LOCAL CONNECTIVITY OF THE MANDELBROT SET
AT SOME SATELLITE PARAMETERS OF BOUNDED TYPE

DZMITRY DUDKO AND MIKHAIL LYUBICH

ABSTRACT. We explore geometric properties of the Mandelbrot set M, and the
corresponding Julia sets J¢, near the main cardioid. Namely, we establish that:
a) M is locally connected at certain infinitely renormalizable parameters ¢ of
bounded satellite type, providing first examples of this kind; b) The Julia sets
Je are also locally connected and have positive area; ¢) M is self-similar near
Siegel parameters of periodic type. We approach these problems by analyzing
the unstable manifold of the pacman renormalization operator constructed in
as a global transcendental family. It is the first occasion when external
rays and puzzles of limiting transcendental maps are applied to study the
Polynomial dynamics.
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1. INTRODUCTION

1.1. Main themes. This paper touches upon several central themes of Holomor-
phic Dynamics: Rigidity and MLC, local connectivity and area of Julia sets, in their
interplay with Renormalization Theory. Developing further the Pacman Renormal-
ization Theory designed in [DLS] (jointly with Nikita Selinger), we demonstrate that
near-neutral dynamics can be studied as transcendental dynamics on renormaliza-
tion unstable manifolds. As an application, we produce parameters of new kind,
previously unaccessible, where the Mandelbrot set is locally connected and whose
Julia sets are locally connected and have positive area.

The MLC problem (of local connectivity of the Mandelbrot set) goes back to the
classical work of Douady and Hubbard from the 1980s. The original motivation was
to produce a precise topological model for the Mandelbrot set M. Soon afterwards
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a deep connection to the Mostow Rigidity phenomenon was revealed, due to insights
by Thurston and Sullivan. Around 1990s, due to the work of Yoccoz, the problem
was closely linked to the Quadratic-like Renormalization, by reducing it to the case
of infinitely renormalizable parameters.

Quadratic-like Renormalization appears in two flavors: primitive and satellite.
The former generates stronger expansion allowing for a better control, which has led
to substantial progress in the past 20 years. In particular, MLC was established by
Jeremy Kahn and the second author [L2, KL1,[KL2] under the molecule condition
when all the renormalizations stay uniformly away from the satellite type. This
covers, in particular, all parameters of bounded primitive type [K|.

The satellite renormalization is delicately related to the non-expanding rotation
regime near the main cardioid of M, and progress in understanding of this kind of
phenomenon has been slower. Recently, Cheraghi and Shishikura |[CS], using the
Inou-Shishikura Almost Parabolic Renormalization [IS], have constructed a certain
set of parameters of unbounded satellite type where MLC holds. In this paper we
construct, by completely different methods, first examples of parameters of bounded
satellite type where MLC holds. Moreover, Julia sets are also locally connected at
these parameters (“JLC”).

Problem of area of Julia sets is intimately related to the ML.C and JL.C problems,
and progress in these three problem has been made in parallel. First examples of
Julia sets of positive area were constructed by Buff and Cheritat around 2006
[BC]. Their machinery has produced examples of three types: Cremer, Siegel, and
infinitely renormalizable of unbounded type (probably, all non-locally-connected).
In a more recent work by Artur Avila and the second author |[AL2|, infinitely
renormalizable examples of bounded primitive type were constructed (all locally
connected). The machinery developed there applies to maps constructed in this
paper giving first examples of Julia sets of positive area for infinitely renormalizable
maps of bounded satellite type (also locally connected).

Our main tool is Pacman Renormalization developed in [DLS|. It combines fea-
tures of two classical Renormalization Theories: Quadratic-like and Siegel. The
latter originated in the 1980s in physics literature, which yielded a long-standing
renormalization conjecture. In the 1990s McMullen constructed a Siegel renormal-
ization periodic point and described its maximal analytic extension for any rotation
number of periodic type [McM2|. It was proven in [DLS| that this point is hyper-
bolic with one-dimensional unstable manifold W*. (Let us note that in the mid
2000’s Inou and Shishikura proved the existence and hyperbolicity of Siegel renor-
malization fixed points of sufficiently high combinatorial type using a completely
different approach, based upon the parabolic perturbation theory [IS]. On the other
hand, Gaidashev and Yampolsky gave a computer assistant proof of hyperbolicity
for the golden mean rotation number [GY].)

In this paper we study the above unstable manifold W" as a one-parameter
transcendental family.

It was shown in |[DLS| that every map in W* admits a maximal analytic ex-
tension to a o-proper map onto C. Using ideas of Transcendental Dynamics (com-
pare [DK||EL,Er[SZLRRRS,|[Re, BL,|BR]), we construct “external rays” and de-
scribe the associated “puzzle structure” for this family (§§5H6). This allows us to
construct an appropriate quadratic-like family inside W* (§7). Using hyperbol-
icity of the pacman renormalization established in [DLS], we transfer this family
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FIGURE 1. A (full) pacman is a 2 : 1 map f : U — V such that
the critical arc v; has 3 preimages: 7o, 74+ and ~v_.

along the associated hybrid lamination in the space of pacmen, from W*" to the
quadratic family, yielding desired parameters ( Let us note that even though
similarity between neutral and transcendental dynamics has long been observed
(see [Ep}S,ISYLICS]), to the best of our knowledge, the external and puzzle struc-
ture of the associated transcendental families has never before been explored and
applied to the polynomial dynamics; see for a further discussion.

We remark in conclusion that the unstable manifold of a quadratic-like renormal-
ization operator can be described in a similar way as it is done in this paper for a
pacman renormalization operator. In fact, some steps are simpler for quadratic-like
maps thanks to their nice external structure and a simpler algebraic structure of
the associated cascade.

1.2. Statement of the results. Let us pass to a more technical description. Let
c(0),0 € R/Z, be the parameterization of the main cardioid JA by the rotation
number 6. Consider the molecule map Ry, : M --» M (see [DLS|, Appendix CJ);
its action on JA is given by

0 . 1 .
(1.1) 6—>1ft9 1f0§9§§, 0 — 7 5 =
Let us fix an R,,m-periodic point ¢() € A with period m. Note that 2% 4 ¢(6) is
a Siegel polynomial.

Let Mg be a small copy of the Mandelbrot set centered at the main molecule
such that Mg is close to ¢(#). By the Yoccoz inequality, My is contained in a
small neighborhood of ¢(#). Define inductively M,,_; to be the unique preimage
of M,, under R}, so that M, _; is also in a small neighborhood of ¢(6); i.e. the




4 DZMITRY DUDKO AND MIKHAIL LYUBICH

M,, shrink to ¢(8). For n < 0 denote by R,: M, — M the Douady-Hubbard
straightening map.

A map g: C --» Cis 1+e-conformal at zp € Dom g if g has the derivative ¢'(2¢)
at zg such that the corresponding linear map approximates g with an error term:

9(20 + 2) = g(20) + ¢'(20)z + O(|2|'*%), 2+ 2z € Domg.

Theorem 1.1. There is a small copy Mo of the Mandelbrot set close to ¢(0) and
centered at the main molecule such that the preimages M, of Mgy as above scale
linearly at ¢(0): the map

(1.2) Ry {e®)}u [ Mn = {c(®)}u | M

n<0 n<0
is 1 + e-conformal at c¢(0). Moreover, for every n <0 we have

e rigidity: the set ﬂ Dom(R.) = {¢,} is a singleton;
i>0
e JLC: the Julia set of 2% + ¢, is locally connected;
e positive measure: the Julia set of 2> + ¢, has positive measure.

In fact, we construct a horseshoe of parameters where local connectivity holds.
We also show that p,(z) == 22 + ¢, has a forward invariant valuable flower X,
containing the postcritical set of p,, such that X, is in a small neighborhood of the
closed Siegel disk of 22+ ¢(f). This is a partial case of the conjecture on the upper
semi-continuity of the mother hedgehog, see [DLS, Appendix C].

There are examples of infinitely renormalizable polynomials with non-locally
connected Julia sets [Mi]. The examples are based on near-parabolic effects when
small Julia sets are forced not to shrink. This may actually be the only mechanism
for non-locally connectivity of the Julia sets in the infinitely renormalizable case.
See [H,Mil|J, McM1}L2||KL1,|KL2| for classes of locally connected Julia sets. Our
results demonstrate that the Julia sets behave nicely near Siegel parameters of
bounded type. There is also substantial progress in understanding near-parabolic
Julia sets in the Inou-Shishikura class, see |[CS}|SY],/Ch].

It was shown in [Y] that the Julia set of an infinitely renormalizable polynomial
p has measure 0 if the renormalizations of p stay “sufficiently far away” from the
main molecule. Our results indicate that if the renormalizations of p are close to
the Siegel maps, then the Julia set of p inherits a positive mass from Siegel filled-in
Julia sets. Thus, one may expect a certain monotonicity of the measure depending
on how far the renormalizations of p are away from the main hyperbolic component.
This is also consistent with the Hubbard conjecture stating that the measure of the
filled-in Julia set of every parameter in the main hyperbolic component is at least
some universal ¢ > 0. It is recently shown in [DS] that the classical Feigenbaum
polynomial has Hausdorff dimension less than 2, and consequently it has measure 0.

1.3. Outline of the paper. Section [2|reviews combinatorial aspects of the pac-

man and maximal prepacman renormalizations. It starts by discussing the model

case of disk rotations Ly := [z — e(0)z]: D © and the associated commuting pairs
(To—, Tw)=(T_y, Tw)=[z—2—0, 2z 2+t]:H_©O,

where Ly is the quotient of (T,-, T\,) under z — z + v + tv. We define the sector
renormalization acting on rotations of D and the renormalization on commuting
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pairs, see §2.1.1} the latter is a rescaled iteration of a given pair. Lemma [2:2]
summarizes basic properties of arising antirenormalization matrices.

In we extend the discussion to the cases of self-homeomorphisms and partial
self-homeomorphisms of the disk D. Propositions and relate the dynamical
planes of (partial) self-homeomorphisms of D to the dynamical planes of associated
commuting pairs.

In Section [3| we collect the background information on the pacman renormal-
ization from [DLS|. A pacman is an almost 2 : 1 map with a covering structure
illustrated on Figure [1} while a prepacman (Figure is a commuting pair ob-
tained by cutting a pacman along its “critical arc v;,”. For every rotational number
of periodic type 6 = Rgrm(ﬂ), there is an associated analytic pacman renormal-
ization operator R: B --+ B in a suitable Banach space B with a hyperbolic fixed
point f, = R(f«), where f, is a pacman that has a Siegel disk with rotation number
0. We denote by W?* and W*" the stable and unstable manifolds of f, respectively.

Mazimal prepacmen. A key fact is that every f € W* has a mazimal prepacman
(see ): a prepacman of f with an embedding into C such that both prepacman
maps admit maximal extensions

F=(f.:X_—>C, f.:X; —0C),

as o-proper coverings of C, i.e. f1 | X1 is an increasing union of proper maps.
The construction of a maximal prepacman goes as follows. Every f € W* can be
antirenormalized infinitely many times

f:an ffla f72a"'7 anflzfn'

As Figure [13 illustrates, we cut fo: Uy — V; along its critical arc v; and then
embed the sector Sy := Vj \ 7o into the dynamical plane of f_1: U_y — V_1. Then
we cut f_1:U_1 — V_; along v; and embed S_; := V_; \ 77 into the dynamical
plane of f_5. Continuing (and linearizing) this process, we construct F = F as a
“direct union” of f,: U, — V,, n <0, cut along ;.

In the course of the construction of F, the a-fixed point of f “goes to infin-
ity”. To better relate the dynamical planes of F and f, we formally add the fixed
point a to the dynamical plane of F and introduce an appropriate “wall topology”
for CU {a} so that small neighborhoods of a(F) are “full lifts (lifts followed by
spreading around)” of small neighborhoods of a(f), see §4.71 We also introduce
a “renormalization triangulation” for F to control its dynamics near a (see
and to project dynamical objects from the F-plane to the f-plane, see Theorem [4.7]
(which is an application of Proposition .

Global unstable manifold. Let Wi, = {F: f € W"} ~ W*" be the space of
maximal prepacmen. The operator R acts on W), as the multiplication by A,
where A, > 1. In the dynamical planes, R(F) is a rescaled iteration of F (see (3.11])).
Therefore, we can globalize Wi, C W" ~ C. We can also view W" as the space
of rescaled limits of quadratic polynomials, see Therefore, a zoomed picture
of the Mandelbrot set near ¢(f) gives a good approximation to W, see Figure

We follow up with a discussion of basic dynamical properties of maximal prepac-
men in Section 4l

Cascade. Consider a maximal prepacman F € W" and set F,, := R"™(F). For
n < 0 we denote by F# = (fjfi) the rescaled version of F,, so that f1 = f 4 are
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iterates of fff 1. The cascade
F20 = <id, fjffi o n< 0>

is the semigroup generated by all F7; see for an equivalent definition. It
turns out that every map in FZ° can be written as F¥ with the usual power law
FP o FQ = FP*Q where P, Q belong to a dense semigroup T of R>g.

Fatou, Julia, and escaping sets. The Fatou set F(F) of F is the set where the
family {F¥'} is normal. The Julia set J(F) is the complement of the Fatou set. The
cascade FZ° has a single critical orbit: the set of critical values of F¥ is exactly

U F?{0}. The postcritical set of F¥ is B(F) = U F?{0}. The dynamics of
Q<P QeT

F29 is proper discontinuous in an appropriate sense; in particular, for every PeT
and every z € C the set U F@{z} is discrete, see Lemma

Q<P
Given P € Tsq, the P-th escaping set is

Escp(F) := C\ Dom(F?).

The escaping set is Esc(F) = |Jp o Escp(F). We have Esc(F) = J(F), see Corol-
lary

In Section [5] we study the dynamical plane of the renormalization fixed point
F,. Since RF, = F,, the dynamical self-similarity A,: z — p,z conjugates Ff to
F2' where P € Tand t > 1, see This allows us to give an explicit description
of the dynamical plane of F,. It has an invariant unbounded Siegel disk Z, — the
rescaled limit of Z,, see Figure Every Fatou component Z; of F, is either Z, or
its preimage under a certain iterate F7 with T € T~q. We prove in that each
Z; is a bounded subset of C. Moreover, if T' is minimal, then Z; NEscr(F,) = {a;}
is a singleton, and FZ': Z; — Z, extends continuously to F1: Z; — Z, U {a} so
that FZ'(a;) = a. We say that «; is an alpha-point of generation |o;| == T.

Alpha-points are cut points of Esc(F,): each set Esc(F,)\{«;} has two bounded
components and one unbounded, see Figure Moreover, there is a unique curve
in Esc(F,) connecting any two alpha-points. We write o; > «; if ; is in one of the
bounded components of Esc(F,) \ {a;}. It follows that |a;| > |a;| and, moreover,
there is a unique simple arc [y, ;] C Esc(F,) connecting «; and o;. We say
that [o;, ] is a ray segment. An external ray is a maximal concatenation of ray
segments, see §5.90 We show that external rays have a tree structure: every two
external rays eventually meet.

In Section|[6] applying the Fatou and Riesz Theorems, we show that the escaping
set Escp(F) is the set of accumulation points of F~F(z) for all x € C. Then
we deduce that Esc(F) moves locally holomorphically unless it hits an iterated
preimage of 0. Therefore, F has the same external structure as F, with appropriate
adjustments when 0 € Esc(F).

In Section [7] we show that W" contains certain ternary satellite small copies of
the Mandelbrot set. The argument is illustrated on Figure [40] and goes as follows.
The renormalization Siegel fixed point F, belongs to the boundary of the main
hyperbolic component A € W". Let F, € A be a parabolic prepacman close
to F,. Then there is a satellite hyperbolic component A, C W?" attached at
F.. In a small neighborhood of F., there is another parabolic prepacman F. s;
let A s C WY be the secondary satellite hyperbolic component attached at F ;.
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For every G € 0A. s \ {F. s}, appropriate periodic rays in Esc(G) land together
and form a quadratic-like domain (after a thickening) for the partial small copy
M (A, ;) centered at A, ;. We do not know whether # (A, ;) is bounded or even
complete — this is related to the realization of parameter rays, see However,
there is a locally continuous straightening map x: (A, ) — M; using the Yoccoz
inequality for M and then x !, we can find a parabolic prepacman F, s € A, 5 in
a small neighborhood of F, ; together with a ternary small copy of the Mandelbrot
set Mo = M. CW" attached to Fy 1.

We set M, == R"(Mo) C W, n € Z, to be the renormalization orbit of ..

In Section [8] we prove the Valuable Flower Theorem: for n < 0, if G € 4 ,,,
then the associated pacman g € W* has a valuable flower X (g) around a(g) in a
small neighborhood of Z(f,) defined as the “combinatorial connected hull” of the
cycle of secondary small filled-in Julia sets, see and Figure In particular,
X (g) contains the postcritical set of g. We construct first the valuable flower X(Q)
in the dynamical plane of G (where external rays of G help to control the location of
X (G)) and then project to the g-plane using Theorem We denote by .#,, C W
the set of pacmen g with G € .

The valuable flower X (g) labels the hybrid class of g: there is a unique quadratic
polynomial p € M such that p has a valuable flower X (p) and g and p are hybrid
conjugate in neighborhoods of their valuable flowers X (g) and X (p). It provides
us with the straightening map from ., to the associated small copy M, C M
containing all p = p(g) with g € 4.

The proofs of the main results are collected in Section [9] We first construct a
stable lamination in the space of pacmen as follows. For n < 0, there is a local com-
plex codimension-one lamination F,, in a small neighborhood of .#;, characterized
by the property that pacmen in the same leaf are hybrid conjugate in neighborhoods
of their valuable flowers, see For m < n we define F,, to be the pullback of
Fn under R™*~™. By hyperbolicity of R,

F=J Fnuiw}
m<n
forms a codimension-one lamination.

Proof of the main results (rough outline). Theorem essentially follows from
the hyperbolicity of R combined with the holonomy along F. The stable mani-
fold W* intersects the slice of quadratic polynomials Q at ¢(f). For n < 0, the
intersection of F,, with the (renormalized) slice Q is the ternary copy M, of the
Mandelbrot set. The map R := R?;rm from factorizes as R | Q@ postcomposed
with the holonomy along F bringing R(Q) N F back to Q. Since the holonomy is
asymptotically conformal, the hyperbolicity of R implies the scaling theorem.

For k < n, we have R = R,, o R"*. Since

R"_k(c(H) +z2)me(f) + AR A >

is expanding, the composition R,, o R"* =Ry is expanding for fixed n < 0 and
a sufficiently big n — k > 0. Therefore, the non-escaping set of R,: M,, - M
consists of a single parameter ¢,,. This implies the rigidity part of Theorem [1.1
Let g,: U, — V,, be the quadratic-like renormalization fixed point associated
with R, : (M, c,) = (M,c,), where g, is hybrid conjugate to p,(z) = 22 + c,.
Consequently, g, has a quadratic-like restriction g™ : U} — V! affinely conjugate
t0 gn | U,. Such a structure already implies the JLC. In fact, a priori bounds for
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the g, are controlled by a quadratic-like domain of the copy .#¢ C W*" discussed
above; i.e. the a priori bounds for g,, are uniform over n.

As n — —o0, the map ¢g,: U, — V, tends to a Siegel quadratic-like map
gx: Uy — V, so that the valuable flower X (g,,) approximates the Siegel disk Z(g).
For such an approximation, the Koebe-type estimates of [AL2} §§6.6-6.8] imply that
for n < 0 the probability of the g,-orbit of 2 € Z(g,) to enter U/ is much higher
than the probability of escaping U,. By |AL1|] the Julia set of g, (and hence of
pn) has positive area. Since our notations are different, we will recap the argument
in — see its beginning for a short outline and comparison with [ALZ2.

1.4. Remarks about Transcendental and Neutral Dynamics. It has been
long observed that the dynamics near indifferent periodic points is strikingly sim-
ilar to the transcendental dynamics. For instance, the Julia sets at Cremer points
look similar to “Cantor bouquets” — the Julia sets of certain exponential maps
[DG]. This was a guiding idea for Shishikura’s seminal work [S]. The similarity
between Neutral and Transcendental dynamics was broadly advertised in numer-
ous talks by Shishikura, Epstein, Rempe, and others. It has become clear over
time that the Cremer and Siegel phenomena are not as mysterious as they once
were viewed. However, only recently they were rigorously explained in the Inou-
Shishikura class [SY],|Ch].

A substantial difficulty in the neutral renormalization theory is that arising maps
(such as pacmen, see Figure|l)) are not genuine branched covering. It appears that
some arising issues can be resolved by considering transcendental extensions on the
unstable manifolds. In the 1990s, McMullen observed that renormalization peri-
odic points (in both, quadratic-like and Siegel cases) admit maximal extensions
as o-proper branched coverings of the complex planeﬂ In [DLS| we extended this
result to every map on the unstable manifold W* of a Siegel renormalization pe-
riodic point. This was a key ingredient in our proof that dim W* = 1. Roughly:
since maximal prepacmen have a single critical orbit, they naturally form a one-
dimensional space.

In the current paper, we construct external rays and develop the puzzle theory for
the limiting transcendental family W*. We also introduce a machinery to transfer
results from W*" to the dynamical planes of rational maps. We believe that with
further advancements in the Transcendental Dynamics (the theory of parameter
rays, see and the Neutral Renormalization Theory (the full hyperbolicity
over all combinatorics), the understanding of the near-Neutral Dynamics could be
brought to an essentially complete form. For illustration, let us discuss below two
central ideas from Sections 8l and [

Valuable flowers. An essential ingredient in the constructions of positive area Ju-
lia sets in [BC|AL2] is the Buff-Cheritat lemma asserting that certain perturbations
of a Siegel map f have the postcritical sets in a small neighborhood of the Siegel
disk Z(f). The Buff-Cheritat lemma allows Koebe-type area estimates (see
and is an application of the Almost Parabolic Renormalization Theory [IS].

A valuable flower is roughly the “combinatorial connected hull” of the postcritical
set and is a near-neutral analogy of the filled Julia set of a polynomial. Just like
filled Julia sets of polynomials depend upper semicontinuously on the parameter, we
conjectured in [DLS| Appendix C.4] that Siegel disks/hedgehogs/valuable flowers

1The domain of analyticity for the Feigenbaum renormalization fixed point was first studied
by H. Epstein |E1l[E2].
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depend upper semicontinuously on the parameter in (at least) the main molecule
of the Mandelbrot set. In Section |8| we designed a soft argument for the upper-
semicontinuity: once a valuable flower X(G) is recognized in the dynamical plane
of a maximal prepacman G, the flowers X(G,), Go =G, n <0, converge to the
Siegel disk Z(F,) under the antirenormalization. The argument is based on the
convergence in C \ Z, of wakes of G,, to the wakes of F,, see Lemma

We emphasize that the positive area property is almost automatic, once a valu-
able flower is constructed and sufficiently many antirenormalizations are taken, see
Remark

Hybrid lamination. It was shown in |L3| that hybrid classes foliate the connect-
edness locus of the complex space of all quadratic-like maps. The argument can
not be adopted to the space of pacmen — they are not branched coverings.

To construct hybrid lamination in the space of pacmen, we employ the renormal-
ization. We first recognize maps on the unstable manifold labeled by their valuable
flowers. This leads to a local lamination in a small neighborhood of recognized
parameters. Pulling back the local lamination using the renormalization, we obtain
a fairly dense hybrid lamination in a neighborhood of the stable manifold.

If the full hyperbolic renormalization horseshoe is constructed for neutral renor-
malization, then the renormalization will be much more efficient in creating hybrid
lamination — it can be pulled back along various branches. Combined with Conjec-
ture[6.14] this may lead a compete theory, see Remark [0.1]
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2. SECTOR RENORMALIZATION

In this section we refine the discussion of the sector renormalization from |[DLS|
Appendices A and B].

2.1. Sector renormalization of rotations. Consider the rotation of the unit
disk

(2.1) Lg:D =D, z—e(f):z

by an angle # € R/Z. Choose a closed internal ray | of D, and let Y C D be the
smallest closed sector between | and Lgy(1), see the left side of Figure [2] Consider

X_ =Ly (Y) and X;:=D\(YUX)).
Then
(2.2) (Lo | X4, Lj[X)
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(delete)

FIGURE 2. Left: the prime renormalization deletes the smallest
sector Y between | and Ly (l) and projects (L2 | X_ , Ly |Y4) to
a new rotation. Right: more generally, a sector renormalization
realizes the first return map to a sector X_ U X

is the first return of points in X_ U X1 back to X_ U X,. Let w € [0,1/2] be the
angle of Y at the vertex 0. Assuming 1 ¢ Y, the map z — 22/(1~%) projects 2.2)
to a new rotation Lg_ (s): D — D, called the prime renormalization of Lg. Direct
calculations (see [DLS| Lemma A.1]) show that

S ifo<o<i
2. rm9: 1-6 1 -7 =2
(23) Ry (0) {2%1 fl<o<s

More generally, a sector renormalization R of Ly is (see Figure

e a renormalization sector X presented as a union of two subsectors X_ U X,
normalized so that 1 € X_ N X4;
e a pair of iterates, called a sector pre-renormalization,

(2.4) (L%, LBIX:)
realizing the first return of points in X_ U X back to X; and
e the gluing map
Vi X_UXy =D,  z— 2,
projecting to a new rotation L,, where w is the angle of X at 0.

A sector renormalization is an iteration of the prime renormalization (see [DLS|
Lemma A.2]); in particular, 4 = RJ}, (0) for some m > 1.

2.1.1. Renormalization of pairs of translations. Let us now lift these renormaliza-
tions of rotations to the universal cover of D* := D \ {0}. Write

H_ = {z | Im(z) < 0}.
Writing v~ = —v, the translations
To- =T =T ¢9g:2—2—-0, Ty =T1_9g:2z2—2z+1-10
are two lifts of Ly: D" = D" under
(2.5) e_: z—e 7™ H_ D
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o

o ()

b=1

FIGURE 3. The map Rpm is 2-to-1 on R<g X R>g; it maps two
1/8-subsectors to R<g x R>g.

Since x = Ty 0 TU_} is a deck transformation of (2.5)), we have Ly ~T_,/(x) as a
map on D"

v —bu) . . .
For a non-zero vector ( ) = <m ) in R<g X R>¢ write, (see Figure |

o
(U_ - m) if b > 1o,
-0 [ v o
e ()= ()= me ()=
(m " U) if o > v.

and observe that (2.3)) is the projectivization of (2.6]) via

2.7) (;") — +° ——0cR/Z

The prime pre-renormalization of the commuting pair T,-, T, with v™ 10 €
R<o X R>g is the commuting pair

(T - Tml) - Rprm(TD*7 Tm)§

b,

it is obtained (see Figure by replacing T,- with T,- o T}, if v > t, and by
replacing T}, with T},— o T}, otherwise. We denote by x1 := T, 0T Uil the new deck

1
transformation. If Ly ~ T,- /(x) (i.e. (2.7) holds), then Lg, o) ~ T,—/(x1) as a
map on D .

Let us now consider an iteration of (2.6). Recall that matrices <é 1) and

(1 O) generate the modular group SLs(Z). We write

1 1
1 1 1 0
SLS“><2>={11[2""’1’““{(0 1>’<1 1)}}
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/R/T_m\

FIGURE 4. The prime pre-renormalization of a pair of translations
T,-, Ty replaces T,- with T}, := T,- o T}, if v > 1v; in this case
the new deck transformation is x; =Ty = T}y, © Tn_,l.

1

and we denote by SL3 (Z) = U SL(Qm)(Z) the “positive” sub-semigroup of SLy(Z).
m>0

The quadrant R<g X R> splits into 2™ equal closed sectors so that on each sector

S the map R is equal to

prm

(28) rz— Mz: S — RSO X RZO

for a certain M € SLém)(Z). (As a consequence, SLj (Z) is a free semigroup.)
Since S is a proper subsector of R<g x R>, the operator (2.8)) has an eigenvector
o
o

.. . -1 0\ . 1 n 1 0
sector containing either ( 0 ) or (1), in that case M € {(O 1) , (n 1) }

We assume that S is not a boundary sector. Then all the entries of M are positive
and M has two eigenvalues t > 1 and 1/t < 1 so that

()= (o)

Writing 0 = —2— we see that 6 = RT__(0), and we say that M is the antirenor-

€ S, unique up to scaling. Note that v = —v~,to > 0 unless S is a boundary

ey prm
malization matriz associated with 0 = R, (0). It is easy to see that all periodic

points of Ry, arise from the above construction.
Lemma 2.1. For 6 and t as above, we have
li
(Rhm) (6) = £,

Proof. We can view 0 as a fixed point of the Mobius transformation induced by M;
its derivative (R )/ (0) is equal to t2.

prm

Equivalently, direct calculations show that if (:;1 ) = Ry <n ), then
1

1o
’ < v > (Uer >2
P o+ 1o vy + 10 '
1 1

If (2.9) holds, then Dtl’iﬁl = t and the claim follows. O
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Tnfl
7 \
~" "~ proj, >~
Z2 . M~ o R
o N / =
T~ t" proj, ~ ¢
\) Tn /

FIGURE 5. Every T™ is a copy of 2220 and can be consistently
embedded into R>g. This induces the embedding ¢ of T := lim T"
= —

into R>g. Note that dashed arrows do not commute with solid
aITows.

2.1.2. Cascade (TP)PE.I.. Let us fix v,10,0,m t,M as above so that, in particu-

lar, (2.9) holds. Observe that t ¢ Q, because t > 1, det M = 1, but the entries of M
are positive integers. We set R := Rg“rm. For n € Z, write

v, =t "v, 1w, =t "w;

then (7,-, T, )nez is the full pre-renormalization tower:

(2.10) R (Tu;, Tmn) - (T . Tmn“),

Un+1’
— m
where R = Rpim-

For an abelian semigroup
T":={(n,a,b) | a,b € Zxo} = Z%,
we define the monomorphism
On: TV T (n, (a, b)) = (n— 1, (a, H)M).

For a power-triple (n,a,b) € Z x Z>¢ x Z>(¢ we write

1) T T2 0T — Ty smao)
(Later on the non-invertible maximal prepacman (fffﬁ _, fjf +) will play the role of
Tz Tw,).)

Observe that
(2.12) T(ab) = pon(nab),

Indeed, T(*?) is the translation by

o () -0 (8 (22)) =coom (52

thus T(n,a,b) _ T(n—l,(a,b)M).
We define the semi-group of power-triples as the direct limit

(2.13) T:= h_H}lTn = {(mi)igk I ke Z7Ui($i) = xi,l}.
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We also write T = U T" ={(n,a,b) € Z x Z%,}/ ~. By (212), T acts naturally
neZ
on R by translations; i.e. (T'7)pet is a cascade.

Lemma 2.2. The action of T on R is free: T(®b) = T(mc.d) if and only if
(2.14) (a,O)M"™ = (¢, d)M™.

Let e¢ € R2>o,€1/t € Rog X Rsg be the eigen-covectors (viewed as rows) of the
eigenvalues t and 1/t of M:

etM = tey, eryM = (1/t)eq /¢
Decompose every covector w & R2ZO as

w = proj(w)ey +proj1/t(w)el/t, proj(w) € R>o, projl/{(w) cR.
Then
t(n,a,b) = t" proj, (Z)
induces an embedding of T into R>q (see also Figure@ such that
t(n—=1,a,b) = t(n,a,b)/t.

View now T as a sub-semigroup of R>o. This turns T into a linearly ordered
semi-group with subtraction:

if P>T, then P—-TEe€T, P, T cTCRx>p;
P tP: (n,a,b) — (n+1,a,b) is an automorphism of T; and:
(2.15) TP = A o (T*”P> o A,
where Ay : z — 1"z is scaling.

Proof. If the action of T on R is not free, then there are (n,a,b) # (n,c,d) such
that 700 = 7(™ed); this is equivalent to (a — c)o~ + (b— d)w = 0. Since t ¢ Q,
the coordinates v~ and tv are rationally independent. Therefore, a = ¢ and b = d.

Clearly, ¢: T — Rx>g is a homomorphism such that ¢(n —1, a,b) = ¢(n,a,b)/t. If¢
was not an embedding, then there would be (a,b) # (c,d) € Z%, with proj(a,b) =
proj,(c,d); i.e. (a — ¢,b — d) is a non-zero integer covector parallel to e1/¢- This is
impossible because coordinates of e; /¢ are rationally independent.

If u(n,a,b) > u(n,c,d), then for sufficiently big m > 0 the covector

(@, bm) =(a—c,b—d)M™
=t" proj; (a — ¢,b —d) ey + " projy jy (a — ¢,b — d) ey ¢

has positive coordinates because t > 1 and proj, (e — ¢,b — d) = t(n,a,b)—t(n,c,d) >
0. Therefore, (n,a,b)—(n,c,d) ~ (n—m, G, by) € T. The remaining claims follow
immediately from the definitions. O
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Tw_,
—b_»2 0 0_o

] ‘ J_2(0) | J-2(1) |
-2 [ v [

T,

To_,
DU Ta0) Ja() | Ja®) | Ja®),
J_1 — \I_I/ 1 1 T
T »_,
Tw_,

Jo LAy =37y -t 001 243,04 ,5,6,7 48,

FIGURE 6. Renormalization tilings Jg,J_1,J_o for the golden
mean combinatorics: —pv &~ —0.382 and v =~ 0.618. The tiling
Jo N [—vg, 2] is obtained by spreading around J(0) and Jo(1)
using T_p, and Ty,. Similarly, J_; N [—v2, 2] is obtained by
spreading around J_1(0) and J_;(1) using 7_,, and Ty,. Note
that J,,_1 is the rescaling of J,, by ~ 2.618.

2.1.3. Renormalization tilings. Consider the following closed intervals
JO(O) = [7030]7 JO(l) = [Ovm]'
Note that Jo == Jy(0) UJy(1) is a fundamental domain for the deck transformation
x and that N N
Ty-: Jo(l) — J(), T : J()(O) — Jo
realizes the first return of points in jo back to jo under the cascade 720 =
(") per
The renormalization tiling Jo of level 0 (see Figure @ consists of closed intervals
{T"(Jo(0)) | P < (0,0,1)} U{T"(Jo(1)) | P < (0,1,0)},

i.e. Jo consists of all the interval in the forward T=%-orbits of Jy(0), Jo(1) before
they return back to jo. We say that Jg is obtained by spreading around Jy(0) and
Jo(1) and we enumerate intervals in Jg by Z from left-to-right.

Similarly, the renormalization tiling J,, of level n is defined: it is obtained by
spreading around the intervals .J,,(0) := [~v,,0] and J,,(1) = [0, w,]. Note that J,
is the rescaling of Jy by t™".

Lemma 2.3 (Proper discontinuity). If P € T~q C Rsq is small, then |TF(0)| is
large.

Proof. For n < 0, consider J,, := J,,(0) U J,,(1) = [0y, 0,]. By construction, if
P < min{(n,0,1),(n,1,0)}, then T*(0) & J,,. O
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TQ o
/\ T
b D b 0 by by
79 70
T T~
bii1 0 b; bi 1

F1GUurE 7. Ilustration to the proof of Lemma Above: the
configuration b; < 0 < b;_1, then b1 € [b;,bi—1]. Set Q =
P;_1. Since b; dominates on [b;, b;—1), we see that b, is dominant;
similarly b, is dominant. Below: the configuration 0 < b; < b;_1,
then bi+1 < bi. For Q = Pi — Pi—l we obtain TQ(bH_l) = bi
because T~?(b;) dominates in T-?[0,b;_1). Note that in both
configurations the relative position of 0 and b; 1 is irrelevant.

