortion removes or distorts parts

of the input, and then rewards the model for correct recon-

struction of these parts. Clearly, a model that learns correct

reconstruction from partial data must have encapsulated some

knowledge about the target domain. Some language models

(e.g., BERT [15]) are trained by input masking and recon-

struction.

Unlike masking, contrastive learning teaches the model

what “similarity” means in the target domain (by contrast-

ing similar and dissimilar sample pairs), such that similar

inputs are grouped closer together in a latent space. To

do so without labels, it often relies on semantics-invariant

input transformations that convert individual input samples to

“similar” ones (without necessarily knowing what the sample

labels are) to contrast with random pairs (that are likely less

similar). An example of such transformations in vision is

image resizing; an image and its resized version are more

similar than two random images. An example in time-series

data is adding simulated noise. The result of rewarding the

model for putting similar samples closer together in the latent

space is a well-organized learned latent representation, where

proximity implies semantic similarity.

D. IoT/CPS-Specific Pre-training Challenges

Several peculiarities of data collected in IoT/CPS applications

call for re-thinking of the mainstream foundation model pre-

training pipelines, described above. For example, IoT/CPS

data typically represent sensor measurements of physical phe-

nomena. These phenomena have better representations in the

frequency domain [22], thus favoring contrastive learning and

masking solutions that are optimized for frequency domain

data. Examples of such optimizations have been recently

described for contrastive learning [21] and masking [23],

respectively.

Spectrograms are commonly used representations of fre-

quency domain data. While superficially similar to images,

spectrograms differ in many respects from other visual inputs,

calling for customized solutions beyond mainstream image-

based pre-training. For example, observing a visually similar

object (e.g., a car) at different locations in an image does not

usually affect its classification, whereas observing a similar

visual pattern in different locations of the spectrogram usually

implies differences in class because the underlying signal

frequency range is different. Also, in spectrograms, some

frequency ranges may be more important than others depend-

ing on the temporal dynamics (and thus spectral frequencies)

of phenomena in the underlying application domain and the

nature of environmental noise.

For another example of differences of IoT/CPS data, such

data are often multimodal. Unlike commonly explored modali-

ties in mainstream AI, such as text, images, and video, IoT data

may feature other modalities including accelerometer, gyro-

scope, or geophone data. These modalities call for new notions

of sample similarity and entail different latent space archi-

tectures to capture both modality-specific and cross-modality

information [24]. The optimization of foundation model pre-

training pipelines to the needs of IoT/CPS applications is thus

a key research topic for the intelligent (IoT/CPS) systems

community. Some previous work has started to address the

topic [23], [24], but the field is new and more research is

needed, which is beyond the scope of this paper. Below,

we merely show that an optimized pre-training pipeline is

able to demonstrate beneficial foundation model properties at

moderate model and training data scales.

E. A Vibrometry µFM

To experiment with an example µFM (we call VibroFM), we

train it from acoustic and seismic data using a contrastive

learning framework, called FOCAL [24], recently proposed

by the authors for (pre-training) intelligent multimodal sensing

applications. FOCAL pre-trains an encoder to extract a struc-

tured latent representation of the input multimodal data. This
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Authorized licensed use limited to: University of Illinois. Downloaded on October 15,2025 at 03:15:50 UTC from IEEE Xplore.  Restrictions apply. 



STFT

Time

Augmentation

Frequency

Augmentation

Seismic

Acoustic

Factorized 

Contrastive 

Learning

(FOCAL)

E
n

c
o

d
e

r
E

n
c

o
d

e
r

Seismic Acoustic

Encoder Encoder

Task-Specific Layer

Pre-training Fine-tuning

Results

STFT STFT

Fig. 1. Overview of VibroFM pre-training (task-agnostic) and fine-tuning (task-specific).

TABLE I
TRAINING CONFIGURATIONS: BELOW, WE DETAIL THE TRAINING PARAMETERS INCLUDING THE BATCH SIZE (NUMBER OF SAMPLES PER BATCH), THE

OPTIMIZER FOR UPDATING MODEL PARAMETERS, THE INITIAL LEARNING RATE (LR), AND THE LR SCHEDULER FOR DYNAMIC LR ADJUSTMENTS,
ALONGSIDE ITS LR DECAY RATE. THE TABLE ALSO LISTS THE TOTAL TRAINING EPOCHS AND THE DATA AUGMENTATIONS APPLIED.

