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Abstract—The paper argues for the feasibility and utility of
micro foundation models (1 FMs), a key direction for future smart
IoT/CPS systems that exploits advances in self-supervised pre-
training to support multiple downstream tasks. We demonstrate
key beneficial properties such as latent representation indepen-
dence from the downstream task, robustness to domain shifts, and
ability to learn from unlabeled data. Importantly, we demonstrate
the emergence of these properties after pre-training with only
moderate amounts of unlabeled data, earning the name ;FMs. To
make the argument, evaluate model efficacy, and surface some of
the underlying challenges, this paper describes a vibration-based
1FM, called VibroFM, pre-trained with moderate amounts of
unlabeled acoustic and seismic sensing data, to support target clas-
sification and tracking applications. VibroFM is pre-trained in an
environment-agnostic fashion using unlabeled sensor data. It can
then be fine-tuned to a given deployment using a small amount of
in-situ labeled data. The paper shows that VibroFM (i) improves
the robustness of several downstream tasks, (ii) efficiently adapts
to different environmental conditions (using only small amounts
of fine-tuning), and (iii) allows few-shot generalization to unseen
targets. We further show that VibroFM can execute in real
time on embedded sensor nodes. We compare the robustness and
performance of VibroFM to conventional supervised deep neural
networks, showing the advantages of the former. Combined with
the feasibility of executing 1 FMs in resource-limited settings and
the sufficiency of only moderate amounts of data for their pre-
training, we conclude the importance of micro foundation models
as a promising research direction for the IoT/CPS community.

Index Terms—Foundation Model, Self-Supervised Learning,
Internet of Things

I. INTRODUCTION

The paper defines and argues for the importance of a class of
domain-specific foundation models we call micro foundation
models (uFMs) needed to overcome some of the training
and robustness challenges of intelligent [oT/CPS systems. We
argue for the feasibility of pre-training ¢FMs from scratch on
resources available to a broad range of institutions, in contrast
to the prohibitive amounts of resources needed to train the
next generation of, say, large language models (LLMs) or
vision language models (VLMs). To make these arguments,
we present and evaluate VibroFM, a new vibration-based

pFM developed and trained by the authors to support target
classification and tracking applications based on acoustic and
seismic sensing.

The success of foundation models (FMs) [1] in the areas
of natural language processing and computer vision has led
to generalizations of the foundation model concept to other
domains, where significant amounts of unlabeled data exist
that can be used for self-supervised pre-training. One such
domain is loT applications. While many of today’s foundation
models, such as GPT-4 [2] and LLava [3], are very large,
calling for amounts of pre-training resources that exceed the
capacity of most research institutions, the paper shows that
properties of foundation models, such as robust generalization
and independence from downstream tasks, emerge at a much
smaller scale, thus imparting application benefits at realistic
cost. To illustrate this point, VibroFM (originally presented by
the authors as a workshop publication [4]) is (i) extended with
a new (lighter) encoder, (ii) used to investigate the impact of
pre-training data volume on resulting model quality, and (iii)
adapted in the evaluation to multiple downstream inference
tasks and new targets, concluding that the pursuit of yFMs
is both technically feasible and operationally beneficial, as
key foundation model properties emerge at only a moderate
training scale.

We choose acoustic and seismic sensing data modalities
because of the core loT-centric challenges that these modalities
exemplify. Namely, such modalities are particularly sensitive
to environmental factors, conflating target signatures with
environmental effects. Even in the same application domain,
such as target tracking, a target (e.g., some vehicle on a
road) may generate different acoustic and seismic signatures
depending on a variety of environmental factors, such as the
type of terrain (paved road, gravel, sand, etc.), background
noise (rain, wind, construction, traffic, etc.) and various natural
and/or human disturbances. Training an inference task (e.g., a
target classifier) to handle all such contingencies is a daunting
undertaking. These challenges have no direct correspondence
in several mainstream Al contexts such as text inputs (for
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LLMs), where a label, such as “Ford Mustang”, always
denotes the same car regardless of the context in which the
car is described. The confounding effects of the environmental
context are also less prominent in vision, where the car will
have similar visual features regardless of the type of road it is
on and regardless of the background landscape. In that sense,
IoT time-series data modalities are arguably more challenging
as both the target and environment features get superimposed
onto the same input stream.