2.2. Combinatorics of close returns. Consider the cascade (') pet from
By Lemma @ we view T as a sub-semigroup of R>g.

For P € T, let bp = T~¥(0) be the unique preimage of 0 under 77. Then P
is the generation of bp. We say that bp is dominant if [0,bp] contains no bg with
Q@ < P. By definition, if bp and bg are dominant such that P < @, then bg,0 are
on the same side of bp.

Since every interval [a,b] C R contains at most finitely many bp with P < @
for every @ (see Lemma , dominant points can accumulate only at 0 and oo.
Moreover, if bp is close to 0, then P is big; while if bp is close to oo, then P is small.
Therefore, we can enumerate all dominant points as (bp, )nez such that P, > P,
for all n € Z. Suppressing indices, we write b, = bp, .

By (2.15), bp is dominant if and only if bep = Ay /¢(bp) is dominant. Since {b,}
are enumerated by their escaping time, there is a £ > 0 such that

tP; = Piyy.

Let us also note that if b, b,,, are on the same side of 0, then b,, is closer to 0 than
by, if and only if P, > P,,.

Lemma 2.4. For every [b;,biy1] there is a Q € Tso and [by,by] with i > m >n
such that T maps [b;, bi11] to [bn, bm).

Proof. Suppose first that 0 € [b;,b;—1], see Figure m Then b;11 € [b;,bi—1]. Set
Q = P,_;. Observe that T%(b;) is of smallest generation in

[79(b:), 0] = T9[bi, bi1]
among the bp, while T9(b;;1) is of smallest generation in
[T9(bi41),0] = T9[bis1,bi—1)-

Therefore, T9(b;) and T?(b; 1) are dominant; i.e. T9(b;) = b,, and T?(b; 1) = by,
for some n,m <1 — 1.
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Suppose now that b; € [0,b;_1] and assume that 0 < b; < b;_1; the opposite case
is symmetric. Set Q := P; — P;_;. We claim that 7~%(b;) is dominant and, more-
over, T9(b;41) = b;. Indeed, since b; dominates (i.e. has the smallest generation)
in [0,b;_1), we obtain that T-%(b;) dominates in T-2[0,b;,_1) = [T~%(0),b;) > 0.
This implies that T~9(b;) is dominant, thus 7~%(b;) = b1, for some a > 1.

Suppose a > 1. Since P, , > P;i1, the image T9(b;1 ) has smaller generation
than b;. Since T9(b;41) € (biy1,bi_1), we obtain that T9(b;; 1) is dominant. This
contradicts the enumeration of (b;);cz: the generation of T9(b;; 1) is between the
generations of b; and b;_;. O

2.3. Sector renormalization of homeomorphisms. Consider a homeomorphism
f:D — D with f(0) = 0. We denote by # the rotation angle of f|S'. If £ Q,
then f | S! is semi-conjugate to the rotation Ly: S* — S!, see . As we will
show in this section, sector (anti- and pre-) renormalization can be defined for
homeomorphisms of D in the same way as for rotations. We will specify certain
conditions ensuring the transfer of curves between different dynamical planes in the
renormalization tower of f. The results also hold with necessary adjustments for
partial homeomorphisms f: D --» D.

2.3.1. Dividing arcs. Let g be a simple arc connecting 0 to a point in dD. Then
Yo is called dividing if vo N f(y0) = {0}. Clearly, v is dividing if and only if
v = fi(0) is dividing for all i € Z. Note that 7; and 7,4, can intersect away from
0if j > 2.

The curves 79,71 split D into two closed sectors A and B denoted so that
int A, vy1,int B,y are clockwise oriented around 0, see the left-hand of Figure
We say that 7o = £(A) = p(B) is the left boundary of A and the right boundary
of B and we say that v; = p(A) = ¢(B) is the right boundary of A and the left
boundary of B.

Let X,Y be topological spaces and let g: X --+ Y be a partially defined contin-
uous map. We define

XUV =XUY/(Domg >z~ g(x) € Img).

Consider two sectors Sp, S1 € {A,B}; each S; is a copy of either A or B. We
define the map g: p(Sp) --» £(S1) by

id:yp =y if (S0,51) = (A,B)

(2.16) g {00 (50,5 = (B, A),

fliy =0 if (So,S1) = (AA)
( )

fi’}/o—>’71 if S(),Sl g(B,B)

The dynamical gluing of So, S1 is SplyS1. Similarly, the dynamical gluing is defined
for any finite or infinite sequence s = (S;); € {A,B}* with k < co. If s is a finite
sequence, then the result of the dynamical gluing is a closed sector. If, in addition,
we glue the right boundary of the last sector of s with the left boundary of the first
sector of s, then the result is a closed topological disk.

2.3.2. Prime antirenormalizations. The (clockwise) 1/3 antirenormalization of f is
a homeomorphism f_;: W — W such that (see Figure



18 DZMITRY DUDKO AND MIKHAIL LYUBICH

FIGURE 8. Left: a homeomorphism f: W — W and a diving pair
Y0,71. Right: the 1/3 antirenormalization of f (with respect to
the clockwise orientation).

e W is a closed topological disk that is the dynamical gluing of sectors W/[0],
W (1], W[2], where W[0] and W[1] are copies of A, while W[2] is a copy of

e the map f_1: W[0] — W]1] is the canonical isomorphism of copies of A;
e the map f_1: WI[L,2] — WJ0,1] is identified with f: W\ v — W \ 71.
Similarly, the p/g-antirenormalization is defined for any rational number p/q,
see [DLS| § B.1.3]. The 1/3 and 2/3 antirenormalization are called prime. Any other
antirenormalization is an iteration of prime antirenormalizations, see [DLS| Lemma
B.3].
It follows from direct calculations that:

Lemma 2.5 (Inverse to (2.3)). Let f: D — D be a homeomorphism and let y €
(0,1) be the rotation number of f | St.

o If f 1: D — D is the (clockwise) 1/3 antirenormalization of f, then the
rotation number of f_1 | St is
i
0=—.
IT+p

o If f 1: D — D is the (clockwise) 2/3 antirenormalization of f, then the
rotation number of f_1 | St is

O

2.3.3. Pre-antirenormalizations. Recall from that e_: H. — D’ denotes the
universal covering map from the lower half plane to the punctured disk. We enu-
merate preimages of vg,v1 under e_ as 7; from left-to-right such that e_ maps 7;
t0 Vimod 2. We specify the lifts f_ and f of f such that

e f_ maps vy to y_1; and

e fi maps Y to 1.
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Then x = f4 o f~=! is a deck transformation of e_. Note that f_ and f;l move
points to the left of H_ while f, and f~! move points to the right of H_.
The 1/3 pre-antirenormalization of (f—, f) is the commuting pair

(2.17) (for 1= [0 fT = XY frs 1= f4).
Setting x—1 = f4,_10 f:’171 and identifying D ~ H_/{x_1), we recover the 1/3
antirenormalization of f:
foa=1fa, -/(x-1):D—=D, f1(0)=0,
see [DLS| Lemma B.4].
Similarly, the 2/3 pre-antirenormalization of (f—, f1) is the commuting pair

(2.18) (fo, 1=fy fr. —1:=frof t=x).

Setting x—1 == fy 10 f;l_l and identifying D™ ~ H_/(x_1), we recover the 2/3
antirenormalization

f—l = f—l, —/<X—1>:5_>55 f—l(o):Oa
see [DLS| Lemma B.6].

2.3.4. Tower of pre-antirenormalizations. Let us fix an irrational periodic point
0 = R, (0) of (2.3). Then R}, has an inverse branch R~ mapping S'\ {0} into a
neighborhood of 8. Let us specify the antirenormalization operator associated with

R~. Forie{l,...,m}, set R; to be
e the 1/3 pre-antirenormalization if R¢ () € (1/2,1),

prm
e the 2/3 pre-antirenormalization if R}, (¢) € (0,1/2);
and set
(2.19) R =R{oR;,0--0R,,.

This operator is inverse to R from (2.10). Since 6§ ¢ Q, both 1/3 and 2/3 pre-
antirenormalizations appear in (2.19)).
We have the pre-antirenormalization tower:

Fn = (fn,fvfnﬁ*) = (Ri)in(ffaf%*) fOI")”LﬁO.
Writing x.,, == n_l_ o fn+ and identifying H- /{x,) ~ 5*, we obtain the projection
(2.20) p H_ —H_ /(x) CD

semi-conjugating the pair F,, to a homeomorphism f,,: D — D, where f,,(0) := 0.
If 41 is the rotation number of fy | S, then (R’)fn(,u) is the rotation number of
fn | St
Lemma 2.6. For m <n <0, we have:

o fm_ and f,;}+ are compositions of f, _ and fn_i_, and

® fomt and filf are compositions of f, 4 and fflf

Proof. The operator R~ is a composition of prime pre-antirenormalizations; the
corresponding statement for a prime antirenormalization is immediate from the

definition, see (2.17)) and (2.18)). O



20 DZMITRY DUDKO AND MIKHAIL LYUBICH

2.3.5. Cascade FZ% = (F¥), ;. Similar to (2.11), we define
(2.21) FUee = fi o fy

where (n,a,b) € Z<g X 2230- Asin §2.1.2L FT depends only on the image of (n,a,b)

in the semi-group of power-triples T, see (2.13)).
Using Lemma [2.2] we view T as a sub-semigroup of Rx.

2.3.6. Renormalization triangulations. Let Ag(0) be the strip between 7_; and 7y,
and let Ag(1) be the strip between 7o and ;. We will refer to Ag(0) and Ag(1) as
triangles.

As in we define the renormalization triangulation ¢ of level 0 to be

{FP(80(0)) | P < (0,0,1)} U{F"(A0(1)) | P < (0,1,0)}

i.e. ¢ consists of all the triangles in the forward F-orbits of Ag(0), Ag(1) before
they return back to Ag(0,1). We say that ¢ is obtained by spreading around Ay(0)
and Ag(1). We enumerate triangles of ¢ from left-to-right as Ag(:) with i € Z.

Similarly, we define the triangulation , for n < 0. The triangle A, (0) is
bounded by fi,— (7o) U0, and the triangle A,,(0) is bounded by Yo U fp +(70). The
triangulation ., is obtained by spreading around A,,(0) and A, (1).

Note that ,(0,1) is a fundamental domain of y,, and we have a projection
P, n(0,1) — D (see (2.20)) gluing the left and right boundaries of (0, 1).

2.3.7. Dynamics of triangles of . Consider the triangulation (. For every i € Z,
we write s[i] == B if Ag(4) is in the forward orbit of Ag(0) before it returns to
Ap(0,1); and we write s[i] :== A if Ag(7) is in the forward orbit of Ag(1) before it
returns to Ag(0, 1).

We can view ( =~ H_ as the dynamical gluing of (s[i]);cz (see , where the
left boundary of s[i + 1] is glued with the right boundary of s[i]. The dynamics of
triangles of ¢ is described as follows. For every i € Z there exists P(¢) such that

e if s[i] = B, then P(i) < (0,0,1) and
(2.22) FP@: Ag(0) = Ag(i)

is an isomorphism of copies of B;
e if s[i] = A, then P(i) < (0,1,0) and

(2.23) FPO 1 AG(1) = Ag(d)

is an isomorphism of copies of A.

Conversely, for every P < (0,0,1) there exists 7 such that s[i] = B and P = P(i);
and for every P < (0, 1,0) there exists ¢ such that s[i] = A and P = P(i). On the
other hand, for every @ < min{(0,0,1), (0,1,0)} there exists j with

(224) sl =B, sli+1=A, PG)=(0,01)=Q, P(i+1)=(0,1,0-Q
such that

(2.25)  F9: Ag(j,j+1) = Ag(0,1) is identified with f: D\ 79 — D\ 71.
In other words, F~% | A(0,1) is identified with f=' | (D\ 7).
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FIGURE 9. The sector S between 8 and x(f) is not a fundamental
domain of x: z — z + to because not every orbit passes trough S.

2.3.8. Walls. A wall around 0 respecting o, 71 is either a closed annulus or a simple
closed curve IT C D such that

(1) C\II has two connected components. Moreover, denoting by € the bounded
component of C\ II, we have 0 € Q.

(2) v NII and v, N1II are connected.

(3) if € Q, then f*'(z) e TUQ.

In other words, points in D do not jump over II under one iteration of f. If Il is a
simple closed curve, then f restricts to an actual homeomorphism f: Q — Q.

We say that II is an N-wall if it takes at least N > 1 iterates of f*! for points
in © to cross II.

By definition, IINB and IIN A are connected closed rectangles (possibly degen-
erate if II is a curve). Let us denote by II(0) and II(1) the images of II N B and
ITN A under Ag(0) ~ B and Ap(1) ~ A. The wall is obtained by spreading
around IT(0) and II(1)

= {FP(11(0)) | P < (0,0,1)} U {FF(II(1)) | P < (0,1,0)},

i.e. consists of all the rectangles in the forward F=%-orbits of I1(0),II(1) before
they return back to Ag(0,1). We enumerate rectangles of  from left-to-right as
II(:) with ¢ € Z.

Every II(4) is a copy of either IINB or IIN A, and II(7) is glued to II(i + 1) along
id or f*1, see (2.16). Therefore, is connected, and, moreover, if IT is an N-wall,
then is an (N — 1)-wall: it takes at least N — 1 iterates of fy for a point to cross

2.3.9. The boundary point a. Let us add the boundary point o to H_ which will
be the preimage of 0 under p,,: ,(0,1)U {a} — D.

We now introduce the wall topology = on H_ U {a}. For a wall C H_, let
Q' C H_ be the connected component of C\  below ,ie. Q' Z 0. We write
Q = Q' U{a}. In the topology = of H_ Ll {a} open sets are generated by open
sets of H_ and {Q : is a wall}.

Remark 2.7. It can be shown that = is independent of the choice of 7.
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2.3.10. Fundamental domains. A simple arc B: [0,1) — H_ is dividing for n if
(1) B(0) € OH_ and S(t) € H_ for t > 0;
(2) B lands at a with respect to the wall topology E; and
(3) 8 does not intersect f, —(3) and f, +(5).
For example, 7; are dividing arcs.
If 3 is dividing, then H_ \ 8 has two connected components. (Indeed, implies
that th_rﬁ B(t) = 00.) We denote the closures of the connected components of H_ \ 3

by £ and R enumerated so that £ is on the left of 8 (i.e. £ z for z < 0) while R
is on the right of 8 (i.e. R 3 x for x > 0).

Lemma 2.8. For every m < n, the maps fr, —, ,;,1+ move points to the left:
fm—(£)C L and f, (L) CE&,
while fon, s frn:

,—

move points to the right:
[l (R) R and frn 1 (R) CR

Proof. The case m = n follows from the definition. The general case follows by
induction because f,, — and fn;}+ are compositions of f, — and f,- i, while f,, +
and f1 are compositions of fn,+ and f;i, see Lemma [2.6 O

m,—

Proposition 2.9. If 8 is a dividing curve for n, then for all m < n the closed
sector Sy, C H_ bounded by fr.—(B)U fm. +(B) and containing B is a fundamental
domain for X

Conversely, if By C D is a dividing curve of f,, (see , then a lift B C H_

of By is a dividing arc for n.
As a corollary,

D~ H*/<Xm> =~ Sm/fm,—(ﬁ)aﬂfNXm(I)efm,,-F(ﬁ)'
To prove Proposition we need to verify that every x,,-orbit passes through S,,.
Figure [2|illustrates that Condition can not be relaxed to the condition “g goes
to infinity.”

Proof of Proposition[2.9 Since f,, —(8) is on the left of f,, _(8) (by Lemmas
and7 the arcs fy,, —(8) and S are disjoint. Similarly, f,, +(5) and § are disjoint.
We need to show that for every z € H_ there is a k € Z such that x*, (2) € S,,.

Suppose converse, there is a z € H_ such that x* (z) € S,, for all k € Z. Since
point can not jump over S,, under the iteration of x,,, the orbit of z is either on
the left of S, or on the right of S,,.

Let us assume that there is a z € H_ whose orbit is on the left of S,,; the
opposite case is analogous. We will show that F(2) is on the right from S,, for
some P € T. Then for some a,b > 0 and k € Z, we would have

0l o FP(2) = xn (2).
This will be a contradiction, because ¥, (z) is still on the right of S,, for all k € Z
by Lemma |2.8
Let us choose a 1-wall A separating z from a. We denote by @ the connected
component of H_ \ A attached to . Since f,, —(8) and f,, +(8) land at «, the

sector S, intersects at most finitely many truncated triangles A(7)\ @. This means
that A(j) \ @ is on the right of S, for j > 0.
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Write z € A(i). There is a small P € T and a big j > 0 such that F'¥: A(i) —
A(3) is a homeomorphism. Then F¥(2) C A(j) \ Q is on the right from S,,. This
proves that S, is a fundamental domain.

The converse statement is immediate. (]

2.3.11. Partial homeomorphisms. Let us show that Proposition [2.9| with necessary
adjustments holds for partial homeomorphisms.

Consider a partial homeomorphism f: D --» D with f(0) = 0 such that Dom f
and Im f are closed topological disks containing 0 in their interiors.

As in §2.37] let 40,7 be two simple arcs connecting 0 to points in dD such
that vy and v, are disjoint except for 0 and such that ~; is the image of vy in the
following sense: 7( := v NDom f and 74 := 71 NIm f are simple closed curves such
that f maps 7} to v;. We call vp,71 a dividing pair. Then ~o U~ splits D into two
closed sectors A and B denoted so that int A, v, int B, v are clockwise oriented
around O.

Similar to (2.16)), given two sectors S;, S;+1 € {A, B}, we naturally have a partial
map g: p(So) --+ £(S1) defined by

id:my —m if (S, Si+1) = (A, B),
(2.26) g id: v0 = 70 ?f (S, Siv1) = (B, A),
f7hi =0 i (86, Si) = (A A),
frv—m if (i, Si41) = (B, B),

The dynamical gluing of a sequence of sectors (S;); € {A,B}* with k < oo is
defined in the same way as in §2.3.1} i.e. the left boundary of S; is glued with the
right boundary of S;_; along (2.26).

Let s € {A,B}# be the sequence from (where f is assumed to be a
homeomorphism), and let o be corresponding dynamical gluing. Then ¢ is a
triangulation associated with -y, y1, we enumerate triangles of ¢ from left-to-right
as Ag(i) ~ s[i], with ¢ € Z.

For every @ < min{(0,1,0),(0,0,1)}, we define the partial homeomorphism
FQ: ( --»  trianglewise using ,, and . Taking iterates, we

obtain the cascade of partial homeomorphisms

F20={F": ¢--» (| PEeT}.
In particular, f_ = F(O1.0) and f, = F(0.01 are well defined. The commuting pair
(2.27) fr:Ao(0) = Ag(0,1) and f_: Ag(1l) = Ag(0,1)
realizes the first return of points in Ap(0,1) back to Ag(0,1). The pair is
obtained by cutting f: D --+ D along ;. Conversely, there is a projection

p: Ag(0,1) - D

semi-conjugating F' = (f_, f+) to f such that p glues the left boundary A of Ay(0,1)

with its right boundary p. The gluing map x: A — p coincides with fyof=1: X\ --»
pin Dom(fy o f~h).

A wall II C Dom f NIm f around O respecting vo,v1 for f: D --» D is defined in
the same way as in the case of homeomorphisms, see §2.3.8 Lifting IT under p and
spreading IT around, we obtain the connected strip C . As in §2.3.9] we add the
boundary point @ to ¢, and we endow (¢ U {a} with the wall topology.
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Fix a wall IT and its full lift C . Let us denote by @ the connected component
of \ attached to a. Note that Q C Dom(f_) N Dom(f;).
A fundamental domain for f is a sector S™°V with distinguished sides A"V and
p"V such that
(1) S*¥A\Q =A(0,1)\ @, and A"\ Q = A\ Q, and p"™ \ Q =p\ Q,
(2) fyo f:l()\“ew N U Q)) C p"V and f:l()\“ew N U Q)) C int(S™V);
(3) A"% and p"*"V land at a.
We define the gluing map
XIIeW: A _> p
to be
e xon A\ Q;and
o FOOD=(010) — £ o =1 onp ANQ.
Gluing the left and right boundaries of S™% along x"°V, we obtain a closed
topological disk W. We realize W as a subset of C, and we denote by

pr L ST S W, p"V(a) =0
the induced projection. Then F' = (f_, f1) projects to
Ve Wo——s WL
Write Q = p(Q N S) C D and Q"¢Y = p"ev(Q N S™V) C W.

Proposition 2.10. Let S" be a fundamental domain for f as above. Then the
quotient map f*V: W --» W is canonically conjugate to f: D --» D.

Conversely, suppose Y5,y is a dividing pair such that 5\ Q = v\ Q and
WA\ Q=4 \ Q. Let § be the triangulation associated with v§<, V. Then

the cascades F'| o and F'| § are canonically conjugate.

The canonical homeomorphism h: D — W has the following characterization:
e h: D\ Q— W\ Q%Y is the canonical identification using Condition (1));
o if hop(z) = p"¥(y) € Q"W for some z,y € , then x and y are related
by the action of the deck transformation x | @: for some n € Z we have
x € Dom(x | Q)" and x"(z) = y.
Equivalently, the canonical homeomorphism h: D — W can be characterized using
unique extension along curves as in |[DLS|, Theorem B.8]. A similar characterization

has a canonical homeomorphism between (¢ and §*".

Proof of Proposition[2.10, Denote by Q and Q"% the images of Q U {a} under p
and p"®" respectively. Condition implies that D \ Q is canonically identified
with W\ Q"% by an equivariant homeomorphism.

We can now modify f: D --» D away from QU f(Q) U f~1(Q) to obtain a self-
homeomorphism f: D — D mapping 79 to 71. Since the modification does not
affect f | Q, we obtain a reformulation of Proposition O

3. BACKGROUND ON THE PACMAN RENORMALIZATION

3.1. Quadratic-like renormalization. Recall that copies of the Mandelbrot set
are canonically homeomorphic via the straightening map, see [DH2]. See also [DH1,,
L4] for the background on the Mandelbrot set. Given a small copy M of the Man-
delbrot set, we denote by Rs: M; — M the canonical homeomorphism between
M and M.
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A quadratic polynomial p. = 22 + ¢, ¢ € M, is renormalizable if ¢ belongs to a
small copy of the Mandelbrot set. Let M be the biggest small copy of M containing
c. We set Rqr(c) = Rs(c). This way we obtain the partial map Rqr,: M --+ M.

A map p, is infinitely renormalizable if ¢ is within the non-escaping set

NE(Rq) = (] Dom Ry,
i>0

of Rqr,. If the connected component of NE(Rqp,) containing ¢ is a singleton,
then M is locally connected at c. The global MLC conjecture is equivalent to the
assertion that every connected component of NE(Rqy,) is a singleton.

An infinitely renormalizable parameter ¢ has bounded type if its orbit Rg (c)
belongs to finitely many maximal small copies of M. If, moreover, the maximal
copies of M containing R¢); (c) are satellite, then ¢ has bounded satellite type.

3.1.1. Analytic renormalization operator. (See |L3| for details.) Let us write a
quadratic-like map as f: U — V, and let us denote by [f: U — V] the quadratic-
like germ of f considered up to affine equivalence. The modulus of the fundamental
annulus V' \ U is the modulus of f, denoted by mod f. We denote by &(f) and B(f)
the non-escaping and postcritical sets of f.

In [L3] the space QL of quadratic-like germs is supplied with complex analytic
structure. Let M1 C QL be the connectedness locus; i.e. the set of germs with a
non-escaping critical point.

The hybrid classes form a codimension-one lamination Fqr, of M with complex
codimension-one analytic leaves. Every leaf of F; € Fqr, contains a unique param-
eter ¢; in the actual Mandelbrot set. By collapsing every F; € Fqr, to ¢;, we obtain
the projection x: M — M.

Consider a small copy My C M of period n > 1. There is an analytic operator
Rs: QL —--+» QL associated with M such that

Rslf: U—=V]=[f" U = Vi.

We assume that V; contains the critical value of f. The operator R, satisfies
X oRs = Rso0x. If M, is satellite, then R, is defined on a neighborhood of
x (M \ {cusp}); and if M is primitive, then R is defined on a neighborhood
of x 1 (M,).

Combining all R over all the maximal copies My C M, we obtain an analytic
operator Rqr,: QL --» QL such that (with appropriate choices of branches)

X ©°RqL = RqroXx.

3.1.2. Satellite copies. Consider a rational number v € Q between 0 and 1. We
denote by M, C M the primary satellite copy of M with rotation number t.
In other words, M, is the unique copy of the Mandelbrot set attached to the
parabolic parameter p.) € 0A with rotation number v. We have the canonical
homeomorphism R.: M, — M.

For t,5 € QN (0,1), we write M, s :== Ry '(M,) and we denote by Ry s: M, s —
M the canonical homeomorphism. The construction continues by induction. In
particular, M, s+ == R:sl (My).
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3.1.3. Local connectivity of the Julia set. An infinitely renormalizable quadratic-
like map f: U — V is said to satisfy an unbranched a priori bounds (see [McM1]) if
there is an € > 0 such that for infinitely many n the renormalization f, = R, fH
can be written as f,: U, — V,, so that

(3.1) Vi NB(f) € R(fn)

and the modulus of V,, \ U, is at least e. We will refer to as the unbranched
condition. It is known that any infinitely renormalizable quadratic-like map with
unbranched a priori bounds has locally connected Julia set; see [J],[McM1|, [L2,
Theorem VI] for the reference.

3.1.4. Renormalization periodic points and horseshoes. A quadratic-like map f: U —
V' is a renormalization periodic point if it is conformally conjugate to its proper
quadratic-like renormalization: there is an iteration

f.:fm:U.*)V., U.CU

and a conformal conjugacy (renormalization change of variables) ¢: Vo — V be-
tween fo | Us and f | U. The projection x(f) € M is a periodic point of Rqr,,
see We usually assume that ¢1(f) = ¢1(fe) i-e., ¢1 is a fixed point of ¢. Since
Us G U, we have |¢(c1)| > 1 by the Shwarz lemma.

Linearizing ¢ one can assume that it is affine: if L is the linearizer for ¢, then
replacing ¢, f, feo with their conjugacies by L we obtain that the new f, is affinely
conjugate tof.

By a renormalization horseshoe H we mean a precompact family of quadratic-
like maps f: Uy — Vy such that every f € H has a quadratic-like renormalization
fr = fmi). Uy, — V}, conformally conjugate to a map }1 in H and such that the
renormalization f — }1: ‘H © is injective. A horseshoe H is hyperbolic if it is a
hyperbolic set of a renormalization operator defined on a neighborhood of H.

Since the renormalization change of variables in a horseshoe #H is conformal,
unbrached a priori bounds descends from the top to all deep scales: if

mod(Vy\Uy) >e and Vy NP(f) C R(fr) forall feH
then mod(Vy, \ Uy,) > € and Vi, NP(f) C R(f,) for all n.

3.2. Pacmen. In this subsection we collect the background information on the
pacman renormalization from [DLS|. A full pacman is a map

U=V
such that (see Figure|l| and [DLS| Definition 2.1])

o fla) =0

e U is a closed topological disk with U C V;

e the critical arc v; has exactly 3 lifts v¢ C U and v_ ,v4+ C 90U such that
~o starts at the fixed point o while v_ ,~, start at the pre-fixed point «;
we assume that v does not intersect v, 7— , 74+ away from «;

o f:U — Visanalyticand f : U\ 7y — V \ v is a two-to-one branched
covering;

e f admits a locally conformal extension through oU \ {«'}.

A pacman is a obtained from a full pacman by removing a small neighborhood
of o/, see Figure More precisely, a pacman is an analytic map

(3.2) J: (U, 00) = (V,0)
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FIGURE 10. A pacman is a truncated version of a full pacman,
see Figure [I} it is an almost 2 : 1 map f : (U,Op) — (V,0) with
f(OU) C OV U~ UdO0.

with f(OU) C 9V U~ U Q0 such that

e Oy and O are disk neighborhoods of « and f maps Oy conformally to O;

e f admits a locally conformal extension through OU;

e every point in V' \ O has two preimages in U as for a full pacman while
every point in O has a single preimage in Oy (in other words, f can be
topologically extended to a full topological pacman by adding topologically
the second preimage of O \ 71).

We recognize the following two subsets of the boundary of U: the external bound-
ary O%U := f~1(0V) and the forbidden part of the boundary 0FPU = oU \ 0°<tU.
Given a pacman f: U — V, its non-escaping set is

K= (0),

n>0

it is sensitive to a small deformation of OU. The escaping set of fis V' \ Ry.

Let us embed a topological rectangle 93 in V' \ U so that the bottom horizontal
side is equal to **U and the top horizontal side is a subset of V. The images of
the vertical lines within 9 form a lamination of V'\ U. We pull back this lamination
to all iterated preimages f~"(2R). Leaves of this lamination that start at OV are
called external ray segments of f; infinite external ray segments are called external
rays of f. Note that if v is an external ray, then f(v) := f(yNU) is also an external
ray. Every external ray v has a well defined external angle ¢ such that the angle
of f(v) is 2¢, see [DLS] §2.1].
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.

Ficure 11. A (full) prepacman (f_: U- — S, fi: Uy — 9).
We have U_ = T_U YT, and f_ maps Y_ two-to-one to S_ and
YT, to Sy. The map fi maps U, univalently onto S1. After gluing
dynamically f_ and 1 we obtain a full pacman: the arcs §_ and
B+ project to 1, the arc By projects to g, and the arc 5 projects
to 2.

3.2.1. Prepacmen. (See Figure and [DLS| Definition 2.2].) A prepacman is a
pair of commuting maps that can be glued into a pacman. More precisely, consider
a sector S with boundary rays S_,5; C 0S and with an interior ray [y that
divides S into two subsectors T_,T. Let f_: U_ — S, fi: Uy — S be a pair of
holomorphic maps, definedon U_ C T_ and Uy C Ty.. Wessay that F = (f1: Uy —
S) is a prepacman if there exists a gluing ¢ of S which projects (f_, f1) onto a
pacman f: U — V where ¢ | int S is conformal, S_, S+ are mapped to the critical
arc 1 = 9¥(B+), and Sy is mapped to .

The definition implies that f_ and f; commute in a neighborhood of By. Note
that every pacman f: U — V has a prepacman obtained by cutting V along the
critical arc 7;. Dynamical objects (such as the non-escaping set) of a prepacman
I are preimages of the corresponding dynamical objects of f under .

3.2.2. Pacman renormalization. (See Figure [L2/and [DLS| Definition 2.3].) We say
that a holomorphic map f: (U,a) — (V,a) with a distinguished a-fixed point is
pacman renormalizable if there exists a prepacman

G=(g =f"U.—=S, g, =f°:U =058

defined on a sector S C V with vertex at a such that g_ , g4 are iterates of f
realizing the first return map to S and such that the f-orbits of U_ , U, before
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FIGURE 12. Pacman renormalization of f: the first return map of
points in U_ UU} back to S = S_US, is a prepacman. Spreading
around Uy : the orbits of U_ and U, before returning back to S
triangulate a neighborhood of «; we obtain f: — U, and
we require that is compactly contained in Dom f.

they return to S cover a neighborhood of a compactly contained in U. We call G
the pre-renormalization of f and the pacman g: U — V is the renormalization of
f. By default, we assume that S contains the critical value of f.

The numbers a,b are the renormalization return times. The renormalization of
f is called prime if a + b = 3. Combinatorially, a pacman renormalization is an
iteration of prime renormalizations, see §2}

We define = ¢ to be the union of points in the f-orbits of U_ ,U, before
they return to S. Naturally, is a triangulated neighborhood of «, see Figure
We call  a renormalization triangulation and we will often say that is obtained
by spreading around U_ ;U;. We require ¢ € Dom f and ¢ US &€ Im f.

An indifferent pacman is a pacman with indifferent a-fixed point. The rotation
number of an indifferent pacman f is § € R/Z so that e(#) is the multiplier at
aff). If, in addition, 8 € Q, then f is parabolic. A pacman renormalization of an
indifferent pacman is again an indifferent pacman.

3.2.3. Banach neighborhoods. (See [DLS, §2.4].) Consider a pacman f : (Uf, Og,7v0) —
(V,0,~1) with a non-empty truncation disk O. We assume that there is a topologi-
caldisk U > U ¢ with a piecewise smooth boundary such that f extends analytically
to U and continuously to its closure. Choose a small € > 0 and define N (f,¢) to
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be the set of analytic maps g : U — C with continuous extensions to U such that

sup £(2) — g(2)| < e.

zeU

Then Nz(f,¢) is a Banach ball; it is the ¢ neighborhood of f in the Banach space

of maps defined on U. [DLS| Lemma 2.5] asserts that if 79,71 land at « at distinet
well-defined angles and e is sufficiently small, then every g € N (f, ) has a domain

Uy C U such that g: U, — V is a pacman with the same V,~1, O (up to translation).

3.2.4. Pacman analytzc operator. (Summary of [DLS| §2.5].) Suppose that a pac-
man f: U — V is a renormalization of a holomorphic map f: (U, a) — (V,a) via
a quotient map ¢ : Sy — V. Assume that the curves Bo, B—, B+ (see Figures
and land at « at pairwise distinct well-defined angles. [DLS, Theorem 2.7] as-
serts that for every sufficiently small neighborhood N (f, €), there exists a compact
analytic pacman renormalization operator R: g — § defined on N (f, ) such that
R(f) = f Moreover, the gluing map %4, used in this renormalization, also depends
analytically on g. Note that the operator R is non-dynamical: it goes from a small
Banach neighborhood of f (where f needs not be a pacman) to a certain small
Banach neighborhood of the pacman f If f f as germs and U> U i.e., there
is an “improvement of the domain”, then R: Nz (f,e) — Nz(f,0), Rf = f is a
dynamical operator for sufficiently small € and 4.

3.2.5. Siegel pacmen. (See [DLS| §3]) A holomorphic map f: U — V is Siegel
if it has a fixed point «, a Siegel quasidisk Z; > « compactly contained in U,
and a unique critical point ¢y € U that is on the boundary of Z;. Note that
in |[AL2| a Siegel map is assumed to satisfy additional technical requirements; these
requirements are satisfied by restricting f to an appropriate small neighborhood of
Zy.

It follows from [ALZ2, Theorem 3.19, Proposition 4.3] that any two Siegel maps
with the same rotation number of bounded type are hybrid conjugate on neighbor-
hoods of their closed Siegel disks.

A pacman f: U — V is Siegel if

e f is a Siegel map with Siegel disk Z; centered at «;

e the critical arc y; is the concatenation of an external ray R; followed by an
inner ray I; of Z¢ such that the unique point in the intersection v; N 0Z;
is not precritical; and

e writing f: (U,0p) — (V,0) asin , the disk O is a subset of Zy bounded
by its equipotential.

The rotation number of a Siegel pacman (or a Siegel map) is 6 € R/Z so that e(6)
is the multiplier at . It follows that the rotation number of Siegel map is in Oppq
— the set of combinatorially bounded rotation numbers (i.e., rotation numbers with
continued fraction expansion where all its coefficients are bounded).

If f is a Siegel pacman, then all external rays of f land. Moreover, 0Z is in
the closure of repelling periodic points, and every neighborhood of 0Z; contains a
repelling periodic cycle. Moreover, the non-escaping set of f is locally connected.

