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Abstract: High-throughput and cost-efficient fabrication of

intricate nanopatterns using top-down approaches remains a

significant challenge. To overcome this limitation, advance-

ments are required across various domains: patterning tech-

niques, real-time and post-process metrology, data analysis,

and, crucially, process control. We review recent progress in

continuous, top-down nanomanufacturing, with a particular

focus on data-driven process control strategies. We explore

existing Machine Learning (ML)-based approaches for

implementing key aspects of continuous process control,

encompassing high-speed metrology balancing speed and

resolution, modeling relationships between process parame-

ters and yield, multimodal data fusion for comprehensive

process monitoring, and control law development for real-

time process adjustments. To assess the applicability of

established control strategies in continuous settings, we

compare roll-to-roll (R2R) manufacturing, a paradigmatic

continuous multistage process, with the well-established

batch-based semiconductor manufacturing. Finally, we

outline promising future research directions for achieving

high-quality, cost-effective, top-downnanomanufacturing and

particularly R2R nanomanufacturing at scale.

Keywords: nanomanufacturing; roll-to-roll processing;

process control; machine learning; inspection and quality

control; metrology

1 Introduction

Nanotechnology, the manipulation of matter at the

atomic and molecular level (1–100 nm), has emerged as a

transformative field with the potential to revolutionize

numerous scientific and technological domains. A crucial

aspect of realizing this potential lies in nanomanufacturing,

the scaled-up, cost-effective, accurately controlled fabrica-

tion of structures, devices, and systems at the nanoscale

(Alexander Liddle and Gallatin 2016). This burgeoning field

presents a unique set of challenges and opportunities

compared to conventional manufacturing techniques. The

rapid, continuous processing offered by high-throughput

roll-to-roll (R2R) nanomanufacturing is acknowledged as a

critical technology for the development and production of

various next-generation devices and flexible electronics

(Palavesam et al. 2018; Phung et al. 2021; Zou et al. 2018).

Scaling involves overcoming hurdles in areas such as

achieving high production rates, ensuring consistent prod-

uct quality across runs, maintaining precise control over the

manufacturing process, optimizing efficiency, while keeping

costs competitive.

Analysis (real-time or otherwise) of information across

all the relevant time and length scales for high-throughput

nanomanufacturing is challenging because of the generation

of massive datasets with intricate relationships which

exceed the human ability to manually interpret and extract

meaningful insights. Machine learning (ML) encompasses

algorithmic approaches designed to uncover patterns and

relationships within data. In nanotechnology and by exten-

sion nanomanufacturing, such techniques find applications

in the analysis of large datasets, materials design and dis-

covery, and the optimization of production processes

(Brown et al. 2020). Data-driven approaches also support

model-based control since building a unified process model

based on first-principles approaches for such complex,

multi-stage processes is neither straightforward nor prac-

tical (Ulbrich and Bloemen Waanders 2018). Furthermore,

these processes are likely to exhibit non-stationarity, caused

by factors like process drift. As a result, the corresponding
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process models become increasingly complex and chal-

lenging for human operators to maintain and update.

Methods for creating products with nanoscale features

fall into two broad categories: bottom-up and top-down.

Bottom-up approaches are suitable for manufacturing

nanostructures with complex geometries and rely on

spontaneous self-assembly processes at the atomic scale.

They are driven predominantly by thermodynamic fac-

tors. Examples of bottom-up approaches include colloidal

self-assembly and DNA-based self-assembly. Self-assembly

of colloidal particles can generate superstructures of

various dimensions, phases and symmetries and enables

the manufacturing of smart materials and devices with

highly tunable properties (Z. Li et al. 2022). In DNA-based

self-assembly, DNA strands act as template materials

which organize disparate nanostructures to construct

relatively complex features. While they can produce

macroscopic products with nanoscale features, they

are inherently slow, and suffer from a lack of long-range

order and precise control when operated under non-

equilibrium conditions. Bottom-up approaches are prom-

ising for laboratory-scale nanofabrication, but improving

the yield of self-assembled structures remains a grand

challenge. Most bottom-up strategies require external

inputs like guide structures, and they often suffer from a

relatively high rate of defects that cannot easily be cor-

rected (Fourkas et al. 2021).