The challenge with disentangling time-series data (e.g.,
acoustic and seismic data) into the underlying signatures of
different targets and environmental factors often frustrates
traditional supervised learning solutions. Such solutions (for
intelligent IoT applications) are label-hungry. Labeled data
must be collected not only on a sufficient set of targets but also
in a sufficiently representative set of environmental conditions.
In the absence of sufficient amounts of labeled data, supervised
DNN training techniques suffer from overfitting, thereby dra-
matically reducing the robustness of run-time inference [5]. In
contrast, by obviating the need for labeled data in pre-training
(requiring small amounts of labels for fine-tuning), we show
that VibroFM improves inference robustness and adaptation to
domain shifts, environmental noise, and new targets.

The rest of the paper is organized as follows. We discuss
micro foundation models in more detail in Section II, followed
by a description of our running case study and experimental
set-up in Section III. Section IV presents evaluation results
of model robustness, run-time efficiency, and effect of pre-
training data size. Section V discusses the main takeaway
points from this paper. Section VI covers related work. The
paper concludes with Section VIIL

II. uFMS: SCOPE, ADVANTAGES, AND PRE-TRAINING

In this section, we define our concept of micro foundation
models, describe pre-training (and fine-tuning) approaches,
and identify some of the challenges and research opportunities
in that space.

A. Definition

Foundation models are task-independent neural network mod-
els trained in a self-supervised fashion on large amounts of
unlabeled data to encapsulate knowledge in a given field. Large
language models (LLMs) are a common example of foun-
dation models, but the concept extends to other application
domains, such as security [6], [7], networking [8]-[10], and
meteorology [11], to name a few. We assume that the reader
is already familiar with the concept of foundation models. A
great description of this concept is found in the original paper
that popularized it [1]. For the purposes of this paper, we define
micro foundation models as foundation models that satisfy the
following constraints:

o Domain-specific: We consider domain-specific models.
An example would be a foundation model for medical
image analysis, urban traffic monitoring, human activity
recognition, network security, or a similarly targeted
domain. In an IoT/CPS context, this allows the model

to specialize in knowledge pertinent to the target domain
only, thus improving tractability.

o Modality-specific: The model uses, as input, only a
small pre-specified range of sensing modalities. This is
especially important for IoT/CPS applications, where the
number of possible sensing modalities can be vast, thus
calling for specialization to allow effective pre-training.

o Self-supervised: They are pre-trained in a self-supervised
manner (i.e., using unlabeled data). This is a core prop-
erty of all foundation models and is a key enabler that
allows us to circumvent the need for scarce labeled data.

o Task-agnostic: Their pre-training is agnostic to down-
stream (inference) tasks. This is another core property
that separates foundation models from machine learning
solutions customized for an individual task. For exam-
ple, a uFM for urban traffic monitoring might need to
enable (i) classification of different objects in the urban
environment, (ii) localization of these objects, (iii) speed
estimation, etc. The same underlying model (with the
possible exception of a small task-specific head or layer)
should support all these tasks. We call this property task-
agnostic as opposed to task-independent because we want
to allow for some application-specific bias in training.
For example, if the set of application tasks has to do
generally with foreground objects, it may be OK for pre-
training to ignore background features. In other words,
some inductive bias, informed by the application domain,
is acceptable.

o Moderately-sized: They use a moderate number of model
parameters (in the millions, not billions) and correspond-
ingly moderate amounts of data for pre-training. Beyond
that, we are intentionally vague on the notion of moderate
as it might be application-specific.

B. Advantages

Unlike supervised training techniques that directly teach a neu-
ral network how to perform a particular inference task, pre-
training a foundation model aims to teach the neural network a
better internal representation of domain-specific and modality-
specific data. The internal representation encodes higher-level
semantics or “knowledge” of the domain, extracted from
the specified data modality as input. As mentioned above,
three further features characterize the pre-training of (micro)
foundation models. First, pre-training is self-supervised; no
labeled data are needed. Second, it is task-agnostic; it does
not know the downstream inference task(s) and, as such,
can in principle support several different tasks, deployments,
or environments. Finally, specific to uFMs, we explore pre-
training with moderate amounts of data. We demonstrate the
emergence of useful model properties despite the moderate
pre-training data scales. The feasibility of pre-training with
moderate amounts of data without data labels and without
knowing the exact downstream task(s) makes the approach
attractive to IoT applications. First, unlabeled data are a lot
easier to collect in IoT settings than labeled data (due to
the lack of interpretability of many data modalities, such
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as vibration or RF signatures, and thus difficulties labeling
collected data after the fact). Self-supervised pre-training
is therefore highly advantageous. Second, the independence
of pre-training from downstream tasks makes the approach
easily customizable to changes in model use and deployment
conditions. We show that the pre-trained model can be fine-
tuned with only a minimal amount of labeled data for a spe-
cific downstream deployment, allowing for more robust task
performance than baseline (supervised) approaches. Third,
the moderate size of micro foundation models makes them
compatible with the computational limitations of IoT devices.
Rapid advances in machine learning have led to increasingly
larger DNNs [12]. However, many IoT devices remain limited
by their resource constraints [13]. These devices, from simple
sensors to complex wearables, often lack the necessary pro-
cessing power, memory, and energy efficiency to support the
operation of large-scale DNNs in real time. This discrepancy
poses significant challenges for deploying advanced DNNs in
IoT applications [14]. We show that the pre-trained model we
use is capable of real-time execution on a Raspberry-Pi class of
devices. It is also shown to have a higher fine-tuning efficiency
and a lower memory consumption, while offering more robust
performance, compared to its supervised counterparts.