Stage Batch Size Optimizer Initial LR LR Scheduler LR Decay Epochs Augmentations

Supervised 128 AdamW [25] 1e-4 Cosine [26] 0.2 500 Mixup, Phase Shift

Pre-train 256 AdamW [25] 0.0001 Cosine [26] 0.05 6000
Permutation, Negation, Time Warp, Horizontal Flip,

Magnitude Warp, Scaling, Phase Shift
Fine-tuning 256 Adam [27] 1e-3 Cosine [26] 0.2 200 Mixup, Phase Shift

latent representation separates shared and private subspaces.

The shared subspace contains common information shared

across the different sensing modalities. The private subspace

holds additional modality-exclusive information by contrasting

different augmented views. An orthogonality constraint is

applied among the private subspaces, as well as between

each private subspace and the shared subspace to enforce

information independence among these subspaces.

An overview of VibroFM training is shown in Figure 1.

We first utilize FOCAL to pre-train VibroFM with three

popular DNN encoders (DeepSense [28], SWIN-Transformer,

abbreviated as SW-T [29], and TSMixer [30]) on a multi-

modal Moving Object Detection [24] (MOD) dataset. During

pre-training, we randomly select time and frequency aug-

mentations to create multiple views for modality-exclusive

contrastive learning. We use STFT (Short Time Fourier Trans-

form) to convert each sample into the frequency domain and

then extract the embedding of each modality. The training

configurations used are presented in Table I. We also use the

same setup to pre-train a larger-scale version of VibroFM,

denoted as VibroFM-Large, with additional data collected. A

brief size comparison of the two models is shown in Table II.

For testing, we perform a two-day deployment experiment

in a real-world neighborhood as a case study to examine

the performance of VibroFM. The pre-training data did not

include any data from that deployment. To experiment with the

robustness of the pre-trained model, we freeze the pre-trained

model and append a single linear layer for fine-tuning. We

fine-tune this linear layer on part of the labeled data collected

in the new deployment and test the fine-tuned model’s per-

formance under the same or different deployment conditions.

We would like to note that only the linear layer is trained at

the fine-tuning stage. During fine-tuning, we apply mixup [31]

augmentation in the time domain and phase shift augmentation

in the frequency domain. We also separately train supervised

DNNs for the three backbone encoders as the benchmarks.

The supervised model contains an additional fusion layer

to fuse the modality embeddings for classification. Training

configurations for fine-tuning and supervised benchmarks are

shown in Table I. We also use a supervised model initially

trained on the MOD dataset and later fine-tuned on its final

classification layer, mirroring VibroFM’s fine-tuning approach.

We call it the supervised fine-tuned baseline.

III. TESTING µFM PROPERTIES: A CASE STUDY

Experiments with VibroFM were conducted at an outdoor

research facility located on (repurposed) state park grounds.

Sensors were deployed and vehicles were driven nearby. Fig-

ure 2 shows a satellite view of the test facility and the locations

of sensor nodes. Nodes 1 & 4 utilized the RaspberryShake1

4D, model 4B Rev 1.4, while Nodes 2 & 3 utilized the

RaspberryShake 1D, model 4B Rev 1.5. Each node featured

a geophone and a microphone array, collecting seismic and

acoustic vibration signals from nearby objects. In each run, a

specific target navigated the neighborhood, passing the sensors

in some arbitrary order within a short time window. Four

distinct target types were used: (i) a Polaris2 off-road vehicle,

(ii) a Warthog3 all-terrain unmanned ground robot, (iii) a

Husky unmanned outdoor field robot4, and (iv) a standard

civilian automobile.

A. Datasets

For pre-training, we first consider the MOD dataset released

in [24]. MOD consists of multi-modal acoustic and seismic

signals collected from sensors deployed in different urban and

rural environments that varied in terrain (paved, gravel, dirt,

1https://raspberryshake.org/
2https://www.polaris.com/
3https://clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/
4https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
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Fig. 2. The satellite view of the case study neighborhood with labeled nodes.

TABLE II
COMPARISON OF DATASET SIZES FOR EVALUATION SET, MOD, AND

VIBROFM-LARGE.