Top-down techniques, on the other hand, offer the ability

to precisely control the yield and geometry of nanostructures,

while ensuring long-range order and high speed. They are

therefore better suited for large-scale nanomanufacturing of

nanostructures. Integrated circuit (IC) manufacturing repre-

sents the salient example of top-down nanomanufacturing.

Modern photolithography tools such as extreme ultraviolet

(EUV) lithography offer superior resolution and feature

quality, capable of achieving sub-10nm critical dimensions.

However, its application is primarily focused on high-volume

manufacturing of microelectronic integrated circuits due to

the exorbitant cost of EUV systems, exceeding one hundred

million euros (Zheng et al. 2021). Nanoimprint lithography

(NIL), which is an emerging candidate for high-throughput,

high-resolution, low-cost nanomanufacturing, uses a hard

mold for embossing on a polymer film, either at high tem-

peratures (Thermal NIL) or in the presence of UV radiation

(UV-assisted NIL). Nanostructures fabricated by the above-

mentioned techniques typically have low aspect ratios and

are of lower complexity than in the case of bottom-up

methods. Interference Lithography (IL) is a closely related

top-down nanofabrication technique that allows for produc-

ing 3D nanostructures of arbitrary shape, but the gains in

feature complexity come at the loss of processing speed and

increased effort for tool setup (viz. coherent optical system

with laser source, high-precision mechanics such as work

stages for accurate positioning, and beam splitters like

Lloyd’s mirrors and diffraction gratings).

As of yet, devising a technique or combination of

techniques for producing top-down, large-scale, complex

nanopatterns at high speed, high quality and reasonable

cost remains an open and important scientific and tech-

nological question. Addressing this challenge entails

advances in feature creation technology, online and offline

metrology, data processing and process monitoring and

control. Large-scale manufacturing of nanoscale devices

comes with many possible applications in electronics,

optics, plasmonics, etc. There are many applications

requiring large-scale manufacturing of homogeneous

nanostructures. Two such examples are the generation

of semiconductor nanowires with carefully controlled

morphologies for large-scale production of solar cells

(Wallentin et al. 2013), and the production of ultrafiltration

membranes for water purification. The latter could serve

as an ideal candidate for sheet-based nanomanufacturing.

This review explores recent progress in continuous, top-

down nanomanufacturing with emphasis on data-driven

approaches in the context of process control, while defining

the current state-of-the-art in key areas and applications.

Process control in continuous nanomanufacturing in-

volves the following aspects – discussed in greater detail in

the subsequent sections (Figure 1):

– Identification of appropriate devices and methods to

measure relevant process variables at high speeds while

accounting for speed-resolution tradeoff, especially in

imaging.

– Modeling of variables representing product quality

(which could include feature dimensions, uniformity,

etc.) in terms of process and equipment parameters.

– Fusion and interpretation of multimodal data corre-

sponding to multiple length and time scales, to detect

equipment (tool) and product defects, if present.

– Inferring process states to determine appropriate

control actions based on a developed control law.

We perform a comparative analysis between R2R

manufacturing (representative of continuous multistage

manufacturing processes) and the industrially well-

established semiconductor manufacturing (representative of

batch processing), to identify the suitability of control strate-

gies commonly used in the latter for R2R manufacturing. The

remainder of this article is organized as follows: Section 2

provides a brief discussion of the history and evolution of
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micro/nanofabrication and potential nanopatterning ap-

proaches to creating nanoscale features at large scales. Sec-

tions 3 and 4, respectively, present discussions of the

metrology requirements and overall process control along

with process fault detection for the problem of R2R contin-

uous nanomanufacturing.We highlight the use of data-driven

approaches to solve relevant problems in R2Rmanufacturing

and semiconductor manufacturing as reported in the litera-

ture. Section 5 provides concluding remarks along with sug-

gestions for future research directions.

2 Evolution of micro/

nanofabrication techniques,

transition to continuous

nanomanufacturing

The field of micro/nanofabrication has its roots in the

1950s–1960s, heavily influenced by the needs of the semi-

conductor industry (Campbell 2001; Jaeger 2002; Plummer

et al. 2000). Early techniques focused on photolithography

and thin film deposition for microfabrication. The minia-

turization of transistors, a key driver of modern elec-

tronics, has relied heavily on advancements in

photolithography. Over the past several decades, this

technique has become the cornerstone of IC fabrication.