C. Model Pre-training

Pre-training foundation models can be conceptualized as an
act of encoding or mapping input domain data into a multi-
dimensional latent space that is better organized semantically.
This is usually referred to as input data embedding. The
improved semantic organization simplifies solving downstream
inference tasks. For example, if input measurements of similar
phenomena land closer in some dimension of the latent space
then it becomes easier to identify a phenomenon simply
based on its embedding location. While many techniques were
proposed recently for self-supervised pre-training of founda-
tion models, two are particularly widespread: (i) learning to
reconstruct masked [15], [16] (or distorted [17]) inputs and
(ii) contrastive learning [18]-[21]. They differ in the way they
train the model useful concepts from the domain, without the
need for labeled data.

Specifically, masking/distortion removes or distorts parts
of the input, and then rewards the model for correct recon-
struction of these parts. Clearly, a model that learns correct
reconstruction from partial data must have encapsulated some
knowledge about the target domain. Some language models
(e.g., BERT [15]) are trained by input masking and recon-
struction.

Unlike masking, contrastive learning teaches the model
what “similarity” means in the target domain (by contrast-
ing similar and dissimilar sample pairs), such that similar
inputs are grouped closer together in a latent space. To
do so without labels, it often relies on semantics-invariant
input transformations that convert individual input samples to
“similar” ones (without necessarily knowing what the sample
labels are) to contrast with random pairs (that are likely less
similar). An example of such transformations in vision is
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image resizing; an image and its resized version are more
similar than two random images. An example in time-series
data is adding simulated noise. The result of rewarding the
model for putting similar samples closer together in the latent
space is a well-organized learned latent representation, where
proximity implies semantic similarity.

D. IoT/CPS-Specific Pre-training Challenges

Several peculiarities of data collected in IoT/CPS applications
call for re-thinking of the mainstream foundation model pre-
training pipelines, described above. For example, IoT/CPS
data typically represent sensor measurements of physical phe-
nomena. These phenomena have better representations in the
frequency domain [22], thus favoring contrastive learning and
masking solutions that are optimized for frequency domain
data. Examples of such optimizations have been recently
described for contrastive learning [21] and masking [23],
respectively.

Spectrograms are commonly used representations of fre-
quency domain data. While superficially similar to images,
spectrograms differ in many respects from other visual inputs,
calling for customized solutions beyond mainstream image-
based pre-training. For example, observing a visually similar
object (e.g., a car) at different locations in an image does not
usually affect its classification, whereas observing a similar
visual pattern in different locations of the spectrogram usually
implies differences in class because the underlying signal
frequency range is different. Also, in spectrograms, some
frequency ranges may be more important than others depend-
ing on the temporal dynamics (and thus spectral frequencies)
of phenomena in the underlying application domain and the
nature of environmental noise.

For another example of differences of [oT/CPS data, such
data are often multimodal. Unlike commonly explored modali-
ties in mainstream Al, such as text, images, and video, [oT data
may feature other modalities including accelerometer, gyro-
scope, or geophone data. These modalities call for new notions
of sample similarity and entail different latent space archi-
tectures to capture both modality-specific and cross-modality
information [24]. The optimization of foundation model pre-
training pipelines to the needs of IoT/CPS applications is thus
a key research topic for the intelligent (IoT/CPS) systems
community. Some previous work has started to address the
topic [23], [24], but the field is new and more research is
needed, which is beyond the scope of this paper. Below,
we merely show that an optimized pre-training pipeline is
able to demonstrate beneficial foundation model properties at
moderate model and training data scales.

E. A Vibrometry uFM

To experiment with an example uFM (we call VibroFM), we
train it from acoustic and seismic data using a contrastive
learning framework, called FOCAL [24], recently proposed
by the authors for (pre-training) intelligent multimodal sensing
applications. FOCAL pre-trains an encoder to extract a struc-
tured latent representation of the input multimodal data. This
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Fig. 1. Overview of VibroFM pre-training (task-agnostic) and fine-tuning (task-specific).

