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Abstract: High-throughput and cost-efficient fabrication of
intricate nanopatterns using top-down approaches remains a
significant challenge. To overcome this limitation, advance-
ments are required across various domains: patterning tech-
niques, real-time and post-process metrology, data analysis,
and, crucially, process control. We review recent progress in
continuous, top-down nanomanufacturing, with a particular
focus on data-driven process control strategies. We explore
existing Machine Learning (ML)-based approaches for
implementing key aspects of continuous process control,
encompassing high-speed metrology balancing speed and
resolution, modeling relationships between process parame-
ters and yield, multimodal data fusion for comprehensive
process monitoring, and control law development for real-
time process adjustments. To assess the applicability of
established control strategies in continuous settings, we
compare roll-to-roll (R2R) manufacturing, a paradigmatic
continuous multistage process, with the well-established
batch-based semiconductor manufacturing. Finally, we
outline promising future research directions for achieving
high-quality, cost-effective, top-down nanomanufacturing and
particularly R2R nanomanufacturing at scale.
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1 Introduction

Nanotechnology, the manipulation of matter at the
atomic and molecular level (1-100 nm), has emerged as a
transformative field with the potential to revolutionize
numerous scientific and technological domains. A crucial
aspect of realizing this potential lies in nanomanufacturing,
the scaled-up, cost-effective, accurately controlled fabrica-
tion of structures, devices, and systems at the nanoscale
(Alexander Liddle and Gallatin 2016). This burgeoning field
presents a unique set of challenges and opportunities
compared to conventional manufacturing techniques. The
rapid, continuous processing offered by high-throughput
roll-to-roll (R2R) nanomanufacturing is acknowledged as a
critical technology for the development and production of
various next-generation devices and flexible electronics
(Palavesam et al. 2018; Phung et al. 2021; Zou et al. 2018).
Scaling involves overcoming hurdles in areas such as
achieving high production rates, ensuring consistent prod-
uct quality across runs, maintaining precise control over the
manufacturing process, optimizing efficiency, while keeping
costs competitive.

Analysis (real-time or otherwise) of information across
all the relevant time and length scales for high-throughput
nanomanufacturing is challenging because of the generation
of massive datasets with intricate relationships which
exceed the human ability to manually interpret and extract
meaningful insights. Machine learning (ML) encompasses
algorithmic approaches designed to uncover patterns and
relationships within data. In nanotechnology and by exten-
sion nanomanufacturing, such techniques find applications
in the analysis of large datasets, materials design and dis-
covery, and the optimization of production processes
(Brown et al. 2020). Data-driven approaches also support
model-based control since building a unified process model
based on first-principles approaches for such complex,
multi-stage processes is neither straightforward nor prac-
tical (Ulbrich and Bloemen Waanders 2018). Furthermore,
these processes are likely to exhibit non-stationarity, caused
by factors like process drift. As a result, the corresponding
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process models become increasingly complex and chal-
lenging for human operators to maintain and update.

Methods for creating products with nanoscale features
fall into two broad categories: bottom-up and top-down.
Bottom-up approaches are suitable for manufacturing
nanostructures with complex geometries and rely on
spontaneous self-assembly processes at the atomic scale.
They are driven predominantly by thermodynamic fac-
tors. Examples of bottom-up approaches include colloidal
self-assembly and DNA-based self-assembly. Self-assembly
of colloidal particles can generate superstructures of
various dimensions, phases and symmetries and enables
the manufacturing of smart materials and devices with
highly tunable properties (Z. Li et al. 2022). In DNA-based
self-assembly, DNA strands act as template materials
which organize disparate nanostructures to construct
relatively complex features. While they can produce
macroscopic products with nanoscale features, they
are inherently slow, and suffer from a lack of long-range
order and precise control when operated under non-
equilibrium conditions. Bottom-up approaches are prom-
ising for laboratory-scale nanofabrication, but improving
the yield of self-assembled structures remains a grand
challenge. Most bottom-up strategies require external
inputs like guide structures, and they often suffer from a
relatively high rate of defects that cannot easily be cor-
rected (Fourkas et al. 2021).

Top-down techniques, on the other hand, offer the ability
to precisely control the yield and geometry of nanostructures,
while ensuring long-range order and high speed. They are
therefore better suited for large-scale nanomanufacturing of
nanostructures. Integrated circuit (IC) manufacturing repre-
sents the salient example of top-down nanomanufacturing.
Modern photolithography tools such as extreme ultraviolet
(EUV) lithography offer superior resolution and feature
quality, capable of achieving sub-10nm critical dimensions.
However, its application is primarily focused on high-volume
manufacturing of microelectronic integrated circuits due to
the exorbitant cost of EUV systems, exceeding one hundred
million euros (Zheng et al. 2021). Nanoimprint lithography
(NIL), which is an emerging candidate for high-throughput,
high-resolution, low-cost nanomanufacturing, uses a hard
mold for embossing on a polymer film, either at high tem-
peratures (Thermal NIL) or in the presence of UV radiation
(UV-assisted NIL). Nanostructures fabricated by the above-
mentioned techniques typically have low aspect ratios and
are of lower complexity than in the case of bottom-up
methods. Interference Lithography (IL) is a closely related
top-down nanofabrication technique that allows for produc-
ing 3D nanostructures of arbitrary shape, but the gains in
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feature complexity come at the loss of processing speed and

increased effort for tool setup (viz. coherent optical system

with laser source, high-precision mechanics such as work
stages for accurate positioning, and beam splitters like

Lloyd’s mirrors and diffraction gratings).

As of yet, devising a technique or combination of
techniques for producing top-down, large-scale, complex
nanopatterns at high speed, high quality and reasonable
cost remains an open and important scientific and tech-
nological question. Addressing this challenge entails
advances in feature creation technology, online and offline
metrology, data processing and process monitoring and
control. Large-scale manufacturing of nanoscale devices
comes with many possible applications in electronics,
optics, plasmonics, etc. There are many applications
requiring large-scale manufacturing of homogeneous
nanostructures. Two such examples are the generation
of semiconductor nanowires with carefully controlled
morphologies for large-scale production of solar cells
(Wallentin et al. 2013), and the production of ultrafiltration
membranes for water purification. The latter could serve
as an ideal candidate for sheet-based nanomanufacturing.

This review explores recent progress in continuous, top-
down nanomanufacturing with emphasis on data-driven
approaches in the context of process control, while defining
the current state-of-the-art in key areas and applications.

Process control in continuous nanomanufacturing in-
volves the following aspects — discussed in greater detail in
the subsequent sections (Figure 1):

— Identification of appropriate devices and methods to
measure relevant process variables at high speeds while
accounting for speed-resolution tradeoff, especially in
imaging.

— Modeling of variables representing product quality
(which could include feature dimensions, uniformity,
etc.) in terms of process and equipment parameters.

— Fusion and interpretation of multimodal data corre-
sponding to multiple length and time scales, to detect
equipment (tool) and product defects, if present.

— Inferring process states to determine appropriate
control actions based on a developed control law.