Photolithography involves transferring a pattern from a

photomask onto a substrate, usually a silicon wafer, using

light. The process starts with the application of a photo-

sensitive material called photoresist on the substrate.

When exposed to light, the photoresist undergoes a

chemical change, which allows the subsequent selective

removal, via development, of either the exposed or unex-

posed regions, depending on the type of photoresist used,

to create the desired pattern on the substrate. The reso-

lution of the patterns created by photolithography is

determined by the wavelength of light used, with shorter

wavelengths allowing for finer features. The process can

be repeated multiple times to build complex structures,

such as those found in ICs. Advancements in lithography,

such as deep ultraviolet (DUV) photolithography, enabled

the creation of smaller features and more complex inte-

grated circuits. The 1990s brought forth soft lithography

and nanoimprint lithography (NIL) (Chou et al. 1996),

perhaps being the first step towards continuous patterning

of 2D or low aspect ratio 3D nanostructures. Additionally,

there is an emphasis on developing scalable nano-

manufacturing methods, 3D micro/nanofabrication tech-

niques, and novel materials with unique properties at the

micro/nano scale.

The unique properties of periodic 3D nanostructures,

stemming from their micro/nanoscale features, have long

been a subject of research. Photonic crystals, for instance,

exhibit tailored dispersion behavior due to their periodic
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Figure 1: Components of ML-driven process control in a continuous nanomanufacturing framework.
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dielectric profiles. This photonic bandgap allows precise

control over light transmittance and reflectance by manip-

ulating the structural periodicity (Campbell et al. 2000;

Krauss et al. 1996; Lin et al. 1998; Noda et al. 2000; Qi et al.

2004). Additionally, the high surface area-to-volume ratio of

these nanostructures makes them ideal for applications in

fast-charging battery electrodes and solar cells (Fan et al.

2009; Zhang et al. 2011). Beyond photonics and energy ap-

plications, 3D nanostructures offer intriguing mechanical

advantages. They circumvent limitations inherent to

macroscale materials, enabling the design of mechanical

metamaterials with groundbreaking properties. Studies

have demonstrated that periodic nanoarchitectures, or

nanolattices, display superior recoverability (Bagal et al.

2017; Jang et al. 2013; Meza et al. n.d.) and unconventional

behaviors like negative Poisson’s ratio or stiffness (Evans

1991; Lakes 1987; Lakes et al. 2001). Furthermore, they exhibit

superior scaling of stiffness and strength with reduced

density compared to random porous microstructures (Lee

et al. 2010). Nanolattices can also exhibit interesting prop-

erties in other physical domains, including refractive indices

close to unity (Zhang et al. 2015), improved light trapping

(Zhang et al. 2017), and exceptionally low thermal conduc-

tivity (Dou et al. 2018). Widespread societal benefits from

such impactful advances hinge on breakthroughs in large-

scale nanomanufacturing.

Existing top-down approaches to fabricating 3D nano-

structures include Focused Ion Beam (FIB), two-photon

polymerization (TPP) (Cumpston et al. 1999), and electron-

beam lithography (EBL) (Vieu et al. 2000). These methods

achieve high-resolution patterning through a layer-by-layer

writing approach. However, a drawback common to these

techniques is their serial nature, requiring point-by-point

scanning, which significantly limits their throughput. In

contrast, near-field holographic lithography processes

(Kagias et al. 2023; Nesse et al. 2019; Paik et al. 2020) can

produce 3D nanoscale features of desired shapes in a single

light exposure using sub-diffraction metasurface photo-

masks. Therefore, higher throughputs can be expected upon

their integration with R2R setups. The complexity of the 3D

structures can be further enhanced by allowing for the

registration of 2nd and higher order diffraction patterns on

photoresists (Chang et al. 2011; Zhang et al. 2013).