TABLE 1
TRAINING CONFIGURATIONS: BELOW, WE DETAIL THE TRAINING PARAMETERS INCLUDING THE BATCH SIZE (NUMBER OF SAMPLES PER BATCH), THE
OPTIMIZER FOR UPDATING MODEL PARAMETERS, THE INITIAL LEARNING RATE (LR), AND THE LR SCHEDULER FOR DYNAMIC LR ADJUSTMENTS,
ALONGSIDE ITS LR DECAY RATE. THE TABLE ALSO LISTS THE TOTAL TRAINING EPOCHS AND THE DATA AUGMENTATIONS APPLIED.

Stage | Batch Size | Optimizer | Initial LR | LR Scheduler | LR Decay | Epochs | Augmentations
Supervised 128 AdamW [25] le-4 Cosine [26] 0.2 500 Mixup, Phase Shift
Pre-train 256 AdamW [25] 0.0001 Cosine [26] 0.05 6000 Permutation, Negation, Time Warp, Horizontal Flip,
a : sme : Magnitude Warp, Scaling, Phase Shift
Fine-tuning 256 Adam [27] le-3 Cosine [26] 0.2 200 Mixup, Phase Shift

latent representation separates shared and private subspaces.
The shared subspace contains common information shared
across the different sensing modalities. The private subspace
holds additional modality-exclusive information by contrasting
different augmented views. An orthogonality constraint is
applied among the private subspaces, as well as between
each private subspace and the shared subspace to enforce
information independence among these subspaces.

An overview of VibroFM training is shown in Figure 1.
We first utilize FOCAL to pre-train VibroFM with three
popular DNN encoders (DeepSense [28], SWIN-Transformer,
abbreviated as SW-T [29], and TSMixer [30]) on a multi-
modal Moving Object Detection [24] (MOD) dataset. During
pre-training, we randomly select time and frequency aug-
mentations to create multiple views for modality-exclusive
contrastive learning. We use STFT (Short Time Fourier Trans-
form) to convert each sample into the frequency domain and
then extract the embedding of each modality. The training
configurations used are presented in Table I. We also use the
same setup to pre-train a larger-scale version of VibroFM,
denoted as VibroFM-Large, with additional data collected. A
brief size comparison of the two models is shown in Table II.

For testing, we perform a two-day deployment experiment
in a real-world neighborhood as a case study to examine
the performance of VibroFM. The pre-training data did not
include any data from that deployment. To experiment with the
robustness of the pre-trained model, we freeze the pre-trained
model and append a single linear layer for fine-tuning. We
fine-tune this linear layer on part of the labeled data collected
in the new deployment and fest the fine-tuned model’s per-
formance under the same or different deployment conditions.
We would like to note that only the linear layer is trained at
the fine-tuning stage. During fine-tuning, we apply mixup [31]
augmentation in the time domain and phase shift augmentation
in the frequency domain. We also separately train supervised
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DNNs for the three backbone encoders as the benchmarks.
The supervised model contains an additional fusion layer
to fuse the modality embeddings for classification. Training
configurations for fine-tuning and supervised benchmarks are
shown in Table I. We also use a supervised model initially
trained on the MOD dataset and later fine-tuned on its final
classification layer, mirroring VibroFM’s fine-tuning approach.
We call it the supervised fine-tuned baseline.

III. TESTING uFM PROPERTIES: A CASE STUDY

Experiments with VibroFM were conducted at an outdoor
research facility located on (repurposed) state park grounds.
Sensors were deployed and vehicles were driven nearby. Fig-
ure 2 shows a satellite view of the test facility and the locations
of sensor nodes. Nodes 1 & 4 utilized the RaspberryShake!
4D, model 4B Rev 1.4, while Nodes 2 & 3 utilized the
RaspberryShake 1D, model 4B Rev 1.5. Each node featured
a geophone and a microphone array, collecting seismic and
acoustic vibration signals from nearby objects. In each run, a
specific target navigated the neighborhood, passing the sensors
in some arbitrary order within a short time window. Four
distinct target types were used: (i) a Polaris® off-road vehicle,
(i) a Warthog® all-terrain unmanned ground robot, (iii) a
Husky unmanned outdoor field robot*, and (iv) a standard
civilian automobile.

A. Datasets

For pre-training, we first consider the MOD dataset released
in [24]. MOD consists of multi-modal acoustic and seismic
signals collected from sensors deployed in different urban and
rural environments that varied in terrain (paved, gravel, dirt,

Uhttps://raspberryshake.org/

Zhttps://www.polaris.com/
3https://clearpathrobotics.com/warthog-unmanned- ground- vehicle-robot/
“https://clearpathrobotics.com/husky-unmanned- ground- vehicle-robot/
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Fig. 2. The satellite view of the case study neighborhood with labeled nodes.