A Siegel pacman is standard if vy passes through the critical value; equivalently
if 1 passes through the image of the critical value. By |[DLS, Corollary 3.7 and
Lemma 3.4] every Siegel map can be renormalized to a standard Siegel pacman.
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3.2.6. Hyperbolic pacman renormalization self-operator. Let us now fix a rotation
number 0, periodic under Ry m, see . By |DLS| Theorems 3.16 and 7.7], there is
a pacman renormalization operator R: Nz (f«, ) — Nz (f«,d) with a fixed standard
Siegel pacman R f, = f, such that the rotation angle of f, is 6,. Moreover, R is
compact, analytic, and hyperbolic. We write this operator as R: B --+ B, where
B= Nﬁ (f*7 (5)

The renormalization operator R: B --+ B is hyperbolic at f, with one-dimensional
unstable manifold W* and codimension-one stable manifold W#. In a small neigh-
borhood of f, the stable manifold W?* coincide with the set of pacmen in B that
have the same multiplier at the a-fixed point as f,. Moreover, every pacman in WW?*
is Siegel. In a small neighborhood of f, the unstable manifold W* is parametrized
by the multipliers of the a-fixed points of f € W".

Our convention is that the renormalization change of variables ¢s: Sy — V
associated with R f is defined near the critical value; i.e. Sy 3 ¢1(f) and s (c1(f)) =
c1(Rf). In other words, the renormalization zooms at the critical value.

By |[DLS, Lemma 3.18], R acts on the rotation numbers of indifferent pacmen
as RM  for some m > 2. Namely, if f € B is an indifferent pacman with rotation

prm
number ¢, then Rf is again an indifferent pacman with rotation number R, ().
In particular, R, (0.) = 0. We call m the renormalization period of R. We will

show in Proposition that R: B --» B can be constructed so that m is the
minimal period of 6, under Rpm,.

3.2.7. Combinatorics of R: B --» B. Since the renormalization R f, = f, restricted
to the Siegel quasidisk Z, is the m-th iterate of the prime renormalization, we have

(see §2.1):

(3.3) 6, = R™..(6,).

Lemma 3.1 ([DLS, Lemma 3.17]). If f € B is an indifferent pacman with a
rotation number 6, then Rf is again an indifferent pacman with rotation number
RM (6).

prm

Since the unstable manifold W* is parametrized by the multipliers of the a-fixed
points, the unstable eigenvalue A, is equal to the derivative (BT, ) (6.).

Let M be the antirenormalization matrix associated with 7 see . Recall
that M has positive entries. As in let t be the leading eigenvalue of M. By

Lemma [2.T]

(3.4) A = 2

3.2.8. Operators on near Siegel maps. Consider a Siegel map g with rotation angle
4. Suppose R’grm(eg) = 0, for some k£ > 0. Then g can be renormalized to
a pacman on the stable manifold of f,, see [DLS, Corollary 3.7 and Lemma 7.8].
This allows us to define a compact analytic renormalization operator Rgieg: A — B

with Rgieg(g) € W?, where A is a small Banach neighborhood of g.

3.2.9. Maximal prepacmen. (Summary of [DLS| §5].) Every pacman f € W, can
be anti-renormalized infinitely many times. For n < 0, we write f, = R"f and we
denote by F,, the associated prepacman (obtained by cutting f, along its critical
arc y1). Let ¢,: S, — V be the renormalization change of variables realizing the
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p_o=v"3

B
|

FIGURE 13. Tower of antirenormalizations.
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renormalization of f,,_;. This means that there is a prepacman
Flnh) = (fén:t—l): UT(Ln;l) N S(n—l))
n—1 n n—1 n
= (o U 5 80, g Ul o s,

in the dynamical plane of f, such that 1, projects Fy(Lnfl) to fn. We also say that

1 embeds F, to the dynamical plane of f,, and we call F"Y the embedding.
Write

'(/}* = wfu
M = (7/’;1)/ (c1),
Az gz,

To: 2z z—c1(fn).
Then the limit

(3.5) ho(z) = lim A} oT,4q10 (w;il 0---0 q/)j ) 1/;0_1(2))

n——oo

exists for all z € V'\ 1 with an extension through 77 \ {a}. The a-fixed point is not
in the domain of hy: as z approaches «, its image ho(z) approaches oo. Similarly
hy, are defined for n < 0. The maps h,, linearize ¢-coordinates (see Figure : let

(3.6) F = (fit Uy — S)

be the image of F' = Fy = (fy: Ux — S) via hg (i.e. S is the closure of ho(V \ 71),
and fi .= hgo f1 o ho_l), then fy 1 are iterations of f, + rescaled by A} (see (3.11)
below). The map is a prepacman (Figure 11) in C with o = 0.
Let g : X — Y be a holomorphic map between Riemann surfaces. Recall that g
is:
e proper, if g7 1(K) is compact for each compact K C Y;
e o-proper (see [McM2| §8]) if each component of g~ (K) is compact for each
compact K C Y; or equivalently if X and Y can be expressed as increasing
unions of subsurfaces X;, Y; such that g : X; — Y; is proper.

A proper map is clearly o-proper.
[DLS, Theorem 5.5] asserts that fi admit maximal analytic extensions to o-
proper maps of the complex plane; we call the pair of extensions

(3.7) F=(f_:X_—C, f:X, 5C),

a maximal prepacman. The maximal extension is obtained by iterating a
certain number of times in the dynamical plane of f;, k < 0. Namely, a big open
topological disk D* around 0 in the dynamical plane of F is identified via (A¥ohy)~!
with a fixed disk D in the dynamical plane of f; around the critical value ¢; (f%), see
Figure Moreover, D also contains f;*(cq) and f,';’“ (c1) for certain ay,by. Let
W and WJ(rk) be the pullbacks of D along the orbits ¢, fr(c1),..., fi*(c1) and

e, fr(er), .-, f,'j *(¢1) respectively. This way we obtain a pair of branched coverings
(see |DLS| (5.9)])

(3.8) (fpe-w®™ D, e w5 D).
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Ao hy,

So

FIGURE 14. S7 = A"S,, and U S# = C, compare with Figure
n<0

(The main step is to show that the backward orbits of D in these pullbacks do not
hit 0fPUy, see Figure [105 this is [DLS, Key Lemma 4.8] stated as Lemma |6.2] later
in the paper.) Then A” o h;, conjugates (3.8) to the pair

(3.9) (f_: w D* f,: Wf) — DF)
so that (J;, D* = C and

Domf_ = | J W™, Domf, = | J Wl
k<0 k<0

It follows from the construction that Dom f_ and Dom f; are simply connected.
Let
F# — (f# £# ) = A" oF, 0 A"

n n,—’n,+

be the rescaled version of F,,, see Figure Then F} is an iteration of Ffﬂ:
writing the antirenormalization matrix as

(3.10) M = (mlvl mm)

mo1 M22
we obtain
mi 1 mi, 2
(3.11) o= () (s

ma2,1 m2 2
fjf‘l’ = (ff—L—) o (ff—1,+)

In particular, F = F# is an iteration of F#.
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< Ay(0) 1 V
R

FIGURE 15. Left: the triangulation o = Ag(0) U Ag(1). The
closed triangles Ag(0) and Ag(1) are the closures of the connected
components of U \ (7o U~1). Right: the triangulation 1(fp) is
obtained by spreading around A;(0, fo) and A;(1, fy) — the em-
beddings of Ag(0, f1) and Ag(1, f1) into the dynamical plane of
Jo

3.2.10. Renormalization triangulation. (See [DLS| §4.1] and Figure[15|) For a pac-
man fo € B its 0th renormalization triangulation o(fo) consists of two closed
triangles Ag (0, fo) and Ag(1, fo) that are the closures of the connected components
of Uy \ (70 U= ). For n > 0, the nth renormalization triangulation ,(fo) consists
of all the triangles obtained by spreading around A, (0, fo) and A, (1, fo) (compare
with Figure , where the latter triangles are the embeddings of Ag(0, f,,) and
Ao(1, f) to the dynamical plane of fo. We also say that ,,(fo) is the full lift of

o(fn)- |DLS, Theorem 4.6] asserts that ,,(f) approximates Z, dynamically and

geometrically.
More precisely, suppose fy € B is renormalizable m > 1 times. We write
b =1y,
The map

o, ::¢10¢20"'O¢m
admits a conformal extension from a neighborhood of ¢;(f,,) (where ®,, is defined
canonically) to V' \ 1. The map ®,,: V \ 71 — V embeds the prepacman F,, to
the dynamical plane of fy; we denote the embedding by

FO = (13 U — 5)

=(fgr U 5 80, g Ul - 50,

where the numbers a,,, b, are the renormalization return times satisfying

(3.12) (A, b)) = (@, B)M™ ™1 = (1, 1) M™, a=a;, b=b.

Waite Ay (0, fo) == Ty and Ay (1, fo) = T

{f6(An(0, f0)) [i€{0,1,... am =1} U{f5(An(L, fo)) [ i € {0,1,..., by —1}}.
We enumerate counterclockwise these triangles as A, (¢) with i € {0,1,..., ¢ —1}.
By construction, A,,(0,1) = A,,(0) U A,,(1) contains the critical value ¢y, while

_. Then ,, consists of triangles
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A (—=pm, —Pm + 1) contains the critical point, where p,,/q., is the combinatorial
rotation number of f| ..
We have:

(3.13) n(f) € noa(f) €€ 1(f) € 1(fHUuSre olf).

and renormalization sector Sy is disjoint from ~; away from a small neighborhood
of a.

3.2.11. Walls , of .. Consider the dynamical plane of a pacman f. By a
univalent N-wall we mean a closed annulus A surrounding an open disk O con-
taining «, such that f | O U A is univalent, and for every z € O, we have
(f | AUO)**(2) € AUO for k € {0,1,...,N}. In other words, it takes at
least N iterates for a point in O to cross A. An N-wall is an annulus A surround-
ing an open disk O containing « such that A contains a univalent N-wall. A wall
A respects vyg,v1 if AN~y and AN~ are two arcs.

Let us define the wall ,,(f) of ,; the wall approximates 07, just like ., (f)
approximates Z,. In the dynamical plane of f, consider its Siegel disk Z,. It is
foliated by equipotentials parametrized by their heights ranging from 0 (the height
of @) to 1 (the height of Z,). Fix an r € (0,1) and consider the open subdisk Z"
of Z, bounded by the equipotential at height r. Consider next f € W* close to f,.
Then ~o(f) and 1 (f) still intersect 0Z" at single points. The wall o(f) of o(f)
is the closed annulus o(f) \ Z" consisting of rectangles

HO(O) = N AO(O) and Ho(l) = N Ao(l).

Suppose that f,, with n > 0 is sufficiently close to f, so that o(f,) is defined. Let
I1,,(0, fo) and II,,(1, fy) be the embedding of the rectangles 1y (0, f,,) and Tg(1, fy)
into the dynamical plane of fy, see [DLS, Lemma 4.2, (2)]. The wall , = ,(f)
of »(f) is obtained by spreading around II,(0, fo) and IL,(1, fg). The wall
consists of rectangles II,,(i) = , N A,(3). We have ,(fo) € n—1(fo) is an
annulus approximating 07, and, moreover, the dynamics f | ( ,,\ ) is univalent.

3.2.12. Siegel triangulation. Consider a pacman f close to f, and let v7°%, 45" be

a new “dividing” pair (similar to §2.3.11)) that is coincide with vg,71 on ¢; i.e.:

W= SR O = (o), AN o=

Let §°" be the associated new triangulation consisting of the closures of Uy \
(™ U~e™). Such §° will appear in Theorem as the projection of a funda-
mental domain and will be used in Theorem [8.2] to select 4§ \ {a}, 71V \ {a} away
from a valuable flower. Lemma 4.3 from [DLS] (see also Proposition[2.10) assets that
if f =R"(f-n), then §V(f) has the full lift D2°%(f_,,) with 2V(f_,) = n(f-n)
just like ,, is the full lift of (. Moreover, the assumption “y*¥ N ¢ = ;" can
be relaxed into “y/°*V N ¢ is sufficiently close to v;.”

We will also consider triangulations that are small perturbations of .°%. A
Siegel triangulation  is a triangulated neighborhood of « consisting of closed tri-
angles, each has a vertex at «, such that

e triangles of are {A(i)}ieqo,...q—1} enumerated counterclockwise around «
so that A(7) intersects only A(i — 1) (on the right) and A(i + 1) (on the
left); A(i) and A(i + j) are disjoint away from « for j ¢ {—1,0,1};

e thereis a p > 0 such that f maps A(7) to A(i+p) forall i & {—p, —p+1};
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e has a distinguished 2-wall  enclosing « and containing 0 such that
each II(4) := N A(¢) is connected and f maps II(¢) to II(i 4+ p) for all
i & {—p,—p+1}; and
e  contains a univalent 2-wall @ such that each Q(%) := QNII(%) is connected
and f maps Q(7) to Q(i +p) for all i & {—p,—p+1}.
We say that  approzimates 0Z, if 0Z, is a concatenation of short arcs JoJi ... Jq—1
such that TI(7) and J; are close in the Hausdorff topology.

Lemma 3.2 ([DLS| Lemma 4.4]). Let f € B be a pacman such that all f, Rf,... , R"f
are in a small neighborhood of f,. Let (R™f) be a Siegel triangulation in the dy-
namical plane of R™ f such that (R™f) approzimates 0Z,. Then (R™f) has a full
lift  (f) which is again a Siegel triangulation. Moreover, (f) also approximates
0Z,.

More generally, (f) can be lifted under a renormalization Rgieg: A — B defined

on near-Siegel maps (see assuming that (f) sufficiently approximates 0Z,.

In the proof, we first lift (it has a lift because  approximates 9Zy,), and then

extend the lift into \ (see Proposition[2.10)). If fo € W* has a Siegel triangulation
(fo), then (fo) has a full lift (f,,) converging to Z, as n — —oc.

3.2.13. Renormalization change of variables near cy. We will consider in the
renormalization change of variables g defined on a neighborhood of the critical
point cop; i.e. ¥o(co(f)) = co(f1) and g projects the first return of f to f1 = Rf.
If ¢p: S — V is the renormalization change of variables near the critical value as
above, then 1) is uniquely characterized by

Yo f = fioto.
We have Dom ¢y = f~1(S) and Im 1y = Dom f;.

3.2.14. Parabolic pacmen. (See [DLS| §6]) In a small neighborhood of f, consider
a parabolic pacman f, € W* with rotation number v = p/q close to 0,. We denote
by Hy a small attracting parabolic flower around «. Petals in Hy are enumerated
counterclockwise as H§ with i € {0,1,...,q— 1}

We assume that Hj is small enough so that Hy C V' \ 71, possibly up to a slight
rotation of ;. Therefore, the flower Hy lifts to the dynamical plane of F, via the
identification V' \ 71 ~ int S; we denote by Hy the lift. The global attracting basin
H of F, is the full orbit of Hy. There are Fatou coordinates in Hy; globalizing
the Fatou coordinates we obtain that 0 € H. [DLS| Proposition 6.5] parametrizes
periodic components of H as H’ from left-to-right with 0 € HY, see Figure
Every petal H? is an open topological disk in C. By re-enumerating, we assume
that the lift HY of HY is contained in H?. Note that HY is disjoint from OH°. The
actions of fjfi on (H%);cz are given by (see [DLS, (6.7)])

(3.14) £7_(H') =H"P and £/  (H') = H "9 P,

where p,, /¢y, is the rotation number of f,.

3.2.15. The molecule map. (See [DLS, Appendix C].) Consider a primary p/g-limb
Ly /q of the Mandelbrot set. In the dynamical plane of p € £,/ there are exactly q
external rays landing at the a-fixed point; these rays are permuted as p/q. We can

apply the Branner-Douady surgery |BD| and delete the smallest sector between
external rays 7, p(7) landing at « (as with the prime renormalization of a rotation);
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the result is a map Rpem(p) € Lg,,...(p/q)» Where Ry (p/q) is defined in (2.3). This
defines a partial continuous map Rprm: Ly/q -=* LR, (p/q) Whose inverse is an
embedding of Lr_ . (p/q) into Ly/q. If p/q=1/2, then Rym: L1/3 --+ Loy = M
is the canonical homeomorphism between M/, and M.

The molecule map is obtained by tak-
ing all Ryrm: Ly/q —=* LR, (p/q) and ex-
tending continuously Ry, to the bound-
ary of the main hyperbolic component
OA. The molecule map is a 3-to-1 partial
map Rpm: M --» M; its domain de-
pends on the choices of the rays v. How-
ever, on the boundary of main molecule,
R, is defined canonically and is semicon-
jugate to q(z) = z(z + 1)? restricted to
its Julia set, see the figure. The Molecule
Conjecture asserts that this is in fact a
conjugacy and, moreover, there is a hyperbolic renormalization operator associated
with the molecule map.

4. DYNAMICS OF MAXIMAL PREPACMEN

Recall from that every pacman f € W" has the associated maximal
prepacmen F = (f_,f,) consisting of two o-proper maps. We define Wy, ~ W
to be the space of maximal prepacmen arising this way.

The renormalization operator on W, . is an iteration and rescaling by A,: there
are msi 1, M1 2, Ma,1,M22 > 1 such that (see )

mi,1 mi,2
fji = (ff—l,—) ° (ff—l,-i-)

mao 1 m2 2
e = () e (fhy)

In particular, F = Fo# is an iteration of F#. Recall from (3.10) that the antirenor-
malization matrix is defined by

12 e ().

(4.1)

mo1 M22
Clearly, if
(4.3) (¢, d) = (a, b) M,
then

(49 () e (60.) = () o (£70) "

We denote by § the tower (F},), <o and we denote by §# the rescaled tower (F7),,<o.

We can now globalize W, as follows. The operator R: Wy, --» Wy, is
conjugate, say via h, to v — A,v in a neighborhood of F, so that h(F,) = 0.
Using , we inductively define F# for all n > 0 and all F in a neighborhood
of F,. Note that the domain of Fﬁ needs not be connected. Define F,, = R"F to
be A" o F# o A" and set h(F,,) := A"h(F,). We enlarge W}._ by adding all new
maximal prepacmen {F, }. Then h parameterizes W* by C; i.e. the new operator
R: W* — W is globally conjugate to v — A\,v: C — C.
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4.1. W* as a geometric limit of the quadratic slice. The space W" naturally
arises as the set of limits of rescaled iterations of quadratic polynomials. Let us
write ¢, = c(f,) and let us change the normalization of p.(z) := 22 + ¢ by putting
the critical value and the parameter c, at 0:
Ge = Tcllc* O Pe+te, © TC+C*'
Using the hyperbolicity of R, it is possible to show that the limit
_ 1 -n an b, n

Fe = ngr-ir-loo A* ° (gCA:n’ gC)\:n) ° A*
exists and defines the parameterization of W* by ¢ such that RF. = F.,,. The
existence of the limit for ¢ = 0 is shown in [McM1, Theorem 8.1, Claim 7].

Therefore, a zoomed picture of the Mandelbrot set near f., gives a good approx-
imation of W*, see Figure Similarly, a zoomed picture of f, | A-n nhear the
critical value gives a good approximation of F.. This will help us to illustrate by
pictures different constructions in the parameter and dynamical planes.

Let us denote by A the main hyperbolic component of W*: the set of maximal
prepacmen F € W*" such that the a-fixed point of f,, is attracting for n < 0. Then
A is the rescaled limit of the main hyperbolic component of the Mandelbrot set
and OA is a straight line passing through 0.

4.2. Power-triples. (Compare with §2.1.2}) A power-triple is a triple (n,a,b) €
Z x 2220~ Given a power-triple P = (n, a,b), we write

a b
PP (6F) o (6F,)
F” is a o-proper map; however its domain needs not be connected.

If a,b,c,d satisfy (4.3]), then we say that (n,a,b) and (n — 1, ¢,d) are equivalent
power-triples. This generates the equivalence relation “~” on the set of power-
triples; we will usually consider power-triples up to this natural equivalence relation.
By construction, F¥' depends only on the equivalence class of P.

Let P,Q be two power-triples. For every n < 0, there are a,b,c,d such that
P~ (n,a,b) and Q ~ (n,c,d). We set

P+Q~(n,a+cb+d).
Then
FItQ = FP o F@.
We denote by T the commutative semigroup consisting of the equivalence classes of
power-triples with the operation “+.” We denote by 0 ~ (n,0,0) the zero power-
triple: FO = id.

For P,QQ € T we say that P > Q if for every sufficiently big n < 0 the following
holds. Write P ~ (n,a,b) and @ ~ (n,c,d). Then a > ¢ and b > d. Clearly, > is a
well defined order on T. The next lemma is a consequence of Lemma 2.2}

Lemma 4.1. For every P,Q € T either P > Q or P < Q holds. There is an
order-preserving embedding

v (T,+,>) = (R0, +,>)
and there is a t > 1 such that
tn—1,a,b) = t(n,a,b)/t
for all a,b > 0. g
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FIGURE 16. Approximations of W* (top) and of the maximal

prepacmen F, (bottom), see Note that the white set between

sars in the limit.

limbs disappe
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From now on, we fix the order-preserving embedding T C R>¢ as in Lemma [£1]
and we write (n,a,b)/t = (n—1,a,b).
We denote by F=0 the cascade (F¥)per. It follows from (4.1 that

t" P
(4.5) Fy = (F%,)
If F = F,, then (4.5 takes form
(4.6) FP = A7"0 (Fi"’P) o A,

4.3. Renormalization triangulations. Recall from that the triangula-
tion _,(f,) is the full lift of (fy). For F close to F, we define the renormaliza-
tion triangulation o(Fg) to be the full lift of ¢(fp) to the dynamical plane of F,.
More precisely, consider

(4.7) f:U_ S, f.:U, —S,

see , and note that this realizes the first return map of points in U4 back to S
under the cascade FZ° because is the first return map under fff 4t Ufi — 8%
for all n < 0. Then = (F) is obtained by spreading around Ag(0) := Uy and
Ap(1) :=U_;ie. ¢ consists of triangles

{FP(80(0) | P < (0,0,1)} U{FP (86(1)) | P < (0,1,0)}
We enumerate triangles in  o(F) as (Ag(¢, F));ez from left-to-right so that
Ao(0,F)=U, and Ay(1,F)=U_,
see Figure The triangulation ¢(F) depends holomorphically on F.

Lemma 4.2. Every Ao(i) is a triangle in C with a vertez at co. For every compact
subset X C C, there are at most finitely many triangles in ¢ intersecting X.

Proof. Since o(F) depends holomorphically on F in a small neighborhood of Fy,
it is sufficient to prove the lemma for F,.

For f,, the map hy = hg (see ) is the linearizer of 4, (the renormalization
change of variables associated with f. = Rf,). This implies that S,, U, 1, and all

A(i, F,) are triangles of C with a vertex at o0, see Figure
Since triangles of ,,(f,) intersect Z, along its internal rays, we can slightly rotate

new

~1 so that the new vV intersects ,(fx) along the boundary of a certain triangle

in ,(fx). Let us cut ,(f,) along 4% and embed using A, ™ o h, the obtained

triangulation to the dynamical plane of F,; we denote by (()n) (Fy) the embedding.

#

Let us also denote by ST, _, the closure of A™ o hy(V \ 7{V), compare with

Figure [14]
Then (V(F,) c ("™(F,), and the union of {"(F,)is o(F,). Morcover,

=8t _.n o

new,—n
Since Siwﬁn contains a disk around 0 with a big radius for n < 0, we have
X CSY., _, forn<0. 0

The nth renormalization triangulation ,(F)is o(F#) = A?( o(F,)).

From now one we assume that W* is chosen in a sufficiently small neighborhood
of f. so that every f € R™™(W") has a renormalization triangulation ,(f) and
every F € R™"(W),.) has a renormalization triangulation , (F) for n > 0.
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For F € WY, the triangulation ,(F) is defined for all sufficiently big n < 0.
We have

(48) U Am(.j7F) =C if Ao(j, F*) > 0.
m<k0

Moreover,

(4.9) S\ Ag(0,1) € A_1(0,1).

because Sy \ 1(f) € V \ 1, see (3.13).
Given a set K C Uy in the dynamical plane of f € W*, the full lift K of K to
the dynamical plane of F is defined as follows. Write

KQ I:Kon(O,f), and Kl :KﬁAo(l,f)

(Recall that the triangles of o(f) are closed thus K = K_ UK ). Let Kq and K;
be the embeddings of Ky and K to the dynamical plane of F via S ~ V' \ v;. Then

K= |J F'Ko) |J F(Ky.
0<P<(0,0,1) 0<P<(0,1,0)
In the dynamical plane of F,, we define its Siegel disk Z, to be the full lift of
Z, (the Siegel disk of f,). Then Z, is a forward invariant unbounded open disk.
For every N > 1, if f € W" is sufficiently close f4, then the wall ((f) contains
a univalent N-wall A (see respecting 7o,v1. The full lift of a univalent
N-wall of o(fy) is a univalent N —1 wall in (o).

4.4. Rational and critical points. A point z is periodic if FF(x) = z for a
power-triple P > 0. It will follow from Lemma [.4] that every periodic point has a
unique minimal period P € T. If P is the minimal period of z, then the multiplier
of z is (FF)(x). Periodic and preperiodic points are called rational.

A critical point of a cascade FZ0 is a critical point of some FZ for P € T. The
following lemma describes basic properties of critical points.

Lemma 4.3. Consider F € W". Then x is a critical point of FZ° if and only if
there is a P > 0 such that F¥(x) = 0. The set of critical points CP (FP) of F¥
is Up<s<p F°(0). The set of critical values CV (FF) of F¥ is {F5(0) | S < P}.
The posteritical set B(F) of F¥ is the forward orbit of 0.

Write K := min{(0,1,0), (0,0,1)}. Then

(4.10) CV(GP)\ {0} C o(G)\S for P<K and GeW,.
For every P < K, the set CV(GT) moves holomorphically with G € WY, , and

every critical point of GT has degree 2 for G € WY .

For every F € W", there is a Ky > 0 such that every critical point of G has
degree 2 for P < Kp.

For every F € W' and every P € T, there exists k € N such that the degree of
every critical point of F¥ is at most k. If 0 is not periodic, then the degree of every

critical point of FT is 2.

The first claim is essentially [DLS| Lemma 6.1].

Proof. Let W & C be an open topological disk, and let W; be a connected
component of F~F(W). For n < 0, the map FF': W; — W is identified via
Ak o hy: V\ 7y — SI with 728 Wy — W for some s(k) > 0 because A* o hy,
conjugates (3.8) and (3.9), see §3.2.9] Therefore, = € W is a critical point of F¥
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if and only if the f-orbit of (A% o hk)_l(z) passes through 0 during the first s(k)
iterates. This is equivalent to F¥(z) = 0 for some positive S < P. The degree of
FP at z is 2¢, where t is the number of positive S < P with F¥(z) = 0.

The claims about CP(F¥), CV(F) and P(F) are immediate.

For G € W}, and P < K, the point G¥(0) belongs to a certain triangle Ay (i, G)
that is disjoint from S(G). This implies that G*(0) is well defined, depends holo-
morphically on G, and does not collide with 0. Since points G*(0), G?(0) with
0 < S < Q < T belong to different triangles of ((G)\ S, we obtain a holomorphic
motion of CV(GT) = {G®(0) | § < T} with G € W}... We also proved (£.10).
Since every critical point of G with P < K passes exactly once through 0, the
degree of every such critical point is 2.

For F € W", choose n € Z so that R"(F) € W),.. Then Kg can be taken to
be t"K.

The last claim follows from the observation that every critical point of F¥’ passes
through 0 at most (P/Kg) + 1 times. O

4.5. Proper discontinuity of FZ°. The action of the cascade FZ° is proper dis-
continuous in the following sense

Lemma 4.4. For every bounded open set W C C there is a Q > 0 in T such that
for all G close to F the following holds:
e W € DomG?P for all P < Q;
o GP | W is univalent for all P < Q; and
e GP(MWNGT(W) =0 forall P<T < Q.
For every x € C and T € T, the set
U ¥z}

P<T

is discrete in C. In particular, the set of critical values CV(FT) of FT is discrete
i C forallT €T.

Proof. By there is an m < 0 such that W C A,,,(j,G) for all G close to F.
Let us take @ = min{(0,0,1), (0,1,0)}t™. For P < Q the map G* maps A,,(j, G)
to a different triangle of ,,(G); this show the first claim.

Suppose that U F?{z} accumulates on 3. Choose a small neighborhood W of

P<T
y. Then there is a Q > 0 such that F¥ (W) is disjoint from W for all P < Q. Since
T < kQ for some k > 1, the intersection W N U FP{z} consists of at most k
P<T

points.

The set of critical values of F7 is discrete because it is equal to U F{0}, see

P<T

Lemma (3] O

Corollary 4.5. Let Y be a compact set such that’ Y € DomF¥. Then for every
X & C there are at most finitely many T < P such that FT(Y) intersects X.

Proof. For every y € Y, the orbit orb? := {F¥(z) | S < P} is discrete and depends
continuously on z in a small neighborhood of y because y € Dom F¥. (In fact, if
x & DomF” then orbiD does not depends continuously on z in a small neighborhood
of z). The corollary now follows from a compactness argument. (I
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‘\S/U

VTN

Ao(=2)|  Ao(—1) | Ao(0) Ag(1) Ao(2) | Ao(3)

FIGURE 17. The triangulation ((F) is obtained by spreading
around the triangles Ag(0,F) and Ag(1,F) — the embeddings of
Ap(1, f) and Ag(0, f), see Figure The triangulation has the
same combinatorics as the renormalization tiling of R, see Figure ]

Corollary 4.6. FEvery periodic point has a minimal period.
For every critical point x of FZ0, there is a minimal P > 0, called the generation
of x, such that FF(z) = 0.

Proof. Let x be a periodic point of F, and let
T, ={PeT|F\(2) =z}

be the semigroup of all the periods of z. By Lemma [£.4] there is a neighborhood
W of # and a small @ > 0 such that FT(W)NW = () for all T' < Q; in particular,
FT(x) # x. Therefore, T, is of the form {nS | n > 1}, where S > 0 is the minimal
period.

By Lemma if z is a critical point of FZ° then F¥(z) = 0 for some P € T.
Since {F*(z) | S < P} does not accumulate on 0, there is a minimal S > 0 such
that F¥(z) = 0. O

4.6. Walls (F). Recall from §3.2.11] that a triangulation ,(f) hasa wall ,(f)
for f € W*. Let II5(0,F) and IIy(1, F) be the embeddings of the rectangles 1y (0, f)
and IIy(1, f) to the dynamical plane of F via S ~ V' \ 7. The wall o(F) of o(F)
is obtained by spreading around II,,(0, F) and II, (1, F).

The wall (F) is A;™( o(R™f)). We define Q,(F) := ,,\ ,(F). This is the
interior of the full lift of Q,(f) = »(f)\ »(f)

4.7. The boundary point «. Asin we add a boundary point a at “—ico”
to the dynamical space of a prepacman. The boundary point a(F) corresponds to
a(f). Let us introduce the wall topology for C U a(F), compare with

Consider a univalent wall A respecting 7p,71 in a small neighborhood of «(f).
Then the full lift A(F) of A(f) is a closed strip in C such that C\ A(F) has two
connected components. We denote by = (A) the component of C\ A(F) not
containing 0. Equivalently, is the interior of the full lift of the component of C\ A
containing a. We say that is below A. The open sets of CL{a(F)} are generated
by open sets in C and by (A) U {a(F)} for all univalent walls as above.

A curve £: [0,1) — C lands at o if lim;_,1 £(1) = .
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4.8. A fundamental domain for F. Recall that for F € W/, the sector S
has distinguished sides A(S) and p(S). Moreover V is a quotient of S under
FO0D-0.10) — £~ 5 £ : X\(S) — p(S), and A(S), p(S) project to 7;.

Suppose F € R™"(W}..) for n > 0. Recall §4.6that Q,(F) = ,(F)\ ,(F). A
fundamental domain in the dynamical plane of F is a sector S**V with distinguished
sides A(S™") and p(S™") such that

(1) S\ Qn =8""\Qu and A(S) \ Qn = A(S8"") \ Qn and
p(S) \ Q. = p(snew) \ Qn,
(2) A(S™W) and p(S™*") land at a; and
(3) int(S™*") contains an arc £ such that f_(£) = A\(S**V) and £, (¢) = p(S™"V).
Similar to we say that By, 01 = f(Bo) is a diving pair of arcs in the
dynamical plane of a pacman f: U — V if

e [ is a simple arc connecting « and point on QU
e (31 is a simple arc connecting « and a point on 9V
e [y, /1 are disjoint away from .

Theorem 4.7. Suppose S™V is a fundamental domain in the dynamical plane of
F e R7"(W..) as above. Then the quotient of S™" under

F(n,O,l)f(n,l,O): )\(Snew) *)p(snew)

is canonically conformally homeomorphic to V. Under this homeomorphism F
projects to f.

Conversely, if v0V, vV is a dividing pair of arcs such that v§*V \ @Qn = Yo and
YV Qrn =71 (see @, then h extends from a neighborhood of ¢ to a conformal

new

map defined on V\1" so that the closure ofh(V\wileW) s a fundamental domain.

Proof. Choosein ,(f) a univalent wall A respecting o, y1 and surrounding 2 > a.
Let AC ,(F)and Dbe the full lifts of A and Q to the dynamical plane of F. The
theorem now follows from Proposition applied to f | QUA and F| UA. O

The image of S™V is of the form {°V(f) as in §3.2.12} it has the full lift to
new (fm) for all m < 0. Condition can be related into “S and S™% are

sufficiently close in ,,(F').”

4.9. Fatou, Julia, and escaping sets. Consider z € C. If there is an open set U
such that U € Dom F¥ for all P > 0 and, moreover, {F¥ | U} p>( forms a normal
family, then x is a regular point of F. The Fatou set §(F) of F is the set of regular
points of F. By construction, all F# have the same Fatou sets.

The Julia set J(F) of F is C\ F(F). Clearly, all repelling periodic points are
within the Julia set of F.

The cascade FZ° acts on the set of components of F(F). A component X of
§(F) is periodic if there is a power-triple P such that FF(X) = X. We call P a
period of X.

A Fatou component X is invariant if FP(X) = X for every P € T. By Corol-
lary [4.6] if a Fatou component X has an attracting point in C, then X has a minimal
period; in particular, X is not invariant. (Note that a(F) is an attracting point of
an invariant Fatou component if a(f) is attracting.)

Two Fatou components X,Y are dynamically related if they are in the same
grand orbit: there are P,Q € T such that a certain branch of F~* o F€ maps X to
Y. Dynamically related periodic components have the same periods.
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FIGURE 18. A fundamental domain S™V is a sector in C U {a}
such that S™% \ Q,, coincide (or close) to S\ Q,, and such that
the “deck transformation” f=1 o f. maps the left boundary A"V
of S™W to its right boundary p"°%.

A Fatou component X is preperiodic if there is a power-triple @ such that F?(X)
is a periodic Fatou component. In this case, @Q is the preperiod.
Given P € T, we define the P-th escaping set as

Escp(F) := C\ Dom(F7?).
The escaping set is
Esc(F) = | | Escp(F).
P>0

Since the domains of fi are simply connected (see §3.2.9) for F € Wy; _, every
connected component of Dom F¥ is simply connected. Therefore, every connected
component of Escp(F) is unbounded. Since Escp(F) is a rescaling of Escin p(F_,,),
every connected component of Escp(G) is unbounded for every G € W".