Metric Evaluation Set MOD VibroFM-Large

Labeled Yes No No
Hours 7.02 21.18 66.11

Number of Samples 12635 38116 119000

rooftop, etc) and environmental conditions (quiet, windy, etc),

recording the passage of a variety of target types, mostly

focusing on civilian automobiles, bikes, and humans. We

follow the same setup as [24] with a 0.2-second overlapping

ratio between 2 seconds samples of 8000Hz acoustic 100Hz

seismic data. We partition MOD into a set of unlabeled

data used to pre-train the FM and a set of labeled data for

supervised training and fine-tuning.

To experiment with the impact of training data size, we

increase the scale of the pre-training dataset by acquiring

additional seismic and acoustic signals from four different

civilian cars, collected across three domains distinct from those

in the MOD dataset. We process these new data to match the

format of the MOD dataset and integrate it with the MOD

dataset, expanding the pre-training set to threefold its original

size. We call this expanded set VibroFM-Large. We call the

data collected during experimental evaluation the Evaluation

Set. Statistical comparison between each set is presented

in Table II. We use MOD and Evaluation Set to evaluate

VibroFM’s run-time robustness and efficiency compared to

supervised methods. Then, we use VibroFM-Large to analyze

VibroFM at a larger scale (pre-trained with more data) on

additional downstream tasks.

B. The Encoders

We choose FOCAL [24] as our self-supervised training frame-

work to pre-train VibroFM . We train and test VibroFM with

three different backbone encoders:

• DeepSense [28] is a DNN classifier designed for time-

series sensory inputs. It applies convolution layers on

modality spectrograms to extract general features and

then utilizes recurrent layers (stacked GRU) to further

extract global temporal relationships.

• SWIN-Transformer (SW-T) [29] is a variant of Vision

Transformer (ViT) [32], proposing to extract a hierar-

chical representation through downsampling and shifting

window operations.

• TSMixer [30] is a popular lightweight neural network

for various industrial time-series forecasting tasks. It

mainly leverages multi-layer perception (MLP) blocks

on non-overlapping time series patches to learn multi-

variate and inherent temporal representations. The MLP

layers (called Mixer layers) learn correlations across the

patches, between the hidden feature within each patch,

and between different channels.

IV. EVALUATION RESULTS

Below, we examine VibroFM performance in terms of robust-

ness and label efficiency after fine-tuning with some target

domain labeled data and then compare the training efficiency

of the supervised and the foundation models.

A. Model Retraining/Fine-tuning

For purposes of comparing with supervised solutions, we

divide the Evaluation Set into training, validation, and testing

data with a ratio of 8:1:1. We train supervised models using

different amounts of labeled samples (label ratio) from the

training data of the Evaluation Set (100%, 50%, 10%, 1%) and

use the same amount of data for fine-tuning VibroFM. We then

evaluate their respective performance on the withheld testing

data. Table III summarizes the performance of the retrained

models on the Evaluation Set, under different label ratios.

When the amount of labeled data used is high (100% or 50%),

the supervised approaches work well. In fact, they slightly

outperform VibroFM (that tunes its last layer only). However,

as the amount of labeled data decreases (10% and 1%), the su-

pervised approaches degrade substantially, whereas VibroFM

suffers a much lower penalty in performance, suggesting a

higher label efficiency.

B. Generalization to New Targets

Next, we show that VibroFM also generalizes well to unseen

targets (absent in pre-training data). While Polaris, Warthog,

and Civilian classes are present in MOD, the Husky class is

not and is therefore not seen by VibroFM during pre-training.

We analyze VibroFM’s performance (fine-tuned with 100%

label ratio and SW-T as the backbone encoder) for each class

and show the confusion matrix in Figure 3.

Polaris Warthog Civilian Husky

Po
la
ris

W
ar
th
og

Ci
vi
lia
n

Hu
sk
y

470 0 6 4

2 209 1 12

3 0 478 23

3 5 3 363

Fig. 3. Test confusion matrix of VibroFM with SW-T as the backbone fine-
tuned on Evaluation Set.

Note that, VibroFM can correctly classify the Husky class

even though it was not exposed to the Husky data during pre-

training. This suggests that the foundation model is learning
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TABLE III
FINE-TUNING RESULTS ON THE EVALUATION SET. MODELS ARE TRAINED/FINE-TUNED ON THE EVALUATION SET.