We perform a comparative analysis between R2R
manufacturing (representative of continuous multistage
manufacturing processes) and the industrially well-
established semiconductor manufacturing (representative of
batch processing), to identify the suitability of control strate-
gies commonly used in the latter for R2R manufacturing. The
remainder of this article is organized as follows: Section 2
provides a brief discussion of the history and evolution of
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Figure 1: Components of ML-driven process control in a continuous nanomanufacturing framework.

micro/nanofabrication and potential nanopatterning ap-
proaches to creating nanoscale features at large scales. Sec-
tions 3 and 4, respectively, present discussions of the
metrology requirements and overall process control along
with process fault detection for the problem of R2R contin-
uous nanomanufacturing. We highlight the use of data-driven
approaches to solve relevant problems in R2R manufacturing
and semiconductor manufacturing as reported in the litera-
ture. Section 5 provides concluding remarks along with sug-
gestions for future research directions.

2 Evolution of micro/
nanofabrication techniques,
transition to continuous
nanomanufacturing

The field of micro/nanofabrication has its roots in the
1950s-1960s, heavily influenced by the needs of the semi-
conductor industry (Campbell 2001; Jaeger 2002; Plummer
et al. 2000). Early techniques focused on photolithography
and thin film deposition for microfabrication. The minia-
turization of transistors, a key driver of modern elec-
tronics, has relied heavily on advancements in
photolithography. Over the past several decades, this
technique has become the cornerstone of IC fabrication.

Photolithography involves transferring a pattern from a
photomask onto a substrate, usually a silicon wafer, using
light. The process starts with the application of a photo-
sensitive material called photoresist on the substrate.
When exposed to light, the photoresist undergoes a
chemical change, which allows the subsequent selective
removal, via development, of either the exposed or unex-
posed regions, depending on the type of photoresist used,
to create the desired pattern on the substrate. The reso-
lution of the patterns created by photolithography is
determined by the wavelength of light used, with shorter
wavelengths allowing for finer features. The process can
be repeated multiple times to build complex structures,
such as those found in ICs. Advancements in lithography,
such as deep ultraviolet (DUV) photolithography, enabled
the creation of smaller features and more complex inte-
grated circuits. The 1990s brought forth soft lithography
and nanoimprint lithography (NIL) (Chou et al. 1996),
perhaps being the first step towards continuous patterning
of 2D or low aspect ratio 3D nanostructures. Additionally,
there is an emphasis on developing scalable nano-
manufacturing methods, 3D micro/nanofabrication tech-
niques, and novel materials with unique properties at the
micro/nano scale.

The unique properties of periodic 3D nanostructures,
stemming from their micro/nanoscale features, have long
been a subject of research. Photonic crystals, for instance,
exhibit tailored dispersion behavior due to their periodic
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dielectric profiles. This photonic bandgap allows precise
control over light transmittance and reflectance by manip-
ulating the structural periodicity (Campbell et al. 2000;
Krauss et al. 1996; Lin et al. 1998; Noda et al. 2000; Qi et al.
2004). Additionally, the high surface area-to-volume ratio of
these nanostructures makes them ideal for applications in
fast-charging battery electrodes and solar cells (Fan et al.
2009; Zhang et al. 2011). Beyond photonics and energy ap-
plications, 3D nanostructures offer intriguing mechanical
advantages. They circumvent limitations inherent to
macroscale materials, enabling the design of mechanical
metamaterials with groundbreaking properties. Studies
have demonstrated that periodic nanoarchitectures, or
nanolattices, display superior recoverability (Bagal et al.
2017; Jang et al. 2013; Meza et al. n.d.) and unconventional
behaviors like negative Poisson’s ratio or stiffness (Evans
1991; Lakes 1987; Lakes et al. 2001). Furthermore, they exhibit
superior scaling of stiffness and strength with reduced
density compared to random porous microstructures (Lee
et al. 2010). Nanolattices can also exhibit interesting prop-
erties in other physical domains, including refractive indices
close to unity (Zhang et al. 2015), improved light trapping
(Zhang et al. 2017), and exceptionally low thermal conduc-
tivity (Dou et al. 2018). Widespread societal benefits from
such impactful advances hinge on breakthroughs in large-
scale nanomanufacturing.

Existing top-down approaches to fabricating 3D nano-
structures include Focused Ion Beam (FIB), two-photon
polymerization (TPP) (Cumpston et al. 1999), and electron-
beam lithography (EBL) (Vieu et al. 2000). These methods
achieve high-resolution patterning through a layer-by-layer
writing approach. However, a drawback common to these
techniques is their serial nature, requiring point-by-point
scanning, which significantly limits their throughput. In
contrast, near-field holographic lithography processes
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(Kagias et al. 2023; Nesse et al. 2019; Paik et al. 2020) can
produce 3D nanoscale features of desired shapes in a single
light exposure using sub-diffraction metasurface photo-
masks. Therefore, higher throughputs can be expected upon
their integration with R2R setups. The complexity of the 3D
structures can be further enhanced by allowing for the
registration of 2nd and higher order diffraction patterns on
photoresists (Chang et al. 2011; Zhang et al. 2013).

The most economical large-scale processes are contin-
uous (note that IC production is largely a batch process) in
nature and consequently, it is of interest to develop a
continuous nanomanufacturing process. The focus of this
review is on Roll-to-Roll (R2R) technology owing to its sim-
ple transport principle and continuous nature of the
manufacturing process (Figure 2). However, we note that
there are several transport principles in the substrate
(web)-based manufacturing paradigm, such as sheet-to-sheet,
sheets-on-shuttle and roll-to-sheet (Willmann et al. 2014).
Within this paradigm, a planar (2D) substrate undergoes a
series of processing steps that result in the creation of nano-
scale features at its surface. This creates a system with two
crucial length scales: the feature size at the nanometer scale
and the substrate dimension at the centimeter scale. These
fundamental characteristics give rise to specific challenges in
feature creation, process monitoring and control.

For example, Kagias et al. (2023) observed depth-
dependent variation of periodic 3D nanostructures fabri-
cated using IL (with diameters around 460 nm, lateral
periodicity of 900 nm on a 30 um-thick sheet) due to thermal
and chemical gradients in the photoresist material during
post-exposure development. A key process control challenge
in this process is to minimize the occurrence of such varia-
tions which also impact material properties of the nano-
structures. Certain parameters would need to be more
tightly controlled than others, which is usually dictated by
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Figure 2: Schematic of a possible framework for R2R nanomanufacturing using near-field holographic lithography. One rewind roller, one unwind roller
and severalidler rollers are shown. Tension in the conveyed web is controlled by the winder but is typically adjusted by one or more tension rollers located

within the R2R machine.
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the final product utility. For example, the functionality of
printed electronics crucially depends on high layer homo-
geneity (Su et al. 2019), while multi-layer devices with thin
dielectric materials require tight control of surface rough-
ness (Song et al. 2022). Manufacturing ultrafilters demands a
narrow pore size distribution while the exact dimensions of
pores may not be of much relevance.

3 Metrology

Metrology, as a constituent of nanomanufacturing, allows
for inspection of created features and amounts to devising
and implementing sensors with nanoscale precision. R2R
processing can drastically increase throughputs and
reduce overall production costs, but these effects can be
nullified if one waits until after a roll of finished product is
made before taking measurements on the produced nano-
structures. In the context of nanomanufacturing, advances
in imaging and image analysis form a cornerstone of
automated process control. The nature of processes and
products in nanomanufacturing makes quality measure-
ment a nontrivial task. Since effective quality control must
be done at rates commensurate with web speeds in R2R
manufacturing, metrology must work close to real-time.
Moreover, such inline techniques must also be nonde-
structive, and fairly insensitive to the rapid motion of the
object in focus and vibrations in the substrate (Maize et al.
2023).