The most economical large-scale processes are contin-

uous (note that IC production is largely a batch process) in

nature and consequently, it is of interest to develop a

continuous nanomanufacturing process. The focus of this

review is on Roll-to-Roll (R2R) technology owing to its sim-

ple transport principle and continuous nature of the

manufacturing process (Figure 2). However, we note that

there are several transport principles in the substrate

(web)-based manufacturing paradigm, such as sheet-to-sheet,

sheets-on-shuttle and roll-to-sheet (Willmann et al. 2014).

Within this paradigm, a planar (2D) substrate undergoes a

series of processing steps that result in the creation of nano-

scale features at its surface. This creates a system with two

crucial length scales: the feature size at the nanometer scale

and the substrate dimension at the centimeter scale. These

fundamental characteristics give rise to specific challenges in

feature creation, process monitoring and control.

For example, Kagias et al. (2023) observed depth-

dependent variation of periodic 3D nanostructures fabri-

cated using IL (with diameters around 460 nm, lateral

periodicity of 900 nm on a 30 μm-thick sheet) due to thermal

and chemical gradients in the photoresist material during

post-exposure development. A key process control challenge

in this process is to minimize the occurrence of such varia-

tions which also impact material properties of the nano-

structures. Certain parameters would need to be more

tightly controlled than others, which is usually dictated by

Figure 2: Schematic of a possible framework for R2R nanomanufacturing using near-field holographic lithography. One rewind roller, one unwind roller

and several idler rollers are shown. Tension in the conveyedweb is controlled by the winder but is typically adjusted by one ormore tension rollers located

within the R2R machine.

314 S. Venkatesan et al.: ML-based control in nanomanufacturing



the final product utility. For example, the functionality of

printed electronics crucially depends on high layer homo-

geneity (Su et al. 2019), while multi-layer devices with thin

dielectric materials require tight control of surface rough-

ness (Song et al. 2022). Manufacturing ultrafilters demands a

narrow pore size distribution while the exact dimensions of

pores may not be of much relevance.

3 Metrology

Metrology, as a constituent of nanomanufacturing, allows

for inspection of created features and amounts to devising

and implementing sensors with nanoscale precision. R2R

processing can drastically increase throughputs and

reduce overall production costs, but these effects can be

nullified if one waits until after a roll of finished product is

made before taking measurements on the produced nano-

structures. In the context of nanomanufacturing, advances

in imaging and image analysis form a cornerstone of

automated process control. The nature of processes and

products in nanomanufacturing makes quality measure-

ment a nontrivial task. Since effective quality control must

be done at rates commensurate with web speeds in R2R

manufacturing, metrology must work close to real-time.

Moreover, such inline techniques must also be nonde-

structive, and fairly insensitive to the rapid motion of the

object in focus and vibrations in the substrate (Maize et al.

2023).

3.1 Machine learning and metrology in R2R

manufacturing

Measurement usually involves a speed-accuracy tradeoff,

which becomes highly relevant in the case of metrology in

R2R manufacturing. For a given substrate speed, there also

exists a tradeoff between the width of the web that can be

monitored and measurement resolution. With increasing

web width, capturing the entire width of the web in a sin-

gle measurement is expected to become challenging (Maize

et al. 2023).