By definition, Esc(F) C J(F). We will show in Corollary [6.9] that Esc(F) # 0,
hence Esc(F) = J(F).

4.10. QC deformation of maximal prepacmen. Suppose that C has a Beltrami
form p such that p is invariant under the cascade FZ°, where F € W". Integrating
1, we obtain a path FtZO with ¢ > 0 of cascades emerging from FOZO =F20 We
claim that F; is, up to scaling, a path on the unstable manifold W*. We will use
the argument from [DLS| §8.1.2] to find a correct scaling.

Applying antirenormalization, we can assume that F is in a small neighborhood
of F,. In particular, F € W), .. Projecting y to the dynamical plane of f,, for n <0,
we obtain the Beltrami form pu,, invariant under f,. Integrating u.,, we obtain a
path f,; € B emerging from f, o = f,. Set ft(") = R~ fn+, and observe that for
small ¢ all ft(n) are qc conjugate with bounded dilatation uniformly in n. Therefore,
we can take a limit and construct a path ftoo) in B of infinitely anti-renormalizable
pacmen. Therefore, f; := ft(oo) is a path in W".
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The qc deformation of maximal prepacmen allows us to modify multipliers of
attracting periodic cycles.

5. EXTERNAL STRUCTURE OF F,

In this section we set F = F, and we let Z = Z, to be its Siegel disk which is
defined to be the full lift of Z,, see §4.3] We also write the fixed pacman f,: U, = V
as f: U — V.

5.1. Chess-board rule. Let us say that a simply connected open set U C D has a
single access to infinity if 9D NOU # ) and D\ U is connected. Similarly, a simply
connected open set U C C has a single access to infinity if U is unbounded and
C\ U is connected.

We need the following fact.

Lemma 5.1. Let g: Domg — C be a o-proper map, where Dom g is either D or
C. Suppose that the set of critical values CV(g) of g is discrete and assume that
£: R — C is a simple properly embedded arc such that
1) ¢(R) > CV(g), and
2) ¢ splits C into two open half-planes V' and W.
Then

e g 1(¢) is a tree in Dom g; in particular, if U is a connected component of
Dom g\ g~ 1(¢), then U has a single access to infinity; and
o there is a “chess-board rule”: if Uy and Uy are two different components of
g~ Y(V), then OUy N OU, N Dom g is either empty or a single critical point
of g.
Note that since g is o-proper, g~}(CV(g)) is in discrete Dom g.

Proof. We will verify the case when Dom g = D; the case Dom g = C is completely
analogous.

Consider a connected component U of D\ g~!(¢). Recall that a o-proper map
has no asymptotic values. Since CV(g) C ¢, the map

9:U—gU) e{V,W}

is a covering. Since V and W are simply connected, so is U; i.e. g: U — g(U) is
univalent. And since V' and W are unbounded, U is not properly contained in D.
This implies that g=1(¢) is a forest.

Since £ is a properly embedded arc in C, we can express C as an increasing union
of open topological disks Y; such that Y; N/ is an arc. Defining the X; to be lifts of
the Y; with X; 11 D X;, we express D as an increasing union of open disks X; such
that g: X; — Y; is proper. Then (g | X;)"*(YV; N¥¢) = g7 *(¢) N X, is a finite tree.
Therefore, g=1(¢) is a tree in D.

Let U; and Us be two different components of g~1(V). Then 0U; NdU; NDom g
is a discrete set of critical points. If Uy N 0U; N Dom g has at least two points,
then U; U U, surround a component of g=1(W); this is a contradiction. ([l

5.2. Bubbles of F. Recall from @ that Z = Z, is the full lift of Z = Z,.
Alternatively, Z, can be viewed as a rescaled limit of Z,, [McM1]. Then f1 | Z is a
pair of homeomorphisms, and fy o f~! is a deck transformation of Z: the quotient
Z/(f"'of,) is identified with Z,; i.e. Z is the universal cover of Z, \ {a} and f1. | Z
are lifts of f | Z,.
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Lemma 5.2 (Compare with [McM1, Theorem 8.1]). The disk Z is an invariant
Fatou component of F. Let h: Z — {Imz < 0} be a conformal map. Then h
extends to a quasisymmetric map h: Z — {Im z < 0}.

Let us normalize h: Z — {Imz < 0} to be the unique conformal map so that
h(0) = 0 and |W'(0)] = 1. Then h conjugates f_, £, to a pair of translations
zw+ z—v and z — z+w with v,10 > 0 such that 0, = v/(v + w). Moreover, h
conjugates the cascade (FP | Z)PeT with the cascade of translations (TP)PeT from

211

Proof. Recall from that the support of the renormalization triangulation o(F)
is a neighborhood of Z and (F) is the full lift of ¢(f). As a consequence, 97Z is
locally a quasiarc; 0Z is globally a quasiarc because it is invariant under the scaling
A,.

In the dynamical plane of f, the boundary 07, is contained in the closure of
repelling periodic points (see . Lifting these periodic points to the dynamical
plane of F we obtain that 0Z is also in the closure of repelling periodic points; thus
0Z C J(F).

Since fy | Z are lifts of f | Z,, the pair f1. | Z is conjugate to a pair of translations
z+ z—v and z — z+ 10 as required (see also ; thus Z is a Fatou component
of F. ([

Observe that 0Z D P(F) D CV(F) because 0 € JZ and IZ is invariant. We
have the following corollary of Lemma

Corollary 5.3. For every P € T~ the preimage F~F(0Z) is a tree in Dom F. O

Since FF | 9Z is a homeomorphism, for every P > 0, there is a unique critical
point cp € OZ of F2Y of generation P, see Lemma Since FT is two-to-one
around cp, there is a preperiodic Fatou component Zp attached to cp such that
FP(Zp) = Z.

Lemma 5.4. For cp and Zp as above, ZNZp = {cp}. Set
Zp = ZpNDomFT.
Then FP - Zp — Z is a homeomorphism.
The point cp is called the root of Zp. We will show in Lemma that
&p = ZP \ ZP
consists of a single point, called the top of Zp. We set
°Zp = 0Zp NDom(FF) = Zp \ Zp.

Proof. By Corollary F~P(0Z) is a tree in Dom(F7). Therefore, Zp is a con-
nected component of Dom(F)\ F~F(0Z) specified so that ZNZp = {cp}. More-
over, 0°Zp = 0Zp N Dom(FF) is a simple arc.

Since F?(9°Zp) is disjoint from 0 for all Q < P (because F?(0°Zp) C 0°Zp_q),

the curve O°Zp contains a single critical point c¢p of F¥'. Therefore, F'': 0°Zp —
07Z is a homeomorphism; this proves the second claim. (I

For every @ € T, there is a unique critical point cp g € 9Zp of FZ0 of generation
P+@Q. If Q@ > 0, then there is a unique Fatou component Zp g attached to
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Zp at ¢(pg) such that FP'TQ(Zp) = Z . As above, we have a homeomorphism
FP+Q: ZP’Q - Z.

Continuing this process, we define cp,, . p, and the bubble Zp, . p, for every
finite sequence in s = (Py, ..., P,) € TZ,. We call |s| = Py +---+ P, the generation
of Zy = Zp,....p,,- Lemma [5.4] implies:

Lemma 5.5. For every bubble Zs with |s| > 0, there is a unique bubble Z, with
[v| < |s| (possibly Z, = Z) and v # s such that 0°Zs N O°Z, # 0. Moreover,
0°Zs N O°Zy = {cs}. O

We define the corresponding finite bubble chain as

B, = (ZPI ) ZP11P2’ s ZP17P27~~-7P71,)'

The primary limb rooted at cp, is

Lp = U U /Z\Pl,“.,Pn,

n>1(P1,...,Pp)

where the union is taken over all finite sequences in T~ starting with Pllﬂ Similarly,
the secondary limbs Lp, p, of Zp, are defined.
We also consider infinite bubble chains: given

s= (P, P,...) €TY,,
we set By = (zpl,iphpz, ...). The generation of By is
|s|=P1+Py+--- < o0

(recall that we view T as a sub-semigroup of Rs¢); it is the supremum of generations
of all the bubbles in the chain.

Given a finite or infinite bubble chain By with s = (P, Py,...), we write its
geometric realization as

B = Zp1 UZPl,P2 U...
and call it a bubble chain as well.

Suppose s is an infinite sequence. The accumulating set of By (and of By) is
the accumulating set of Zp,, Zp, p,, . ... If the accumulating set is a singleton {z},
then we say that B lands at z. (It will follow from Lemmathat every infinite
bubble chain lands.)

If s is a finite sequence, then the accumulating set of By is

(5.1) Z,\ Z, C Escp.
Proposition 5.6. Every strictly preperiodic preimage of Zi is contained in some
limb L.

Proof. Let Z' # Z be a component of F~¥(Z). By Lemma Z' is a component
of Dom F¥' \ F~F(9Z), where is F~7(9Z) is a tree in Dom F*. Let v C F~F(9Z)
be the tree-geodesic connecting Z to 9°Z’. There are finitely many critical points

Cp,CP; ,Pyy---yCPy,....P,

of FP in v. We have Z' = Zp, ..p

[

O

2This is not a standard definition of a limb because Lp, is not closed.
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07 z=0

FIGURE 19. The case z = 0: the bubble chains By and B, of the
lake O’ contain Iy \ 0Z and I, \ 0Z — the left and right sides of
0°0’.

For a limb L, we write
L= |J 0z,
Z,CL;
and, similarly, for a bubble chain Bj:

OBy = U O°Z,,.

Z,CBs

5.3. Lakes. We call O := C\ Z the lake of generation 0 or the ocean. A lake of
generation P € T+ is a connected component of F~F(0). In particular, lakes of
generation P are pairwise disjoint. If O; is a lake of generation P € T, then its
coast is

9°01 = 00; N Dom F”.

By Lemma [5.1}
e Oy has a single access to Escp(F) (i.e. after identifying C\ Escp(F) ~ D);
e FP: 0; — 0 is conformal;
e 0°0; is a properly embedded simple arc in the tree F~F(9Z);
e FP: 9°0; — 9°0 = 0Z is a homeomorphism.

We will call lakes of positive generation proper.

Lakes form a “puzzle partition” (by open sets): since Z = F5(Z) is invariant,
lakes of generation R are inside lakes of generations P for R > P > 0. The
map FE~F maps every lake of generation R univalently to a lake of generation P.
Informally speaking, when P grows there are less water and more land, and the
“drought” occurs in a self-similar fashion. We will use lakes to study Esc(F); lakes
will not be used beyond the current section.

Consider a lake O’ of generation P. Let z € 9°O’ be the closest point to 0 in
the tree F~7(0Z). Then z splits 0°0’ into two arcs I, and I,. We assume that
I),[z,0],1, has a counterclockwise orientation at z; if z = 0, then we assume that
I, is on the left of 0 relative 0Z while I, is on the right of 0, see Figure@

There are unique bubble chains By and B, containing Iy \ 0Z and I, \ 0Z re-
spectively. (If I, C ZEl then set By = 0, and similarly with I,.) If 0Z N 90’ = 0,
then 9°0" C 9°Bx U 0°B,. We now view A = A\(0’) and p = p(Q’) as sequences of
positive power-triples parameterizing bubble chains as above, and we say that B)
and B, are the left and the right bubble chains of O'.

3this is in fact impossible by Lemma



MLC AT SATELLITE PARAMETERS 51

C(R,P—R)
Z(r,Q)

&(R,Q)

Z(rq.P)

cp

CR

FIGURE 20. Suppose a lake O’ touches 0Z; say z € O N 9Z. If
cp is on the right from z, then B,(0’) is finite. Indeed, let cg be
the critical point of generation < P such that cgr is the closest
to z on the right. Assume R < P. Then, as shown on the figure,
¢(r,p—Rr) C 0°ZR is on the left of cr. Let c(p g) be the critical point
of generation < P — R closest to cg € 9°Zg on the left. Assume
@ < P—R. Then C(R,Q,P—-R-Q) € 8CZ(R,Q) is on the left of C(R,Q)-
Assume now that c¢(r o p—r—q) is the closest to c(r q) € 0°Z(r,q)
on the left. Then Bp(O’) = B(R,Q,P—R—Q) = Zrp U Z(R,Q) U
Z(r,Q.P-R-Q)-

Lemma 5.7. Consider a lake O' of generation P and let By and B, be the left and
right bubble chains of O'. Then By and B, have generation P as well. Moreover,
one of the X\, p is a finite sequence while another is an infinite sequence.

Lemma [5.7] is illustrated in Figure
Proof. Claim. If J := 0" NZ # (), then By and B, are non-empty.

Proof. By Corollary J is an arc; choose x € J. Both connected components of
0Z \ {z} contain infinitely many critical points of generation < P and these points
are branch points of the tree F~F(9Z). Since J does not cross such branch points,
B, and B, are non-empty. O

Suppose now that the generation R of B) is less than P. Choose S with R <
S < P such that FS(0’) intersects 0Z. The left bubble chain of F¥(0’) is F¥(B,)
which is empty; this is impossible by the above Claim. Since O’ is bounded by
F~P(0Z), the generation of By can not be bigger than P. This shows that By (and
similarly B,) has generation P.

Suppose now that A and p are finite; write A = (P, P,...,P,) and p =
(@Q1,Q2,...,Qn). Then PP +---+ P, = Q1+ -+ +Qpn = P. Choose H € T
so that

P>H>max{P,+ -+ P,_1,Q1+ -+ Qm-1}.
On the one hand, F¥ (ZA) = ZP_H (the unique bubble of generation P — H
attached to OZ) is the left bubble chain of the lake F(0’); and on the other hand
F4 (2,,) = Zp_p is the right bubble chain of F¥(0’) — this is impossible.
Let us now prove that either A or p is a finite sequence.
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Case 1: assume J = O NZ # 0 and there is y € J such that the subarc [y, cp]
of 0Z contains no critical points of generation < P. Since [y,cp) and 0°Zp \ {cp}
contain no branch points of the tree F~F(9Z), we obtain that Zp is ether By or
B,.

Case 2: assume, more generally, J = 0nz # (). Choose y € J. There are at
most finitely many critical points in [y, cp] of generation < P. Then the generation
of these critical points is less than some R < P. Then [F¥(y),cp_g] contains no
critical points of generation < P — R; i.e. F(0Q’) satisfies Case 1. Therefore, either
F£(B,) or F£(B,) is a finite chain; this implies that either By or B, is a finite
chain.

For a general lake O’ consider R < P such that FZ(0’) intersects 9Z. By Case
2, either F¥(B)) or F#(B,) is a finite chain, implying the desired. O

Consider a bubble Z; where s = (P, P»,...,P,) € TZ,, Write P = Py +---+P,.
Let v € F~P(0Z) be the unique tree-geodesic connecting 0 to ¢ which is the root of
Z,. Denote by 9¢ Z, and 05 Z two connected components of 90°Z\{cs} enumerated
so that the triple 0¢ Z,~y, 0 Z, has counterclockwise orientation at c;.

There are unique lakes O_(s) and O, (s) of generation P such that

0°0_(s) D0°Zs and 0°04(s) D 0%Zs

because 0° Z, and ¢ Z have no critical points of generation < P. We define By
to be the left bubble chain of O_(s) and we define B4 to be the right bubble chain
of O4(s), see Figure

We call O_(s) the left lake of Z, and we call O_(s) the right lake of Z;. By
construction, By(s) and B, are the closest to Bs; bubble chains of generation at
most P. The next lemma implies that every lake is of the form O4 (s) for a unique
s.

Lemma 5.8. For every Zs the bubble chains By and B, are infinite chains of
generation |s| = Py + Py + -+ + P,.

For every proper lake O there is a unique Zs, s = (P1,...,P,), n > 1 such
that either O’ = O_(s) or O’ = 04 (s).

Proof. The first claim follows immediately from Lemma [5.7]
By Lemma either the left bubble chain By of O’ or its right bubble chain B,
is a finite chain. In the former case, O’ = O ()); in the latter case, 0’ = 0_(p). O

For a finite or infinite sequence s = (Py, Py, ...) let us write ts := (tP;,tFPs,...)

Lemma 5.9. The self-similarity A, preserves the Fatou and Julia sets of the fixed
mazimal prepacman F; moreover for every finite sequence s we have:

o A (cs) = cus;

o A*(Zs) =Zys;

o A,(B;) = Bys, here s is either a finite or an infinite sequence;
[ ] A*(LS) = Lts;

o A, () = Quys.

Proof. Recall that A, conjugates F¥ to F; hence A, preserves the Fatou and Julia
sets. Since A, (0Z) = 0Z, we have A,(cp) = ¢p. As a consequence, A,(Zp) = Zp
and A,(ap) = ayp. Since A, (0°Zp) = 0°Zp, we also have A,(c(pq)) = cpr,t0)
and we can proceed by induction on |s].
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FIGURE 21. The bubble chains By and B, are the closest to Z, of
generation < P (see also Figure [25). By Lemma B, and B,
actually land at the top of Zj,.

5.4. Boundedness of limbs.
Lemma 5.10. The closure of every limb is compact.

Proof. The idea of the proof is illustrated in Figure We will show that there is
an R € T+ such that F® (S# \ Z) > 8%\ Z. By sclf-similarity, F2/t (S’iﬁ1 \ Z) D

§%,\ Z. Therefore, if @ > R+ R/t+ R/ + ..., then F2 (Sf\Z) = C. This
implies that some limbs are bounded. Therefore, all the limbs are bounded because
they are dynamically related. Let us provide more details.

Consider the dynamical plane of f: U — V. For every n, there is a gluing map
pn: S# — V\{a} projecting F# to f. The map p,, glues two distinguished sides of
S# to 71; the preimage of « is at infinity. Since F is a renormalization fixed point,
Sf71 is a rescaling of S¥; we also recall that:

e S# CS* :and

_1
° US# ZnC.
n

Choose a big n < 0 and let X and Y be the open sectors in the dynamical plane
of f obtained by projecting SZ";E and Sfl via pn: S# — V, see Figure ﬁ Write
W =Y\ Z, and I := X N 0Z, (depicted in blue bold in Figure ; and let J be
a slightly shrunk version of I.

Claim 1. There is an M > 0 such that the following property holds. If m > M,
x € J, and f™(x) € OW, then W has a conformal pullback W_,, along the orbit
x, f(x),..., f™(x) € W such that W_,,, C X.

We remark that if = is a critical point, then there are two choices for W_,,: on the
left and on the right of ¢g.
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FR/’:2

FR/t

FIGURE 22. Illustration to the proof of Lemma it takes R/t"
iterates to cover S |\ Z from a domain in $%, \ Z.

Proof. Let W_j, be the pullback of W along the orbit of f~*(z),..., f™(x). Let us

show that W_;, does not intersect the forbidden boundary 0%PU for all k € {m —1,. ..

this will imply that W_,, is a conformal pullback.

Recall from that f has a lamination by external rays. Choose two rays R_
and R, landing at Z, such that R_ is slightly on the left of W and R, is slightly
on the right of W. Since n < 0, the difference § between the external angles of R_
and Ry is small.

Let R_j_ and R_j 4 be the preimages of R_ and R, under f™~* such that
R_j,_ is slightly on the left of W_j and R_;, ; is slightly on the right of W_j. Then
the difference between the external angles of R_; _ and R_j 4 is 6/2’“; ie. W_y
has a small angular size. Recall that yv_ U~ \7; are external rays that are disjoint
from Z,, see Since OW_y, intersects 0Z,, we obtain that OW_j is disjoint
from O"PU. This shows that f™: W_,, — W is conformal.

If m is big, then W_,, is contained in a small neighborhood of the non-escaping
set K between R_,, — and R_, ;. Since K is locally connected and the difference
between the external angles of R_,,, _ and R_,, ; is small, the set W_,, is contained
in a small neighborhood of J; hence W_,, C X. |

Suppose J,, corresponds to J under the identification S7#* ~ X, see Figure
As a corollary of Claim [I] we have:

Claim 2. There is power-triple R > 0 with F¥(Jo) C J_1 such that the following
property holds. If x € Jo and F¥(z) € Sﬁl for some P > R, then there is an open

set Wp C So with x € OWp such that FY maps Wp conformally onto int (Sfl \ Z).

,0};
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FIGURE 23. Ilustration to Claim the disk W = Y\7* pullbacks
along the orbit of z to the disk W_,,, C X.

Proof. By Lemma the cascade (FP | 8Z) pet 18 conjugate to the cascade of
translations (77 | R
FR(Jo) c J_y.

Since FP () € %, we can write

PeT Therefore, we can choose a sufficiently big R with

of? o f

FF =f# “1,u(m)’ i) € {—+}

—1,0(1) °to1.2) O

because the prepacman fﬁ’i: Uﬁ — Sﬂ realizes the first return of the cascade

F29. If R is sufficiently big, then m > M, where M is the constant from Claim
The statement now follows from Claim [Il (]

By self-similarity, we can shift indices in Claim we can replace Jo, J_1, Sfﬁl by
JonsJn-1, Sf71 and replace R by R/t~™. Inductively applying Claim [2| we obtain:

Claim 3. There is power-triple Q > 0 such that for every n < 0 the following
property holds. Let x € Jo be a point such that F¥(z) € S# with P > Q. Then
there is an open set W C So with x € OW such that FT' maps W conformally to
int (% \ Z).

Proof. Let R be a power-triple from Claim [2} Choose a power-triple Q with
Q>R+R/t+R/*+...,
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see Lemma Write 29 = x and for 5 € {0,—1,...,n + 2} inductively set
Pj = R/t and x;_1 = F¥i(z;). Finally set

Poy1=P—-PFP—P—--— n+2ZR/tn+1.

and x,, = Ff;_l(xm_l). Since P, 11 > R/t™™"1, we can apply Claimand construct
Wt C Sf_H \ Z so that x,,1 € OW,41 and FF»+1 maps W, conformally
to S# \ Z. Applying induction from upper levels to deeper ones, we construct
W; C Sf\Z such that z; € W; and F7 maps W, conformally to W,_;. Therefore,
F? maps W, conformally to S¥ \ Z. O

Consider a limb Ljs; recall that its root is denoted by cp;. Choose a big T >
Q+ M such that the critical point er is in Jo. Then ey is the root of Ly and FT—M
maps Ly to Lyy.

By Claim [3] for all n < 0 the connected component of S N Ly, containing cpy
can be pulled back along FT~™: ¢ — c¢ps and, moreover, the pullback is within
Sy. Since n < 0 is arbitrary, the pullbacks of S# N Ly, exhaust Ly, and we obtain
that L C Sg.

By self-similarity, the limb Lz /¢m is within Sfﬁm for all m > 0. For every H > 0
choose an m > 0 with H > T/t™. Then FH=T/t" maps Ly conformally to Ly/en.
Since Lz /¢m is bounded, so is Ly by o-properness. (I

5.5. Alpha-points. Consider a finite sequence s = (Py, Py, ..., P,) in T and the
corresponding bubble Z;. Write P = |s| = Py + -+ + P,. Recall from that
& denotes the accumulating set of B;. By Lemma [5.10] s is a compact subset of
Escp(F), which is disjoint from 0Z.

Lemma 5.11. The set a5 = {as} is a singleton. Moreover, o is the landing point
of Bs, Bx(s), Bp(s)- We have:

00_(s) =90°0_(s)Uas and 004(s) =0°0,(s) U as,
O_(s) and O (s) are bounded sets, and Zs, O_(s), O, (s) are closed topological
disks.

Proof. Consider a critical point cp € 9Z of generation P. Since all (O_(s),Zs, (04 (s))

are dynamically related it is sufficient to verify the statement for (O_(P), Zp, (04 (P)).
By Lemma cp = Ay(ep), and

(5.2) A, maps (O_(P),Zp,04(P)) to (O_(tP),Zip,04(tP)).

On the other hand (see Figure , by the classification of bubbles attached to Z:

(53)  FOUP maps (O_(tP).Zep, 04 (tP)) to (O_(P),Zp,0,(P).

Let O; be the lake of generation (t — 1)P/t containing O_(P) U Zp U O4(P).
Then the lake A,(01) D O_(tP) UZp U O, (tP) has generation (t — 1)P. By the
Shwarz lemma,

(5.4) FtDP0A4,:0, -0  (where O =C\ Z is an ocean)

expands the hyperbolic metric of O. Since ap is a set compactly contained in O
(because ap is a compact subset of Escp(F), which is disjoint from dZ) and since
ap is invariant under (5.4), we see that ap = {ap} is a singleton and ap is a
repelling fixed point of
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Ft-1E 0

0Z

FIGURE 24. Illustration to the proof of Lemma (see also Fig-
ure : the accumulating set of Zp, By, B, is invariant under the
expanding map F(=VF o A,: O; — O; thus Zp,B), and B, land
at ap. Bottom: Escs(F)UZg, r. UZg, UZg, g, separates the
accumulating set of By from 9Z.

Let ap be the accumulating set of By(,). Let us argue that ap, € O. By
Lemma ap is a compact subset of C. Write A(s) = (Q1,Qs2,...) and choose
two R_ and Ry such that Zg, r_ is on the left of Zq, g, while Zg, r, is on the
right of Zg, @, see Figure [24] (bottom). Set S = max{Q1 + R_, Q2> + Ry}. Since
every connected component of Escp(F) is unbounded (see ,

Escs(F)UZq, UZg, r_ UZq, R,

separates ap \ Escg(F) from Z.
Since ap is also invariant under (5.4) (because of (5.2) and (5.3)), we obtain

that ap = ap = {ap}; i.e. By, lands at ap. Similarly, B, lands at ap. As a
consequence, Z,, O_(s), O, (s) are closed topological disks. O

We say that {as} are alpha-points. They are viewed as preimages of «:

Lemma 5.12. Suppose v: [0,1) — Z is a curve that goes to co. Let T' = {v;} be
the set of lifts of v under FT, where T € Twq. There is a unique lift vo € I such
that vo C Z. Every remaining v; € T'\ {yo} is within Zs with 0 < |s| < T and,
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F1GURE 25. Ilustration to the proof of Lemrna (compare with
Figure : Zp, By, B, land at ap that belongs to Escp(F) (par-
tially marked red). There are two branches of Escip(F)\ Escp(F)
(partially marked blue) at ap. One of the ends of the left branch
is o p; this point is the landing point of Z¢p, By, By,.-

moreover, 7; lands at as. Conversely, for every ag with |s| < T there is a unique
v; € ' such that ~v; lands at ;.

Proof. Since Zg with |s| < T are univalent preimages of Z, every ~; is contained
in a certain Zs. Moreover, 7; accumulates at as = {as} which is a singleton by
Lemma [5.11} i.e. v; lands at a. O

Lemma 5.13. If as = o, then s = v.

Proof. If as and «,, have different generations, then «,, # «. Suppose that |s| = |v|
and write s = (P1, Py, ..., P,) and v = (Q1,Q2,...,Qn). Choose R < |s| such that
R>max{P, + -+ P, 1,01+ 4+ Qn_1,}. Then FE(Z,) =FF(Z,) = Zs|-r-
Since ZS|, r does not contain a critical value of F¥, we obtain that Z, and Z, are
different degree one preimages of Z_g. O

Corollary 5.14 (The tree structure of {Z}). Suppose that Z, N Z, # O for
lw| > |v| and w # v. Then ¢y, € 0Zy, and Zy, N Zy = {cy}-
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For every two closed bubbles Z, # zw, there is a unique sequence of pairwise
different closed bubbles Ziy(1y, Zs(2), - - -y Lis(n) such that

° Zs(i) intersects Zs(iﬂ);
e 5(1) =v and s(n) = w.

Proof. By Lemma Z, and Z,, do not intersect at their alpha-points. By
Lemma Z.,, and Z,, can only intersect when Z,, contains the root of Z,,.
The second claim follows from Lemma [5.5] O

Since every lake O’ is either O_(s) or O (s) for a certain sequence s (Lemmal5.8)),
we have:

Corollary 5.15. The closure of every proper lake is a compact subset of C. For a
proper lake O, we have 00" = 9°0’ U {'}, where o is an alpha-point of the same
generation as Q. O

5.6. Lakes exhaust the ocean. Choose P € Ty and let O(P) be the lake of
generation P such that O(P) > 0. Then JO(P) also contains an arc J > 0 of
0Z such that 0 is not an endpoint of J. It follows that O(t"P) = A?(O(P)) also
contains 0 on its boundary, and we have (see Figure

(5.5) Jowp)=o.
n<0

Let us denote by «(t"P) the unique alpha-point in JO(t" P), see Corollary

Lemma 5.16. Let I be a connected component of Escp(F). Then I contains
a(t*P) for all sufficiently big n < 0.

If J is a connected subset of Escp(F) such that JNOt"P) # 0 but J F a(t"P),
then J C O(t"P); in particular, J is bounded.

Proof. Recall from that every connected component I of Escg(F) is un-
bounded. Thus if I intersects O(t*P), then I 3 o p (otherwise 90(t"s) encloses T
by Corollary [5.15)). By I intersects O(t" P) for n <« 0. Therefore, I contains
all a(t™P) for m > n.

In the second claim, J is surrounded by 0O(t" P); thus J C O(t"P). O

Corollary 5.17. The escaping set Escq(F) is connected. For every R > Q, every
connected component of Escg(F) \ Escq(F) is bounded. O

Proof. By Lemmal5.16] every two connected components contain a(t" P) for n < 0;
thus Escg(F) has a single connected component.

If J is a connected component of Escr(F) \ Escg(F), then J intersects O(t" P)
for n < 0 but does not contain a(t"P) for n < 0; thus J is bounded. (]

Similarly to Lemma [5.12] we have:

Lemma 5.18. Let v:[0,1) — O is a curve that goes to co. Let {v;} be the set of
lifts of v under FT with T € T~q. Then every ; is contained in a unique O,(s)
with v € {—,+} and |s| = T. Moreover, v; lands at as. Conversely, every O,(s)
with |s| =T contains a unique v; which lands at o.

For R > T every connected component component L of Escg(F) \ Escp(F) is
contained in a unique O,(s) with v € {—,+} and |s| = T. Moreover, L is a lift
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Esc(F)

0Z

FIGURE 26. Lakes O(t"P) cover C. The boundary 0O(t"P) con-
tains a unique point a(t" P) in Esc(F). Therefore, every connected
component of Escp(F) intersecting O(t"P) also contains a(t"P).
Each bubble chain contains a skeleton (black), see §5.7

of Escg_7(F) under FT and L is attached to as: LU {as} is compact and con-
nected. Conversely, for every a,s with |s| = T there are two connected components
of Escg(F) \ Escr(F) attached to as.

Proof. Every =; is contained in a unique lake which is of the form O, (s) by Lemma
By Lemma [5.17] v; lands at as.

Similarly, connected components of Escg(F)\ Escy(F) are in bijection with lifts
of Escg_7(F) under FT and are in certain O,(s) with |s| = 7. By Lemma
every component of Escg(F)\ Escr(F) is attached to a certain o with |s| =T. O

5.7. The tree-like structure of Esc(F). In this subsection, we will first discuss
the combinatorics of alpha-points and then use these cut points to define external
chains in Esc(F). We will introduce two orders on alpha-points: the tree order “=<”
and the ambient order “<”. Informally, a,, < @, if @, is closer to oo in Esc(F), and
< @y if a, is on the “left” of «,, with respect to C\ Esc(F). Proposition
relates these two orders: the separation in “<” is equivalent to the separation in
“<” .

Consider two sequences v = (P, Py,...) and w = (Q1,Q2,...); each sequence
can be finite or infinite. Let

vAw = (P,...,Pn)

be the largest common prefix of v and w; i.e. P, = Q; for i < m but P41 # Qm+1-
If v = w, then vAw = v = w.

We write a, = qy, if

o, € O_(w) U O4(w).

We call “>7 the tree order. If oy € O_(w) and «, € O4(w), then we say that
a, and «,, are >-separated by ay,. In other words, a,, is the biggest element with
respect to the tree order such that a, Z a, and as Z a,.

Given a bubble Z; and two different points z,y € 0Z,, let us write by (z,y)z C
Z the unique hyperbolic geodesic joining  and y within the Fatou component Zg
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(recall that Z, is a closed topological disk by Lemma. Similarly, for x,y € 0Z,
the arc (z,y)z is the hyperbolic geodesic of Z connecting x and y. We also denote
by (0, 00)5 the hyperbolic geodesic of Z connecting 0 and oco.

Given a finite chain s = (Py, Ps,..., P,), we define the skeleton of B, as

T =[0,cp )5 Ulcp,cp)5 U Ulep, s cp, )5 Uler,, ap,)s,
see Figure If s = (P, Py, ...) is an infinite sequence, then the skeleton of By is
‘3:5 = [O,Cpl)gz ] [CPNCPQ)S' @] [CPQ,CPS)S U...

We view each skeleton as an arc starting at 0. For v # w, we denote by cyaqw
the last common point of ¥, NT,,. By construction, c,a,, is either 0 or a critical
point. Note also that the union of any number is skeletons is uniquely geodesic.
Let us say that T, is on the left of T, and write T, < Ty, if [0,00)5, T, Ty
have a counterclockwise orientation around ¥,, N ¥,. We say that ¥, and ¥, are
<-separated by T, if either

Ty <Tg<Ty or T, >%T,>%,

holds.

For an infinite sequence s = (Py, Pa,... ), we say that s(n) := (P, P,..., P,) is
the nth truncation of s. Clearly, T,, T, are <-separated by ¥, if and only if T,
T are <-separated by T, for all sufficiently big n.

We also define the order “<” on alpha-points: a, < «, if and only if ¥, < T,,.
We call “<” the ambient order.

Lemma 5.19. Consider finite distinct skeletons €, and ¥,,.

o If |v| = |w|, then there is a finite skeleton Ts with |s| < |v| such that T,
and T, are <-separated by T.

o If T, and T, are separated by a finite bubble skeleton of generation <
min{|v|, |w|}, then there is a unique finite skeleton T, with the following
properties. The skeletons T, and %, are <-separated by Ts and |s| <
min{|v|, |w|}. And if T, and T,, are <-separated by Ty, then either |s'| >
|s| or s’ =s.

Proof. Suppose T, is on the left of T,,. Recall (see that the infinite bubble
chain B, is the closest bubble chain on the right of B, of generation < |[v].
Therefore, T, and T,, are <-separated by T,). For m > 0, let s be the mth
truncation of p(v). Then T, separates T, and %, and |s| < |p(v)| = |v].

For the second claim, set 7 € R>o be the infimum over all |z| such that T,
separates T, and T,,.

Observe first that 7 < min{|v|, |w||}. Indeed, let T, be a skeleton separating ¥,
and T, with |y| < min{|v|, |w||}. Then |y| = 7 and y is finite (otherwise we can
truncate y and construct a skeleton of smaller generation that still separates ¥,
and ¥,,). This contradicts to the first claim: there is a finite skeleton of smaller
generation between T, and one of T, T,,.

We claim that every realization of 7 is a finite sequence x. Then it would follow
from the first claim that x is unique.

Proof of the statement. Let Zs(1>,zs(2), e ,Zs(n) be a finite sequence of neighbor-
ing closed bubbles from Lemma connecting Z, = Zy and Z,, = Zy,. For
every s(i) let 7; be the infimum over all |z| such that

e T separates ¥, and T,
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e cither xAv = s(i) or zAw = s(i) holds, and
o if vAw = s(i), then zAv = xAw = s(i).

In other words, the infimum is taken over all ¥, that coincide with one of ¥, %,
up to ¢y (if Zgy = Zy = Z, then c,;) = 0). Observe that 71 > |v] and 73, > |w|
because every skeleton associated with either 71 or 75 travels trough either ¢, or
¢w. Therefore, 7 = 7 for some k € {2,...,n— 1}.