3.1 Machine learning and metrology in R2R
manufacturing

Measurement usually involves a speed-accuracy tradeoff,
which becomes highly relevant in the case of metrology in
R2R manufacturing. For a given substrate speed, there also
exists a tradeoff between the width of the web that can be
monitored and measurement resolution. With increasing
web width, capturing the entire width of the web in a sin-
gle measurement is expected to become challenging (Maize
et al. 2023).

Techniques such as line scan imaging, hyperspectral
imaging and laser scanning which are well established in
R2R processing also show promise for use in continuous
nanomanufacturing. In imaging systems, particularly spec-
tral cameras, there is a trade-off between spatial and
spectral resolution due to limited resources such as detector
pixels and exposure time, where enhancing one often com-
promises the other. Higher spectral resolution significantly
increases data volume, impacting processing speed and
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storage capacity. Efficient data handling techniques are
required to balance this with high spatial resolution. Tech-
niques like principal component analysis (PCA) or
autoencoder-based compression and parallel processing are
essential for efficient data management. Deep learning-
based image super-resolution techniques have emerged as a
solution to this problem, leveraging high-resolution
panchromatic (PAN) and low-resolution hyperspectral
(HSI) images to generate high-resolution HSI data (Wang
et al. 2021). More specifically, efforts have been undertaken
to minimize spectral-spatial distortions in generated HSIs by
employing variants of generative neural networks such as
the latent encoder-coupled generative adversarial network
(LE-GAN) (Shi et al. 2022). Narrowing down spectral data to
the relevant range of wavelengths (which is application-
specific) can also reduce the sensing cost-resolution trade-
off. There is also a growing interest in optical techniques
conventionally used in in-situ characterization such as
angular scatterometry, phase-shifting interferometry, and
Raman spectroscopy for inline metrology. The most common
parameters measured by or inferred from such techniques
include defect density, defect size, film morphology (thick-
ness, roughness, topography), and optical properties
(refractive index, reflectance, transmittance). In the case of
nanomanufacturing, such techniques can provide insights
into consistency and uniformity of fabricated structures, and
detect and diagnose defects, although none of them can
measure feature sizes at nanoscale resolution. Table 1 pro-
vides a list of potential candidates for inline metrology in
R2R setups.

There is a need for increased metrology information at
higher resolutions to ensure tight quality control at the
nanoscale. Atomic force microscopy (AFM), which provides
insights into surface topography, is non-destructive,
requires hardly any sample preparation and has resolu-
tions on the order of fractions of a nanometer. Connolly et al.
(2019) developed an inline single chip-AFM (sc-AFM)
framework for a R2R process. It is modular and allows for
scaling the number of probes and approach mechanisms to
increase the overall throughput at no extra computational
cost and a negligible increase in the physical space occupied.
However, since the entire web cannot be scanned using this
method, the optimal frequency of scanning and locations to
be scanned must be determined in order to obtain maximum
information about the trends in dimensions of fabricated
features across the entire web, while ensuring high pro-
duction rates. There has been a general interest in the
automation of microscopy (Kalinin et al. 2021) in the context
of selecting the appropriate imaging focus regions and
microscope hardware tuning, which largely remain depen-
dent on human expertise.
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Table 1: Optical metrology techniques for R2R nanomanufacturing: potential candidates.

Demonstrated
(inline) speed

Technique Measured parameters

ML contributions and
other remarks

Demonstrated resolution

Reflectance as a function 10 cm/s

of angle of incidence

Angular
scatterometry
(Faria-Briceno et
al. 2019)

Inline 2.5cm/s
phase-shifting

interferometry

Thickness, surface
topography, displacement

Not
demonstrated yet

Hyperspectral
linescan imaging

Composite image over a
wide range of wavelengths
(infrared/visible/UV),
representing the entire
web or parts thereof

Raman
spectroscopy

Image part of the web.
Principle is similar to angular
scatterometry, with higher
resolution but much lower
web speeds

120pmin5s

(10X speeds using
wavelet-based
approaches (Yue et al.
2018)

10 nm (can only be achieved in high-
ly periodic structures, a specialized
case that allows for resolution much
better than the diffraction limit)

Reflectivity-incident angle plots can
be used to monitor feature trends in
the machine direction for periodic
structures. ML approaches can help
select informative wavelengths for
analysis, reducing reference library
search times (Sabbagh et al. 2023b)
Insensitive to vibrations in web and
enables single-shot measurements by
extracting phase information from a
single interferogram, overcoming
limitations of traditional methods that
require multiple exposures. Zhang

et al. 2021 developed a one-to-
multiple deep learning framework to
generate the equivalent of multiple
phase-shifted interferograms from a
single inline interferogram

Data driven approaches (such as
k-nearest neighbors and PCA-based
schemes) can be used to determine
feature dimensions and select use-

ful wavelengths (Gawlik et al.

2020, 2021; Yue et al. 2000)

(Yue et al. 2017, 2018, 2020) devel-
oped a single overall metric to track
feature trends along the machine
direction, with deep learning-enabled
Raman spectroscopy improving data
acquisition rates (Horgan et al. 2021)

Lateral: 1 pm for field of view
of 4mm
Vertical: 5nm

1.2pm

1Tum

Arelated case of determining scanning trajectories and
locations can be found in paper manufacturing, an indus-
trially well-established problem. The machine direction
(MD) and cross direction (CD) profiles of paper properties
are measured by a scanning gauge containing an array of
sensors (Astrom 1967; Dave et al. 1997; Dumont et al. 1993;
He et al. 2015; Rippon et al. 2019; Stewart 2000; Valenzuela
et al. 2003). Sensors are typically guided in the CD while
the paper moves at high speeds, whereby the sampled
points form a diagonal trajectory on the paper sheet.
Dedicated MD and CD control systems are employed to
address temporal and spatial variations, respectively. Due to
the zig-zag sampling trajectory, a mix of MD and CD varia-
tions is embedded in the measurements. Hence, their sepa-
ration becomes an important task to generate separate
control inputs, while accounting for possible aliasing effects
(Rippon et al. 2019).

3.2 Machine learning and metrology in
semiconductor manufacturing

Semiconductor manufacturing is a complex process that
requires monitoring of several inter-related critical process
parameters from the initial stages of production to the pack-
aging of the final product. It comprises four main stages: wafer
fabrication, wafer inspection, assembly, and final testing. In
the fabrication stage, wafers undergo numerous (often hun-
dreds) sequential processing steps (deposition, lithography,
etching, implantation, polishing, etc.) in batches (groups of
tens of individual wafers). The entire manufacturing process
may require up to three months to produce a chip. Therefore,
it may take months since the commencement of operations to
determine product yields — requiring soft sensing in the in-
termediate stages to achieve effective process control (Qin
et al. 2006; Su et al. 2007).
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Table 2: Comparison of dimensional metrology methods in semiconductor manufacturing.