Techniques such as line scan imaging, hyperspectral

imaging and laser scanning which are well established in

R2R processing also show promise for use in continuous

nanomanufacturing. In imaging systems, particularly spec-

tral cameras, there is a trade-off between spatial and

spectral resolution due to limited resources such as detector

pixels and exposure time, where enhancing one often com-

promises the other. Higher spectral resolution significantly

increases data volume, impacting processing speed and

storage capacity. Efficient data handling techniques are

required to balance this with high spatial resolution. Tech-

niques like principal component analysis (PCA) or

autoencoder-based compression and parallel processing are

essential for efficient data management. Deep learning-

based image super-resolution techniques have emerged as a

solution to this problem, leveraging high-resolution

panchromatic (PAN) and low-resolution hyperspectral

(HSI) images to generate high-resolution HSI data (Wang

et al. 2021). More specifically, efforts have been undertaken

tominimize spectral-spatial distortions in generated HSIs by

employing variants of generative neural networks such as

the latent encoder-coupled generative adversarial network

(LE-GAN) (Shi et al. 2022). Narrowing down spectral data to

the relevant range of wavelengths (which is application-

specific) can also reduce the sensing cost-resolution trade-

off. There is also a growing interest in optical techniques

conventionally used in in-situ characterization such as

angular scatterometry, phase-shifting interferometry, and

Raman spectroscopy for inlinemetrology. Themost common

parameters measured by or inferred from such techniques

include defect density, defect size, film morphology (thick-

ness, roughness, topography), and optical properties

(refractive index, reflectance, transmittance). In the case of

nanomanufacturing, such techniques can provide insights

into consistency anduniformity of fabricated structures, and

detect and diagnose defects, although none of them can

measure feature sizes at nanoscale resolution. Table 1 pro-

vides a list of potential candidates for inline metrology in

R2R setups.

There is a need for increased metrology information at

higher resolutions to ensure tight quality control at the

nanoscale. Atomic force microscopy (AFM), which provides

insights into surface topography, is non-destructive,

requires hardly any sample preparation and has resolu-

tions on the order of fractions of a nanometer. Connolly et al.

(2019) developed an inline single chip-AFM (sc-AFM)

framework for a R2R process. It is modular and allows for

scaling the number of probes and approach mechanisms to

increase the overall throughput at no extra computational

cost and a negligible increase in the physical space occupied.

However, since the entire web cannot be scanned using this

method, the optimal frequency of scanning and locations to

be scannedmust be determined in order to obtainmaximum

information about the trends in dimensions of fabricated

features across the entire web, while ensuring high pro-

duction rates. There has been a general interest in the

automation of microscopy (Kalinin et al. 2021) in the context

of selecting the appropriate imaging focus regions and

microscope hardware tuning, which largely remain depen-

dent on human expertise.
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A related case of determining scanning trajectories and

locations can be found in paper manufacturing, an indus-

trially well-established problem. The machine direction

(MD) and cross direction (CD) profiles of paper properties

are measured by a scanning gauge containing an array of

sensors (Astrom 1967; Dave et al. 1997; Dumont et al. 1993;

He et al. 2015; Rippon et al. 2019; Stewart 2000; Valenzuela

et al. 2003). Sensors are typically guided in the CD while

the paper moves at high speeds, whereby the sampled

points form a diagonal trajectory on the paper sheet.

Dedicated MD and CD control systems are employed to

address temporal and spatial variations, respectively. Due to

the zig-zag sampling trajectory, a mix of MD and CD varia-

tions is embedded in the measurements. Hence, their sepa-

ration becomes an important task to generate separate

control inputs, while accounting for possible aliasing effects

(Rippon et al. 2019).

3.2 Machine learning and metrology in

semiconductor manufacturing

Semiconductor manufacturing is a complex process that

requires monitoring of several inter-related critical process

parameters from the initial stages of production to the pack-

agingof thefinal product. It comprises fourmain stages:wafer

fabrication, wafer inspection, assembly, and final testing. In

the fabrication stage, wafers undergo numerous (often hun-

dreds) sequential processing steps (deposition, lithography,

etching, implantation, polishing, etc.) in batches (groups of

tens of individual wafers). The entire manufacturing process

may require up to three months to produce a chip. Therefore,

it may takemonths since the commencement of operations to

determine product yields – requiring soft sensing in the in-

termediate stages to achieve effective process control (Qin

et al. 2006; Su et al. 2007).

Table : Optical metrology techniques for RR nanomanufacturing: potential candidates.

Technique Measured parameters Demonstrated

(inline) speed

Demonstrated resolution ML contributions and

other remarks

Angular

scatterometry

(Faria-Briceno et

al. )

Reflectance as a function

of angle of incidence

 cm/s  nm (can only be achieved in high-

ly periodic structures, a specialized

case that allows for resolution much

better than the diffraction limit)

Reflectivity-incident angle plots can

be used to monitor feature trends in

the machine direction for periodic

structures. ML approaches can help

select informative wavelengths for

analysis, reducing reference library

search times (Sabbagh et al. b)