If T, and T, are <-separated by Ty, then [s(k)| = 7, and the claim follows.
Otherwise, let J C 0°Z,;) be an open arc between ZS(H) and Zs(kﬂ). By
construction, every skeleton associated with 7, travels through J. Since J is disjoint
from ay(yy, there is a unique point ¢, of the smallest generation in J. Therefore,
Ty is a required skeleton. O

O

Proposition 5.20. Consider o, # a, with |v| > |w|. Then the following are
equivalent:

(1) ay > Qs
(2) a, and o, are not <-separated by as with |s| < |w|;
(3) an and o, are not <-separated;

Proof. Suppose that a,, < a,,; the opposite case is symmetric.

We have a,, > ay, if and only if a,, € O_(w). The latter is equivalent to the
property that T, and T, are not <-separated by Ty(,) (where By, is defined
in §5.3). For m > 1, let s be the mth truncation of A(w). Note that [s| < |[A(w)| =
|w|. Then T, and ¥, are not <-separated by Ta(w) if and only if T, and T, are
not separated by Ts. This proves the equivalence between and .

Let us prove that is also equivalent to and . If oy = vy, then clearly
a, and «,, are not <-separated. Suppose a,, ¥ ay,. By the first claim, T, and T,
are <-separated by a finite skeleton ¥s with |s| < |w|. Using Lemma we can
assume that T has the smallest possible generation. Therefore, T, is between T,
and T, while T, is between T () and Ts. By definition, o, and «,, are <-separated
by as. O

Suppose «,, = @,. The external chain [a,, ] is

Esc|,|(F)NO_(w) U0, (w)\ |J O.(s),
0. (s)Faw

where the union is taken over all © € {—,+} and all the sequences s satisfying
0.(s) # . In other words, [ay, ay] is obtained from Esc(F) by chopping off all
the lateral decorations at alpha-points.

Lemma 5.21. We have
[y, as] = [, i) U [an, as]  and  [ay, ] N [y, as] = {auw }
for all a, = vy = g, and
Ay, o] = [, ]

for all aiy = .
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Proof. Since a,, is a cut point between a, and ag with respect to the tree order
“<.” we have [0, 0] N[y, as] = {ay ;. Recall from Lemma that components
of Escp \ Esc), are attached to alpha-points of generation |s|. We also have

[y, y] = Escp(F) N O_(w) U0 (w) \ U 0.(s)
O,(s)Fay

for all P > [s| (because every component Escp \ Escy,| is deleted). As a conse-
quence, [y, 5] =[Oy, Q] U [y, ).
The second claim follows A, () = ay and A, (@) = Qi see Lemma O

5.8. External chains are arcs. Recall that FP | Z is conjugate by h to the
cascade of translations (TF)pet, see Lemma By construction, h(cp) = bp,
where bp are defined in Asin we say that a critical point cp is dominant
if the arc [0, ¢p] contains no critical point of generation less than P; in this case Zp
and ap are also called dominant.

Let cp and cg be two dominant critical points and assume that P < ). Then
cQ,0 € 0Z are on the same side of cp.

As in we enumerate dominant critical points as (¢p, Jnez with P11 > Pp,.
Suppressing indices, we write a; = ap,, ¢; = cp,, and Z; = Zp,.

Lemma 5.22. We have
R . I e ) ik S 2 NN

Proof. We claim that there is no «a, separating «;+1 and «; with respect to the
ambient order “<” such that the generation of ay is less than P;. Write s =
(R,...). Since R < P;, the chain B, does not go through Z; and Z;,1; hence Zg, is
attached to (¢;41,¢;). This is impossible, because cg is not counted as dominant.
By Proposition [5.20} a;41 > . O

The zero chain (see Figure is
(56) "'U[Oél,()(o]U[Oéo,Oz_ﬂ U...

It follows from the definition that cp is dominant if and only if A.(cg) is
dominant. Therefore, there is a k > 0 such that tP; = P,1; and (equivalently)
A, (o) = iy for all i € Z. As a consequence,

(5.7) Axlaks a—1yr] = [o@s1)rs Qs
thus the [a(t+1)k7 ayx] shrink to 0; i.e. 0 is the landing point of the zero chain.

Lemma 5.23. For every [a;, a;y1] there is a Q € Tsg and [an, auy] withi > m >n
such that FQ maps [a;, a; 1] homeomorphically to [am, aum).

Proof. Follows from Lemma [2.4] which provides the corresponding property for
bp = h(Cp). O

Given M € Rsg, we write Escy (F) = ﬂ Escr(F). Given = € Esc(F), its

T>M
escaping time is the minimal M such that Escy,(F) 5 .

Corollary 5.24. The zero chain is an arc landing at 0. The points on this arc
are parametrized by their escaping time ranging continuously from +oo (for points
close to 0) to 0. Alpha-points are dense on the zero chain.
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a_q

C_1 C1 C3 Cy Cq4 Co Co

FIGURE 27. Fibonacci (golden mean rotation number) combina-
torics: for every i the map F¥i+1 maps [y, ;1] to [ay_1, a;_3).

Proof. Consider I := [ayg, s41)x]- Let us construct Markov partitions J,. of I for
r > 0. For i € {tk,...,(t + 1)k — 1}, the chain I; == [oy, a;1+1] is an element of
the partition Jy of level 0. By Lemma FO(I;) = [an, ) for some Q > 0
depending on i. For j € {n,n+ 1,m — 1} we say that the preimage of [a;, ;1]
under FQ: I; — [a,, ] is an element of the partition J; of level 1.

By construction, for every chain J of J; there is a chain J of Jo and a homeo-
morphism

(5.8) Xy =AT"oF?: J—=J withQ>0,m>0.

The map expands the hyperbolic metric of O: if O’ D J is the lake of generation
Q, then y;: O’ — O is expanding.

Elements of the partition J,,1 are the preimages of the elements in J, under all
possible x ;. Since x; are expanding, the diameters of elements in J, are bounded
by CA™" for some C > 0 and A > 1.

We can enumerate chains in J, as I with i € {1,...,a(r)} such that I] and I}
are disjoint if ¢ > j + 1 (see Lemma . Since the diameters of chains in J, tend
to 0, we obtain that alpha-points are dense in I and [ is an arc by a well-known
characterization of arcs. More precisely, < is a total order on I compatible with
topology: the sets I, == {x € I : « = v} and I<, = {z € I : © < v} are closed
in C for all v € I (they are closed if v is an alpha-point (by Lemma and we
just showed that alpha-points are dense). By |[Na|, Theorems 6.16 and 6.17], I is an
arc. The assertion that I is an arc also follows from the next paragraph justifying
a continuous parametrization of I by an interval (a continuous bijection between
compact sets is a homeomorphism).

By construction, I] are arcs connecting two alpha-points. For every I7 write
X = X10©...Xr & composition of maps mapping I to an element of Jy.

Using (4.6]) we write x¥ = AT o FQ() - Observe that m(r,i) — 400 as r — 400



MLC AT SATELLITE PARAMETERS 65

uniformly in 4. (Indeed, since @ > 0 in (5.8)), there is a constant M > 0 such that
X contains at most M consecutive y; that does not contain the scaling A,.) Then

FQ(T’i)(IZ-T) € A;m(r’i) [k, @ ge1)],

and the difference in the escaping times between the endpoints of I} is less than
(Jees 1)k = lou]) /™. This proves that the escaping time parametrizes contin-
uously points on I. O

Remark 5.25. In fact, the zero chain is a quasi-arc. In the proof of Corollary[5.24,
we can extend xj to a conformal map defined on a neighborhood of J. The Koebe
distortion theorem implies that the distance between any pair of points x,y in I is
comparable to the diameter of the subarc [x,y] C I. This is one of the characteri-
zations of a quasi-arc.

For every ay there is a sequence ag = au,, = Qy, > ... with |v;| tending to 0.
We define:

[as7 OO) = [a87 aUl] U [a’v17av2] U [avzvavs] U...

Proposition 5.26. The chain [as,00) is a simple arc for every alpha-point o
with |s| > 0. Points in [as,00) are parametrized by their escaping time ranging
continuously from |s|, the escaping time of as, to 0. Alpha-points are dense in
[as, 00).

As a consequence, [as,a,] is a simple arc for every as = a,. We call both [as, ay]
and [as, 00) external ray segments.

Proof. Suppose first oy = ag. Choose a dominant ap with P > @. By Corol-
lary [ap,00) is a simple arc. Let = € [ap, 00) be the unique point of genera-
tion P — Q. Then [ap,z) is a lift of [ag,o0) under F¥~?; therefore, [ag,o0) is a
simple arc.

Suppose now s = (Q1, Q2, ..., Qx). Then (00, a;] is (00, ag,] followed by the lift
of (00, g, ] under F9' connecting ag, and o(g, q,), followed by the lift of (oo, ag,]
under F@1+@2 connecting Q(Q1,Q2) and @(Q,,0,,0,), and so on. By Lemma
(00, ais] is a simple arc. The claims about the parameterization and alpha-points
follow from Corollary O

5.9. External rays. An external ray R is a simple arc
<o U [, ) U e, 1] U L
subject to the condition
- TR VI e TR

such that

e the generation of a; tends to 0 as i tends 400, and
e there is no alpha-point o’ such that o/ = «; for all 1 € Z.

In other words, an external ray is a simple arc between oo and an end of the escaping
set. The generation of R is lim;_, 4 o || € Rso U {+00}. We say that

e R has type I if the generation of R is oco; and
e R has type II if the generation of R is < oo.
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Given a ray R, its image is
F’(R) = F'(RNDomF?).

Then R N DomF? is a subarc (possibly empty) of R consisting of all the points
with the escaping time in (P, +00), see Proposition If Q is the generation of
R, then the generation of FT(R) is Q — P. Note that F”(R) is empty if and only
if P>Q.

The following is a corollary of Proposition

Corollary 5.27. Any two external rays Ry # Ro meet at a unique ay; i.e. Ry N
Ro = [a, 0). O

A ray R is periodic if FF'(R) = R for some P > 0. In this case P is a period of
R. We will show in Corollary that every periodic ray has a minimal period.
Preperiodic rays are defined accordingly.

The zero chain is a ray landing at 0; we will denote this ray as R* = R°.
Writing I = [k, a—1)] in (5.7)), we obtain the decomposition

(5.9) R =---ULULyuI_y U...
where
(5.10) I, C Escpy \ Escpii-1(F), P = |ayp]

is an external ray segment satisfying

(5.11) L= A (L)

5.10. Wakes. Since the zero ray R lands at 0, for every critical point ¢, there
are two preimages R, _ and R, ; of RO landing at ¢,. We assume that R, _ison
the left of ¢ and Ry 1 is on the right of ¢, (relative the boundary of the bubble
containing cs). Let a; — € Rs _ and a, 4+ € R, 4 be two alpha-points on the rays
close to ¢s. Observe that a4 and «, _ are <-separated by as. We denote by R, _
and R/ 4 the closed subarcs of Ry _ and R, 4 between o, and c,, see Figure

S

By Corollary
(5.12) {c.}URL_UR,, = OW,

encloses the closed topological disk W containing L. We call Wy the (closed)
wake at ¢y, and we say that ¢, is the root of W,. We will show in Corollary [5.36]
that Wy = L,. If s = (Py, P»..., Py,), then m is called the level of W,. We say
that ay is the top point of W. Wakes W p are called primary.

The dynamics of wakes follows the dynamics of their roots:

Lemma 5.28. If F9(c,) = cs, then F?: W, — W, is a homeomorphism. For
every wake W, we have a conformal map

Fisl: it W, » C\R'.

Proof. By construction, F€ maps R, - UR, + homeomorphically to Rs— UR, ;.
Therefore, FO: W, > W, isa homeomorphism.
Since F!*l maps each curve R, _,R,; homeomorphically to R?, we see that

Flsl: int W, — C \ﬁo is conformal. O

As before, we write J,, :== 0Z N S# and J = J;.
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F1GURE 28. The wake Wy is the closed topological disk containing
Z, and enclosed by R; — UR, ;.

Lemma 5.29 (Primary wakes shrink). For every n € Z and every € > 0 there are
at most finitely many primary wakes Wp with cp € J,, such that the diameter of
Wp is greater than €.

Proof. Tt is sufficient to prove the statement for n = 0. Write
J_=JNU_ and J;:=JNUL

(see (3.6)); then fi: Jo — J realizes the first return of points in J back to J. Let
Wy be the primary wake of smallest generation touching J. Then all other primary
wakes touching J are iterated lifts of Wy under f1: J+ — J; we enumerate these
wakes as (W;);<o so that W,;_; is a preimage of W; under f.. We will show that
the diameter of W; tends to 0.

Let Oy be the union of all the lakes whose generation is (0,0, 1) and whose closure
intersects J_. Similarly, O, is the union of all the lakes whose generation is (0, 1,0)
and whose closure intersect Jy. If Wy = Wp intersects J_, then Oy = O (P) U
0,(P) because J_ contains a unique critical point c¢p of generation < P = (0,0, 1);
and O, consists of a single lake because J, does not contain a critical point of
generation < P. If Wy intersects J, then O, consists of two lakes and O, consists
of a single lake.

The maps

(5.13) f:0,50=C\Z and f,:0, >0=C\Z

expand the hyperbolic metric of O.

Let us denote by ¢, the root of W,,. Let yg be an arbitrary point in O and let
lg be a curve in O connecting cg to yo such that £ \ {co} C O. For n < 0, denote
by £,, the unique lift of ¢ (by an appropriate F») starting at c,, and denote by v,
the endpoint of £,,.

Claim. There is a sequence €, > 0 converging to 0 such that the following holds.
If the diameter of £j is less than £g, then the Euclidean diameter of ¢,, is less than
En-

Since the maps in expand the hyperbolic metric, it follows from the Claim
that the W, shrink in the Euclidean metric. Indeed, W minus a small neigh-
borhood of ¢j is a compact subset of O. Lifts of this compact subset either shrink
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FIGURE 29. Combinatorics of primary wakes: OWp \ {cp} is
covered by neighboring wakes. The bubble chains Byp),Bp =
Zp,B,p) landing at ap are marked blue dashed.

in the hyperbolic metric or converge to 9Z; in the latter case, they shrink in the
Euclidean metric.

Proof of the Claim. 1t is sufficient to verify the claim in the dynamical plane of the
pacman f. Since Siegel maps with the same rotation number are conjugate in small
neighborhoods of their Siegel disks (see , it is sufficient to prove the claim
in the dynamical plane of the quadratic polynomial p that has a Siegel fixed point
with the same rotation number as f.

Choose two points a,b € 0Z, such that a is slightly on the left of ¢y while b is
slightly on the right of ¢y. Let R, and R; be two external rays landing at a and
b. Let X be an open topological disk bounded by 7p U R, U Rp and truncated by
some equipotential such that the boundary of X contains ¢y. Let X, be the unique
lift of X under p™ such that 90X, contains ¢, — the unique preimage of ¢y under
p": 82, — 8Z,. Then X, is bounded by p~"(Z,), two preimages Ry n, Rp, of
R,, Ry, and an equipotential. If n is big, then the difference between the external
angles of R n, Ry p is small and the equipotential is close to the Julia set. Since
the Julia set of p is locally connected |Pe|, the diameter of X, tends to 0. (]

O

Lemma 5.30 (Combinatorics of primary wakes, Figure. Consider a wake Wp.
Write
AMP)=(P,...) and p(P)=(P*,...).
Then Wp, Wp— . Wpi are all the primary wakes containing ap on the boundary.
As in (5.12), write OWp = {cp} URp_ UR}p . Then R, _ splits as a con-
catenation
p- =lap,ag,|Uag,,aq,]U. ..

such that

° [QP,OLQI] =Wp- NWp;

d [O‘QmaQi+1] =Wq, NWp fori=>1;
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L4 Q7,‘_+1:Q’L'a Ql_ :P77 ande_:Pf
e ag, tends to cp.

Similarly, ij’ . splits as a concatenation
Ry =lap,as|Ulag,,as,]U...
such that
o [ap,as,] = Wpt NWp;
[Ozsi,OLSHl] =Wgs, NWp fori>1;
Sti=28i, S =P, and S = P;
ag; tends to cp.

Proof. Recall that ap is the landing point of Bp = ip, Ba(p)s By(p), see Lemmal5.11
Since By(py, B,(p) are in wakes Wp-, Wp, the first claim follows.

We will verify the decomposition of R, _; the decomposition of R, , can be
verified similarly. It follows from Corollary@l that the intersection Wp- NWp
is an arc of the form [o,, ap| with a,, = ap. Observe that all three bubble chains
landing at «,, (see Lemma belong to different prime wakes because «,, is a
point where OW p and OW p- split. This implies that o, = g, for some Q1 € Tso;
by the first claim, Q7 = P~, and Qf = P.

Similarly, the intersection W, "W p is of the form [ag,, ag,], where Q5 = Q1
and Q; = P. Applying induction, we construct Q; for all 4 > 1. It remains to show
that ag, converges to cp.

By Proposition there is an alpha-point a, € R}{_ close to cp. At least one
of the rays B, By(s), By(s) is not in Wp; thus ay is on the boundary of a primary
wake W # Wp. As above, the intersection W N Wp is of the form [ar, ag,],
where Ty, =T.

Since there are at most finitely many critical points in [cr, cp-] (a subarc of 0Z)
of generation less than T, the arc [, ap] intersects only finitely many primary
wakes. This means that T = @; for some i > 1. Since ¢; can be chosen arbitrary
close to cp, ag, converges to cp. U

Corollary 5.31 (Tiling). The union of primary wakes U Wp contains O. Sim-
P>0
ilarly, for every wake Wy with s = (P, ..., P,) we have

(5.14) W.=Z,U |J W, ..pr.po
Ppy1>0

For every z € Esc(F) and everym > 1 there are at most three wakes with disjoint
interiors of level > m containing z. The union of these wakes is a neighborhood of
z.

Proof. There is a pair of primary wakes Wp and W such that Wp UWg UZ
surrounds an open topological disk X with 0 € 0X. Then for every y € O, there is
an n < 0 such that A7 (Wp UWgoU Z) encloses .

By Lemma if y ¢ Z is not contained in any prime wake, then there is
connected set Y 3 y (a “ghost limb”) such that Y C O\ UW p and Y intersects

P

0Z, say at x. We can choose sequences W p, and W, such that Wp, UWq, UZ
encloses Y and cp,, cq, tend to z. By Lemma[5.29} the diameters of W p, and W,
tend to 0. This is a contradiction.
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RO

FIGURE 30. Z°,Z% are the preimages of Z under F¥ o L1,

By construction,
(5.15) FI*l: int(W,) » C\R"
is conformal. Then (5.14]) follows from the first claim by applying the inverse
of (5.15). O

Corollary 5.32. For every € > 0 there is a P € Tsq such that every connected
component of

(5.16) c\|Z.u | Ws
S<pP

is less than € in the spherical metric.

Proof. Follows from Lemmas and [l

5.11. Rigidity of the escaping set. For an open topological disk U, we denote by
diamy and disty the diameter and distance with respect to the hyperbolic metric
of U.

Lemma 5.33. For every primary wake W p the following holds. The map
(5.17) FP:Wp\Zp =0

is uniformly expanding with respect to the hyperbolic metric of O. There is a C > 0
such that diamo(W (p,q)) < C = Cp for every secondary subwake W (p o) of Wp.

Since all wakes are dynamically related, one can show that (5.17)) is uniformly
expansion over all P.

Proof. Let us denote by p the hyperbolic metric of O and by p’ the hyperbolic
metric of O\ Zp. We will show that

Li=1id: (WP\ZP,,U,) — (WP\ZP,[LI)

is uniformly contracting; this will imply that is uniformly expanding as it
factors through +~* followed by a (non-uniformly) expanding map.

Since OW p N 90 = {cp}, the map ¢ is uniformly contracting away from a small
neighborhood of ¢p (by compactness). In a small neighborhood of ¢p the uniform
contraction of ¢ follows from the self-similarity of Wp,Zp,Z at cp; it implies that
points on OW have comparable distances to Z and Zp. Let us provide details.
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RO

FP(W,)

FIGURE 31. Construction of the first scaled return x = A;" o
FP+Q: W, - Wp.

Let us lift the global self-similarity A, to a local self-similarity of W p near cp.
Let U 3 A, (U) be a small open disk around 0 such that 0 is the only critical value
of FP in U. Let V 3 cp be the lift of U along F¥: ¢p — 0. Then A, | U lifts to a
conformal map 1 defined on V. By construction, cp is an attracting fixed point of
. Let L: (V,ep) — (C,0) with L'(¢p) = 1 be the linearizer conjugating ¢ to the
scaling A,. (We note that v? = u, because F¥ is 2-to-1 near cp.) Consider

(5.18) L(Wp), L(Z), L(Zp), L(O);

these objects are forward invariant under A, . Using backward iterates of A,, we
globalize ; we denote the results by W%, Z°, Z%, 0°; these new objects
are completely invariant under A,, see Figure Let p° and p'° be the hyperbolic
metrics of O° UZ% and O° respectively. The invariance under A, implies that

12 (Wp\Zp,p°) = (Wp \ Zp, 1)

is uniformly contracting. Since L’(¢,) = 1, the uniform contraction of ¢° implies
the uniform contraction of ¢ near cp.

Consider a secondary wake W p, ) and observe that if W p gy is close to cp, then
W p s) is contained in a small neighborhood of cp. Indeed, if FP(W p,s)) is close
to 0, then FP (W(p,s)) is small by Lemma and Corollary Therefore,
the second claim of the lemma is obvious unless W p gy is contained in a small
neighborhood of ¢p. At a small neighborhood of ¢p, the second claim follows from
the self-similarity at cp by applying L. O

Lemma 5.34 (Nested wakes shrink). For an infinite sequence (Py, Pa,...) write

s(n) = (P1,...,P,). Then
() W

n>1
is a singleton.

Proof. For a secondary wake W, C Wp, we define its first scaled return

xi=A "o FFe. W, - Wp
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as follows, see Figure The map F”: int(Wp) — C\ RO is univalent and
FP(W,) is a primary wake. Let Q € T be the minimal such that F'+%(W,) =
W p for some n € Z. Then A;"oFP*@(W,) = Wp. By Lemmal5.33) x = FF/+@
is expanding uniformly over all the secondary subwakes of W p.

The first scaled return x is defined for all x € Wp \ Zp (with a natural in-
terpretation of the ambiguity at common boundary points of secondary wakes).
By (6.33).

diamo X" (W) < C.

Since x is uniformly expanding, we obtain that diamo(W)) tends to 0. O

Corollary 5.35. Every external ray lands. Every periodic external ray has a min-
imal period.

Proof. Observe that the accumulating set Y of a ray does not transversally intersect
the boundaries of wakes: either Y € W, or Y € C\ Wy for every wake Wy. If
Y intersects Z for some s, then Y C 9Z, by Corollary [5.:31] Since the roots of
wakes (i.e. critical points) are dense on 0Zg, we obtain that Y is a singleton. If Y
does not intersect any 0Zg, then Y belongs to a nested sequence of closed wakes
(by Corollary . By Lemma Y is a singleton.

If R is a periodic ray, then R lands, say at x. By Corollary x has a minimal
period P € Tsg. Therefore, R has a minimal period mP for some m > 1. O

Lemma [5.34] implies that a limb is dense in the corresponding wake:
Corollary 5.36. We have W, = L for every s. O

Let us declare z,y € Escp(F) to be combinatorially equivalent if there is no
alpha-point g such that x,y are in different connected components of Escp(F) \
{as}. This generates a combinatorial equivalence. A point € Esc(F) is an
endpoint of Esc(F) if © ¢ [a1, ag] for alpha-points ag > ax.

Proposition 5.37. Every combinatorial equivalence class of Esc(F) is a singleton.
For every M € Ry we have

(5.19) Escy(F) = | J Escp(F).
P<M

For every P € Tsg the escaping set Escp(F) is uniquely geodesic.

Proof. Consider z € Escp(F). If  is not an endpoint of Esc(F), then Proposi-
tion [5.26] implies that = can be separated by infinitely many alpha-points from any
other point in the escaping set.

Suppose z is an endpoint of Esc(F). By Corollary x belongs to a nested
sequence of wakes. By Lemma the combinatorial class of x is a singleton.
Moreover, the external ray (z,00) lands at x; i.e. Escp is uniquely geodesic.

Equation is immediate. ([

Corollary 5.38. Suppose X C Escp(F) is a discrete subset of C. Then the con-
nected hull of X
U [z

z,yeX
s a tree.
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Proof. Since Escp(F) is uniquely geodesic, the intersection of U [, y] with any
z,yeX

proper lake is a finite tree. Since lakes exhaust O (see for example (5.5)), the claim

follows. O

Lemma 5.39. The escaping set Esc(F) has empty interior and supports no in-
variant line field. Every Fatou component of ¥ is either Zi or its iterated preimage.

Such a statement is referred to as the Hairiness Theorem.

Proof. We give the sketch of the proof because the argument is standard.

Since every combinatorial class of Esc(F) is trivial (Proposition [5.37), we have
int(Esc(F)) = 0.

Suppose X is a Fatou component of F such that X is not an iterated preimage
of Z. By Corollary [5.31] X belongs to a nested sequence of wakes; the wakes shrink
to a point by Lemma [5.34] This is a contradiction.

Suppose Esc(F) supports an invariant line field L. There are two cases. If the
integration along L as in gives a non-trivial continuous path G; emerging
from F = F,, then G; is a path in W* contradicting the rigidity of F.

In the second case, we would obtain a non-trivial q¢c map h: C — C commuting
with F. Since h is identity on Z, we obtain that & is identity on all Z, which are
dense. This implies that h is identity everywhere. O

Lemma 5.40. The closure of the escaping set Escp(F) U {oo} C C is locally
connected for all P € Tg.

Proof. Local connectivity of Escp(F) at any its point z follows from Lemma
Indeed, if U ‘W, is a neighborhood of z consisting of at most 3 pairwise non-nested

7

wakes of level > m (see Corollary|5.31)), then (U Wl> NEscp(F) is a neighborhood

of z in Escp(F). By Lemma |5.34 le shrinks as m increases.

Recall that there are nested lakes O(P) C O(t~!P) C ... such that C =
U O(t"P), see (5.5). Then (Escp(F)U{oo}) \ O(t"P) is a small neighborhood of

n<0
0. U

We can now replace R: B --+ B with a new operator so that its renormalization
period m is optimal:

Proposition 5.41. The pacman renormalization operator R: B --+ B from
can be constructed so that m is the minimal period of 6, under Rpyim.

Proof. Let my;, be the minimal period of 6, and let t,,;, be the eigenvalue of the
associated antirenormalization matrix, see Lemma The cascades {F'} pct and
{FinPY bt are combinatorially equivalent. By the McMullen Rigidity Theorem
(see [McM1), Theorem 8.1]), these cascades are conformally conjugate. Let us denote
by
A*7min: Z = Hx minZ, |M*7min‘ <1

the scaling map conjugating F¥ to Fl=mi=P  Consider the renormalization sector S
from (3.6). A priori, A min(S) does not have to be in S. (In [DLS] we passed to
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an iteration to obtain such a property.) Below we will use external rays of F, to
construct a new S™V satisfying necessary inclusion properties.

Set J = [z,y] == 0ZNS. Let Ry, R, be the external rays landing at z, y, and let
I,,I, the internal rays of Z, landing at x,y. Define 8"V with S"*V NZ, = SNZ,
to be the sector bounded by I, UR, UR, UI,. Set

R2 =f_ (Ry) = f+ (Rm) and 12 =f_ (Iy) = f+ (Ix)

Cutting S™V along Iy U Ry and and pulling back the resulting two sectors under
f, + = f1, we obtain a full prepacman F**V = (fi: U}*" — S™W); see Figure
for illustration (where 5_, B are I,UR,, IyUR, and §is I;URy). Conjugating
F»Y by Ay min, We obtain a full prepacman F1°V = (£} in,+: U7 — S7°V). Then
S1eV C 8" and, moreover, the forward orbit of U%Y under fi | U™ is within
Uzew u ugev.

Let o' be the preimage of o under (f3.: UL*Y — S™V); the o is the point where
R, and R, meet. Choose an equipotential E C Z, close to o, and let O be the
connected component of S"V \ E attached to a. Then O has an F**V lift O’ at-
tached to o/. We remove O’ from U*" U U%*™ and we glue dynamically the sides
of S"V to obtain a pacman f, new: U — V out of F"*V. As with F"*V, we remove
a lift of A, pew(O) from UTY U UTYY; then we project the new prepacman into
the dynamical plane of f, new; We denote by F the resulting prepacman. By con-
struction, Fj is a prepacman for f, new. Moreover, the associated renormalization
triangulation g, is compactly contained in U. By |[DLS| Theorem 2.7], see
there is a pacman renormalization operator defined in a small Banach neighborhood
of finew realizing My,;,. By [DLS, Theorem 7.7] (see , Ruew 18 hyperbolic
with one-dimensional unstable manifold. O

6. HOLOMORPHIC MOTION OF THE ESCAPING SET

Consider a maximal prepacman F € W*". Recall that the escaping set Escg(F) =
C\ Dom(F¥) is defined for S € T C Rsq. For M € R>( we define

Escy (F) := ﬂ Escs(F),
§>M

where the intersection is taken over all S € T with S > M. For z € Esc(F) its
escaping time is the minimal M such that Escy (F) > .

6.1. Stability of o-branched structure. We need the following approximation
of F by finite degree branched coverings.

Lemma 6.1. There is a neighborhood U C W of F, such that for every F € U
there are sequences of disks D=1 c D(=2) c ... and Wifl) C WEEZ) C ... with
U D® = C and U Wf) = Dom fy such that

k<0 k<0

(6.1) (f._,f0.+): WH W - p®)

are proper branched coverings of finite degree depending continuously on ¥ when k

is fized. Moreover, all maps (6.1) are Hurwitz equivalent for a fized k.

It follows, in particular, that the degree of fj 1 | Wf ) is constant and critical points
of fy + do not collide.
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Proof. The proof follows the lines of [DLS, Theorem 5.5] asserting that a pacman
on the unstable manifold extends to a maximal prepacman. Let us first review the
proof of [DLS| Theorem 5.5]; see also §3.2.9)

For a pacman fy € W*, let

So=(for: U+ >6=V\(11UO))

be a commuting pair obtained from Fy = (fo+: Upx — V \ 1) by removing a
small neighborhood O of o from V' \ 71 and by removing f;’ i(O) from Up +. The
map ¢ o ---0 ¢_1 embeds Fp to the dynamical plane of f; as a commuting pair
denoted by

(6.2) 00 = (g ), ) - s,

Since ¢, is contracting at the critical value the diameter of U(k) U Ué’?_ U 6( )5

c1(fn) tends to 0. Let us set c14x(fn) == f¥(c1). The key step in verifying the
maximal o-proper extension is the following lemma;:

Lemma 6.2 ([DLS, Key Lemma 4.8]). There is a small open topological disk D
around c1(f,) and there is a small neighborhood U C WY of f. such that the follow-
ing property holds. For every sufficiently bign > 1, for each t € {a,,b,}, and for all
feR™™U), we have c11¢ € D and D pullbacks along the orbit c1(f), ca(f), ..., c14¢(f) €
D to a disk Dy such that ft: Dy — D is a branched covering; moreover, Dy C

U\
Lemma [6.2] implies that for a sufficiently big k < 0 the pair (6.2) extends into a

pair of commuting branched coverings
(6.3) B = (g, g ) W, wiP - p,

with W Wj_k) UD C V\ 7. Conjugating (6.3) by A* o hy we obtain the
commuting pair
(fo_,f0+): WX w5 p®

such that U D®) = C (because the modulus of D=1 \ D) is uniformly

k<0
bounded away from 0 for ¢ > 0 and all m < 0). This implies that

(fo—.for): JW®, (JwP —c
k<0 k<0
is a pair of o-proper maps.

Let us argue that can be slightly adjusted such that the new commuting
pair depends continuously on fy as required. Recall that ¢y and ¢; denote the
critical point and the critical value of a pacman f. For i > 0 we write ¢; = f(co).

By |DLS|, Theorem 4.6], if fy is sufficiently close to fy, then for every k < 0 the
disk D can be slightly shrunk to the disk D(fp, k) (uniformly in k and fy) such
that the following property holds: for ¢ < max{a(k),b(k)} we have

(6.4) D(fs,k) 2 ¢i(fy) ifand only if D(fo,k) 3> ¢;(fx)

(because points ¢;(fx) are sufficiently close to ¢;(f+)). Pulling back D(fo, k) along
the orbit of (6.3]), we obtain the extension of (6.2) to the commuting pair

(6.5) B = (e pr) s WO W o D(fo, k.
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Note that fi: f} (anew’(k)) — ,ZH(WLneW’(k)) for © € {—,+} has degree 2 if and

only if fi (Wflew’(k)) contains the critical point of fy. By (6.4), the pair (6.5)
depends continuously on fy as required. Conjugating (6.5) by A¥ o h; we obtain
the required commuting pair (6.1]). O

Combining with the Implicit Function Theorem, we obtain:

Corollary 6.3. Set
T := min{(0,1,0), (0,0,1)}.

There is a point x € C and an open disk U containing F, such that U F9(z)
S<T
moves holomorphically with F € U.

Proof. By Lemma CV(FT) moves holomorphically within a small neighborhood
of F,.. Therefore, we can shrink U from Lemmal[6.1]and choose a point z € U_(F,)
such that  belongs to the interior of U_(F) and z does not hit CV(F) for all F € U.
By Lemma F~9(x) moves holomorphically with F € U for all S < T. Since
the points F*(z) with S < T belong to different triangles of o(F), the set F~5(x)
is disjoint from F~%(z) for S < Q < T. We obtain a holomorphic motion of
U F 5 @). 0

S<T
6.2. Holomorphic motion of the escaping set. We need the following facts.

Lemma 6.4. Let g: U — V be a finite branched covering between open topological
disks. If g has a unique critical value, then g also has a unique critical point.

Proof. By assumption, g: U\CP(g) — V\CV(g) is a covering. Since 71 (V' \CV(g))
is an abelian group, so is 71 (U \ CP(g)). Therefore, CP(g) is a singleton. O

Lemma 6.5. Let g: D — C be a o-proper map. Fiz an open disk W C C. Let U
be an open set intersecting OD. Then g—*(W) intersects U.

Proof. Suppose g1 (W) NU = . Choose an open topological disk V. C U ND
such that 0V is a simple closed curve containing an arc I C dD. Choosing a point
w in W and postcomposing g with a Mobius transformation A moving w to oo,
we obtain that the new function s .= hog: D — C is bounded on V. By the
Fatou Theorem, s | V has a radial limit at almost every point in V. By the Riesz
Theorem, almost all of the radial limits are different from any fixed number, in
particular from h(oo). Therefore, there is an « € I such that g has a finite radial
limit y at . This contradicts to the assertion that g is o-proper: if ¥ is a small
open neighborhood of y, then every connected component of g~1(¥) is disjoint from
OD > z and the radial limit at x is not y € X. (In fact, o-proper maps have no
asymptotic values.) Therefore, g1 (W) N U # 0. O

Remark 6.6. Lemmal[6.5] also holds for every o-proper map g: U — C defined on
a simply connected set U C C. In the proof, the angular metric of D is replaced
with the harmonic measure of OU C C.