Technique Measured parameters

Resolution

ML contributions and other remarks

(lateral and vertical)

Critical dimension-scanning
electron microscopy
(CD-SEM)

Image portions of the
wafer (wide field of view
of 50 nm to 10 mm)

Reflectance as a function of
wavelength/angle of incidence

Scatterometry

Atomic force
microscopy (AFM)

3D surface topographical maps
and mechanical properties such
as stiffness and adhesion forces

Spectroscopic
ellipsometry

Ratio of the amplitude of p-polarized
to s-polarized reflected light and the
phase difference between the two
polarizations

~0.3nm

Model-dependent; ~ 1 nm
(vertical and lateral): Note the
higher resolution compared to
that achieved in inline R2R
setups

1 nm lateral, 0.1 nm vertical

Model-dependent

Yields top-down images providing critical IC
dimensional parameters such as linewidth,
edge roughness (Mack and Bunday 2018), and
contact holes (Bunday et al. 2018); requires
that sample surfaces be conductive and be
placed in high vacuum. Image super resolution
using generative-adversarial networks has
been explored aiming to achieve high-
resolution images with minimal electron
dosage and sample damage (Liu et al. 2019)
Provides data-driven model-based estimates
of overlay effects (den Boef 2016; Peled et al.
2018), critical dimensions and optical
constants of periodic patterns. Fast and
non-destructive, allows for inline measure-
ment. ML techniques have been widely applied
to monitor critical dimension variations and
solve the inverse problem of determining
dimensions from spectra (Liu et al. 2022; Lucas
et al. 2018)

Little to no sample preparation required,
non-destructive, inline compatibility;
nanometer-level measurement accuracy.
Involves raster-scanning a sharp probe tip
across the sample. A recent work explored the
use deep learning approaches to autono-
mously perform AFM instrument initialization,
surface imaging, and image analysis (Kang

et al. 2023)

Used to analyze thin films, measure layer
thickness, refractive index, and optical
constants, and study surface roughness and
composition; mainly used for depth
monitoring for 3D structures to ensure precise
control over film thickness. Recent works
(Lietal. 2021; Liu et al. 2021) have investigated
the use of deep learning frameworks to
accelerate the analysis of ellipsometry data for
high-throughput experimentation

Due to cost and time constraints, wafer metrology is
performed on a statistically representative subset of wafers
after key processing steps. Metrology focuses on measuring
various properties of materials and processes, including
thickness, electrical resistance, critical dimensions (key fea-
tures on a microchip), alignment of layers, particle contami-
nation, and the rate of material removal during etching. Ex-
situ metrology plays a crucial role at each stage of semi-
conductor manufacturing as it is the predominant source of
product quality information before and after that process.
This information is used to determine whether the current

processing conditions and tools need to be adjusted in
subsequent runs. Within the manufacturing tool itself, con-
ditions like temperature, pressure, flow rate, and electrical
current are recorded at much faster timescales (in the order
of milliseconds) (Su et al. 2007). Table 2 summarizes and
compares key dimensional metrology techniques used in
semiconductor manufacturing.

Metrology delay in semiconductor manufacturing
processes is inevitable, which can adversely impact process
control performance. Another inherent limitation of
such metrology approaches to guide decision making is the
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assumption that a few samples are representative of
the whole lot, which can make defect detection very chal-
lenging since only a small fraction of wafers is expected to
be faulty.

To ensure efficient production, significant efforts are
underway to improve the speed and cost-effectiveness of
metrology measurements. Researchers have developed tech-
niques to speed up SEM imaging by using optimized beam
scanning approaches (Cizmar et al. 2011; Kruit et al. 2016;
Sunaoshi et al. 2016). Such methods only acquire the data
necessary for the desired image, reducing acquisition time.
Additionally, deep learning algorithms are being imple-
mented to significantly improve both the speed and quality of
images by removing noise, with recent advancements
including patch-based algorithms for denoising low-dose SEM
images (Lazar and Fodor 2015) and reconstructing high res-
olution AFM images from low resolution, high scan speed data
(Natinsky et al. 2024). In such applications involving ML for
signal denoising, neural networks are typically trained on
low-resolution (LR) and high-resolution (HR) data pairs to
learn effective representations that reconstruct low-noise
outputs from high-noise inputs. Horgan et al. (2021) show that
deep learning significantly outperforms traditional spectral
smoothing algorithms like Savitzky-Golay (SG), wavelet, and
PCA, enabling effective reconstruction of Raman signatures
from low SNR spectra. In this context, we make the distinction
of the noise in low SNR signals, resulting from high data
acquisition speeds (the noise signal of interest), from noise
present in the training data (which is universal). Another
approach utilizes machine learning with non-linear aniso-
tropic diffusion for denoising images specifically intended for
electron tomography applications (Staniewicz and Midgley
2015).

In optical metrology, extracting feature dimensions and
thicknesses from measurements falls under the mathemat-
ical category of an inverse problem (Xie et al. 2019; Sabbagh
et al. 2023a,b). This problem seeks to determine the “causes”
from the observed “effects”. Inverse problems often lack
analytical solutions and machine learning approaches such
as deep neural networks and regression-based methods
have been used (Barkhordari et al. 2024; Liu et al. 2021;
Zhu et al. 2024) to iteratively identify a set of optical pa-
rameters that best match the measured data.

Virtual Metrology (VM) in semiconductor manufacturing
leverages machine learning and statistical methods to predict
crucial properties of wafers without direct physical mea-
surement (Kang and Kang 2017; Kang et al. 2009, 2011). This
bypasses the need for expensive and time-consuming tradi-
tional metrology tools. These models are typically constructed
by training ML algorithms on historical process data,
including logistical and process parameters, and
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corresponding physical metrology results. VM relies on data
collected from sensors embedded within the processing
equipment itself. These data include temperature, pressure,
and power consumption. Example algorithms are multivar-
iate regression and multi-level models with regularization.
Once trained, the VM system can estimate desired parameters
like critical dimension or layer thickness for each wafer based
solely on sensor readings, enabling real-time process moni-
toring and optimization. Due to the high dimensionality of VM
feature spaces, arising from numerous high-frequency pro-
cess sensors, dimensionality reduction is critical. This pre-
processing step can be achieved through feature extraction,
with convolutional neural networks (CNNs) dominating this
area as of 2020 (Dreyfus et al. 2022).

VM approaches have been successful in overcoming the
sparsity challenge, a major hurdle in traditional process
monitoring where only a small subset of wafers is measured
with physical metrology tools (Maggipinto et al. 2019).
developed a deep learning approach specifically for VM in
the etching step of wafer fabrication. Their method lever-
ages optical emission spectral (OES) data, which capture the
light emitted during the etching process. By feeding these
data into a deep neural network, the VM system can infer the
etch rate for each wafer within the batch. This information is
crucial for quality assessment, as an uneven etch rate can
lead to device defects.

Ensuring sustained high performance for a VM system
over long durations is difficult due to temporal variations in
the underlying data characteristics. These variations can be
caused by several factors, including internal process drifts,
equipment disturbances, external environmental fluctua-
tions, and routine maintenance interventions. To counteract
this performance decline, VM systems must integrate real,
physical metrology data into their workflows for practical
deployments. However, increasing the dependence on actual
metrology measurements incurs a significant cost penalty.
Consequently, a critical aspect for successful VM imple-
mentation is the development of a strategic approach for
selecting wafers that require actual metrology measure-
ments (Baek et al. 2014; Hyun Baek et al. 2014; Kang and
Kang 2017; Lu et al. 2014).

3.3 Machine learning enabled-multiscale
and multimodal metrology

Understanding interactions among components of complex
systems and processes requires sensing many types of pro-
cess variables (multiple modalities). Such measurements
oftentimes span multiple length and time scales, as in the
problem of R2R nanomanufacturing, and data fusion is
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concerned with meaningfully combining and extracting
such multimodal data which typically complement one
another (Figure 3). Recent years have witnessed an un-
precedented surge in the development of deep learning
technologies to perform multimodal data fusion to study
complex systems, taking advantage of the complementarity
(providing insights which are unobservable if data from a
single sensor are analyzed) and redundancy (particularly
useful while dealing with noisy or missing data) of hetero-
geneous process data (Gao et al. 2020; Zhao et al. 2024).