Inline

phase-shifting

interferometry

Thickness, surface

topography, displacement

. cm/s Lateral:  μm for field of view

of mm

Vertical:  nm

Insensitive to vibrations in web and

enables single-shot measurements by

extracting phase information from a

single interferogram, overcoming

limitations of traditional methods that

require multiple exposures. Zhang

et al.  developed a one-to-

multiple deep learning framework to

generate the equivalent of multiple

phase-shifted interferograms from a

single inline interferogram

Hyperspectral

linescan imaging

Composite image over a

wide range of wavelengths

(infrared/visible/UV),

representing the entire

web or parts thereof

Not

demonstrated yet

. μm Data driven approaches (such as

k-nearest neighbors and PCA-based

schemes) can be used to determine

feature dimensions and select use-

ful wavelengths (Gawlik et al.

, ; Yue et al. )

Raman

spectroscopy

Image part of the web.

Principle is similar to angular

scatterometry, with higher

resolution but much lower

web speeds

 μm in  s

(X speeds using

wavelet-based

approaches (Yue et al.

)

 μm (Yue et al. , , ) devel-

oped a single overall metric to track

feature trends along the machine

direction, with deep learning-enabled

Raman spectroscopy improving data

acquisition rates (Horgan et al. )
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Due to cost and time constraints, wafer metrology is

performed on a statistically representative subset of wafers

after key processing steps. Metrology focuses on measuring

various properties of materials and processes, including

thickness, electrical resistance, critical dimensions (key fea-

tures on a microchip), alignment of layers, particle contami-

nation, and the rate of material removal during etching. Ex-

situ metrology plays a crucial role at each stage of semi-

conductor manufacturing as it is the predominant source of

product quality information before and after that process.

This information is used to determine whether the current

processing conditions and tools need to be adjusted in

subsequent runs. Within the manufacturing tool itself, con-

ditions like temperature, pressure, flow rate, and electrical

current are recorded at much faster timescales (in the order

of milliseconds) (Su et al. 2007). Table 2 summarizes and

compares key dimensional metrology techniques used in

semiconductor manufacturing.

Metrology delay in semiconductor manufacturing

processes is inevitable, which can adversely impact process

control performance. Another inherent limitation of

such metrology approaches to guide decision making is the

Table : Comparison of dimensional metrology methods in semiconductor manufacturing.

Technique Measured parameters Resolution

(lateral and vertical)

ML contributions and other remarks

Critical dimension-scanning

electron microscopy

(CD-SEM)

Image portions of the

wafer (wide field of view

of  nm to mm)

∼ . nm Yields top-down images providing critical IC

dimensional parameters such as linewidth,

edge roughness (Mack and Bunday ), and

contact holes (Bunday et al. ); requires

that sample surfaces be conductive and be

placed in high vacuum. Image super resolution

using generative-adversarial networks has

been explored aiming to achieve high-

resolution images with minimal electron

dosage and sample damage (Liu et al. )

Scatterometry Reflectance as a function of

wavelength/angle of incidence

Model-dependent; ∼  nm

(vertical and lateral): Note the

higher resolution compared to

that achieved in inline RR

setups

Provides data-driven model-based estimates

of overlay effects (den Boef ; Peled et al.

), critical dimensions and optical

constants of periodic patterns. Fast and

non-destructive, allows for inline measure-

ment. ML techniques have been widely applied

to monitor critical dimension variations and

solve the inverse problem of determining

dimensions from spectra (Liu et al. ; Lucas

et al. )

Atomic force

microscopy (AFM)

D surface topographical maps

and mechanical properties such

as stiffness and adhesion forces

 nm lateral, . nm vertical Little to no sample preparation required,

non-destructive, inline compatibility;

nanometer-level measurement accuracy.

Involves raster-scanning a sharp probe tip

across the sample. A recent work explored the

use deep learning approaches to autono-

mously perform AFM instrument initialization,

surface imaging, and image analysis (Kang

et al. )

Spectroscopic

ellipsometry

Ratio of the amplitude of p-polarized

to s-polarized reflected light and the

phase difference between the two

polarizations

Model-dependent Used to analyze thin films, measure layer

thickness, refractive index, and optical

constants, and study surface roughness and

composition; mainly used for depth

monitoring for D structures to ensure precise

control over film thickness. Recent works

(Li et al. ; Liu et al. ) have investigated

the use of deep learning frameworks to

accelerate the analysis of ellipsometry data for

high-throughput experimentation
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assumption that a few samples are representative of

the whole lot, which can make defect detection very chal-

lenging since only a small fraction of wafers is expected to

be faulty.