TABLE II
COMPARISON OF DATASET SIZES FOR EVALUATION SET, MOD, AND
VIBROFM-LARGE.

Metric ‘ Evaluation Set  MOD  VibroFM-Large

Labeled Yes No No

Hours 7.02 21.18 66.11
Number of Samples 12635 38116 119000

rooftop, etc) and environmental conditions (quiet, windy, etc),
recording the passage of a variety of target types, mostly
focusing on civilian automobiles, bikes, and humans. We
follow the same setup as [24] with a 0.2-second overlapping
ratio between 2 seconds samples of 8000Hz acoustic 100Hz
seismic data. We partition MOD into a set of unlabeled
data used to pre-train the FM and a set of labeled data for
supervised training and fine-tuning.

To experiment with the impact of training data size, we
increase the scale of the pre-training dataset by acquiring
additional seismic and acoustic signals from four different
civilian cars, collected across three domains distinct from those
in the MOD dataset. We process these new data to match the
format of the MOD dataset and integrate it with the MOD
dataset, expanding the pre-training set to threefold its original
size. We call this expanded set VibroFM-Large. We call the
data collected during experimental evaluation the Evaluation
Set. Statistical comparison between each set is presented
in Table II. We use MOD and Evaluation Set to evaluate
VibroFM’s run-time robustness and efficiency compared to
supervised methods. Then, we use VibroFM-Large to analyze
VibroFM at a larger scale (pre-trained with more data) on
additional downstream tasks.

B. The Encoders

We choose FOCAL [24] as our self-supervised training frame-
work to pre-train VibroFM . We train and test VibroFM with
three different backbone encoders:

o DeepSense [28] is a DNN classifier designed for time-
series sensory inputs. It applies convolution layers on
modality spectrograms to extract general features and
then utilizes recurrent layers (stacked GRU) to further
extract global temporal relationships.

o SWIN-Transformer (SW-T) [29] is a variant of Vision
Transformer (ViT) [32], proposing to extract a hierar-
chical representation through downsampling and shifting
window operations.
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« TSMixer [30] is a popular lightweight neural network
for various industrial time-series forecasting tasks. It
mainly leverages multi-layer perception (MLP) blocks
on non-overlapping time series patches to learn multi-
variate and inherent temporal representations. The MLP
layers (called Mixer layers) learn correlations across the
patches, between the hidden feature within each patch,
and between different channels.

IV. EVALUATION RESULTS

Below, we examine VibroFM performance in terms of robust-
ness and label efficiency after fine-tuning with some target
domain labeled data and then compare the training efficiency
of the supervised and the foundation models.

A. Model Retraining/Fine-tuning

For purposes of comparing with supervised solutions, we
divide the Evaluation Set into training, validation, and testing
data with a ratio of 8:1:1. We train supervised models using
different amounts of labeled samples (label ratio) from the
training data of the Evaluation Set (100%, 50%, 10%, 1%) and
use the same amount of data for fine-tuning VibroFM. We then
evaluate their respective performance on the withheld testing
data. Table III summarizes the performance of the retrained
models on the Evaluation Set, under different label ratios.
When the amount of labeled data used is high (100% or 50%),
the supervised approaches work well. In fact, they slightly
outperform VibroFM (that tunes its last layer only). However,
as the amount of labeled data decreases (10% and 1%), the su-
pervised approaches degrade substantially, whereas VibroFM
suffers a much lower penalty in performance, suggesting a
higher label efficiency.

B. Generalization to New Targets

Next, we show that VibroFM also generalizes well to unseen
targets (absent in pre-training data). While Polaris, Warthog,
and Civilian classes are present in MOD, the Husky class is
not and is therefore not seen by VibroFM during pre-training.
We analyze VibroFM’s performance (fine-tuned with 100%
label ratio and SW-T as the backbone encoder) for each class
and show the confusion matrix in Figure 3.

syl o | 6 | 4
g

£ 2 209 1 | 12
=

5 3

Ui

z
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Fig. 3. Test confusion matrix of VibroFM with SW-T as the backbone fine-
tuned on Evaluation Set.

Note that, VibroFM can correctly classify the Husky class
even though it was not exposed to the Husky data during pre-
training. This suggests that the foundation model is learning
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TABLE III
FINE-TUNING RESULTS ON THE EVALUATION SET. MODELS ARE TRAINED/FINE-TUNED ON THE EVALUATION SET.