Corollary 6.7. Consider F € WY and P € Tsg. Then for every x € C, the
boundary d Dom(F¥) is the set of accumulating points of F~F (z).
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Proof. Let U be a connected component of Dom(F?). We claim that the preimages
of z under F¥ | U accumulate at OU.

Since the set of critical values of F¥ is discrete (Lemma , we can choose
small neighborhoods W 3 Q 3 z so that W N CV(F?) C {z}. Thus W contains at
most one critical value. By Lemma every connected component W’ of F~F (W)
contains at most one critical point. By Lemma the degree of F¥': W/ — W is at
most k, where k is independent of W’. Therefore, if Q' is the connected component
of F~¥(Q) within W', then the modulus of W’ \ €’ is uniformly bounded from 0.

Let us precompose F': U — C with a Riemann map D — Dom(F?); we obtain
a o-proper map g: D — C. By Lemmal6.5] and Remark [6.6] for every y € 9D, there
is a connected component 2’ of g=1(Q) close to y. Denote by W’ the connected
component of g~1(W) containing €’. Since W'\ Q' C D and the modulus of W’ \ €/
is bounded from 0, the component §’ is small. Since ' contains a preimage of z,
the corollary is verified. O

A conformal motion of a set E C C parametrized by a complex manifold is a
holomorphic motion whose dilatation on E is 0. The following lemma follows from
Corollaries and and is reminiscent to |Re, Theorem 1.1].

Lemma 6.8. The set
(6.6) Dp=C\Ep ={FeW"|0¢Escp(F)}

is open. There is a unique equivariant conformal motion T of Escp(F) along any
curve in Dp.

The escaping set Esc(F) has empty interior and supports no invariant line field
for every F € W".

We do not claim in this lemma that Dp is connected. As in [Re], we will show that
the motion of Escg(F) has small dilatation for small S (here is used), and
then dynamically extend the motion of Escg(F) to the motion of Escp(F) with
the same dilatation.

Proof. Consider T, U, and x from Corollary [6.3} i.e. U F° (z) moves holomor-
s<T
phically with F € U, where U is a neighborhood of F,. Applying
obtain the holomorphic motion 7 of U F~9(x). By Corollary
s<T

the A-lemma, we

(6.7) OEscr(F) C | F-5(x)
S<T
moves holomorphically with F € U. Clearly, 7 is an equivariant motion.

In particular, 7 induces an equivariant qc map between Escy(F) and Escr(F)
for every F € U. By Lemma Escr(F,) has empty interior and supports
no invariant line field. Therefore, Escr(F) has empty interior and supports no
invariant line field and 7 is a holomorphic motion of Escr(F) = 0Escr(F). Observe
that the dilatation of 7 is small if F is close to F,. Moreover, by Proposition [5.37]
we have:

(6.8) Escy (F) = U Escgs(F).

for all M <T.
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Let us now show that the definition of 7 is independent of z. Suppose that yg €
C\ CV(QG) is a point that depends holomorphically on G in a small neighborhood
of F € U. In a smaller neighborhood of F, we can connect x,yg by a simple arc
{e C C\ CV(G) and surround {g by an annulus Ag C C\ CV(G) (we recall
that CV(GT) depends continuously on G by Lemma [4.3). If ¢, is a sequence of
preimages of /g under G” accumulating at a point in Escr(G) = 0Escr(G), then
the diameter of ¢,, tends to 0 because every ¢, is separated from Escr(G) by a
conformal preimage of Ag. Therefore, the motion 7 coincides with the motion of

Escr(G) € G (yr)

in a small neighborhood of F.

We claim that 7 is the unique equivariant holomorphic motion of Escr(F).
Suppose 7’ is another equivariant holomorphic motion of Escy(G) defined in some
neighborhood of F. Choose a small S € T and a point y € Escs(G) and let yg be
the motion of y induced by 7/. Since 7/ is equivariant, the motion of F¥~7T(yg) is
7/, Since

ESCT_S(F) C FS_T(yF)

we see that 7 and 7 coincide on Escr_g(F) for all S € Tsg such that S < T.
Therefore, the motions 7 and 7’ coincide on Escy_s(F) and, by (6.8), on Escr(F).
Let us show that the set

(69) Dp ﬂu:{FEu‘OgESCP(F)}

is open for every P € T and that the motion of Escr(F) can be dynamically
extended (with the same dilatation) to a motion of Escp(F) with F € Dp. If
P < T, then Dp D U and the claim is immediate. Assume that T'< P < 2T. We
have: F € Dp NU if and only if FT(0) ¢ Escp_7(F) because 0 € Dom(FT); this
is an open condition because Escp_r(F) C Escy(F) moves holomorphically with
F € U. Moreover, for every F € Dp NU, we can pull back the holomorphic motion
of Escy(F) to the holomorphic motion of Escp(F) \ Escp_r(F) via a covering

F”: Escp(F) \ Escp_r(F) — Escr(F);

combining with the motion of Escp_r(F) C Escy(F), we obtain the motion of
Escp(F) without changing dilatation. For 2"~ 1T < P < 2"T, we apply an induc-
tion.

For every F € WY, there is a sufficiently big n < 0 such that F,, is close to
F,; in particular, F,, € U. Setting L = Pt~", we obtain from that F € Dp
if and only if F,, € Dy. This shows that is open as a union of open sets. It
also follows that Escp(F) moves holomorphically with F € Dp. The dilatation of
the motion of Escp(F) is equal to the dilatation of Escy(F,) and can be made
arbitrary small by choosing F,, close to F,. This shows that the holomorphic
motion is conformal.

It was already proven that Escy,(F) has empty interior and supports no invariant
line field for sufficiently small L. Therefore, Escp(F) supports no invariant line field
and has empty interior. O

Corollary 6.9. For every F € W" we have Esc(F) # 0 and J(F) = Esc(F).

Proof. For asmall P € T, the escaping set Escp(F) is homeomorphic to Escp(F,) #
(). Since Escp(F) contains at least two points, applying the Montel theorem we
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obtain that every neighborhood of z € J(F) contains a preimage of a point in
Escp(F). O

6.3. External rays and alpha-points of F. Choose S € Ty and a sufficiently
small € > 0 such that the open e-neighborhood U of F, € W* ~ C is contained in
Dg, see Lemma For every pair of prepacmen F, G there is a sufficiently big
n < 0 such that F,,, G,, € U. Since U is a topological disk, there is a unique up to
homotopy path ¢ in U connecting F,, and G,,. The holomorphic motion 7 (from
Lemma along ¢ produces an equivariant homeomorphism between Escg(F,,)
and Escg(G,,); after rescaling we obtain an equivariant homeomorphism

h: ESC{nS(F) — ESCtnS(G).
Taking the restriction, we obtain an equivariant homeomorphism
h: Escq(F) — Escg(G).

for all Q < t"S; clearly h is independent of n (because R~} () C U). We say that
h is the canonical identification of Escg(F) and Escg(G).

Consider G € W" and choose a sufficiently small 7' € T~ so that Escy(G) and
Escr(F,) are canonically identified. Alpha-points of G of generation S < T are the
images of the corresponding alpha-points of F, under the canonical identification.
Similarly, ray segments in Escr(G) are the images of ray segments in Escy(F)
under the canonical identification.

If a; € Escy(G) is an alpha-point of generation S, then F~F(o;) are alpha-
points of generation S + P. Similarly, if v C Escp(F) is a ray segment connecting
two alpha-points and ¢ is a connected component of F~F () such that F: v — ¢
is a homeomorphism, then £ is also a ray segment. Note that £ also connects two
alpha-points.

External rays for G are defined in the same way as for F,, see Namely, an
external ray R is a maximal concatenation of external ray segments provided that
it does not hit an iterated preimage of 0. (An external ray “breaks” at a pre-critical
point.)

Lemma 6.10. Suppose 0 € Escp(F) and 0 € Escp(G). Then there is a unique
equivariant bijection h: Escp(F) — Escp(G) such that h: Escg(F) — Escg(G)
coincides with the homeomorphism induced by T for all sufficiently small Q € Tsq.
Let R be an external ray of G. Then R has a unique counterpart R(Fy) in the
dynamical plane of F, such that for all sufficiently small Q the natural homeomor-
phism h: Escq(G) — Escq(Fy) induced by T extends to a homeomorphism

h: Escg(G)UR(G) — Escq(F.) UR(F,)

that is equivariant in the following sense. For every x € R(G) with GT(z) €
Escq(G) we have ho GT(z) = FT o h(z).

Proof. Let P’ be the minimal escaping time of 0 for F and G; we have P < P’.
Since T is dense in R>(, we can slightly increase P so that the new P is still less
than P’, and R:= P/m € T, and R < @/3 for some m € Z~,.

Let us say that a decoration is a connected component of Esc;r(F)\Esc(;_1)r(F)
for i € {1,2,...,m}; we say that i is the generation of the decoration. Note that
Escy(F) is a decoration of generation 1. We will show that decorations for G and
F, are arranged in the same way.
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Claim. In the dynamical planes of F € {F,, G} consider a decoration X; of
generation ¢ > 1. Then X; is precompact and there is a unique alpha-point «; of
generation (¢ — 1)R such that X; U a; is compact. Moreover, X; and X; U a; are
filled-in (i.e., their complements are connected). The image F®(X;) is a decoration
XF, (j) of generation ¢ — 1. If i < m, then for every a;, € F~%(q;), there is a unique
decoration X of generation i + 1 such that X, = X, U {as} and FF(X,) = X;.

Proof of the Claim. The case F = F, follows from the second part of Lemma [5.18
Since there is an equivariant homeomorphism between Escsr(G) and Escsgr(F.)
(recall that ), the claim is also true if F = G and i < 3.

Suppose that X is a decoration of generation i > 3 in the dynamical plane of G.
Choose z € X; and let X, be the decoration of generation 2 containing F=2(z).
Since the claim is already verified for Xj, we have X = X U {as} is compact
and filled-in. Since X does not contain a critical value of FG=2E and since the
set of the critical values is discrete (see Lemma 7 there is an open topological
disk Uy, D X, such that Uj, does contain any critical point of F(—2%_ Pulling back
Uy along the orbit of x and using o-properness, we construct a univalent preimage
U; 2 z of Uy under FO=2%_ It now follows that X; = X; U {a;} is the preimage
of X U{ay} under FO-2F, U; — Us.

If oy € G~ (), then pulling back U; along F: a; — «; (and possibly shrink-
ing U; so that U; does not contain a critical value of FR) we construct a univalent
preimage Us 3 a, of U;. Then X is the preimage of X; under FE. U, - U, O

Observe that all decorations of F, and G are canonically homeomorphic by an
equivariant homeomorphism: all decorations are univalent preimages of Escg(F,)
and Escgr(G) which are canonically identified. We proceed by induction: suppose
that h has been already extended to an equivariant bijection

h: Escir(Fy) — Escir(G)

where ¢t < m. Then h induces a bijection between alpha-points of generation ¢R.
There is a decoration of generation t+ 1 attached to every alpha-point of generation
tR; since these decorations are canonically homeomorphic, we can uniquely extend
h to the bijection

h: ESC(t+1)R(F*) — ESC(t+1)R(G).

To prove the second claim, fix T < ) and decompose R as a concatenation of
arcs Ry UR2 U... such that R; C Escir(G) \ Esc;_1)r(G). Inductively define
R;(F.) to be the unique lift of h o GT~D(R;(G)) under FIU™Y starting where
Ri_1(F*) ends. |

By Lemmas and the combinatorics of external rays for G € W" is the
same as for F,.

Corollary 6.11 (7 has no holonomy). IfF, G are in the same connected component
of Dp, then the equivariant homeomorphism h: Escp(F) — Escp(G) induced by
T (see Lemma 1s independent of the curve connecting F and G. (I

Corollary 6.12. For every K > 1 and F,G € W, there exists a sufficiently small
T € T~q such that the equivariant homeomorphism

h: Escr(F) — Escr(Q)



MLC AT SATELLITE PARAMETERS 81

induced by the holomorphic motion from Lemma extends to a qc map h:C—C
with dilatation less than K.

Proof. For a sufficiently small T', the hyperbolic distance between F and G in Dy
is small. The A-lemma extends h to a qc map with a small dilatation. O

6.4. Puzzle pieces. Consider a dynamical plane of G. Let us say a ray R lands
if either R lands at a point € C in the classical sense, or R lands at a, see
A rational ray is either a periodic or preperiodic ray.

Let R = {RY, R?,...,R"} be a finite set of rational rays. We assume that every

R’ lands. We define
R=[]JJ G R)
i P>0

to be the forward orbit of rays in R.
Lemma 6.13. The set R is a forward invariant connected graph.

Proof. Recall from Corollary that every two external rays eventually meet.
Therefore, R is connected. _

Fix a compact subset X € C. Let 77 be a common period of rays in R and let
T be a common preperiod of rays in ﬁ; write T := T1 +T>. We need to prove that
there are at most finitely many P < T such that GF(R?) intersects X for some i;
this would imply that R is an increasing union of finite graphs as required, see List
of Notations.

Choose a sufficiently small @ > 0 such that Escg(G) is disjoint from X. Let X’ be
the set of the landing points of rays in R, and set X = Jper FP(X) = Upp FF(X).
By Lemma [4.4] X NX is a finite set. Note that X may contain c. Choose a small
neighborhood O of x.

We can choose finitely many external ray segments R, ..., R,, in R such that

e RN (X \ O) is covered by the forward orbits of the R;; and
e for every R; there exists P; with R; € Dom(G'7) such that G (R7) C
Escg(G).
By Corollary there are at most finitely many S < P; such that G°(R;) inter-
sects X \ O. Therefore, at most finitely many rays in R intersect X \ O. Since O

is a sufficiently small neighborhood of X, at most finitely many rays in R can enter
0. O

A puzzle piece X is the closure of a connected component of C\ R. Since the
forward orbit of 90X is disjoint from int X, we have the following classical property.
If Y is the closure of a connected component of F~%(int X), then either X and Y
have disjoint interiors, or Y C X.

Let us note that a puzzle piece can be surrounded by a single external ray, see
example in Lemma [7.3] This happens when a preperiodic ray lands at itself; a
certain iterate of such ray eventually lands at c.

We say that a puzzle piece X(G) from the dynamical plane of G ezists in the
dynamical plane of F if F has a puzzle piece X(F) such that 0X(G) and 0X(F)
are combinatorially equivalent: there is a homeomorphism h: 0X(G) — 9X(F)
induced by the natural identification of external rays, see Lemma [6.10]



82 DZMITRY DUDKO AND MIKHAIL LYUBICH

6.5. Parameter rays. Similar to many parameter spaces in complex dynamics, it
is natural to expect:

Conjecture 6.14. For every x € Esc(F,) there is a unique parameter G € YW"
such that 0 = x(G); i.e. there is a path in W connecting F, and G such that the
geodesic ray segment [x,00] € Esc(F,) moves holomorphically along the path and
such that 0 collides with x in the dynamical plane of G.

Conjecture [6.14] would imply that the phase parameter relation
(6.10) Esc(F,) — WY, z(F,) —» G such that 0=2z(G)

is a well-defined homeomorphism onto the image. A parameter ray is the image
of a dynamic ray under . Conjecture would immediately imply that the
parameter limbs are bounded (as pictures predict, see Figure and it should
significantly improve the results of our paper. Combined with the conjectural Full
Hyperbolicity of neutral renormalization, this may give a complete understanding
of geometry near the boundaries of hyperbolic components with a single bifurcating
critical point, see Remark [0.1]

7. PARABOLIC BIFURCATION AND SMALL M-COPIES

7.1. Parabolic prepacman F,. In a small neighborhood of f; consider a para-
bolic pacman f, € W* with rotation number v = p/q. Recall from §3.2.14| that H
denotes the global attracting basin; its periodic components are parametrized as
(Hi)iez' We write the first return map to H° as
(7.1) FEO . HO - HO.

Then is a two-to-one map with a unique critical value at 0. Moreover,
FI:HY - FT(H®) = H'D is univalent for all T < Q(r), where i(T) € Z\ {0}.
For standard reasons, H' is a Fatou component.

Let U € C be an open simply connected set.

We say that a univalent map f: U — U is a local attracting parabolic petal if it
admits a local Fatou coordinate: a univalent map h: U — C conjugating f: U — U
to the translation 77: z — z 4+ 1 such that Im f D {z € C | Rez > M} for some
M eR.

We say that a branched covering of finite degree f: U — U is a full attracting
parabolic petal it f restricts to a local attracting parabolic petal f : U’ — U’ for
some U’ C U. For standard reasons, every point in U is eventually attracted by U’.
Hence, a local Fatou coordinate system h: U’ — C extends to a branched covering
h: U — C semi-conjugating f to T7. We call h: U — C a global Fatou coordinate.

We say that a full attracting parabolic petal f: U — U is unicritical if f has a
unique critical value. By Lemma[6.4] f also has a unique critical point.

Lemma 7.1. Let f: U — U,g: V — V be two unicritical full attracting parabolic
petals of the same degree. Then f and g are conformally conjugate.

Proof. We normalize full Fatou coordinate systems hy: U — C and hy: V' — C so
that

0 = hy(critical value of f) = hg(critical value of g).

Choose next local attracting parabolic petals f : U’ — U’ and g: V' — V' so that
h = hjo h;l is a conjugacy between f : U’ — U’ and g: V' — V’. We can also
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assume that U’ and V' contain the critical values of f and g. Since h respects
the postcritical sets, we can apply the pullback argument and extend h to a global
conjugacy h: U — V between f and g. (]

Recall that the quadratic polynomial p; /4 = 22 4 1/4 has a parabolic fixed point
at a(pyss) = 1/2. We denote by P the attracting basin of a(p;/4). Note that
p1/a: OP — OP is topologically conjugate to z — 2?: S' — S'. By Lemma
there is a conformal conjugacy

(7.2) h;: H — P

between F?(t): H’ — H’ and pr/a: P —P.

Recall that A denotes the main hyperbolic component of W*", see Choose
a curve { C A connecting F, to F.. For every T' € T there is a small neighborhood
of £ where the holomorphic motion 7 of Escy(G) is defined, see Lemma Then
T produces an equivariant homeomorphism

h: Escp(F,) — Escyp(F.).

Therefore, Esc(F,) has the same properties as Esc(F,); in particular, Esc(F,) is
uniquely geodesic.

Theorem 7.2. Ifi # j, then HNE = (0. The conjugacy h;: H* — P extends
uniquely to a topological conjugacy

(7.3) h;: H U{a(F,)} - P
For every i there is a unique external ray R® landing at o(F,) such that R is
between H® and HL. The ray R® is Q(r)-periodic. Moreover, R* and R*~! meet
at o(1/2,H%) - the unique preimage of a(F) in C under FOO, "u {a(Fy)} —
—=0
H U{a(F.)}. . 4 4
Let W (i) be the closed puzzle piece bounded by R~ and R* and containing H,
and let W be the pullback of W = W (0) along FOO . go HY, see Figure .
Then
(7.4) FOO . Wl - W.

is a 2-to-1 map.

We say that (7.4) is the primary renormalization map. It can be thickened to
a “pinched quadratic-like map”. Before giving the proof of Theorem [7.2] let us
introduce an expanding metric for F,.

7.1.1. Ezpanding metric for F.. Let B C P be a forward invariant open topological
disk containing [1/4,1/2) such that B is a closed topological disk with

OB Np1ya(B) = a(piys) = BNOP

(recall that 1/4 is the critical value of p;/4). We can take B to be an appropriate
small neighborhood of [1/4,1/2).

Define B® := hy ' (B) and observe that B’ c H. Spreading around go, we obtain

B:=JF(B") c|JH.

P>0 i€z
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FIGURE 32. Alpha-points of 9H are defined at the landing points
of curves in H® (compare with Figure .

By construction, B contains the postcritical set (F,). Consider the hyperbolic
surface X := C\ B. Then F;7(X) ¢ X and

(7.5) FI.F;7(X) =X
is a covering for all T. By Schwartz’s lemma, ([7.5)) expands the hyperbolic metric.

Proof of Theorem|[7.4 Choose € (1/4,1/2). In the dynamical plane of p; 4,
define 4§}, to be the interval [, 1/2) C P landing at 1/2. We view ¢, as a simple arc
parametrized by [0,1). Set a(k/2",p;,4) to be the landing point of the external
ray with angle k/2", where k € {1,3,5,...,2" — 1}. Note that a(k/2",p;/4) is a
preimage of a under p,,. We define 6} ,. to be the lift of 6y under p7,, landing
at a(k/2",p14). Let dijon be the lift of 5,;/% under hg.

Claim 1: 6o lands at a(F.) while 0y/o» with k& € {1,3,5,...,2" — 1} land at
pairwise different alpha-points of generation nQ(t). We denote by a(k/2", H?) the
landing point of dj,/on, see Figure

Proof of the claim. Recall that WY, . denotes the set of maximal prepacmen close
to F, that have the associated pacmen on W*. By definition, F, € W*". Applying
the A-lemma, we will first show that a certain version of Lemma holds in the
dynamical plane of G € W}, .

Since dg is invariant under F?(t), by replacing dp with its subcurve dg[t, 1), we
can assume that g is contained in HJ (see . Thus do(F.) projects to the
dynamical plane of f,, and the projection, call it do(f), is disjoint from the critical
arc 71, possibly up to a slight rotation of v; as in

For g € W*, let T, be the unique translation mapping a(f;) to a(g). For every
G € Wi, we define §p(G) to be the lift of dy(g) == Ty(do(fe)) to S(G) =~V \ 7.
By construction, dp(G) depends holomorphically on G.
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FIGURE 33. Parabolic maximal prepacmen: attracting petals H?
and puzzle pieces W = W UW?UW? (where W' is bounded by
two red and two blue curves).



86 DZMITRY DUDKO AND MIKHAIL LYUBICH

a(1/2) .

by = a(1/4)
~a(3/4) = ay

by = a(1/8) K 13
Hfl - a(7/8) = as

by = a(1/16) Uy HO
a(15/16)

FIGURE 34. Curves ¢, and [b,, a,+1] (dashed), see also Figure

For asmall T € T~g and G € Wi, the set of critical values CV(G7) is disjoint
from §(G) because

CV(GT)\{0} C o(G)\S and 4(G)CS,
see ([4.10). Therefore, G=7(§) moves holomorphically with G € W} .. Applying
the A-lemma, we obtain the holomorphic motion of G=7(§) with G € W) .. Since

curves in F; 7 (8) land at pairwise different alpha-point (Lemma , the same is

true for Fy 7 () in the dynamical plane of F..

Let H' be the unique (by (3.14))) periodic preimage of H® under FT. Since T is
small, the map F!: H* — HY is two-to-one. There are two lifts 51 and §1T/2 of §
under FT': H* — H’. One of them lands at a(F.), while the other 552 lands at

the alpha-point a(1/2, HY) of generation 7.
Observe that 67, = (5{/2 Ua(1/2,H?) is contained in X (see E} Therefore,
for all P € T all the lifts of 51T/2 under F¥ land at pairwise different preimages of

1/2
a(1/2,H?). Since Oron are lifts of 51T/2, the claim follows. O

For H' we define a(k/2", H') to be the images of a(k/2", H') under the univalent
map F?2: H® — HY, where S < Q(t).
Let
by = [a(1/2",H), a((2" — 1)/2", H™ )] C Esc,q(v)(F:)
be the unique geodesic (in Esc(F.)) connecting the alpha-points, see Figure
Claim 2: Ff?(‘) maps fp4+1 to £,. The curves ¢, converge to a(F,), and for
n > 0 the curve £, is contained in a repelling petal between H™! and H°

Proof of the claim. Note that (—1/4,1/4) C RN P is p; 4-invariant and connects
a(py/s) and a(1/2,p1/4). Let Bﬁr,n be the unique geodesic in pl_/’f1+1((—1/4, 1/4))
connecting a((2" —1)/2",py/4) and «(p1/4). Set By, = hal(ﬁg_,n). Similarly, let
., be the unique geodesic in p;/zﬂ((—l/él, 1/4)) connecting «(1/2",p;,4) and
a(pyya); set - n=hI1(BL ).
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Define O,, to be the open disk bounded by 5_, U ¢, U B+, and containing a
small repelling petal between H™! and H°. Then O,; C O, and we claim that
F@) maps 0,11 univalently onto O,,. Indeed, F¥® maps B— nt+1 and B4 i1 to
B- . and By ,. Since O, does no contain any critical values of F?(t), the lift of

O,, attached to B_ ,,+1 and B4 41 is attached to the unique lift Zn+1 of ¢,,. Then
lpy1 connects a(H?,1/2") and o(H™1, (2" —1)/2"); since Esc(,+1)q(r) is uniquely
geodesic, we obtain Zn“ =Vlpi1.

Note that between H 1 and HY) there is a repelling petal P~! emerging from
«; this repelling petal is obtained from lifting the repelling petal of a(f,) between
H=' and H°. Let (yn)n>0 with F(y,.1) =y, € XN O, be the orbit emerging
from a(F,) in P~!. Connect £, 41 and y,+1 by a curve in O,, N X; then the lift of
this curve is a curve connecting £, 2 and y,42. Since FtQ(r) expands the hyperbolic
metric of X (see (7.5)), and since ¢, C X, we obtain that ¢, shrinks to a(F.). O

Since Esc(F,) is uniquely geodesic, there is a unique geodesic [by,an+1] C
Esc(F.) connecting ¢, and ¢, 1. (In fact, b, = (2" — 1)/2,H%) and a, =
a(1/2", H™1), see Figure ) Then FE® maps [brt1,Ont2] tO [bn,bpt1]. Since
FOO is expanding (see (7.5))), [bn, by1] shrinks to a(F.). We obtain that

Ril = (OO, bl] U [bna bn-‘rl]

n>0

is a periodic ray landing between H™! and HP.
Similarly, there is a periodic ray R’ landing at a(F,) between H’ and H*!.
The rays (R*); form a periodic cycle.
Let W (i) D H be the puzzle piece bounded by R! U R/t Recall that
for every H? there is a unique P € T such that FY': H® — H? is a conformal map.
Claim 3: the conformal map F¥': H® — H' extends to a conformal map FZ': W(0) —
W (i). Moreover, R™! and R” meet at a(H,1/2).

Proof of the Claim. The critical values of FE are exactly

[F2(0)| Q< P} | FO(H")
Q<P

and this set is disjoint from W(¢). Therefore, W(0) is the conformal pullback of
W (i) along F¥: H® — H?. This shows the first claim

For every S < Q(t) there is an i € Z such that FY: W(0) — W (i) is conformal.
Therefore, a(H?) = F? (a(H, 1/2)) and we see that the generation of a(H?,1/2) is
exactly Q(r). This also implies that a(H?,1/2) has the smallest generation among
all the preimages of a(F,) in W(0). If a_ and o are alpha-points in R™*\R? and
RY\ R7! respectively, then a_ and « are <-separated by o(H°, 1/2) (see .
By Corollary [5.27, RN R~ = [a(H?, 1/2), ). O

Since W(0) contains a unique critical value of F@ | pulling back W(0) we
obtain the two-to-one map .

By a standard puzzle argument, OH? is a simple arc. Indeed, every alpha-point
a(t, H?) is accessible from the interior and the exterior of H?. We can cover 9H* by
closed topological disks (D;), ez with disjoint interiors whose boundaries intersect
OH' at exactly two alpha-points: for j < 0 the disk D; intersects OH" at «(27)
and «(2/71), and for j > 0 the disk D; intersects 0H® at a(1 — 1/29t1) and
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FIGURE 35. The decomposition of W = W! U W U W?. The
rays R® and R? land at a(1/2,H°) and bound puzzle pieces W
and W?. Compare with Figure

a(l —1/27%2). Moreover, we can assume that D; is disjoint from the postcritical
set. Taking preimages, we obtain a systems of disks (D,),; every D, still intersects
OHC at exactly two alpha-points. By expansion for every x € OH' there is
a sequence of disks D; , > x as above shrinking to z. This implies that HY is a

simple arc, |Naj, Theorems 6.16 and 6.17].

Note that " is the non-escaping set of Fg(t) : W! — W. Therefore, the escaping
set intersects OH’ at alpha-points. This implies that H* NR¥ NH/ = () for all i # j
and all k because the generation of alpha-point in JH’ is different from those in
OH. Since H? and H7 are in different puzzle pieces, H' N HJ = ) if 5 #£ j. O

We will show in Lemma that every z € C is contained in some puzzle piece

7.2. Properties of W (3).

Lemma 7.3 (Decomposition W = W! U WU WP"). The puzzle piece W' is
bounded by 4 external rays; two of them are R~ and R°, we denote the other two
by R® and R?, see Figure . The ray R® lands at «(1/2,H°) € R* and surrounds
a puzzle piece We. Similarly, R® lands at o(1/2,H°) € R® and surrounds a puzzle
piece WP. The puzzle pieces W', W WP have pairwise disjoint interiors, and we
have W = W1 U WU WP, The map F?(t) maps univalently int W® and int W°
to two different connected components of C\ (W URD?).

Proof. Since F®: W! — W is two-to-one, the puzzle piece W' is bounded by

4 rays R™, R*, R R, where R™!,R? are preimages of R™! while R*, R are
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preimages of R?. Since R™! R’ land at a, we obtain that R* and R? land at
a(1/2,H°). As a consequence, R® and R’ bound puzzle pieces W* and W,
Observe that R™! and R® meet at a(1/4, H®) while R® and R? meet at «(3/4, H?).
This implies that W = W! U W% U W? and FtQ(t) maps int W U int W? to
C\ (WURD) as required. O

Fix an open neighborhood O := D(n) of F, containing F,. Recall from §5.2]
that c,(F,) € F79(0) denotes the unique critical point in dZ, of generation S. By
Lemma G*(0) does not collide with 0 for small P and for G € O. Therefore,

for small P the set U G~9(0) moves holomorphically with G € O. For G € O,
S<p
we denote by cs(G) the image of ¢g(F,) under the holomorphic motion.

For every S < Q(t), there is a unique ¢ = ¢(S) such that F?(t)fs
lently W onto W (i). We set W!(i) := Fg(t)fs(Wl). Then
(7.6) FZ: W'(i(S)) - W

is a two-to-one map.

maps univa-

Lemma 7.4. For a small S > 0, the point cs(F.) is the unique critical point
of ([T9).

Proof. The proof will be similar to the argument in Claim 1 of the proof of Theo-
rem Applying R, we can assume that F is in a small neighborhood O of F,.
For G € O, denote by L, the unique affine map mapping a(f,) and ¢;1(fi) to a(g)
and ¢ (g) respectively.

Let J(f+): (0,1) — Z, be a simple arc connecting the critical value ¢;(fy) and
a (i.e. J lands at ¢; and «) such that

(1) Ly (J(f+)) intersected with a small neighborhood of a(f.) is within HJ;
and

(2) J(f+) €V \ 71, possibly up to a slight rotation of 7.
Let Jo(Fy) be the lift of J(f,) via S ~ V' \ v1. Then Jo(F,) is an arc connecting
from 0 and a such that Jo C Z,. For g close to fi, we set J(g) == Ly(J(f«)). And
we define Jo(G) to be the lift of J(g) via S ~ V '\ v;. We obtain a holomorphic
motion of Jo(G) in O. By ([4.10), Jo(G) does not collide with CV(G*) for a small
S. Therefore, we also have a holomorphic motion of

J(G) =[G (3(G)).
S<pP
By Lemma there is a unique lift Jg(F,) C J of Jo(F,) under F5 such that
Js ends at a, where S is small. Moreover, Jg(F,) C Z, and Jg(F,) starts at cg.
Let Jg(F.) be the image of Jg(F,) under the holomorphic motion. We need to
show that Jg(F,) starts at the unique critical point of (7.6). This follows from the
following claim (using the homotopy lifting property).
Claim. Let N be a small neighborhood of ¢ U {0}. For a small S > 0 the arc
Jo(F.) is homotopic rel N UCV(FY) to a curve within W.

Proof of the Claim. It follows from Condition (1)) that Jg(F.)NN C W for a small
neighborhood NV of aU{0}. Let J' be a simple arc in W such that J¢NN = JgNN.
For a small S, the set CV(FY) \ {0} is far from 0, thus Jg is homotopic to J% as
required. (I
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This completes the proof of Theorem [7.2] O

7.3. Secondary parabolic prepacman F. ;. Since f. has q attracting petals at
«, there is a small neighborhood U of f, such that a(f.) splits into the fixed point
a(g) and a g-periodic cycle v(g) for g € U \ {f:}. Moreover, we can assume that
the multiplier of v(g) parametrizes U, possibly by shrinking /. We also denote by

U={G|gel}cw"

the corresponding neighborhood of F..

For G € U we denote by v(G) the full lift of v(g) to the dynamical plane of G.
More precisely, choose a point v,(g) in v(g) and let v,(G) be the lift of vo(g) to
S ~ V' \71. Then v(QG) is the full orbit of v,. Every point in v(G) is Q(t)-periodic.

Let us consider a path g; € U with ¢ > 0 emerging from f, = go such that vy(g;) is
attracting and a(g;) is on the boundary of the immediate attracting basin of v(g;)
for ¢ > 0. All G; with ¢ > 0 are conjugate by qc maps that are conformal on the
Julia sets. We denote by A, the set of G € W*" obtained by a qc deformation of
G; changing the multiplier of v, see We say that A, is the primary satellite
hyperbolic component attached to F..

The external rays R’ (see Theorem still land at « for all G;. Therefore, the
first renormalization map exists for all G; as well as for all G € A..

By appropriately shrinking U (and respectively U) we can assume that the set
of pacmen g € U with non-repelling v(g) is connected. In particular, every g € U
with attracting y(g) is contained in A,.

Consider a rational number s = p;/qs > 0. If 5 is close to 0, then there is a
unique parabolic prepacman F, ; € U N 0A, such that the multiplier of v(fes) is
e(s).

Consider a point v, in the periodic cycle v(F. ). An attracting flower at v, is
an open set Y such that

o YoU{vy} is connected,;
o FE (1)) C Yyo; and
e all points in Y are attracted by v, under the iterations of Fgﬁ(t).

A connected component of Y is called a petal. Petals are permuted by Fgét)

and every petal is Q(t,s) = qsQ(tr) periodic. The flower Y contains mqs petals;
we will show in Lemma [Z.5 that m = 1.

We denote by H the full orbit of Y. Clearly, every connected component of H
is a Fatou component, see Figure [36]

Lemma 7.5. The set H has a periodic component H® containing 0. Moreover, H
has a unique cycle of periodic components.

By re-enumerating points in v, we assume that H° is attached to v, € vv. There
are qs components HO, HY ... H9~! of H such that H' are attached to vy, counting

counterclockwise. The components H' are cyclically p,/qs-permuted under Fgét).

Proof. Follows from a classical argument. Let H' be a periodic component of H.
If the forward orbit of H' does not contain 0, then the local Fatou coordinates of
H’ can be extended to a conformal map between H’ and C. This contradicts to
H G C.

As a consequence, H has a unique cycle of periodic components. The second
statement follows from the fact that e(s) is the multiplier of . O
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FiGURE 36. The Rabbit maximal prepacman. There are three
Fatou components attached to «,. These components are cycli-
cally permuted under the first return map. Note that there is a
“spiraling” at the o = “-oc0i”-fixed point.

91
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F1Gureg 37. Illustration to the proof of Theorem The cycle of
periodic rays R, (red) lands at a repelling periodic cycle y that is
within the triangulation . The ray segment R; (blue) does not
intersect R,. Either the hyperbolic diameter of R; decreases, or
R; shrinks to the cycle y, or R; tends to a.