Label Ratio 100% 50% 10% 1%

Encoder Model Acc F1 Acc F1 Acc F1 Acc F1

DeepSense [28]
Supervised 0.9684 0.9637 0.9425 0.9328 0.8078 0.7714 0.5247 0.5019

Supervised-fine-tuned 0.7933 0.7578 0.7762 0.7379 0.7383 0.6892 0.5974 0.5392
VibroFM 0.9330 0.9293 0.9204 0.9154 0.8976 0.8893 0.8078 0.7876

SW-T [29]
Supervised 0.9842 0.9840 0.9608 0.9589 0.7434 0.7107 0.3660 0.2802

Supervised-fine-tuned 0.6372 0.5829 0.6327 0.5778 0.6056 0.5592 0.5607 0.5037
VibroFM 0.9526 0.9473 0.9558 0.9524 0.9425 0.9372 0.8312 0.8176

TSMixer [30]
Supervised 0.9722 0.9700 0.9216 0.9117 0.7124 0.6912 0.5556 0.4936

Supervised-fine-tuned 0.7705 0.7430 0.7636 0.7356 0.7427 0.7151 0.6625 0.6245
VibroFM 0.8382 0.8233 0.8363 0.8225 0.8217 0.8067 0.7377 0.7158
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(a) DeepSense
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Fig. 4. Accuracy curves of supervised training and VibroFM fine-tuning.

a generalized representation of surrounding moving objects

through the task-agnostic objectives during pre-training and

can adapt well to new targets in downstream tasks.

C. Training Efficiency

In this section, we compare the training efficiency of the

supervised models and the fine-tuning efficiency of VibroFM

(which we refer to as “training” efficiency as well, for the

sake of brevity, below). We define the training efficiency as the

convergence speed or the number of training epochs needed for

convergence. We compare the convergence speed of supervised

training and fine-tuning by observing the training accuracy

curves in Figure 4 during the first 100 epochs. On both

backbone encoders, VibroFM (fine-tuning) converges much

faster compared to the supervised model. This shows that the

pre-trained representation is useful for the downstream task

and can easily transfer knowledge to achieve high performance

quickly. On the other hand, since the supervised models are

trained from scratch, they begin at a lower accuracy and

with more parameters to train. Thus, the supervised algorithm

approaches VibroFM performance only towards the end of

the 100 epochs. We do not consider the supervised-fine-tune

benchmarks since they are dominated by the others.

D. Run-time Execution and On-device Inference

In this section, we deploy our models to a RaspberryShake

4D (RS4D), model 4B Rev 1.4. The RS4D device has 8GB

of RAM on a Raspberry Pi single-board computer with an

ARM Cortex-A72 processor. We first evaluate the computa-

tion overhead during inferencing, followed by an on-device

training/fine-tuning analysis.

TABLE IV
COMPARING INFERENCE COMPUTATION OVERHEAD BETWEEN

SUPERVISED AND VIBROFM ACROSS DIFFERENT MODELS.

Encoder Model Size (MB) Parameters (M) Infer Speed (s)

DeepSense
Supervised 13.787 3.6123 0.145332
VibroFM 25.27 6.6220 0.101111

SW-T
Supervised 47.433 12.4342 0.190434
VibroFM 44.955 11.7725 0.184065

TSMixer
Supervised 6.444 1.6892 0.075898
VibroFM 7.463 1.9523 0.070949

We evaluate the trained and fine-tuned model on the RS4D

Pi device. Detailed information regarding the sizes and number

of parameters (expressed in millions) of these models is

provided in Table IV.

The table also shows the average time taken by each model

to make an inference from a single data sample (a two-second

window of input sensor data). All models can compute an

inference from the two-second sample in less than 0.2 seconds.

SWIN-Transformer, due to its expensive attention operations,

is the largest and the slowest. TSMixer, composed of mostly

lightweight multi-layer perception layers, has the smallest

size and quickest inference speed. Importantly, the foundation

model based approach is similar in inference efficiency to

supervised classifier.