For example, Li et al. (2022) performed in-situ product
quality monitoring in a metal 3D printing process using
heterogeneous sensor measurements. A convolutional neu-
ral network (CNN)-based data fusion approach was adopted
to combine the disparate yet relevant signals from a digital
camera, a microphone, and a photodiode, measured at
different rates. The main bottleneck in these applications is
the scarcity of training data. This limitation arises because
acquiring sufficient data necessitates running the actual
process for extended periods, which can be time-consuming
and resource intensive.

Lu and Jayaraman (2023) demonstrated the use of paired
variational autoencoders (Pair-VAE) for correlating low-
resolution small-angle X-ray scattering (SAXS) data with
high-resolution scanning electron microscope (SEM) images,
where both originated from the same sample location. This
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approach holds promise for implementing inline metrology
in nanomanufacturing. However, a key challenge arises
when attempting to integrate inline optical metrology data,
which inherently represents larger sample areas compared
to high-resolution microscopy images. To ensure signals
correspond to the same process region, techniques like
fiducial markers (Poto¢nik et al. 2022) are valuable for
automated object tracking in R2R manufacturing. However,
these markers may not be suitable for high-resolution AFM
due to inherent size limitations.

Sensor data fed into fusion systems can be corrupted by
various failures, arising from process or equipment faults,
leading to inaccurate estimates if fused with valid data
(Kumar et al. 2006). Sensor redundancy, where multiple
sensors monitor the same phenomenon, allows for cross-
checking and filtering out faulty data points. Furthermore,
robust fusion algorithms can be implemented that are less
sensitive to outliers and can down-weigh the influence of
potentially corrupted data in the final estimate. The signifi-
cant disparity in data acquisition rates between high-
resolution imaging and faster optical metrology necessitates
careful data fusion techniques to prevent out-of-sequence
integration. Out-of-sequence measurements (OOSM) can lead
to inaccurate controller inputs due to mismatched informa-
tion, potentially causing fabrication errors and unreliable
device performance. These OOSM can be misinterpreted as
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Figure 3: A schematic illustrating the multiscale, multiresolution nature of the metrology framework. Optical metrology techniques operate at high
speeds, yielding web-wide information at lower resolutions. The peaks in the intensity plot correspond to wavelengths that are strongly reflected by the
material. Inline AFM provides local (marked by blue squares, see blow-up) nanoscale feature-level information at lower speeds.
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inconsistencies by the fusion algorithm. The challenge lies in
effectively incorporating these often-older data to update the
current estimate while accounting for the correlated process
noise between the current time and the time of the delayed
measurement (Khaleghi et al. 2013). A simple solution is
discarding OOSM, but this leads to information loss and per-
formance degradation if OOSM is prevalent (Kim et al. 2018).

Furthermore, the data fusion process can generate
“out-of-distribution” (OOD) features when combining sensor
signals with inherent inconsistencies. This is particularly
relevant for neural networks, which have been shown to
assign high confidence to unexpected OOD inputs that fall
outside the data they were trained on (Ming et al. 2022). This
highlights the critical role of OOD detection in data fusion
with neural networks. By identifying and handling these
unknown OOD inputs, the algorithm can apply safety pre-
cautions and avoid making unreliable predictions based on
out-of-scope data. Further research on synchronization, data
validation, and advanced fusion methods are crucial for
ensuring reliable control based on a comprehensive picture of
the nanoscale features.

3.4 Key findings for R2R
nanomanufacturing: metrology

— An inherent limitation of sensors with nanoscale reso-
lution is that they can only cover a limited (from a
macroscopic perspective) area of the substrate, and
additional effort is required to obtain relevant nano-
scale information for the entire substrate at all times
(i.e., inline). One possible solution to this problem is
using an inline AFM for acquiring real-time nanoscale
data directly during the manufacturing process since it
requires minimal sample processing and causes mini-
mal damage.

—  While electron microscopy offers unparalleled resolu-
tion for analyzing nanostructures, it presents signifi-
cant drawbacks in the context of R2R manufacturing
with flexible substrates. The technique’s limitations in
sample size restrict its applicability for monitoring
large, continuous webs. Additionally, the extensive
preprocessing steps required to prepare samples for
electron microscopy and requirements on vacuum
during measurement, are incompatible with the real-
time, in-line process control needed in R2R setups.

— Increased dependence on inline and virtual metrology:
It is infeasible to isolate samples of fabricated nano-
structures for offline inspection until the final products
are produced. This contrasts with semiconductor
manufacturing where actual metrology data from
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intermediate process steps are more easily available.

Consequently, offline metrology data could lag signifi-

cantly behind upstream fabrication processes. This

leads to increased dependence of VM models on inline
metrology data. Hence, it is essential to obtain feature
dimensions (inline) with high accuracies at nanoscale.

— The use of machine learning approaches to enable
improved inline process monitoring can take the
following forms:

— Learning and filtering environmental factors —
enabling image denoising to reconstruct high quality
images while improving data acquisition speeds.

— Integration of multiscale and multimodal data for
process monitoring, which may not be feasible using
first principles modeling approaches.

— Fast computation of solutions to inverse problems
using optical metrology information.

— Virtual Metrology techniques can be adopted due to
the sparse nature of high-resolution in-situ and
ex-situ measurements (actual metrology data) in a
continuous R2R setup. Moving window approaches
can be explored to enable automated model training
for inline implementation, to counteract the effects
of process non-stationarities/drifts.

Machine learning for process
control

Limitations in the mechanistic understanding of the com-
plex interactions among materials, pressures, temperatures,
and chemicals involved in nanofabrication become a critical
hurdle to achieving tight control, especially as device fea-
tures shrink and performance demands increase. Atomic
layer processes are typically nonlinear, and several methods
have been investigated to integrate nonlinear input-output
relationships into run-to-run (RtR) control models in the
semiconductor industry (Smith and Boning 1997). Atomic
layer deposition (ALD) exemplifies this, using sequential,
self-limiting surface reactions with reactive gaseous pre-
cursors and purge cycles to control film thickness and
composition precisely. The process’s nonlinearity stems
from the interactions among surface reactions, precursor
adsorption/desorption, and transport phenomena. Nwanna
et al. (2022) identified a nonlinear relationship between flow
rates and film deposition rates, with lower purge flow rates
enhancing mass fraction distribution and deposition rates
due to increased precursor residence time. Additionally, the
rate of surface reactions is nonlinearly dependent on tem-
perature, another potential manipulated variable (along
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with flow rates) for process control. An approach to
nonlinear process control, as proposed by Yun et al. (2022),
involves linearizing a pre-generated, non-linear dataset
using a sigmoidal-like, median-effect equation. This essen-
tially transforms the complex data into a format that a linear
R2R control model can work with. Another study investi-
gated and compared two different run-to-run (RtR) control
strategies for spatial thermal atomic layer etching of
aluminum oxide thin films. One approach utilized a control
law based on an artificial neural network (ANN) in feedback
with the actual process to achieve disturbance rejection ca-
pabilities, while the other relied on a traditional Exponen-
tially Weighted Moving Average (EWMA) method (Tom et al.
2022). It was found that while a lower EWMA weight effec-
tively minimized noise and variance during shift distur-
bances, it failed to achieve the desired target when subjected
to a non-deterministic drift disturbance in simulations. In
contrast, the ANN-based RtR controller successfully miti-
gated the effects of both mild and severe shift disturbances,
as well as drift disturbances.