7.4. Landing of dynamic rays.

Theorem 7.6. Suppose G € W* has a parabolic or attracting periodic point zg € C
and suppose that a(g) is repelling. Then every rational ray of G lands.

Proof. Consider a rational ray R. Let us first give a sketch of the argument. If R
does not go to infinity, then R lands by the expansion of G. The infinity in C\ ¢
is blocked by another periodic ray cycle (the red cycle in Figure that exists in
a neighborhood of F,. Since (g—, g+)| o is a pair of almost translations, if R
goes to infinity in ¢, then R tends to «; in this case R lands at c.

We assume that x is parabolic; the case when xg is attracting is similar. Denote
by X the periodic cycle of 3. Let H be the attracting basin of X. Since the
Fatou coordinates in H capture critical points of GZ°, there is a unique periodic
component HY of H containing 0. By re-enumerating points in X, we can assume
that HO is attached to zp.

By Lemma the first return map G: H® — HY is conformally conjugate to
pija: P — P, say via hg: H — P, where p;/4(2) = 22 4+ 1/4 and P is the attracting
basin of a(p4). As in let B C P be a forward invariant open topological
disk containing [1/4,1/2) such that B is a closed topological disk with

OB Np.(B) = a(piys) = BnNoP.
Set B® := hy!(B); spreading around EO, we obtain

B= [ G"(B") cHUX
P>0
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Consider the hyperbolic surface X := C\ B. Since B contains the postcritical set
PB(G), we have G~T(X) € X and

GG T(X)—=X

expands the hyperbolic metric of X for all T' € T~g.

Let us assume that the rational ray R is periodic with period N € T; the prepe-
riodic case follows from the periodic case. Let us decompose R as a concatenation
of ray segments

---URsUR{ URy

such that GY maps R;11 to R;.

Consider a renormalization triangulation ¢(F,) and choose a periodic repelling
point yg € Ag(0, 1) such that yo does not escape Ag(0,1) under

Fdo: Ag(0) =S, FPo:Ay1)—S.

(To existence of yy follows from the existence of a periodic point y( in the dynamical
plane of f,, see §3.2.5f then yo is the lift of y{.) Let y(F,) = U F{yo} be the
P>0
periodic cycle of yo. By Corollary [5.35} there is a cycle of periodic rays Ry landing
at Y(F,), see Figure

Since the landing of a periodic ray at a repelling periodic point is stable, there
is a neighborhood Y of F, such that

e R,(G) exists and depends continuously on G € Y; and
eyeE ((G) forall G e ).
By replacing G with its antirenormalization, we can assume that G € ).

Choose a sufficiently big n > 0 such that R, is disjoint from Ry. (If R,
intersects Ry for all n, then R C Ry and the claim is trivial.) Let R/, be a rectifiable
curve in X \ Ry connecting the endpoints of R,, such that R/, is homotopic (in
X\ Ry) to Ry, rel the endpoints. For j > 0 we define R;, ; to be the lift of R},
under G/ such that R/, +; connects the endpoints of Ry, ;. Clearly, |R}| < [R;_4],
where “| |” denotes the hyperbolic length in X.

Claim 1. There is a neighborhood O of a with the following property. If R, C O
for some n, then R lands at a.

Proof. Recall from that CU {a} is endowed with the wall topology, where a
neighborhood O of a(QG) is the full lift of a neighborhood O of a(f). Since a(f) is
repelling, we can choose a small open disk O around «(f) such that

e 00 intersects the curves v9 U1 at two points; and

e Oy := f(0) 3 O and O, also intersects vy U~ at two points,
see Figure 38 The pair 79 U1 cuts O into two sectors. Lifting these sectors to the
dynamical plane of G and spreading the lifts around, we obtain a neighborhood O
of a(G) such that O is backward invariant. If R;, C O, then R/, C O for all i,
and, moreover, R, tends to a as m — 4o0. [l

Claim 2. Let M be a sufficiently small neighborhood of xU{a}. Then there is an
e > 0 such that the following holds. If R intersects o\ M, then

RL|
Ry < max (IR - T )
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Yo

~—

0

g4l

FIGURE 38. Top: a neighborhood O of a(f) and its image Og =
f(O). Bottom: the neighborhood O of a(f) is obtained by lifting
and spreading around O(f). Note that the points in O stay in O
under the backward iteration of the cascade G=°.

Proof. By increasing N, we can assume that N > 2max{Ag, Bp}. Choose a point
z€( o\M)NR.. Let A < max{Ay, By} be the first moment such that G*(z) € S.
If GA(2) € Ag(0,1), then either

f+: Ao(O) —S or f_: Ao(l) — S

expands the hyperbolic length of GA(R/).
If GA(2) € S\ Ag(0,1), then S\ Ag(0,1) € A_1(0,1) (see ([#.9)), and either

£ A1(0) > 8%, or £ AL (1) — ST
expands the hyperbolic length of GA(R/). O

As a consequence of Claim [2] either the diameters of the R} shrink, or the R/
are eventually in C\ ( ¢ \ M). Suppose R, C C\ ( ¢\ M) for all i > n. If R,
is in a small neighborhood of «, then R lands at a by Claim If R is in a
small neighborhood of x, then R lands at X. The remaining case is when all R
are in some connected component of C\ ( ¢ URy) for all i > 0. Every connected
component of C\ ( ¢ URy) is bounded; by hyperbolic contraction, the hyperbolic
diameters of the R} tend to 0. O
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FIGURE 39. The secondary renormalization map FQ(%:9) W%’E —
W, , in the dynamical plane of F = F. ;. Petals in the attracting
flower (H;) around =, are enumerated counterclockwise so that
Hj > 0. The puzzle piece W, ; D H is bounded by the character-
istic ray pair Ry, R,. The puzzle piece W _ is bounded by R, R,
and there preimages (marked green). When -y, becomes repelling
(for example if F € A, ;), the secondary renormalization map can
be thickened to a quadratic-like map.

Corollary 7.7. The primary renormalization map ([7.4))
(7.7) G Wl 5 W,
exists for all G close to Fy 5. In particular, R™Y(G) and R°(G) land at .

Proof. In the dynamical plane of F. g, let us consider the cycle of rays from Theo-
rem By Theorem [7.6| the cycle (R;) lands at a periodic cycle of points §. We
need to show that 6 = a.

Observe that § # « because the period Q(t,s) of repelling petals at ~ is greater
than the period Q(t) of (R;);ez. Therefore, 0 is repelling. Since the landing at
a repelling periodic cycle is stable under a small perturbation, (R;(G));cz lands
at 0(G) for G in a small neighborhood of F. ;. We obtain that 6(G) = a(G) for
G e A, see Therefore, §(G) = a(G) for all G close to F, ., and exists
for all G close to F. ;. [l

Recall from Lemma that H? denotes the periodic Fatou component of F ,
containing 0, and recall that H is attached to ~,, see Figure

Lemma 7.8. In the dynamical plane of F. s there is a characteristic pair Ry, R,

of periodic rays landing at vy: it is the unique ray pair such that Ry UR, separates
HO from all H with i # 0.

Proof. The parabolic point v, has exactly qs local repelling petals, and we need
to show that there is a periodic ray landing at every repelling petal of «,. Recall
from Corollary [7.7] that the first renormalization map

(7.8) FE: W 5 W

exists.
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Denote by X the non-escaping set of (7.8), and note that X contains ~,, H°,
and 0. Define inductively W”*! to be the unique degree two preimage of W™
under . By induction (the case n = 1 is in Lemma [7.3), W™ \ W"~! consists
of 2" connected components, W"t! C W" and ﬂ W™ =X. Note that the

n>0
components of W \ W' have bounded diameters with respect to the hyperbolic
metric of C\ P(F,s), see Figure Since Fgét) expands the hyperbolic metric
of C\ B(F,s), the spherical diameter of the components of W™\ W™ tends to
0. Therefore, for every local repelling petal P of v,, there is a sequence T} C P,
k >> 0 shrinking to v, such that T}, is a component of W*\ W¥~1 and Fgét’s) maps
Tj4+1 to Tg. This implies that there is a unique geodesic R in the escaping set
Esc(F. ) intersecting every Ty; thus R is a periodic ray landing in P and Q(,s)
is the minimal period of R. O

We denote by W, ; the puzzle piece bounded by R; U R, and containing HO.

Let W], C W, be the two-to-one pullback of W, s along Fgét’s) : H — H°. We
call

(7.9) FeioY: Wi, — W,

)

a secondary renormalization map.

7.5. Secondary parabolic bifurcation. Since F. ; has qs attracting petals at
every point of « (see , there is a small neighborhood V of F,; such that
~Y(F. ) splits into the Q(v)-periodic cycle v(G) and a Q(r,s)-periodic cycle §(G)
for G € V\ {F.}. By shrinking V, we can assume that
e the multiplier of 6(G) parametrizes V;
e the primary renormalization map exists for all G € V (by Corol-
lary .

Moreover, there is a small path Gy, t € [0,1] emerging from F,, = Gg such
that 8(G¢) is attracting and v (Gy) is on the boundary of the immediate attracting
basin of §(Gy) for all ¢ € (0,1]. Moreover, we can assume that the characteristic
ray pair Ry(G¢),R,(G¢) lands at ~y, for all ¢t > 0.

Since the escaping set Esc(G) moves holomorphically for all G in a small neigh-
borhood of {G;: | t > 0}, we obtain that all G; with ¢ > 0 are qc conjugate. We
denote by A, s D {Gy |t > 0} the set of G € V obtained through a qc deformation
changing the multiplier of d, see By appropriately shrinking V, we can also
assume that A, s NV has a single connected component attached to F. 5, and:

(7.10) ANV ={G e V:4(G) is attracting}.

Since the rays R, and R, land at v, for all G € A, the secondary renormal-
ization ([7.9))
(7.11) GO WL, W,
exists for G € A ;.
7.6. A ternary small copy .#(. Choose a rational number f = p;/qs close to 0
and let Fy s 5 € 0A, s be a parabolic prepacman such that the multiplier of d(F. )
is e(p;/q;). By Theorem rational rays land in the dynamical plane of F 5 ;. The

same argument as in Corollaryshows that the secondary renormalization (|7.11))
exists in a small neighborhood W of F 4 ;.
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/// At \\\
A F* \\\ Ft /,/
a(G) u
is attracting

FIGURE 40. Recognizing a small copy on the unstable manifold. A
parabolic prepacman F, has a small neighborhood U parametrized
by the multiplier of 7. A secondary parabolic prepacman F. s has
a small neighborhood ¥V C U where the primary renormalization
map exists. A ternary parabolic prepacman F, s s has a neigh-
borhood W C V where the secondary renormalization map
exists. The set W contains a ternary small copy .

Observe that the secondary renormalization can be slightly thickened to
a quadratic-like map, compare with [DH2,Mi]. Indeed, since the rays Ry, R, form-
ing OW!, land at a (regular) repelling periodic point v, € Dom (GQ(“E)), see
Figure we thicken W%)s in a small neighborhood of «, respecting its linear co-
ordinates, and then extend the thickening for finitely many iterations along Re, R,.
Let p be the Douady-Hubbard straightening map associated with (pis x
from §3.1.1)appropriately restricted). Then p is a homeomorphism in a small neigh-
borhood of F. ;. Observe that p; := p(F, ;) is the quadratic polynomial whose
a-fixed point has multiplier e(f). Choose ¢ € Q close to f. By the Yoccoz inequal-
ity in the quadratic family, the primary satellite small copy M, (see notations in
is in a small neighborhood of p;. We obtain that ¢ == p~ (M) is a
full small copy of the Mandelbrot set (see Figure :

Theorem 7.9. In a small neighborhood of F. 55 there is a ternary satellite copy
Mo = M. of the Mandelbrot set. O

We say that F, is the root of the limb containing 4 .

Remark 7.10. The fact that M s is a bounded subset of W follows from the
Yoccoz inequality. Note that we use the Yoccoz inequality in the quadratic fam-
ily after applying the straightening map associated with the second renormaliza-
tion . By applying the Yoccoz inequality directly in W (after slight thicken-
ing of external rays), it is possible to construct a secondary satellite copy M . of
the Mandelbrot set in a small neighborhood of F. .. This would imply the scaling
law for secondary satellite copies as in .

The case of primary copies of the Mandelbrot set is more delicate because the first
renormalization map is pinched and the pinching can not be resolved:
maps a(1/2) € OW! to o € OW and o(1/2) € Escqy) is an essential singularity
for GR®) by Lemm i.e. G has no extension through Escg(y). Moreover,
the map Rg“rm in (1.2) cannot be quasiconformal because M,,q and My, are
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a(l/2)

GO®s): 0 — O

.

FIGURE 41. Left: the valuable petal X°(G) consists of a periodic
cycle of secondary small filled-in Julia sets ); (blue) and secondary
preperiodic small filled-in Julia sets 3; (green) converging to a.
The ternary Julia sets are marked black. External rays landing at
7o and o are marked red. Arrows indicate the direction of R_, R}
from v, to co. Right: the quadratic-like map realizing the
secondary renormalization.

not qc homeomorphic if ¢ # ¢’ [LP). However, the pictures suggest that the scaling
law (1.2)) for primary copies may still be valid.

8. THE VALUABLE FLOWER THEOREM
Let us fix a copy 4y C W*" from Theorem E We set M, .= R"(My).

8.1. Valuable flowers of prepacmen. Consider a pacman G € .. We denote
by X%(G) the non-escaping set (the “little Julia set”) of the primary renormalization
map . Similarly, let Qg be the non-escaping set of the secondary renormal-
ization map . We say that Qg is a secondary small filled-in Julia set (recall
that can be thickened to a quadratic-like map). Applying G20 t0 9)y, we
obtain a periodic cycle (2);); of small filled-in Julia sets, see Figure By construc-
tion, all 9); are attached to v, (which is the 8-fixed point of 9);); we enumerate 9);
counterclockwise around ~,.
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Choose an index j such that 9); contains a unique critical point of the primary
renomalization map (7.7]). Since (7.7)) is a branched covering of degree 2 (a pinched
quadratic-like map), the following holds because the combinatorics of lifts for (|7.7))
is the same as for quadratic polynomials. There are external rays R_, R} landing
at v, and separating 9); from all remaining 9);, see Figure Then 9); and « are
on the same side of R_ UR: the rays R_ UR, bound a closed topological disk
containing U 2);. Let 31 be the unique preimage of 9); under (7.7)) intersecting

i#]
2);; and similarly, let 3,11 be the unique G2 _preimage of 3; intersecting 3;.
Lemma 8.1. The sets 3; converge to .

Proof. Recall from Corollary [7.7] that the first renormalization map is written as
GO W' - W. Let W’ be the closure of the connected component of W \ R_ UR.
containing all 3;. There is a unique connected component W” of G~9()(W') such
that W” € W’. The map

(8.1) GO . W W

is univalent, and « is the only point in 9W’ that does not escape under the itera-
tions of . Therefore, a is the Denjoy—Wolff fixed point of the inverse of :
under the backward iterations of every point in W’ converges to «; the con-
vergence is with respect to the wall topology because OW C R~! UR? and the
rays R™!,R? land at a, see Corollary d

The valuable petal X°(G) C X°(G) is the union UQJl U U 3i. The upper part
i i>1
of X%(G) is Xﬂp(G) = U@l By construction, both X°(G) and X{ (G) are
G@O_invariant. Spreading around X%(G), we obtain the valuable flower:

X(G) = |J G"XY@)).
P<Q(r)
Similarly, X, C X(G) is obtained by spreading around X{ . We enumerate petals
of X(G) from left-to-right as X* so that X? C W (i, G), where W (i) are puzzle
pieces from Theorem
Recall that the secondary renormalization admits a thickening to a quadratic-

like map. For every G € ., the quadratic-like germ of can be presented
as a quadratic-like map

(8.2) Ge®) .0 5 0O
such that

0 eWw;

0 \ int W 5 is in a small neighborhood of v,
O’ depends continuously on G € .#; and
the unbranched condition holds:

(8.3) B(G)NO c Y,

where ) is the secondary small filled-in Julia set containing 0, see (For the
unbranched condition, observe that 3(F) is within the cycle of ternary filled-in
Julia sets; these sets are disjoint from ~,.)
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FIGURE 42. Illustration to Theorem [8.2} the valuable flower (red)
of the 5/13 Rabbit tuned with the Basilica approximates the golden
Siegel disk (also red).

The enlarged valuable flower is
X(G)=X(@G)u [J GFo).
P<Q(x,s)
Since different sets in (G¥(0)) p<g(«,s) intersect only in a small neighborhood of =,
different petals of X(G) are in different petals of X(G). Petals in X are enumerated
as X%, i € Z, so that X* C X* C W (i). Similarly, we set

)~(up = Xup(G) U U GP(0) and iip = )~(up N X
P<Q(r,s)

For G, = R"(G) € 4, we define X(G,) and X(G,,) to be the A;"-images
of X(G) and X(G). Since 0’'(G,,) and O(G,,) are rescalings of 0'(G) and O(G),
there is an € > 0 such that

mod (0'(G,) \ O(Gn)) 2 >0

for all n and G,, € #,,. The upper parts X,,(F) and )N(up(F) are defined accord-
ingly.

8.2. Valuable flowers of pacmen. Consider a pacman f € B from a Banach
neighborhood of f, where the pacman renormalization R: B --» B is defined,
see By a flower we mean a connected set T 5 « such that T\ {a} has
finitely many connected components, called petals. We say that the flower T is
nice if f has a Siegel triangulation (see with a wall approximating 07y,
such that different petals of T' are in different triangles of . As a consequence if
f =TRf_1 (or more generally, f = Rgiegf—1 for an operator Rgies as in §3.2.8)), then
the flower T' admits a full lift 7__; to the dynamical plane of f_;, see Lemma [3.2

Theorem 8.2. Consider the dynamical plane of f. and fix a small open neighbor-
hood N, of Z.. For n < 0 and every G,, € M, the flowers X(G,,) and X(G,)

projects to the dynamical plane of g,,. Moreover, these projections X (g,) and X (gn)
are nice flowers within Ny.
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More precisely, G, has a fundamental domain S™V such that if a petal X
intersects S™V, then X C S"V. The projection X of X N S"Y s within the
Siegel triangulation (gn) of gn, and the projection X'up of Xup is within the wall

(9n) of (gn). The triangulation (g,) has a full lift to  (gm) for m < n; for big

m <K n <0, the triangulation (g,,) approxzimates Z,.

Remark 8.3. The valuable flower X(g,) is a forward invariant set containing
the postcritical set of g,. The purpose of X (gn) is to encode the hybrid class of gy,
i.e. the combinatorial rotation numbers of dividing periodic cycles, as well as hybrid
classes of secondary small filled-in Julia sets.

Proof. Let us first give an outline of the proof. We also slightly simplify the no-
tations in the outline. In the actual proof, Z, is replaced by the renormalization
triangulation _,(G,).

In the dynamical plane of G € .y, we re-enumerate the puzzle pieces W (i, G), i €
Z, from Theorem by the “landing time.” Namely, for every W(i) there is a
unique minimal P(i) € T such that GP®) (W (i)) > W(0), see details in We

write
(8.4) Wpi =W(i) and i(P(i)) :=1.

For n € Z, we have Wp(G,,) = A;"Wnp(G) by (LF). Recall from §5.10] that
Wp(F,) denotes the primary wake of generation P. In Lemma we will show
that Wp(G,,) \ Z, converges to Wp(F,) for every fixed P > 0. Combing with
Lemma we obtain that if P is sufficiently big, then Wp(G,,) \ Z, is small in
the spherical metric of C.

The main step is to show that Xi \ Z, is uniformly small. If P(i) is big, then
X\ Z, is small because Wpeiy \ Zy is small. If P(i) is bounded but Wp(; is far
from 0 in C, then Xi C W p(; is small in the spherical metric of C (in fact, this
case can be ignored). There are finitely many ¢ in the remaining case; i.e. when
P(i) is bounded and W p; is not far from 0 in C. Let us fix such i. For n < 0,
we have )Niflp(Gn) 3 cpi)(Gn), where cp(;)(Fy) € 0Z, is the unique critical point
of F£° in OZ, of generation P(i). We have a map

P(i). xi < 0
GPW: X — X5 50.

Since )Ni?lp(Gn) = A:”(}zﬂp(Go)) shrinks to 0 as n — —oo, we obtain that

)zflp(Gn) shrinks to cp(;). This allows us to deduce that X \ Z, is small because

the remaining part of X' is “below” iflp, compare with Figure
Recall that the parabolic prepacman F is the root of the limb containing .,

see Figure [0} For n < 0, the parabolic pacman

(8.5) fe, =R" fe

has rotation number v, = p,/q, € Q satisfying R \"(v,) = v, see Lemma
Then F._ is the root of the limb containing .4, and ¢, is the combinatorial rotation
number of g,. Since X*\ Z, is small for every i, we can adjust the fundamental
domain S(G,,) (see §4.8) so that the new S™%(G,) contains the petals X' for
i €{=pn+1,pn+2,...,q4, — Pn}. By Theorem X projects to the dynamical
plane of g,, and S"*V projects into gieg == (¥ (9n); applying antirenormalizations,
we can assume that Sicg approximates 7*.
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Let us now provide the details.

8.2.1. The escaping set. Up to replacing . with its antirenormalization, we can
assume that .#o C W),.. In particular, every G € . has a renormalization
triangulation ((G) with the wall o(G) that bounds Qo = ¢\ o, see

Fix a big T' € T. For n < 0 sufficiently big, the holomorphic motion 7 from
Lemma [6.8] induces an equivariant map

(8.6) hyn: Escr(G) — Escr(F,).
Applying the A\-lemma, we obtain:

Lemma 8.4. For n < 0 sufficiently big (depending on T), 1s close to the
identity with respect to the spherical distance. O

8.2.2. Decomposition Wp = W% U WL U WS, Recall from Theorem that

W (i, F,) denotes the puzzle piece bounded by R~ and R’. Since .y C V (see

Figure , the puzzle pieces W (i, G) exist (in the sense of §6.4) in the dynamical

plane of G € .# . Let us first discuss the combinatorics of W (i, G). For i # 0, the

generation of W (i, Gg) is the unique “landing time” P(i) < Q(t) such that

(8.7) GCO=PE) . W(0) — W (i)

is a univalent map. Let us re-label the puzzle pieces by their landing time:
Wpi(G)=W(,G) and Wy(G):=W(0,G).

Then (8.7)) takes the form

(8.8) GRO—P W) — Whp.

Recall from Lemma [7.3) that W = W' U WU WP, Let WL, W% and Wb
be the images of W, W% and W? under (8.8) respectively. We have a two-to-one
map
(8.9) G WL = Wy,

while G¥ maps univalently int W% and int W% to two different components of
C\ (WURD), see Figure

8.2.3. Decomposition Wi = W; U W% UW™. We still consider the dynamical
plane of G € # 3. Choose an auxiliary univalent 2-wall A C Q, see and
We denote by Q' the connected component of Q \ A attached to a. Let us fix a
closed topological disk W§ in Wy such that

(A) Wo\ Q' C W§;

(B) W§ D X, (recall that X9 = J; 2:).
We set Wg = Wy \ W¢.

Since W contains the unique critical value of (8.9), the preimage of W§ un-
der consists of a single connected component, call it W%. On the other hand,
the preimage of W under (8.9) consists of two connected components, we denote
them by W and W; specified so that W, is attached to o, see Figure

Finally, we define W§"* := W and

Wot = WL UWLUWSLUWYS  for P> 0.
For n € Z and P < Q(t), we define:
(8.10) Wp(Gp) = Wp(Gp) = AT" W p(G).
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R.

’V
-\ )
/ 2:1

T T

FIGURE 43. The decomposition of Wp, see also Figure The
regions W% and W5 U W}, are the preimages of W§ and W
under G¥: W}, — W), respectively. The region int (W% U W)
is the preimages of C\ (WO UR') under G¥: Wp — C. We define
Wt = W, UWEL UWS U WS,

The regions Wh(G,,), Wh(G,,), W4(G,,), Ws(G,,), W5(G,), WH(G,), WE(G,,)
are defined accordingly using (8.10]).

As in Q" (G,) is the rescaling of Q'(G). It follows from Condition (A)
that

Wp(G,)\Q., C WE(G,) and  Wp(G,) C QL,.(Gn).
Condition (B) implies
(811)  X'(Gn) CWhy UW5, (Gn)  and X[, (Gy) C Wh) (Gn).

8.2.4. R*(G,,) converges to R*(F,). We say that arcs 8,7 C C are C°-close if, up
to re-parameterization, the functions 3,~: [0,1] — C are close with respect to the
spherical metric of C. The Ccloseness for closed curves is defined in the same
way.

Two topological closed disks D1, Dy C C are C°-close if 0D;,0D4y are C%-close
closed curves. Equivalently, viewing D1, Ds as injective functions Dy, Dy: D — 6,
the disks D1, Dy are C%-close if, up to re-parameterization, the corresponding func-
tions are close with respect to the spherical metric of C.

Let us write:

R*(Gy) =R 'NR%°Gy) and R*(G,):= A;"R*(Gy).
Recall that R*(F,) is the ray landing at 0, see
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Lemma 8.5. If n < 0 is sufficiently big, then R*(G,,) is close to R*(F,) with
respect to the C°-distance.

Proof. Fix asmall e > 0. We will show that R*(G,,) is e-close to R*(F,) for n <« 0.
Recall from that R*(F,) decomposes as a concatenation U I;, where I
jeZ
is a ray segment in the closure of Escyp \ Escyi-1p(F,) such that A, T; =1T;,4.
By Corollary every two rays eventually meet at an alpha-point. Suppose
that R*(G,,) meets R*(G,,) at a;,, where R*(G,,) is the counterpart of R*(G,,).
Then a,, = Ayapy1 and the «,, tends to 0 as n — —oo.
Choose first a big k£ > 0, then a sufficiently big T" > 0. For a sufficiently big
n < 0, we can decompose

R*(G,) =L"U | I;(G,)
i<k
such that U I C Escr(Gy). By Lemma 8.4 I;(G,,) is e-close to I;(F,) with
i<k
respect to the spherical metric for all j < k.
Applying A,, we obtain the decomposition

R*(G,—1)=L""'U |J I;(Gn1)
j<k+1
where
L" G, 1) = AL"(G,) and I1(G, 1) = ATL(G,).

By Lemma[8.4] for j < k the ray segment I;(G,_1) is e-close to L;(F,). Recall that
I,(G,,) is e-close to I (F,) which is close to 0 because k > 0. Since A, contracts
the spherical metric in a neighborhood of 0, we see that Iy11(G,_1) is e-close to
T (Fy).

Continuing the process, we obtain the decomposition

R*(G,)=L"U |J L(Gy)
i<k4+n—m
for m < n, where U I;(Gy,) is e-close to U I;(F,). Since L"™(G,,) =
j<k+n—m j<k+n—m

A7""L"(Gy,), the chain L™(G,,) is eventually in a small neighborhood of 0, and
the claim follows. O

8.2.5. W (G,,) approzimates W p(F,). Clearly, W8(G,,) = A;"W(Gy) shrinks
to 0 as n — —oo0.

Lemma 8.6. For everye > 0 and P € T the following holds. If n < 0 is sufficiently
big, then W (G,,) is e-close to Wg(F,) with respect to C°-metric for every S <
P. Moreover, WY is in the e-neighborhood of cs(Fy).

Proof. By Lemma we can choose a sufficiently small disk Dy := D(¢) around
0 and a sufficiently small neighborhood O of F, such that Dy is disjoint from
CV(G®)UG?(Dy) for all S < P. In particular,

D(G) = | G9(Dy)

S<p
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depends holomorphically on G € @ and every connected component of IND(G) is a
degree two preimage of Dy.

For S < P, let Dg(F,) be the lift of D along F?: cs + 0. For F € O, we define
Ds(F) to be the lift of Dy under F¥ such that Dg(F) depends holomorphically
on F. Let cg(F) be the unique preimage of 0 under F¥: Dg — Dy. We claim
that for a sufficiently big n < 0, the point cg(G,,) is the unique critical point
of GJ: WL — Wy for all S < P. Indeed, Lemma asserts such statement
for F, and for sufficiently small S; perturbing F, to G € .#( and passing to the
antirenormalization, we obtain the required claim.

Choose a sufficiently big T' > P such that

R.(Gn) \ESCT_p(Gn) C Dy

for all n < 0.
Consider W' (G,,) for S < P. We can decompose OW ™ = 3 U B, where [3;
and [, are simple arcs satisfying

B2 = OWL" NEscr(G,) and B C Dg(G,).
By Lemma B2(G,,) is close to
/82(F*) = hn (62(Gn)) - WS(F*)-
Since
B1 (F*) = 8WS(F*) \BQ(F*) - DS(F*)

and since Dg(G.,) is close to Dg(F,), we obtain that W' (G,,) is close to Wg(F,).

O
Combining with Corollary we obtain:

Corollary 8.7. Fiz a small € > 0 and then a sufficiently big n < 0. Then the
set WE(Gp) \ QL,.(G,) is within the spherical e-neighborhood of c¢s(F) for every
SeT.

Since X'\ Q. (G,) C W(G,)\ Q",,(G) (see (B:11)), the set X\ Q' (G,,) is

also in a small neighborhood of cg(F,).

Proof. Choose a sufficiently big P > 0. By Lemma We(GL) \ QL,(G,) is
within a small neighborhood of ¢g(F,) for every S < P and every sufficiently big
n < 0.

By Corollary [5.32) and Lemma[8:6] every connected component of

(8.12) C\ [ QL.(Gn) U | Wg"(Gy)

5<P
is e-small. Note that for S > P and T1,T5 < S, the puzzle Wg(G,,) is be-
tween Wr, (G,,) and Wr,(G,,) with respect to the left-right order if and only if
cs(Fy) is between cp, and cp, with respect to 0Z,. Therefore, for S > P, the sets
Ws(Gr)\ Q.,, and Wg(F,) are in the closures of £/2-close components of
and respectively. This proves the corollary for S > P. O

As a byproduct, we also obtain:

Lemma 8.8. For every G € M, the puzzle pieces (W(z, G))z‘ez form a partition
of C: every z € C belongs to some W (i).
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0Z, ca CB
F(0) F1(0)

e

FIGURE 44. The critical points c4 and cp are near FI(0) and
FL(0) respectively.

Proof. Recall that the rays R’ land at o, and the union |J,., R is a tree in C
(follows from Lemma and Theorem . For ¢ < j, let W, ; be the unique
component of C\ (Ri UR/ ) attached to a in the following sense: W; ; without a
small neighborhood of « is precompact in C. Since

Wi, = |J W),
i<k<j

it is sufficient to show that U W, =C.
i<j
The case z € Q is straightforward. For z ¢ Q, we can surround A;"z by
Q. UW*UW'(G,,), where S, T are certain fixed power-triples and n < 0. O

8.2.6. Fundamental domain. Using Corollary 87} we can now construct a funda-
mental domain S"" as required. Write L = (0,1,0), R = (0,0, 1), and note that
S(F.) N JZ, is the arc J = [FL(0),FF(0)] C 0Z,. Choose cs and cp close to
FZ(0) and F£(0) respectively such that A + R = B + L, see Figure We can
assume that c4 € J while cg € J.

Since X* '\ Q" ,.(Gy) is in a small neighborhood of cp;(F,) (using notations
from (8.4])), we can adjust S(G,,) such that the new fundamental domain S"*V(G,,)
(see §4.8) contains X* for all i € {i(A),i(A) +1,...,i(B) — 1} = I and S™¥(G,,)
is disjoint from X for all i ¢ I. (To satisfy Conditions and in we can
assume that A(S™*V) follows the ray R*“) and p(S"°V) follows the ray R/Z)~1))
We also have

Xflp(Gn) C UW;’(Gn) C o(Gn).
P

9. PROOF OF THE MAIN RESULTS

By Theorem 7.9} the unstable manifold W* of F,. contains a sequence (4, )n<0
of copies of the Mandelbrot sets such that R.#,,_1 = #,. Every .4, naturally
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corresponds to a small copy M,, C M, see (9.4). We will show that (M,,)n<m for
m < 0 is a sequence satisfying Theorem

9.1. Stable lamination. For n < 0, we define ., to be the set of pacmen g, €
WY with G,, € #,. By Theorem every g, € ., has a nice valuable flower
X (gn) and a nice extended valuable flower X (gn) in a small neighborhood of Z,.
Since the flowers are nice, X (gn_1) is a full lift of X (gy,).

For g, € #,, we denote by 9°(g,) and O(g,) the projections of YP°(G,,) and
0(G,), see Then 2°(g,,) is the non-escaping set of the quadratic-like map

(9.1) g0 =gy (0) =0,
where t,, = p,,/q,, is the combinatorial rotation number of «(g) and a,, := ¢, qs. By

construction, g (0) C X(g) for i < a,. Since X(g,) is the projection of X(G,,),
the unbranched condition (8.3)) implies the unbranched condition for (9.1)):

(9-2) PBlgn) N O € D" (gn)-
By Lemma 3.1
(9.3) Ry (tn1) =t

Recall from §3.1.2 that M,(,) ¢ denotes the ternary satellite copy of M with
rotation parameters t(n), s, €. Let us consider the canonical homeomorphism
XPacm * '///n — Mt(n),s,é =M,
between two copies of the Mandelbrot sets. Then
(94) Rg]rm o XPacm(g) = XPacm ° R(g)7 g€ U %na
n<0

where Ry, is the molecule map, see §3.2.150 We write R = R?er then Xpaem
conjugates R to R.

Remark 9.1. We believe that Xpacm 0N U My can be extended to a “pacman

n<0
straightening map” defined on the connectedness locus of the space of pacmen. Such

a result is related to the Full Hyperbolicity of neutral renormalization and Conjec-

ture [6-13).

9.1.1. Lamination Fy. Fix a big n < 0 and consider g € .#},. For a pacman f € B
close to g, we set O'(f) := O’(g) and we set O(f) to be the lift of O’(f) under fo»
along the orbit of f*: P°(f) — DO(f); this is well defined because f is close to g.
We obtain a quadratic-like map

(9.5) RGL(f) = [™: O(f) = O'(f).
Let My, be a small Banach neighborhood of .#;,. Since .#,, is within a partial sec-
ondary copy of the Mandelbrot set (see Figure , (9.5) defines analytic operators
into the space of quadratic-like germs QL, see

R&L: Mo QL and  RE} =RquoR&L: Na — QL,

where x o R} (M) = M and x o RE} (M) = Me C M — see Remark below.
We denote by 9°(f) the non-escaping set of (9.5). Slightly shrinking O'(f), if
necessary, we can assume that the unbranched a priori bounds holds for (9.5)):

mod (O'(f) \ O(f)) = e.u = €t O(f) NB(f) € R(REL(S))
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because they hold for (9.1)).

Remark 9.2. The operator R'QQL should be viewed as the composition Rqr o Ry,
where Ry [ is a degenerate quadratic-like map associated with the first renormal-
ization map (7.7). It follows that

(96) RQQL o XPaCm(g) =X©° RgL(‘g) € MP; g€ %n
where x is the quadratic-like straightening map, see §3.1.1]

Recall that we often identify a lamination with its support.

Lemma 9.3. For g € #y and p = Xpaem(9), define Fy, to be the set of f close to
g such that (9.5)) is hybrid equivalent to (9.1). The set

Fn = {]:p}peMn

forms a codimension-one lamination with complex-analytic leaves in a small neigh-

borhood of M.