To ensure efficient production, significant efforts are

underway to improve the speed and cost-effectiveness of

metrology measurements. Researchers have developed tech-

niques to speed up SEM imaging by using optimized beam

scanning approaches (Cizmar et al. 2011; Kruit et al. 2016;

Sunaoshi et al. 2016). Such methods only acquire the data

necessary for the desired image, reducing acquisition time.

Additionally, deep learning algorithms are being imple-

mented to significantly improve both the speed and quality of

images by removing noise, with recent advancements

including patch-based algorithms for denoising low-dose SEM

images (Lazar and Fodor 2015) and reconstructing high res-

olutionAFM images from low resolution, high scan speeddata

(Natinsky et al. 2024). In such applications involving ML for

signal denoising, neural networks are typically trained on

low-resolution (LR) and high-resolution (HR) data pairs to

learn effective representations that reconstruct low-noise

outputs from high-noise inputs. Horgan et al. (2021) show that

deep learning significantly outperforms traditional spectral

smoothing algorithms like Savitzky–Golay (SG), wavelet, and

PCA, enabling effective reconstruction of Raman signatures

from low SNR spectra. In this context, wemake the distinction

of the noise in low SNR signals, resulting from high data

acquisition speeds (the noise signal of interest), from noise

present in the training data (which is universal). Another

approach utilizes machine learning with non-linear aniso-

tropic diffusion for denoising images specifically intended for

electron tomography applications (Staniewicz and Midgley

2015).

In optical metrology, extracting feature dimensions and

thicknesses from measurements falls under the mathemat-

ical category of an inverse problem (Xie et al. 2019; Sabbagh

et al. 2023a,b). This problem seeks to determine the “causes”

from the observed “effects”. Inverse problems often lack

analytical solutions and machine learning approaches such

as deep neural networks and regression-based methods

have been used (Barkhordari et al. 2024; Liu et al. 2021;

Zhu et al. 2024) to iteratively identify a set of optical pa-

rameters that best match the measured data.

Virtual Metrology (VM) in semiconductor manufacturing

leverages machine learning and statistical methods to predict

crucial properties of wafers without direct physical mea-

surement (Kang and Kang 2017; Kang et al. 2009, 2011). This

bypasses the need for expensive and time-consuming tradi-

tionalmetrology tools. Thesemodels are typically constructed

by training ML algorithms on historical process data,

including logistical and process parameters, and

corresponding physical metrology results. VM relies on data

collected from sensors embedded within the processing

equipment itself. These data include temperature, pressure,

and power consumption. Example algorithms are multivar-

iate regression and multi-level models with regularization.

Once trained, the VMsystem can estimate desired parameters

like critical dimension or layer thickness for eachwafer based

solely on sensor readings, enabling real-time process moni-

toring and optimization. Due to the high dimensionality of VM

feature spaces, arising from numerous high-frequency pro-

cess sensors, dimensionality reduction is critical. This pre-

processing step can be achieved through feature extraction,

with convolutional neural networks (CNNs) dominating this

area as of 2020 (Dreyfus et al. 2022).

VM approaches have been successful in overcoming the

sparsity challenge, a major hurdle in traditional process

monitoring where only a small subset of wafers is measured

with physical metrology tools (Maggipinto et al. 2019).

developed a deep learning approach specifically for VM in

the etching step of wafer fabrication. Their method lever-

ages optical emission spectral (OES) data, which capture the

light emitted during the etching process. By feeding these

data into a deep neural network, the VM system can infer the

etch rate for eachwaferwithin the batch. This information is

crucial for quality assessment, as an uneven etch rate can

lead to device defects.

Ensuring sustained high performance for a VM system

over long durations is difficult due to temporal variations in

the underlying data characteristics. These variations can be

caused by several factors, including internal process drifts,

equipment disturbances, external environmental fluctua-

tions, and routinemaintenance interventions. To counteract

this performance decline, VM systems must integrate real,

physical metrology data into their workflows for practical

deployments. However, increasing the dependence on actual

metrology measurements incurs a significant cost penalty.