Label Ratio | 100% | 50% | 10% | 1%
Encoder | Model | Acc FI | Acc F1 | Acc F1 | Acc F1
Supervised 0.9684 0.9637 | 0.9425 0.9328 | 0.8078 0.7714 | 0.5247 0.5019
DeepSense [28] | Supervised-fine-tuned 0.7933 0.7578 | 0.7762  0.7379 | 0.7383  0.6892 | 0.5974  0.5392
VibroFM 0.9330 0.9293 | 0.9204 0.9154 | 0.8976 0.8893 | 0.8078 0.7876
Supervised 0.9842 0.9840 | 0.9608 0.9589 | 0.7434 0.7107 | 0.3660  0.2802
SW-T [29] Supervised-fine-tuned 0.6372 0.5829 | 0.6327 0.5778 | 0.6056  0.5592 | 0.5607  0.5037
VibroFM 0.9526  0.9473 | 0.9558 0.9524 | 0.9425 0.9372 | 0.8312 0.8176
Supervised 0.9722 0.9700 | 0.9216 0.9117 | 0.7124  0.6912 | 0.5556  0.4936
TSMixer [30] Supervised-fine-tuned 0.7705 0.7430 | 0.7636  0.7356 | 0.7427  0.7151 | 0.6625 0.6245
VibroFM 0.8382  0.8233 | 0.8363 0.8225 | 0.8217 0.8067 | 0.7377 0.7158
— Supervised VibroFM — Supervised VibroFM TABLE IV
1.0 ‘ I T T T 1.0y L r r ; COMPARING INFERENCE COMPUTATION OVERHEAD BETWEEN
0.8 1| ..os8 SUPERVISED AND VIBROFM ACROSS DIFFERENT MODELS.
30 / 30
‘3- 0.6 /l § 0.6 / Encoder | Model | Size (MB) | Parameters (M) | Infer Speed (s)
v v
<0.41/ 0.4 DeepSense | Supervised | 13.787 36123 0.145332
0.2 0.2 CEPSENSe | VibrorM 25.27 6.6220 0.101111
0 25 50 75 100 o 25 50 75 100 -
Epochs Epochs SW-T Supervised 47.433 12.4342 0.190434
VibroFM 44955 11.7725 0.184065
(a) DeepSense (b) SW-T -
TSMixer Supervised 6.444 1.6892 0.075898
VibroFM 7.463 1.9523 0.070949

Fig. 4. Accuracy curves of supervised training and VibroFM fine-tuning.

a generalized representation of surrounding moving objects
through the task-agnostic objectives during pre-training and
can adapt well to new targets in downstream tasks.

C. Training Efficiency

In this section, we compare the training efficiency of the
supervised models and the fine-tuning efficiency of VibroFM
(which we refer to as “training” efficiency as well, for the
sake of brevity, below). We define the training efficiency as the
convergence speed or the number of training epochs needed for
convergence. We compare the convergence speed of supervised
training and fine-tuning by observing the training accuracy
curves in Figure 4 during the first 100 epochs. On both
backbone encoders, VibroFM (fine-tuning) converges much
faster compared to the supervised model. This shows that the
pre-trained representation is useful for the downstream task
and can easily transfer knowledge to achieve high performance
quickly. On the other hand, since the supervised models are
trained from scratch, they begin at a lower accuracy and
with more parameters to train. Thus, the supervised algorithm
approaches VibroFM performance only towards the end of
the 100 epochs. We do not consider the supervised-fine-tune
benchmarks since they are dominated by the others.

D. Run-time Execution and On-device Inference

In this section, we deploy our models to a RaspberryShake
4D (RS4D), model 4B Rev 1.4. The RS4D device has 8GB
of RAM on a Raspberry Pi single-board computer with an
ARM Cortex-A72 processor. We first evaluate the computa-
tion overhead during inferencing, followed by an on-device
training/fine-tuning analysis.

15

We evaluate the trained and fine-tuned model on the RS4D
Pi device. Detailed information regarding the sizes and number
of parameters (expressed in millions) of these models is
provided in Table IV.

The table also shows the average time taken by each model
to make an inference from a single data sample (a two-second
window of input sensor data). All models can compute an
inference from the two-second sample in less than 0.2 seconds.
SWIN-Transformer, due to its expensive attention operations,
is the largest and the slowest. TSMixer, composed of mostly
lightweight multi-layer perception layers, has the smallest
size and quickest inference speed. Importantly, the foundation
model based approach is similar in inference efficiency to
supervised classifier.