A key difference between nanomanufacturing process
control and traditional chemical process control lies in the
higher frequency of tool maintenance and repair. This is
driven by the increased sensitivity of nanomanufacturing
processes to environmental contaminants. Even minor
imperfections on tools or the presence of foreign particles
can significantly impact the precise control required at the
nanoscale. Product specifications should be regulated using
feedback control to compensate for tool degradation.

In the context of manufacturing, system identification
plays a vital role in making production scheduling decisions,
enhancing control policies, and adapting to changes in pro-
cess requirements and system structures. By utilizing
approaches like machine learning algorithms or genetic
programming, system identification can address the short-
comings of traditional approaches and offer more accurate
models that reflect the dynamic nature of manufacturing
systems (Denno et al. 2018). There is increasing interest
in approaches that decrease reliance on process models
for controlling complex dynamical systems. Traditional
modeling techniques can fail to capture the multiscale
nature of systems, especially in scenarios involving large
state and action spaces and multiple inputs and outputs. The
use of simplified linearized process models often hecomes
necessary, either due to the impracticality of constructing
nonlinear models or to minimize the issues of computational
burden and solution intractability associated with nonlinear
models (Spielberg et al. 2019).

Developing accurate process models in industrial
settings is particularly time-consuming and challenging, and
it frequently requires model reidentification runs that can
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halt plant operations for extended periods. Reinforcement
learning (RL) offers substantial advantages in addressing
these challenges through its model-free approach, which
learns action policies (i.e. an implicit control law) directly
from interactions with the environment, thereby obviating
the need for precise pre-existing models. RL’s adaptability
enables it to manage environmental or process dynamics
changes without requiring explicit model updates, making it
well-suited for handling multiscale disturbances and com-
plex dynamics. Advanced RL algorithms can effectively
manage continuous state and action spaces, facilitating more
precise and nuanced control strategies (Cai and Vasile 2021).

Deep RL (DRL) techniques offer inherent flexibility and
generalization capabilities, reducing the need for constant
parameter tuning and control law redesign (Bougie et al.
2022). Additionally, RL can be integrated with other meth-
odologies, such as wavelet analysis, to bolster its capacity to
manage multiscale disturbances and complex dynamics
(Ganesan et al. 2007). In contrast to model-based approaches
such as robust MPC which incorporate model uncertainties
directly into the optimization framework, DRL controllers
continuously update network parameters at each sampling
instant based on their latest observations, thus not requiring
external tuning efforts (Spielberg et al. 2019).

On the other hand, the assumptions of discrete-time
dynamics and the availability of complete state information
in RL-based controllers hamper their implementation in the
industry. In the context of nanofabrication, Leinen et al.
(2020) demonstrated the use of RL to autonomously manip-
ulate single molecules despite challenges posed by envi-
ronment non-stationarity and limited state observability at
the nanoscale. Implementing RL-based controllers in
continuous nanomanufacturing requires careful selection of
variables for the RL state vector. This selection is critical as it
influences the number of trials needed for training and the
feasibility of achieving effective control. If the chosen state
description does not adhere to the Markovian property,
successful control may not be guaranteed. At the nanoscale,
the use of hybrid learning approaches is recommended
(Leinen et al. 2020), by integrating fundamental process
physics knowledge in simulations to steer the agent’s
exploration of potential solutions.

4.1 Machine learning for process fault
detection and classification

Typical inline metrology datasets include images and
spectra. ML algorithms can help identify empirical correla-
tions within such data at fast rates once models are trained
off-line, prior to their deployment. The use of supervised
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learning approaches such as convolutional neural networks
for the analysis of images (which are inherently spatially
correlated) has been successful (Guo et al. 2017; Hussain et al.
2019; Li et al. 2014).

Deep learning has been widely employed for image
recognition, enabling automatic image categorization and
labeling. For example, Anand et al. (2021) focused on
leveraging deep learning techniques to enhance the in-
spection process and reverse defects in nanopillar arrays,
crucial for advancing next-generation transistors. By opti-
mizing the use of a small dataset of defective nanostructures,
this method demonstrated improved efficiency in identi-
fying and rectifying collapsed nanostructures, offering a
versatile platform for high-throughput inspection and defect
elimination in 3D nanofabrication processes. In a production
setting, it is highly likely (and preferable) that the number of
defective samples will be small. Another example involves
the use of predictor-corrector CNN models to address the
challenge of high sensitivity of photonic devices to nano-
fabrication process variations (Gostimirovic et al. 2023). By
automatically correcting design layouts before fabrication,
these models aim to enhance the fabrication fidelity of
photonic devices, ensuring higher quality and performance
in the final products. Prior to deploying such models on
running processes, they must be trained offline on large,
high-quality datasets which can take a considerable amount
of time. A key challenge lies in accounting for potential class
imbalance in training datasets while building neural
network-based classifiers for defect classification, especially
since the amount of “normal” operating data would far
exceed the amount of “faulty” process data.

Advances in process design alone may not guarantee
product quality due to the complexity and nature of
uncertainties and disturbances involved in multistage
manufacturing processes. Fault detection and classification
(FDC) in manufacturing processes is therefore crucial for
ensuring products with high standards and the reliable and
safe operation of industrial equipment. Since unexpected
deviations in sensor measurements from actual values can
degrade control performance, determining if a fault has
occurred using additional data (besides metrology) is
important. This means that information from the operation
of the machines (speed, tension, temperature, power, etc.)
and controllers can be fused with metrology data to make
the determination (typically binary) regarding whether the
product is “normal” or a fault has occurred — the con-
struction of a decision rule, for which statistical methods
such as multivariate control charts are among the most
widely used.

A conventional approach to FDC involves an assumption
that the observations fall within a multidimensional Gaussian
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distribution with unknown mean and variance structure. In
such a scenario, the Hotelling t statistic is the most appro-
priate method to detect faults arising from shifts in means of
observations. Prior to the implementation of such a rule, it is
recommended to reduce the dimensionality of data using
projection methods such as principal component analysis
(PCA), which finds place in a host of literature concerning FDC
in a wide range of industrial processes (Russell et al. 2000;
Venkatasubramanian et al. 2003). The next logical step in FDC
involves the determination of the cause of the detected fault. A
widely used solution is the contribution plot, which shows the
contribution of each process variable to the statistic calcu-
lated. A high contribution of a process variable usually in-
dicates a problem with this specific variable (Westerhuis et al.
2000). Smith et al. (2024) present a Riemannian framework for
material shape analysis. This domain-agnostic, computation-
ally efficient method integrates well with common data
analysis techniques (statistical moments, dimensionality
reduction, statistical process control). Unlike ML-based image
analysis, it does not require large amounts of well-sampled
training data particularly containing substantial defective
samples.

4.2 Process control in R2R manufacturing

Continuous manufacturing in R2R setups on flexible sub-
strates calls for increased automation in controlling the size,
uniformity, and quality of nanostructures. Implementation
of real-time process control in such a setup needs to over-
come challenges such as limited physics-based process un-
derstanding and the unavailability of in-situ measurements
of important process variables. The continuous nature of
R2R processes means that variations at one stage can prop-
agate downstream, potentially leading to cumulative quality
deviations. Identifying the true source(s) of such variations
using metrology information predominantly acquired
downstream in the processing line is critical to ensuring
tight product quality control.