Proof. Recal from that the hybrid classes form a codimension-one lamination
Fqu of the connectedness locus /1 with complex codimension-one analytic leaves.
We need to show that the pullback F,, = (R('QQL)* (Fqu) is again a lamination of
the same type. We will use an argument from [ALM, Theorem 4.9].

Consider a local leaf F’ of Fqy, intersecting R(’QQL (). In a small neighborhood
of R('fL(///n), the leaf F’ is the zero set of some analytic function ¢: QL --» C. Note
that F’ intersects R('QQL(/ZH) at a single point. By the Inverse Function Theorem,

L] -1 L[] —
(RQQL) (]:/) =(¢o RQ2L) 1(0)
is a codimension-one analytic manifold in a small neighborhood of .#;,. Varying the

F' we obtain the pairwise disjoint closed leaves (R('fL)_l (F') that are transverse
to My; these leaves form a lamination by the A-lemma. (I

Since the local dynamics is structurally stable at a(g), by shrinking a neigh-
borhood of .#,, we can assume that the flower X(f) exists and depends holomor-
phically on f € F,; i.e. certain preimages of 2)°(f) assembly into the flower X (f)
in the same pattern as certain preimages of )°(g) assemble into the flower X (g).
Indeed, by continuity, every preimage 3’ C X (g) of 29°(g) of bounded generation
has the corresponding preimage 3'(f) of 2'(f) such that 3'(f) is close to 3'(g).
Since the linear coordinate at « is structurally stable, every preimage of 3’ C X (g)
of 9°(g) has a counterpart 3/(f) if 3’ is close to a.

The eztended flower X (f) is X (f) Uiz, f1(O). Since f is close to g, the flower
X(f) is also in a small neighborhood of Z,.

9.1.2. Lamination F. For afixed n < 0, we defined the lamination F,, in Lemmal9.3]
For m < n and p € M,,,, we define
Fp={f € B|R*"™(f) € Fro-m(p}
Since R is hyperbolic,
(9.7) Fum={Fp|peEMpn} and F:={W}U (] Fn
m<n

form codimension-one stable laminations in a neighborhood of f,. A pacman f € F,
with p € ., has nice flowers X (f) and X (f) that are the full lifts of X (R~ f)
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and X (R™™ f) respectively. The flowers X (f) and X (f) satisfy the same condi-
tions as X (R™™™f) and X(R™ ™ f). In particular, X (f) and X (f) are in a small
neighborhood of Z,; and all pacmen in F,, are hybrid conjugate in neighborhoods
of their valuable flowers.

Let us write

Px = Pec(6,) = XPacm(f*) and ]:P* = ]:* = WS7

where p, = p.(g,) € M is the unique quadratic polynomial on the boundary of the
main hyperbolic component with rotation number ,. Since 6, has bounded type,
Dy is hybrid conjugate to f, on neighborhoods of their closed Siegel disks, see
We obtain the parameterization of leaves of F by

M = {p}U U Mo

m<n
such that
(98) R(./—"p) C me(p), pE M.

Proof of the scaling theorem (the first part of Theorem . Since p, and f, are
hybrid conjugate in neighborhoods of their Siegel disks, there is a compact analytic
renormalization operator Ro: U --+ B from a small neighborhood of p, in the space
of quadratic polynomials to a small neighborhood of f,, see Since maps in
a small neighborhood of p, have different multipliers at their a-fixed points, the
image of the slice U is transverse to the lamination F in a small neighborhood of
fx- (Otherwise, the multiplier map in U will be a covering near the Siegel value.)

The operator R, acts on the rotation angles of indifferent maps as Rf,;“m for some
k € N. Recall that Ry, denotes the molecule map, §3.2.15] We claim that for
every p, p = Rim (p) € M/, we have Ra(p) € Fp. Indeed, let us define g, to be
the unique intersection of F, with Ro(U). We define p € U to be the preimage of
gp via R2 The nice flower X (gp) lifts to the dynamical plane of p; we denote the
lift by (;5) Since p is a quadratic polynomial, the valuable flower X (p) uniquely
determines p. Comparmg the combinatorial rotation numbers at the a-fixed points,
we obtain p = Rprm (p).

Since the holonomy along F is asymptotically conformal |L3, Appendix 2, The
A-lemma (quasi- conformality)], the hyperbolicity of R and the holonomy along F
imply the scaling result. (I

9.2. Homoclinic configuration. Recall that the operator R(';fL: Na — QL and
’RQ3L: Na — QL on a neighborhood of F,, are defined by . Set

o RYL(9) =Ry, o R* ™ (g) for g € F,, with m < n;

° 9‘{ 'RQL =TRqLo R('QQL, and

o M\ {eusp) = RE, (Aa\ {cusp}) = REL (on \ {cusp}).
where Rqr, is the quadratlc—hke operator, see § By Theorem M is a copy
of the Mandelbrot set, and x: .# — M is the canonical straightening homeomor-
phism. Note that the renormalization change of variables of R:Q?’L | Fn is linear,
but the renormalization change of variables of R'Q3L | Fp is non-linear for m < n.

By construction and ,

(99) X © R(.QSL(Q) = R%L © XPacm(g)v g€ F.
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| (pacmen)

FIGURE 45. The space of pacmen B, the quadratic-like renormal-
ization operator R:QSL: Na — QL defined on a neighborhood of
Mo\ {cusp}, and a Siegel renormalization operator Rgieg: A — B
defined on a neighborhood A of g,.

9.2.1. Extension of F. Denote by g, € .# the unique Siegel map on the main
hyperbolic component of .# such that g, is hybrid equivalent to f,. Equivalently,

X(gx) = Px = Xpaem(f+).- By §3.2.8] there is a compact analytic renormalization
operator Rgieg: A — B, where A is a Banach neighborhood of g., see Figure

Lemma 9.4. The stable lamination F admits a pullback via Rgicg. For all suf-
ficiently big m < 0, all leaves of the lamination Rgicg(]:m) transversally intersect

M.

Proof. By the same argument as in Lemma Rieg(F) is a lamination with
complex-analytic leaves.

Let W' be a small neighborhood of g, in R} (W*). Then W?* transversally
intersects Rgieg(WV') at Rgieg(gx). Since F forms a lamination, all the leaves of
F ., transversally intersect Rgieg(W') for m < n. Taking the pullback, we obtain
that the leaves of Rg;.,(Fm) transversally intersect W'. Clearly, all the points in
the intersections are within the non-escaping set .. (]

Let us extend the lamination F by adding Rgieg}- to F. The operator Rgieg acts

on the rotation numbers of indifferent pacmen as RYT for some 7 > 1. Let us view

Rsicg as R™. We factorize Rgieq as a composition of T operators, each operator acts
on the rotation numbers of indifferent maps as R[,,. With this convention, the
lamination F naturally extends to .A. Namely, for every F, in F,, with m <n-—7,
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FIGURE 46. Homoclinic dynamics: the operator R has a unique
hyperbolic fixed point ¢, € F,,. (Note that we slightly simplified
the picture and made leaves in F connected, see (9.10]).)

we define _7-'}’, to be the preimage of F R (p) under Rgieg, and we set
(9.10) Fpi=FpUF,

Similarly, F is extended to R*(A) for i < 7. The new extended lamination F is
still R-invariant.

9.2.2. Hyperbolic horseshoe. Let p be a hyperbolic fixed point of a C2-smooth dif-
feomorphism. If the stable and unstable manifolds W* and W* of p intersect, then
any point ¢ € W* N W™ is called homoclinic to p. If the intersection is transver-
sal, then there is a hyperbolic set in a neighborhood of the orbit of ¢ union p, see
[PT, Chapters 1, 2] for reference. We will now adopt this principle to show that
there is a hyperbolic renormalization horseshoe of R near g, € W* NR(W"), where
R(W") can be viewed as an extension of W.

Let F,, be F,, intersected with a small neighborhood of ., see Figure We
define F™ to be the preimage of F/, under R | Fy, and we define T,(Cm) C Fy to

be the preimage of F(™ under R** (extended to a neighborhood of g, as above).
Lemma 9.5 (The second part of Theorem rigidity). For k < n the operator
(9.11) ®» Y FR-U Fn

m,k<k m<k

is uniformly hyperbolic. More precisely, let H be the non-escaping set of (9.11));
i.e. the set of points with bi-infinite orbit. Then H is a hyperbolic set. Let H be

the non-escaping set of
R?)QL: U Mt — U Mt~

t<k t<k



112 DZMITRY DUDKO AND MIKHAIL LYUBICH
we

s RTMMg ¢ Fo,

- SRR g € Fo,

’ . N
/
° \
/ \
/ .

WS :/ LI '7?);9 c -’Fm-&-t
\ e , gx

9=9m € Fm

FIGURE 47. The orbit of g € F,, stays within a small neighbor-
hood of f, for many iterates.

Then
e cvery connected component of H 1is a singleton; and
o R: H — H is parametrized by the natural extension of R%L: H — H via
XPacm*

In particular, R: F, E;” ) 5 F ' has a unique hyperbolic fixed point g,, € F 7(]1”)0.7-' -
see Figure [46]

Proof. This is a homoclinic configuration for the operator R combined with the
“gluing” operators Rg}: Na = QL D A and Rsgieg: A — B, see Figure A
point g, has a forward infinite orbit along W?* towards f, and it has a backward
infinite orbit along W* towards f.. Therefore, the non-escaping set in a small
neighborhood of {f.} Uorb(g,) is hyperbolic, see [PT, Theorem 1 in §7, Chapter
2]. (In short, since the orbit of 7-'5,’3) stays in a small neighborhood of f, for most
of the iterations (Figure , the map .’F'Slf) — F., has a big contraction in the
horizontal direction and big expansion in the vertical direction.) Considering the
first return map to a neighborhood of g,, we obtain that is hyperbolic.

We have a natural surjective semi-conjugacy 7 from R: H — H to the natural
extension of R3QL: H — H. Since e-close orbits for a hyperbolic map coincide, 7
is a homeomorphism and every connected component of H is a singleton. O

Theorem [1.1): proof of JLC. Local connectivity of every map in H follows (see §3.1.3)
from unbranched a priory bounds:
Lemma 9.6. Every map in ‘H has unbranched a priory bounds.

Proof. Recall that we constructed a homoclinic configuration under the renormal-
ization illustrated in Figure |46} a certain neighborhood of g., and the hyperbolic
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horseshoe R: H < for the first return map to this neighborhood of g,. Every map
f € H before it returns to H travels through a small neighborhood of .#,, un-
branched a priori bounds holds for the associated quadratic-like map . Since
the renormalization change of variables is conformal, unbranched a priori bounds
descends to all deep scales, see i.e. setting f3, = (M)" (f) we have un-
branched a priori bounds for

(912) R(.Q2L(f3n) O(fSn) — OI(an)
([

O

9.2.3. Upper semi-continuity of the valuable flower. Along the lines, we also ob-
tained a geometric control of the postcritical sets of maps in F. Let us write
X (f) = Zy for a Siegel map f € W*. Then X(f) depends upper semi-continuously
on f € F. Moreover, if a sequence f, € F, tends to f € W* as n — —oo, then
PB(fn) and Xup(fy) tend to 8Z; = PB(f). Indeed, by Theorem the valuable
flower X (f,) is within a certain Siegel triangulation (f,). And the wall (f,) of

(fn) contains Xp(fn) — the cycle of secondary small Julia sets. Since (f,) is a
full lift of  (fre1), Lemma implies that (f,,) tends to Z while (f,,) tends to
0Zy.

The upper semi-continuity can easily be transferred to a parameter neighbor-
hood of any Siegel map. Indeed, if g is Siegel map, then there is a hyperbolic
renormalization operator R around a fixed pacman f, as above such that a certain
renormalization operator Rgjc, maps a neighborhood of g to a neighborhood of f,.
Pulling back the lamination F under Rsgics, We obtain the upper semi-continuity
of X(f) for f € Rieq (F). In [DLS, Appendix C] a much stronger conjecture was
stated that F can be extended to a lamination parametrized by a subset of the
Mandelbrot set containing the main molecule of the Mandelbrot set.

9.3. Positive measure. In this section we will show that for m <« k < 0, the
Julia set of g = ¢p,: U — V has positive measure. The result essentially follows
from the Koebe-type estimates in [AL2, §56.6-6.8], but we need to adjust them to
our setting.

Let us give a short outline. By construction, g,, = 2R(g,,) is a renormalization
fixed point (see : it is conformally conjugate to its quadratic-like renormal-
ization g = ¢! : U, — Vo. As m — —oo, the map gn: U — V tends to the
Siegel map g4 : U, — V, so that the valuable flower X (g,,) approximates the Siegel
disk Z(g,). This will allows us to construct in the dynamical plane of g,, “trapping
disks” Dy, ..., D with s — oo as m — —oo so that, see and Figure

(I) if a point z € Z(g,) escapes U under iterations of g,,, then the orbit of z
passes through all the D;;
(IT) a definite portion (independent of m,s) of D; returns to Z(g,);
(III) a definite portion of Dy maps to Us,.

Namely, trapping disks satisfying (I) and (II) exist in the dynamical plane of fy; let
us choose one such disk D close to Zy,. Since the renormalization orbit R’g,, has
many iterations in a small neighborhood of f, (Figure , we can lift D from the
dynamical plane of Rg,, to the dynamical plane of g,,. Different lifts will be in
different renormalization scales. Disk Dy is the lift of D from the dynamical plane
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of g .= R~ tg ¢ F, ;. Since Fn_; is independent of m, (II1) holds for D in
the dynamical plane of g; lifting D we obtain (III) for Do(gm)-

Consider now the g,,-orbit of z € Z(g,) that escapes U. Since s > 1, (I) and
(II) imply that the orbit typically passes many times through Dg before the orbit
goes through all the D;; in each such visit to Dy, the orbit has a definite chance to
enter U, — by (III). Therefore, the probability of z to escape U is much lower than
the probability to enter U,. By |AL1| the Julia set of g,, (and hence of p,,) has
positive area.

Properties (II) and (III) are proven as Properties and With two more
ingredients (Properties and , the Koebe distortion arguments allow us to
formally justify the probability viewpoint in the same way as it was done in [ALZ2].

Remark 9.7. We can re-state the positive-area argument as follows. Once a full
copy of the Mandelbrot set .y is recognized on the unstable manifold, methods
of |AL2| imply that the Julia set has positive measure for the parameter associated
with a sufficiently big pacman antirenormalization of My. In |AL2|, a full primitive
copy is constructed by following a certain periodic point whose orbit is close to the
Siegel disk. In this paper we use puzzle techniques to recognize a full satellite copy
of the Mandelbrot set. (Potentially, puzzle techniques may allow one to recognize
all the existing copies on the unstable manifold, see §)

9.3.1. Notations. By saying that a set K is well inside a domain D € C we mean
that K € D with a definite mod(D \ K). The meaning of expressions bounded,
comparable, etc. is similar.

Given a pointed domain (D, 3), we say that g lies in the middle of D, or equiv-
alently, that D has a bounded shape around g if

— < 1 — (.
max |f — ¢ < C min |5 — |

We set
e g =gn:U—-V;
e J:=3(9);

ge = g™ : U, — V, to be the R%L-pre—renormaliza‘cion of g normalized so
that ge: Us — V4 is conformally conjugate to g: U — V (this is possible
because g = R(g); note that the conjugacy is not affine);

7 is the Siegel disk of g, and Z’ is prefixed Siegel disk of g,;

3. = 3(9.) C 37

e “diam” and “dist” denote the Euclidean diameter and distance.

By a hyperbolic metric, we mean the metric of V'\'B(g), unless specified otherwise.
Since

9:U\g ' (Blg) = V\Blg)
is a covering map, while
U\g ' (B(9) = V\B(9)

is an inclusion, g expands (non-uniformly) the hyperbolic metric.

9.3.2. Parameters n and £. Let us recall from |AL1| a condition ensuring that the
Julia set J of g = g,,, has positive area. Define
e 7) to be the probability for an orbit starting in U (the domain of g) to enter
U, (the domain of g,),
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FIGURE 48. A trapping disk D C C\ Z: every orbit escaping from
the domain surrounded by A passes through D. (The annulus A
is close to 0Z while D is close to the critical point c¢g).

e ¢ to be the probability that an orbit starting in V4 \ U, will never come
back to U,.

There is a constant C' > 0 independent of m such that if /£ > C, then the Julia
set of ¢ = g, has positive area. The constant C' depends on geometric bounds
(like mod(V \ U), see [AL1, §2.7]) that are uniform over m < k. We remark that
the renormalization change of variables was assumed to be affine in |AL1]; but
the criterion is easily relaxed for a conformal change of variables by linearizing it,

9.3.3. Trapping disks. Consider the dynamical plane of f,. Below we recall main
properties of trapping disks; see |AL2) § 4.4.4.] for a detailed discussion. There is an
annulus A C C\ Z, in a small neighborhood of Z, and a trapping disk D C C\ Z,
such that (see Figure

e if 2 is in the bounded component O of C\ A, then f(z) C OU 4;

e if 2 € A, then fi(z) € D with i < ¢, where ¢ depends on the renormalization
scale of D (i.e., on how close D is to the critical point);

e a definite portion of D is in 7;.

Moreover, all the properties still hold under small shrinking of A and D. Therefore,
by continuity, the trapping disk D exists in the dynamical plane of a nearby map.

Consider the orbit of g under the pacman renormalization R and note that R'g
isclose to fy ifi € {t,t+1,...,—m+n—t} with —m+n—1¢ > t, see Figure For
such 7, consider the dynamical plane of g :== R'g. By continuity, D is a trapping
disk for g. Since X (g) is in a small neighborhood of Z, (by , A surrounds
X (g). Let 1y be the renormalization change of variables from the dynamical plane

of g to the dynamical plane of g normalized so that 1g(co(g)) = co(g), see §3.2.13
Then D’ := 1y(D) is a trapping disk for g with the property that every escaping

orbit starting in X(g) passes through D’. Since i can be chosen between ¢ and
—m + n —t, we can construct pairwise disjoint trapping disks

Dy, Dy, ...,Ds
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in the dynamical plane of g, where s is sufficiently big (if m < k < n is sufficiently
big), see Figure We assume that Dy is the lift of D(R™™T2~tg).

Property 9.8. All trapping disks D; are within C \‘B. For every i < s, a definite
portion of D; maps to Z(g,) under one iteration. O

Property 9.9. There are degree two iterated preimages U,, V] C Do of Us and Vs
such that U, and V] occupy a definite portion (i.e. independent of m,) of Dy.

Proof. Since g = R~™*t"~(g) € Fy,_; where F,,_; is independent of m, the prop-
erty holds in the dynamical plane of g for D(g) and the associated quadratic-like
renormalization of g. Lifting D(g) to Dy(g), we obtain the property for g. O

9.3.4. Estimating n. (Similar to |[AL2, Proposition 6.22].) As a consequence of
Property [9.9] for any point z whose orbit passes through the first trapping disk Dy
under the iterates of g, there exist quasidisks Us(z) C V4(2z) with bounded shape
whose size is comparable with dist(z, V(z)), and such that

f"(Ue(z)) C Uy and f™(Va(2)) C Ve for some n = n(z).

As a corollary, the landing probability n is bounded below uniformly in m. In-
deed, it is known that almost every point in J lands in J, [L1]. Since the Siegel
disk Z(g.) occupies a certain area, it is sufficient to check that a definite portion
of points z € Z(g+) \ J land in U,. But any point z € Z(g,) \ J on its way from
Z(gx) to V'\ U must pass through the first trapping disk Dy. Since U,(z) occupies
a definite portion of some neighborhood of z, the statement follows.

9.3.5. Exzpansion of g | (D;\g~*(%)). In this subsection we will verify the following
properties:

Property 9.10 (similar to |[AL2, (6.9)]). The hyperbolic diameter of D; is uni-
formly (in i and m) bounded.

Property 9.11 (similar to [AL2, §6.2.2.]). The map g | (D;\g~*(B)) is uniformly
expanding with respect to the hyperbolic metric of V \ B(g).

Property has the following explanation. Consider the dynamical plane of

the Siegel map ¢,. Let x & Z U Z be a point close to ¢y. It was shown by
McMullen [McM2| that if

dist (x,?l) < Cdist (1,7),

then g, expands the hyperbolic metric of C\ Z by a factor A > 1 depending only
on the constant C. Recall from that for a big m < k, the postcritical
set B(g,m) approximates P(g,). Suppose x belongs to the self-similarity scale ¢;
i.e. dist(z, cp) < pt. One can show that if —t—m > 0 is sufficiently big, then 3(g.,)
is sufficiently close to Z (relative to ul) and g = g,, has a definite expansion at z.
Let us now proceed with the proof of Property We need the following fact:

Property 9.12. There is a function 7: Rso — Rs1 such that
T(r)—=1 as r— 4oo,

and such that the following property holds. Let Sy, So be two closed connected subsets
of C such that

e 15 NSy but 0 & S, USs; and
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F1cURE 49. Trapping disks at different scales. A definite portion
of the first trapping disk Dy returns to U,.

e S ND(tr) = Sy ND(tr) for somet > 1 and r > 2.
Let p1 and pa be the hyperbolic densities of C\ S1 and C\ So with respect to the
FEuclidean metric. Then

1 < 1(2:

7(r) 7 pa(z

s
~—

<7(r)  forzeD(t).

~—

]

Consider now a trapping disk D;. Recall from that D; = 1o(D), where D
is the trapping disk in the dynamical plane of g := R™(9)g and 1) is the renormal-
ization change of variables specified so that g (co (g)) =co(9g).

Property 9.13. Assuming that the trapping disk D from §9.3.3 is sufficiently close
to co(f+) and g is sufficiently close to f., we have:

(1) %o | D is almost an isometry with respect to the hyperbolic metrics of C\
B(g) and V \B(g);

(2) o | D is almost an isometry with respect to the hyperbolic metrics of C \
9 (B(@) and Vg (Bl9):

(3) on D the hyperbolic metric of C\*P(g) is almost the same as the hyperbolic

metric of C\ B(fx);
(4) on D the hyperbolic metric of C\ g~ (B(g)) is almost the same as (i.e.,

sufficiently close to) the hyperbolic metric of C\ f* (B(f.)); and
(5) on D the hyperbolic density of C\ f7*(B(f)) is by A > 1 smaller than the
hyperbolic density of C\ B(fy).

Proof. Claims [1] and [2] follow from Property since D and cq € B(g) are deep
in Dom 1y and since g respects the postcritical sets, 1y is almost an isometry.
Claims [3| and [4] follow from B(g) — P(fx) as g — f«, see

Claim [5| is equivalent to a strict expansion of f, | D\ (f;*(Z,)) with respect to

the hyperbolic metric of C\'B(f,). It can be proven in the same way as Lemma
O

Proof of Properties[9.10 and[9.11] . Property [9.10] follows from Claim [I] of Prop-
erty .13
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Applying Property we obtain that the hyperbolic metric of V' \ g7 (B(g))
is in (A —¢) > 1 smaller than the hyperbolic metric of V' \ B(g) uniformly in D;.
This implies Property (I

9.3.6. Porosity. A gap of radius r in a set S is a round disk of radius r disjoint
from S. The following lemma asserts that if a set S has density less than 1 — € in
many scales, then it has small area.

Lemma 9.14 ([AL2, Lemma 6.23]). For any p € (0,1),C > 1 and € > 0 there
exist o € (0,1) and Cy > 0 with the following property. Assume that a measurable
set S € D(r) has the property that for any z € S there are n disks D(z,ry) with
radis

Clph% <rp/r <Cp*™, UL €N, £y <ly < - <Ly,
containing gaps in S of radii er,. Then area S < Cio™r?.

9.3.7. Estimating £: outline. A point in V, \ U, escaping U travels through each
trapping disk D;. Every D, has a definite portion returning to Z (Property .
Therefore, with high probability, a point in V4 \ U, escaping U travels through D
many times. Since a definite portion of Dy returns to U, (Property , a point in
Ve \ U, returns to U, with high probability.

We will use the following ingredients. Since almost every point in the Julia set
is eventually in a small Julia set, it is sufficient to estimate £ for points escaping
U. By expansion, different passages through D, create gaps in different scales
(Lemma , thus Lemma is applicable. Using area estimates, we obtain
that points travel through Dy many times with high probability (Lemma [9.20).

9.3.8. Landing branches. For any point z, let
0<ri(z) <rafz) < - <ruplz) <...
be all the landing times of orb z at D;, i.e. the moments at which grn(z)(z) € D;,.
Let P"(z) be the pullback of D; along ¢"(™: z +— ¢"(")(2) € D. The map
TPn(Z) =T" = gr(n): P”(z) — D
is univalent. Let P(D;) be the family of all domains P = P"(z). Combing the
Koebe Distortion Theorem and Property we obtain:

Property 9.15 (|AL2, Lemma 6.24]). The following properties hold.

e Landing branches Tp: P — D, with P € P(D;) have uniformly (in P and
D; ) bounded distortion. The domains P € P(D;) have a bounded shape and
are well inside C\ P(g).

e Each domain P € P(Dy) contains a pullback of Vs of comparable size.

Combining expansion with the fact that the hyperbolic density near D; is bounded
below, we obtain:

Property 9.16 ([AL2, Lemma 6.25]). There is a constant Cy such that the follow-
ing holds. If P € P(D;) intersects D;, then
diam P < Cy diam D;.
The following lemma asserts that the intersecting pullbacks of (D;); belong to
different scales. The lemma follows from the uniform expansion of g | D; (Prop-

erty [9.11)) combined with the uniform boundedness of D; (Property [9.10) and the
fact that the hyperbolic density near D; is bounded below.
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Lemma 9.17 (JAL2, Lemma 6.26]). For any o € (0,1) there is a v € N with the
Jollowing property. Consider a point z landing at the D;;y al moments ry, where
te{0,1,...,v} and 0<ri<ry<---<ry,
and let P* 3 z be the corresponding pullback of the Djy. Then
diam P” < o diam P!.

9.3.9. Truncated Poincaré series. We need to understand how disks in P(Dy) in-
tersect. Let £ be the set of P € P(Dy) that intersect Dg. And let £2™ be the set
of domains P € P(Dy) that can be written as P = P™(z) with m < n. In other
words, the smallest landing time of P is less or equal than n.

The truncated Poincaré series is:

1
¢n(€) = Z ﬁ, where §P cP and Tp(fp) = P.
peon [Tp(Ep)|
The following lemma follows from the Koebe Distortion Theorem, Property

and the observation that the family &?™ has the intersection multiplicity at most
n; the proof uses area estimates.

Lemma 9.18 (JAL2, Lemma 6.28]). There is a constant C > 0 such that ¢,,(§) < Cn
for all £ € Dy.

9.3.10. Few returns to the base. Let ¥ be the set of points in Dy \ J that under the
iterates of g never return back to Dy.

Lemma 9.19 ([AL2, Lemma 6.30]). For any o € (0,1) and for any natural 7 € N,
if m < k is sufficiently big, then

area X < Coarea Dy

Proof. Since the orbit of z escapes, it passes through all trapping disks D1, ..., Ds.
Each D; contains a disk W; of bounded shape that maps to the Siegel disk Z(g.).
The pullbacks of W; create gaps of definite size (distortion theorem) and in different

scales (Lemma|9.17). By Lemma the area of ¥ is small. O
Set
¥, = U Tp (D).
peon

As a consequence of Lemmas and we have:

Lemma 9.20 ([AL2, Lemma 6.31]). Under the assumption of Lemma[9.19, there
is a constant C > 0 such that for any n € N we have

area X, < Cno’area Dy.
9.3.11. Many returns to the base. Set
S" = U P.
Pep\Pn

Lemma 9.21 ([AL2, Lemma 6.32]). There exist C > 0 and o € (0,1) such that
for any n € N the area of the set of points of S™ that never land in V, is at most
Comarea Dy.

Proof. Each time the orbit of z passes through Dy, we have a gap of points of
definite size that eventually maps to U, (Property . The gaps are in different
scales (Lemma|9.17). By Lemma the area of all such z is small. O
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9.3.12. Estimating &.

Proposition 9.22 ([AL2, Proposition 6.33]). For any € > 0, if m < k is suffi-
ciently big, then & < e.

Proof. Let Y be the set of point in Dy that never land at V,. There are 3 cases:
e by |L1], area (Y ﬂfj) = 0 (because almost every point in J is eventually in
small Julia sets);
e area (Y N S") is small by Lemma
e the area of remaining points in Y is small by Lemma [9.20

We can now transfer the escaping density estimate for Dy to the escaping density
estimate for V4 \ U,, see the argument in |[AL2, Proposition 6.33]. g

CONVENTIONS AND NOTATIONS

Basic conventions. We set:

D(a,r) to be the closed disk around a € C with radius r;
D(r) := D(0,7) and D = D(0, 1);

T.: z — z + c is the translation by c € C;

Ac: z — cz is the scaling by ¢ € C\ {0}.

A simple arc is an embedding of a closed interval. We often say that a simple
arc £: [0,1] — C connects £(0) and ¢(1). A simple closed curve or a Jordan curve
is an embedding of the unit circle. A simple curve is either a simple closed curve
or a simple arc.

A closed topological disk is a subset of a plane homeomorphic to the closed unite
disk. In particular, the boundary of a closed topological disk is a Jordan curve. A
quasidisk is a closed topological disk qc homeomorphic to the closed unit disk.

Given a subset U of the plane, we denote by int U the interior of U.

Let U be a closed topological disk. For simplicity we say that a homeomorphism
f: U — Cis conformal if f | int U is conformal. Note that if U is a quasidisk, then
such an f admits a qc extension through OU.

A closed sector, or topological triangle S is a closed topological disk with two
distinguished simple arcs v_ ,v4 in 0S meeting at the verter v of S satisfying
{v} =~v- N~v4. Suppose further that v_ ,int S, v, have clockwise orientation at v.
Then v_ is called the left boundary of S while v, is called the right boundary of S.
A closed topological rectangle is a closed topological disk with four marked vertices.

Consider a continuous map f: U — C and let S C C be a connected set. An
f-lift is a connected component of f~1(S). Let

Loy L1y Lpy Li41 = f(:l?l)

be an f-orbit with z,, € S. The connected component of f~™(S) containing xg is
called the pullback of S along the orbit g, ..., Ty,.

Consider two partial maps f: X --» X and g: Y --» Y. A homeomorphism
h: X =Y is equivariant if

(9.13) ho f(z) =goh(zx)

for all x with z € Dom f and h(z) € Domg. If (9.13) holds for all x € T, then we
say that h is equivariant on T.
We often write a partial map as f: W --+ W; this means that Dom fUlm f C W.
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By a tree in an open set U C C we mean an increasing union of finite trees
Ty C Tp C ... such that T; \ T;—; does not intersect any given compact subset of
U for i > 0. A forest and a graph are defined similarly.

To keep notations simple, we will often suppress indices. For example, we denote
a pacman by f: U — V, however a pacman indexed by ¢ is denoted as f;: U; =V
instead of f;: Uy, = V.

Slightly abusing notations, we will often identify a lamination (or a triangulation)
with its support. Given a triangulation , we denote by A(i) its i-th triangle;

J
A(i,i+1,...,44 j) denotes the union U AP+ k).
k=0
Renormalizations. We will usually denote an analytic renormalization oper-

ator as “R”, i.e. Rf is a renormalization of f obtained by an analytic change of
variables. A renormalization postcomposed with a straightening will be denoted by
“R”; for example, Rs: My — M is the Douady-Hubbard straightening map from
a small copy My of M to the Mandelbrot set. The action of the renormalization
operator on the rotation numbers will be denoted by “R”.

Rotations. Combinatorial aspects of rotations are discussed in Section [2 The
main notations:

e: z+— 627”2

Lg:D—D, z—e()z, ,

Rprm: R/Z O is the prime renormalization on rotation angles (12.3));
m is the renormalization period: 6, = R, (6,), §2.1.1] (3.3);

t is the leading eigenvalue of M, Lemma [2.1F A\, = £ = (RD,,)(0,);
a, b renormalization return times 2 4);
,

T is the semigroup of power-triples (2.13])

Let f : (W, a) — (C, @) be a holomorphic map with a distinguished a-fixed point.
We will usually denote by A the multiplier at the a-fixed point. If A = e(¢) with
¢ € R, then ¢ is called the rotation number of f. If, moreover, ¢ = p/q € Q, then
p/q is also the combinatorial rotation number: there are exactly q local attracting
petals at o and f maps the i-th petal to ¢ + p counting counterclockwise.

Quadratic and quadratic-like families. (See §3.1]) We denote by

M is the Mandebrot set, M; C M small copies in M;

A C M the main hyperbolic component;

OL the space of quadratic-like germs

M C OL the connectedness locus QL;

M; C M copies of M in M,

RqL: QL --» QL a quadratic-like analytic operator

X : M — M the straightening;

Ryim: M --» M the molecule map acts as Rprm on OA.

Pacmen. We denote a pacman by a lowercase letter (for example f or g), its
bold capital version denotes the corresponding maximal prepacman (resp F or G).
Objects in the dynamical planes of maximal prepacmen are often written in bold
script. Objects in the parameter plane are usually written in calligraphic script.

For a pacman f we write f, = R"f if f is in the domain of R"™; in particular
fo=f. If f € W" then f, are well-defined for all n < 0. The corresponding
maximal prepacmen are denoted by F,,.
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Renormalization fixed point and associated objects are indicated by “x”, f.e.

fer Uy

—V, F,, Z,. We will suppress “x” in §5| For example, F denotes the

fixed maximal prepacman F, in
We denote by

[AL1]
[AL2]

[ALM]

1y and A, the dynamical and parameter self-similarity constants with |A4| >
1 and |p.] < 1;

A, =A,, : z+— p,z the dynamical scaling;

fx € W the fixed pacman: f, = R(f+);

F, is the fixed maximal prepacman; F, = F in Section

co and ¢ the critical point and the critical value of a pacman f;

Z¢ is the Siegel disk of a Siegel map f;

R: B --» B is an analytic renormalization operator §3.2.6} it acts as Rf,
on rotation numbers, see Lemma [3.1}

W3 WY C B the stable and unstable manifolds of R;

W"* the space of maximal prepacmen;

F=(f-, f+), F=(f_, f,) a prepacman and a maximal prepacman
FP, P cTis defined in

a = f(«) is a fixed point of a pacman, Figure

a = FFP(a) is a fixed boundary point of a maximal prepacman §4.7;

in §7land §8 v(G) and 6(G) denote the periodic cycles characterizing the
satellite and the secondary satellite hyperbolic components;

» a renormalization triangulation with a wall ,, §§3.2.10]
CP(F”), CV(FTY), PB(F) the set of critical values, critical points, the post-
critical set
§(F),J(F),Esc(F) the Fatou, Julia, escaping sets
Z = 7, the invariant Siegel disk (half-plane) of F;
cs(Fy) is the unique critical point on 9Z, of generation S € T;

Z, the lift of Z along F¥: ¢, s 0;

L, and Wy the limb and wake centered at Zg;

GY(): W! » W a primary renormalization map ;

W (i, G) primary wakes; see Theorem and

Fgér’ﬁ) : W%ﬁ — W, a secondary renormalization map ,

2);,3; periodic and certain preperiodic small Julia sets of the secondary
renormalization, see Figure [41}

Mo =M. CW" aternary satellite copy

My, =TR"(My) C W the renormalization orbit of . o;

X(G),X(G), G € W"the (enlarged) valuable flower of a maximal prepac-
man

X (g), X (g) the (enlarged) valuable flower of a pacman g € 4, ~ M, n <0,
Theorem
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