E. On-device training/fine-tuning

Next, we train and fine-tune these models on the RS4D Pi
device and profile their speed. Specifically, we record the
average time required to process one batch during both training
and fine-tuning phases across a range of batch sizes, from 1
to 128. The results, shown in Table V, reveal a significant gap
between the Supervised models and VibroFM in terms of batch
processing time. VibroFM, which only tunes its final linear
layer, demonstrates a superior training speed — achieving a
50% and up to nearly 90% reduction in time compared to its
Supervised counterparts. This efficiency makes VibroFM an
ideal approach for on-device learning, particularly in scenarios
requiring rapid adaptation to dynamic environments. Faster
processing time can also significantly lower the energy con-
sumption on incoming tasks, which is non-trivial for resource-
constrained [oT devices. Besides, we use Pytorch Profliler
[33] to analyze the memory consumption required to train and
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TABLE V
AVERAGE BATCH PROCESSING TIME DURING TRAINING (SUPERVISED) AND FINE-TUNING (VIBROFM ) ON RASPBERRY PI DEVICE.

Encoder ‘

Average Processing Time for each batch size (second)

Average Time

Model ‘ ‘ .
\ |1 2 4 8 16 3 64 128 | Reduction
DeepSense Supervised ‘ 0.6499  0.8850 1.2151 1.9488  3.4106 6.9621 13.3596  29.6567 ‘ -88.49%
VibroFM 0.1052  0.1374 0.1724  0.2452  0.3481 0.5901 1.0795 2.0166
SW-T ‘ SuPervised ‘ 1.2364 1.5483 22258 3.5723  6.1268  11.2664  21.5920  42.6260 ‘ -64.84%
VibroFM 0.2639  0.4035 0.6932  1.2597  2.4553 4.5907 9.2683 18.6447
TSMixer ‘ Supervised ‘ 0.3526  0.5386 0.8981 1.5925 3.0116 5.8583 11.5925 24.8614 ‘ -54.94%
VibroFM 0.1215  0.2092  0.3825 0.7470  1.4690 2.8076 5.6527 12.9797
fine-tune the model. We present the peak memory allocation EEN VibroFM = VibroFM - Large
for various batch sizes in Table VI. In contrast to Supervised 1.0
models that train the entire model, VibroFM requires only a 0.05
minimal amount of memory to fine-tune its final linear layer.
The benefit of the Foundation Model for runtime execution is 09
two-fold: first, its memory usage is significantly lower than 0.85
that of fully supervised models; second, it achieves a much 0.8
faster fine-tuning speed than traditional supervised training. " 100% 50% 10% 1%
Label Ratio
FE. Effect of Pre-Training Data Scale Fig. 5. Test accuracy of VibroFM and VibroFM-Large with DeepSense against
different label ratios.
Next, we examine VibroFM when additional data is used for
pre-training. Specifically, we pre-train VibroFM at a larger EEE Supervised [ VibroFM EEE VibroFM Large
scale on the VibroFM-Large dataset described in Section III-A. 10 1o
To maintain a model size suitable for edge device deployment, 08 0.95
we keep the model architecture and parameters consistent 0.6 0.9
with the previous experiments and only focus on increasing 0.4 0.85
the scale of the pre-training dataset. We plot the accuracy 0.2
of VibroFM-Large against VibroFM with DeepSense as the Accurac)ymmaiil,;score Accur(abc)yDoma;léscore
backbone encoder in Figure 5. VibroFM-Large, leveraging Fig. 6. Distance classification with DeepSense on two domains.
additional unlabeled data achieves better generalization per-
formance than VibroFM. V. DISCUSSION
G. Additional Downstream Tasks The results reported in this paper suggest that the task-agnostic
We also explore an additional downstream task — distance nature of pre-training of self-supervised models endows them
classification, using discrete distance labels derived from the with greater robustness, making them ideally suited for IoT
sensor and vehicle GPS value for each sample. Two domains application deployment across various environments with only
are analyzed. Domain A contains data gathered under varying limited fine-tuning needed to achieve high-quality and efficient
environmental conditions, exhibiting domain shift effects for inference. Unlike traditional supervised models, these pre-
both VibroFM and VibroFM-Large. Conversely, Domain B trained models exploit unlabeled data, while offering enhanced
Corresponds to the dataset exclusively seen by VibroFM_Large_ resilience against domain shifts. The pre-trained models also
We train and fine-tune the models using the distance labels and ~ show exceptional generalization abilities to unseen targets.
present the results in Figure 6. In Domain A, both VibroFM  These characteristics are particularly useful in dynamic IoT
variants demonstrate resilience against data from a differ-  sensing scenarios where different sensor deployments (even
ent domain, outperforming the Supervised models. Within within the same application) may be subjected to vastly dif-
Domain B, VibroFM-Large achieves the best performance, ferent conditions. Importantly, the above beneficial properties
indicating that pre-trained knowledge significantly enhances are attained at moderate pre-training data sizes, thus supporting
the performance of downstream tasks within the seen domain.  the case for FMs.
The results underscore that pre-trained embeddings capture The high label efficiency of pre-trained models further fa-
comprehensive task-agnostic knowledge, making them suitable cilitates their rapid deployment to a wide array of downstream
for deployment in a wide range of downstream tasks. Such tasks, where label scarcity is a critical challenge. Merely
adaptability is particularly useful in IoT applications, allowing training a single linear layer in VibroFM for fine-tuning
for the seamless adaptation and transfer of a single foundation can easily reach optimal performance within a few epochs.
model, pre-trained with unlabeled data, to multiple tasks with Besides, VibroFM has a relatively small memory requirement
minimal computation cost. with a much higher throughput during fine-tuning, compared
16
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TABLE VI
PEAK MEMORY ALLOCATION IN MB FOR DIFFERENT BATCH SIZES DURING TRAINING (SUPERVISED) AND FINE-TUNING (VIBROFM ).