E. On-device training/fine-tuning

Next, we train and fine-tune these models on the RS4D Pi

device and profile their speed. Specifically, we record the

average time required to process one batch during both training

and fine-tuning phases across a range of batch sizes, from 1

to 128. The results, shown in Table V, reveal a significant gap

between the Supervised models and VibroFM in terms of batch

processing time. VibroFM, which only tunes its final linear

layer, demonstrates a superior training speed — achieving a

50% and up to nearly 90% reduction in time compared to its

Supervised counterparts. This efficiency makes VibroFM an

ideal approach for on-device learning, particularly in scenarios

requiring rapid adaptation to dynamic environments. Faster

processing time can also significantly lower the energy con-

sumption on incoming tasks, which is non-trivial for resource-

constrained IoT devices. Besides, we use Pytorch Profliler

[33] to analyze the memory consumption required to train and
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TABLE V
AVERAGE BATCH PROCESSING TIME DURING TRAINING (SUPERVISED) AND FINE-TUNING (VIBROFM ) ON RASPBERRY PI DEVICE.

Encoder Model
Average Processing Time for each batch size (second) Average Time

Reduction
1 2 4 8 16 32 64 128

DeepSense
Supervised 0.6499 0.8850 1.2151 1.9488 3.4106 6.9621 13.3596 29.6567

-88.49%
VibroFM 0.1052 0.1374 0.1724 0.2452 0.3481 0.5901 1.0795 2.0166

SW-T
Supervised 1.2364 1.5483 2.2258 3.5723 6.1268 11.2664 21.5920 42.6260

-64.84%
VibroFM 0.2639 0.4035 0.6932 1.2597 2.4553 4.5907 9.2683 18.6447

TSMixer
Supervised 0.3526 0.5386 0.8981 1.5925 3.0116 5.8583 11.5925 24.8614

-54.94%
VibroFM 0.1215 0.2092 0.3825 0.7470 1.4690 2.8076 5.6527 12.9797

fine-tune the model. We present the peak memory allocation

for various batch sizes in Table VI. In contrast to Supervised

models that train the entire model, VibroFM requires only a

minimal amount of memory to fine-tune its final linear layer.

The benefit of the Foundation Model for runtime execution is

two-fold: first, its memory usage is significantly lower than

that of fully supervised models; second, it achieves a much

faster fine-tuning speed than traditional supervised training.

F. Effect of Pre-Training Data Scale

Next, we examine VibroFM when additional data is used for

pre-training. Specifically, we pre-train VibroFM at a larger

scale on the VibroFM-Large dataset described in Section III-A.

To maintain a model size suitable for edge device deployment,

we keep the model architecture and parameters consistent

with the previous experiments and only focus on increasing

the scale of the pre-training dataset. We plot the accuracy

of VibroFM-Large against VibroFM with DeepSense as the

backbone encoder in Figure 5. VibroFM-Large, leveraging

additional unlabeled data achieves better generalization per-

formance than VibroFM.

G. Additional Downstream Tasks

We also explore an additional downstream task — distance

classification, using discrete distance labels derived from the

sensor and vehicle GPS value for each sample. Two domains

are analyzed. Domain A contains data gathered under varying

environmental conditions, exhibiting domain shift effects for

both VibroFM and VibroFM-Large. Conversely, Domain B

corresponds to the dataset exclusively seen by VibroFM-Large.

We train and fine-tune the models using the distance labels and

present the results in Figure 6. In Domain A, both VibroFM

variants demonstrate resilience against data from a differ-

ent domain, outperforming the Supervised models. Within

Domain B, VibroFM-Large achieves the best performance,

indicating that pre-trained knowledge significantly enhances

the performance of downstream tasks within the seen domain.

The results underscore that pre-trained embeddings capture

comprehensive task-agnostic knowledge, making them suitable

for deployment in a wide range of downstream tasks. Such

adaptability is particularly useful in IoT applications, allowing

for the seamless adaptation and transfer of a single foundation

model, pre-trained with unlabeled data, to multiple tasks with

minimal computation cost.
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Fig. 5. Test accuracy of VibroFM and VibroFM-Large with DeepSense against
different label ratios.
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Fig. 6. Distance classification with DeepSense on two domains.

V. DISCUSSION

The results reported in this paper suggest that the task-agnostic

nature of pre-training of self-supervised models endows them

with greater robustness, making them ideally suited for IoT

application deployment across various environments with only

limited fine-tuning needed to achieve high-quality and efficient

inference. Unlike traditional supervised models, these pre-

trained models exploit unlabeled data, while offering enhanced

resilience against domain shifts. The pre-trained models also

show exceptional generalization abilities to unseen targets.