Graff and Djurdjanovic (2022) investigated the use of
single input-single output (SISO) control strategies on an
R2R-based physical vapor deposition process, to control the
deposited film thickness with sputtering power as the input
variable. Spectroscopic measurements on finished portions
of the web aided in film thickness estimation and the
modeling of film thickness as a function of input power. This
highlights the need for reliable data-driven process models
to achieve control of desired variables for all such constit-
uent processes in R2R nanomanufacturing. In a more real-
istic scenario involving multiple manipulated and controlled
variables (Multiple input-multiple output; MIMO), there
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typically exist non-linear and interactive relations among
the variables, and consequently, the complexity of model
building increases. Since measurements of outputs are ex-
pected to be made downstream of the actual process, they
can lag the process significantly.

Just like metrology, control in continuous nano-
manufacturing must also consider multiple and disparate
time and length scales. This requires tight control of web
tension and web speed at the macroscopic level and feature
dimensions at the nanoscale. The reader is referred to
existing literature on of web tension, speed, and position
control problems (Feng et al. 2021; Lee et al. 2020; Raul and
Pagilla 2015; Yan and Du 2020). High radial stresses induced
during web take-up are recognized to be a significant
contributor to post-winding product deformation.
Conversely, insufficient radial stresses can lead to web
loosening. As winding tension is the sole controllable
parameter influencing the radial stress state within the web,
these considerations establish critical constraints on the web
tension control strategy. The maximum operating web speed
should enable the slowest step of the process to be operated
robustly in the case of a single-pass, single-line operation.
Otherwise, the operation can be split into more than one
line, each operating at a different speed (multi-line), or by
running the web multiple times through the same line at
different speeds, performing different operations in each
pass (multi-pass). However, a multi-pass/multi-line opera-
tion incurs additional cost and lowers throughput, and
hence should be avoided to the extent possible. Additionally,
a multi-pass operation suffers from another important
limitation-that of producing sheets possessing nano-
structures with noticeable variations along the CD.

The creation of nanoscale objects is irreversible in that
reworks on existing nanostructures are nearly impossible.
Therefore, the feedback loop can only ensure improvements
to the quality of nanostructures fabricated subsequently
(Willmann et al. 2014). Since the large-scale R2R production
of nanostructures will be advantageous from a cost
perspective only if scrap rates are kept low, an important
goal is to minimize the amount of substandard products
generated. Much variation in the process arises during start-
up and shutdown, and tightening control in these regimes
can increase product yields.

Rollers and substrates are critical components of an
R2R manufacturing system at the macroscale. In paper
production, fluctuations in web tension have been found to
impact the rheology of ink deposited on the substrate. Since
the post-exposure development of coated polymer films
requires the use of a solvent, ensuring its uniform distri-
bution becomes key to the generation of uniform
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nanostructures, which becomes yet another reason to
tightly control web tension. Lateral motion errors can
create wrinkles in a moving web subsequently leading to
register errors. It was found that tension-related distur-
bances accumulating in webs through tension transfer
could also lead to register errors (Lee et al. 2022).

Most of the current industrial R2R processes are not
fully observable due to the lack of sufficient in-situ sensors
which are cost-effective. Virtual metrology approaches
have been proposed (Jin et al. 2019; Shui et al. 2019) which
aim to predict spatial variations in substrate characteris-
tics (alignment, speed, tension, etc.) by integrating first
principles models based on web kinematics and sparsely
available physical sensor measurements. As discussed
earlier, increased availability of estimated/measured var-
iables at high spatial and temporal granularities would
allow for more reliable detection of faults and/or defects.

The presence of different sampling rates associated
with high resolution versus large area metrology tech-
niques lend itself to the use of multirate control strategies
(Dai et al. 2022; Li et al. 2020). A single controller regulating
multiple outputs sampled asynchronously at different
frequencies providing control moves at fast rates, can be
designed with the aid of decentralized multirate state
estimation schemes (Sun et al. 2024; Zhang et al. 2022).
However, a Kkey distinctive feature of the nano-
manufacturing problem is that the input variables of such
a controller pertain to vastly different length scales,
and using a single controller could pose numerical
challenges.

At the nanoscale, the metrology techniques reviewed
earlier represent the foundation of controlling feature
creation and ultimately the quality of the product. The fact
that information at the nanoscale is sparse in both space
and time poses an inherent challenge to control perfor-
mance and ensure product quality. Manohar et al. (2018)
investigated the problem of optimized sensor placement
for signal reconstruction using customized sets of features
extracted using data-driven approaches. Here, advantage
was taken of the fact that the dynamics of high-dimensional
states typically have low-rank representations, which al-
lows for sparse sampling and full signal reconstruction
from a small subset of measurements. However, R2R
nanomanufacturing would involve sensors with multiple
data types corresponding to different scales. A similar
challenge arises in the process control of semiconductor
manufacturing (described in greater detail below), where
actual metrology data from individual processes are
available only from measurements made on a few sampled
wafers.
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4.3 Process control in semiconductor
manufacturing

Run-to-run (RtR) control is the most common and established
control strategy used at the equipment level using metrology
data, where the processing conditions of each equipment are
updated after each batch of wafers is processed. RtR fine
tunes recipes of either the previous (feedback) or next pro-
cessing step (feedforward; to compensate for variations
caused in the previous process) to minimize the effects of
process drift and variability. While RtR control can
compensate for process and equipment drifts through
metrology feedback, it cannot compensate for metrology
drifts and uncertainties (Qin et al. 2006).

Advanced process control (APC) regulates processes fab-
wide, by determining set points for the lower-level RtR con-
trollers based on yield analysis using metrology results
obtained from finished wafers — in other words, it aims to
maximize yield, while meeting required demands. High yields
also significantly decrease manufacturing cycle times, facili-
tating timely product delivery, thus representing one of the
most important performance indices of the manufacturing
Pprocess. Various studies have proposed models to accurately
predict yield that can be used in model-based controllers in
APC; reviews of yield modeling approaches for semiconductor
manufacturing can be found in (Kumar et al. 2006; Milor 2013).

The APC layer broadly comprises the RtR controllers,
VM systems and the fault detection system. Khan et al. (2007)
designed a fab-wide control framework by utilizing VM
generated for RtR control at the wafer-level. However, a
challenge associated with the use of VM lies in maintaining
high accuracy of prediction models. In practice, machine
conditions change frequently and non-periodically, and it
thus becomes imperative to update the VM prediction
models periodically. Fan and Chang (2013) developed an
integrated APC system for wafer fabrication processes which
used a recursive moving window based VM module which
was updated whenever new metrology data became
available.

Yet another aspect that is closely related to process
control is the scheduling of manufacturing operations. The
varied nature of operations in semiconductor process
flows — from the duration of individual operations to
the nature of processing wafers within an individual pro-
cess — leads to the formation of long queues in front of
machines and a non-linear flow of products, thus calling for
incorporating production schedule optimization (Ménch
et al. 2011). Equipment failures induce downtime and
introduce variability in processing times. Critical ma-
chines, like steppers, often undergo post-repair test runs
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followed by a re-qualification process. Re-qualification
verifies if the machine meets process tolerances for wafer
production. If test runs yield non-compliant wafers, they
require rework, further extending the processing queue for
subsequent machines (Sarin et al. 2011). Since APC is con-
cerned with the operation of machines and process recipes,
the scheduling and control problems are mutually depen-
dent (Baldea and Harjunkoski 2014; Baldea et al. 2015;
Caspari et al. 2020; Santander et al. 2023; Tsay and Baldea
2020). The time scales associated with such dynamics are
comparable to those of process control, and hence inte-
grating the two problems becomes essential. Implementing
APC with a sole focus on product quality control without
considering existing schedules can interfere with fab-wide
production plans.