Encoder ‘

Peak Memory Consumption for each batch size (MB)

Model ‘

\ |1 2 4 8 16 32 64 128
DeepSense | Supervised | 334778 87.1689  98.5412 1212858  166.7751 257.7537  439.7108  858.3438
epoens VibroFM | 04977  0.5793 1.1293 22292 44311 8.8349 17.6424 352574
SW.T Supervised | 68.1482  89.0742  130.9264 214.6307 342.1466  675.292  1341.5829  2679.6642

- VibroFM | 4.0575  7.1023  13.1918 253708  49.729  98.4452  194.865 389.73
TSMixer | Supervised | 202206 340536 617017 1169978  227.5901 448.7746  891.1436  1775.8816
VibroFM  2.0768  4.1399  8.2661 165186 33.0234  66.0331  132.0525  264.0913

to fully-supervised learning. This efficiency not only enhances
the practicality of uFMs in dynamic settings but also opens
opportunities for on-device training, making it feasible to train
them on resource-constrained IoT devices.

Finally, one should acknowledge that this initial study, while
promising, offers only anecdotal evidence. More research is
needed to experiment with other application domains, modal-
ities, tasks, pre-training techniques, and conditions in terms
of data volume. The authors hope that this initial work might
encourage a broader and more systematic investigation into the
uFM concept for smart and distributed sensing applications.

VI. RELATED WORK

Deep Learning has catalyzed significant advances in inference
from IoT sensing data [34], with DNNs becoming integral to
a wide range of IoT applications [35], [36]. However, domain-
specific challenges still lead to many limitations in building
robust DNNs for [oT sensing. Deployed DNNs must handle
unpredictable interference in the field that greatly alters the
statistical distribution of collected sensor data. The altered
distribution, or domain shift [37], can significantly degrade
DNN performance, leading to inaccurate results. FMs [1]
have gained increasing popularity, most notably in language
[2], [38], [39] and vision [3], [16]. Contrastive Learning
(CL) [24], [40], [41] has been a popular form of learning
to extract a robust embedding space during pre-training. The
main idea is to pull similar samples closer while pushing
other samples further apart in the embedding space. Unimodal
CL frameworks like [40], [42] apply random augmentations
to learn transformation invariant information. Multi-modal
CL frameworks [41], [43] enforce cross-modal consistency.
Improving resilience against domain shifts has been widely
studied in recent years [44], [45], improving the efficiency of
unsupervised domain adaptation for IoT applications. These
solutions primarily consider classifiers trained in a supervised
manner. Others have also worked on Federated Learning-based
domain generalization [46], [47]. Numerous works analyze do-
main generalization in vision [48], but less has been explored
for IoT applications.

VII. CONCLUSIONS

In this paper, we advertise the importance of uFMs, exempli-
fied by a vibration-based Foundation Model the authors pre-
trained using a self-supervised learning framework, FOCAL,
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comparing against conventional supervised models in the
context of IoT sensing. Model evaluation has demonstrated
that it requires minimal domain-specific tuning to achieve sig-
nificantly improved robustness and generalization, compared
to fully-supervised models. The yFM was further shown to
allow efficient real-time inference and fine-tuning on resource-
constrained [oT devices. Our results highlight promising op-
portunities for 4FMs in the IoT landscape. Future work will
focus on developing more capable ©uFMs for a broader class
of IoT systems, sensing modalities, and applications.
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