These characteristics are particularly useful in dynamic IoT

sensing scenarios where different sensor deployments (even

within the same application) may be subjected to vastly dif-

ferent conditions. Importantly, the above beneficial properties

are attained at moderate pre-training data sizes, thus supporting

the case for µFMs.

The high label efficiency of pre-trained models further fa-

cilitates their rapid deployment to a wide array of downstream

tasks, where label scarcity is a critical challenge. Merely

training a single linear layer in VibroFM for fine-tuning

can easily reach optimal performance within a few epochs.

Besides, VibroFM has a relatively small memory requirement

with a much higher throughput during fine-tuning, compared
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TABLE VI
PEAK MEMORY ALLOCATION IN MB FOR DIFFERENT BATCH SIZES DURING TRAINING (SUPERVISED) AND FINE-TUNING (VIBROFM ).

Encoder Model
Peak Memory Consumption for each batch size (MB)

1 2 4 8 16 32 64 128

DeepSense
Supervised 33.4778 87.1689 98.5412 121.2858 166.7751 257.7537 439.7108 858.3438
VibroFM 0.4977 0.5793 1.1293 2.2292 4.4311 8.8349 17.6424 35.2574

SW-T
Supervised 68.1482 89.0742 130.9264 214.6307 342.1466 675.292 1341.5829 2679.6642
VibroFM 4.0575 7.1023 13.1918 25.3708 49.729 98.4452 194.865 389.73

TSMixer
Supervised 20.2296 34.0536 61.7017 116.9978 227.5901 448.7746 891.1436 1775.8816
VibroFM 2.0768 4.1399 8.2661 16.5186 33.0234 66.0331 132.0525 264.0913

to fully-supervised learning. This efficiency not only enhances

the practicality of µFMs in dynamic settings but also opens

opportunities for on-device training, making it feasible to train

them on resource-constrained IoT devices.

Finally, one should acknowledge that this initial study, while

promising, offers only anecdotal evidence. More research is

needed to experiment with other application domains, modal-

ities, tasks, pre-training techniques, and conditions in terms

of data volume. The authors hope that this initial work might

encourage a broader and more systematic investigation into the

µFM concept for smart and distributed sensing applications.

VI. RELATED WORK

Deep Learning has catalyzed significant advances in inference

from IoT sensing data [34], with DNNs becoming integral to

a wide range of IoT applications [35], [36]. However, domain-

specific challenges still lead to many limitations in building

robust DNNs for IoT sensing. Deployed DNNs must handle

unpredictable interference in the field that greatly alters the

statistical distribution of collected sensor data. The altered

distribution, or domain shift [37], can significantly degrade

DNN performance, leading to inaccurate results. FMs [1]

have gained increasing popularity, most notably in language

[2], [38], [39] and vision [3], [16]. Contrastive Learning

(CL) [24], [40], [41] has been a popular form of learning

to extract a robust embedding space during pre-training. The

main idea is to pull similar samples closer while pushing

other samples further apart in the embedding space. Unimodal

CL frameworks like [40], [42] apply random augmentations

to learn transformation invariant information. Multi-modal

CL frameworks [41], [43] enforce cross-modal consistency.

Improving resilience against domain shifts has been widely

studied in recent years [44], [45], improving the efficiency of

unsupervised domain adaptation for IoT applications. These

solutions primarily consider classifiers trained in a supervised

manner. Others have also worked on Federated Learning-based

domain generalization [46], [47]. Numerous works analyze do-

main generalization in vision [48], but less has been explored

for IoT applications.

VII. CONCLUSIONS

In this paper, we advertise the importance of µFMs, exempli-

fied by a vibration-based Foundation Model the authors pre-

trained using a self-supervised learning framework, FOCAL,

comparing against conventional supervised models in the

context of IoT sensing. Model evaluation has demonstrated

that it requires minimal domain-specific tuning to achieve sig-

nificantly improved robustness and generalization, compared

to fully-supervised models. The µFM was further shown to

allow efficient real-time inference and fine-tuning on resource-

constrained IoT devices. Our results highlight promising op-

portunities for µFMs in the IoT landscape. Future work will

focus on developing more capable µFMs for a broader class

of IoT systems, sensing modalities, and applications.
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