4.4 Key findings for R2R
nanomanufacturing: process control

Unlike in semiconductor manufacturing where the mate-
rials undergo processing as batches of multiple wafers, we
can expect processing to take place simultaneously in
different sections of a single long roll of the substrate in R2R
nanomanufacturing. Figure 4 presents a list of variables of
interest in the advanced process control for R2R nano-
manufacturing. We share some perspectives on process
control and potential challenges that are critical to R2R
nanomanufacturing which are listed below:

— Defects in the fabricated nanostructures could arise
because of faults in equipment such as rollers, sensors,
and photomask (systematic) or due to the contamination
of equipment by dust particles (random) — it becomes
essential to distinguish one type of fault from the other.

— The continuous nature of R2R nanomanufacturing
makes the process amenable to the implementation of
continuous-time cascade control strategies.

- Intermediate process steps can be nonlinear and non-
stationary, calling for data-driven process modeling for
model-based optimal control. Alternatively, data-driven
model-free control approaches such as dissipativity
learning control (DLC) (Tang and Daoutidis 2021) can be
explored to directly extract control-relevant informa-
tion from data. While potentially less comprehensive
than a complete dynamic model, such an approach ex-
hibits a more direct relationship with control
performance.

— Alongside inline metrology on samples performed after
resist development, machine vision systems can be placed
to monitor the progression of the photoresist material
through intermediate processes up to and including
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Figure 4: Manipulated, controlled and disturbance variables for R2R nanomanufacturing using near-field holographic lithography: an exemplar process.

development. Virtual metrology models can be con-
structed for each zone using data (line scan images, web
tension, speed, rates of reaction, etc.) corresponding to
that zone.

— The sequential single-line nature of R2R nano-
manufacturing makes it more vulnerable to large
process downtimes since a single piece of faulty
equipment would result in the entire process shutting
down. In general, the overall throughput is expected to
be limited by the slowest intermediate process step.
Scheduling of manufacturing operations in such
systems requires further research, which could make
use of reinforcement learning (RL)-based approaches
(Wang et al. 2021).

- Production of multiple types of nanostructures would
require intervention in the form of updating processing
conditions in various units. For instance, in the case of
IL, this could mean changes in photomasks used, light
dosage, exposure times, or development conditions.
Semiconductor manufacturing typically allows for the
use of recyclable “pilot” or test wafers during process
changeovers for equipment qualification or stabiliza-
tion of process performance, due to the batch nature of
unit operations (Yugma et al. 2015). In the entirely
continuous R2R manufacturing setup, such an arrange-
ment is infeasible, which could result in higher scrap
rates than desired.

5 Conclusions and outlook

High-throughput continuous nanomanufacturing offers
numerous opportunities for machine learning based yield
control. One of the most impactful application areas for ML in
manufacturing is computer vision (CV)-based part inspection
and process monitoring at multiple length scales. Utilizing
cost-effective sensors like spectral cameras coupled with ML
algorithms can enable high-throughput part inspection, as
established by a wide body of literature in the past decade
(Li et al. 2019; Macaulay and Shafiee 2022; Park et al. 2016;
Rossi et al. 2021). The findings of this article highlight the
pivotal role ML can play in speeding up process control to
real-time operations. ML models can be trained as virtual
sensors or soft sensors, estimating critical process variables
and quality attributes in real-time from available sensor data,
enabling tight process monitoring without relying solely on
physical sensors that may have measurement delays.

ML offers an effective approach for boosting throughput
in continuous nanomanufacturing processes by leveraging
two key techniques: noise reduction and image super-
resolution. Inherent noise in sensor data can be filtered by
ML algorithms trained to recognize and remove these pat-
terns, leading to cleaner data for real-time monitoring and
control (Tian et al. 2020; Yu et al. 2019). Furthermore, ML can
enable image super-resolution by analyzing imperfect
measurement data and reconstructing a high-resolution
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image of the nanostructures (Wang et al. 2021; Yang et al.
2019). This would allow for measurements at increased web
speeds without compromising measurement quality.

Additionally, ML algorithms can build predictive models
mapping process parameters to current and future process
behavior and product quality, which can then be leveraged
for model predictive control strategies, anticipating future
dynamics, and taking proactive corrective actions to main-
tain optimal operating conditions in real-time. The paralle-
lization and scalability of ML algorithms across distributed
computing infrastructure allow for handling large volumes
of sensor data and performing computationally intensive
modeling and control tasks in real-time. However, chal-
lenges around handling process constraints, dynamics, and
multi-objective optimization need to be addressed for
effective process control and optimization. Limitations such
as interpretability issues, lack of robustness, and ability to
generalize to arbitrary processing conditions necessitate a
case-by-case cost-benefit analysis. Established algorithms
with well-defined physical models and limited data needs
may be preferable due to their lower computational
complexity and explainable outputs. Other challenges
include handling noise, data scarcity and correlating defects
with process parameters. A collaborative approach, where
ML complements established physics-based methods, is
likely for the foreseeable future.

While parallel deployment of multiple ML models in
continuous nanomanufacturing is natural, a parsimonious
approach is recommended. Complex models can be
computationally expensive on standard hardware, and
excessive models hinder human intervention during trou-
bleshooting. Data-driven discovery of underlying physics,
leading to interpretable process models, is preferable over
opaque “black box” models.

Reliable AI models for multi-scale, nonlinear processes
require strategic sensor placement. Optimizing scanning
paths for high-resolution data and collecting multi-zone
optical measurements are crucial for capturing process
behavior across different length scales. However, controlling
variables across these scales can lead to numerical insta-
bility (model stiffness) for simulation and optimization
owing to vast differences in characteristic scales. A major
challenge lies in developing theoretical criteria for observ-
ability (state estimation) and controllability (state manipu-
lation) in these systems, especially considering the
nonlinearities inherent to neural network models. For multi-
physics, multi-scale phenomena, sensor placement needs to
account for intricate cross-scale interactions to effectively
capture these complexities in a ML model. Furthermore,
ensuring observability and controllability with opaque
neural networks remains an obstacle for reliable sensor
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placement and model building. In essence, optimizing sensor
placement for robust Al models in such domains necessitates
interdisciplinary research addressing challenges in efficient
data acquisition, multi-zone coverage, bridging disparate
scales, mitigating numerical stiffness, and developing theo-
retical frameworks for observability and controllability
analysis of complex ML models.

In conclusion, bridging the gap between the promise
and reality of ML in nanomanufacturing requires a syner-
gistic research approach. This demands the formation of
collaborative teams comprised of specialists in disparate
fields. Machine learning engineers will be crucial for
developing robust algorithms and data pipelines. Nano-
technologists and materials scientists will provide critical
domain expertise to guide model development and ensure
physical feasibility. These steps would also help address data
scarcity for developing ML models. Researchers should
encourage data sharing, establish centralized repositories,
and engage the broader scientific community to contribute
anonymized datasets. By embedding domain-specific phys-
icallaws into ML models, we can enhance their accuracy and
feasibility within the nanomanufacturing context.
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