Consequently, a critical aspect for successful VM imple-

mentation is the development of a strategic approach for

selecting wafers that require actual metrology measure-

ments (Baek et al. 2014; Hyun Baek et al. 2014; Kang and

Kang 2017; Lu et al. 2014).

3.3 Machine learning enabled-multiscale

and multimodal metrology

Understanding interactions among components of complex

systems and processes requires sensing many types of pro-

cess variables (multiple modalities). Such measurements

oftentimes span multiple length and time scales, as in the

problem of R2R nanomanufacturing, and data fusion is
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concerned with meaningfully combining and extracting

such multimodal data which typically complement one

another (Figure 3). Recent years have witnessed an un-

precedented surge in the development of deep learning

technologies to perform multimodal data fusion to study

complex systems, taking advantage of the complementarity

(providing insights which are unobservable if data from a

single sensor are analyzed) and redundancy (particularly

useful while dealing with noisy or missing data) of hetero-

geneous process data (Gao et al. 2020; Zhao et al. 2024).

For example, Li et al. (2022) performed in-situ product

quality monitoring in a metal 3D printing process using

heterogeneous sensor measurements. A convolutional neu-

ral network (CNN)-based data fusion approach was adopted

to combine the disparate yet relevant signals from a digital

camera, a microphone, and a photodiode, measured at

different rates. The main bottleneck in these applications is

the scarcity of training data. This limitation arises because

acquiring sufficient data necessitates running the actual

process for extended periods, which can be time-consuming

and resource intensive.

Lu and Jayaraman (2023) demonstrated the use of paired

variational autoencoders (Pair-VAE) for correlating low-

resolution small-angle X-ray scattering (SAXS) data with

high-resolution scanning electronmicroscope (SEM) images,

where both originated from the same sample location. This

approach holds promise for implementing inline metrology

in nanomanufacturing. However, a key challenge arises

when attempting to integrate inline optical metrology data,

which inherently represents larger sample areas compared

to high-resolution microscopy images. To ensure signals

correspond to the same process region, techniques like

fiducial markers (Potočnik et al. 2022) are valuable for

automated object tracking in R2R manufacturing. However,

these markers may not be suitable for high-resolution AFM

due to inherent size limitations.

Sensor data fed into fusion systems can be corrupted by

various failures, arising from process or equipment faults,

leading to inaccurate estimates if fused with valid data

(Kumar et al. 2006). Sensor redundancy, where multiple

sensors monitor the same phenomenon, allows for cross-

checking and filtering out faulty data points. Furthermore,

robust fusion algorithms can be implemented that are less

sensitive to outliers and can down-weigh the influence of

potentially corrupted data in the final estimate. The signifi-

cant disparity in data acquisition rates between high-

resolution imaging and faster optical metrology necessitates

careful data fusion techniques to prevent out-of-sequence

integration. Out-of-sequence measurements (OOSM) can lead

to inaccurate controller inputs due to mismatched informa-

tion, potentially causing fabrication errors and unreliable

device performance. These OOSM can be misinterpreted as
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Figure 3: A schematic illustrating the multiscale, multiresolution nature of the metrology framework. Optical metrology techniques operate at high

speeds, yielding web-wide information at lower resolutions. The peaks in the intensity plot correspond to wavelengths that are strongly reflected by the

material. Inline AFM provides local (marked by blue squares, see blow-up) nanoscale feature-level information at lower speeds.
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inconsistencies by the fusion algorithm. The challenge lies in

effectively incorporating these often-older data to update the

current estimate while accounting for the correlated process

noise between the current time and the time of the delayed

measurement (Khaleghi et al. 2013). A simple solution is

discarding OOSM, but this leads to information loss and per-

formance degradation if OOSM is prevalent (Kim et al. 2018).

Furthermore, the data fusion process can generate

“out-of-distribution” (OOD) features when combining sensor

signals with inherent inconsistencies. This is particularly

relevant for neural networks, which have been shown to

assign high confidence to unexpected OOD inputs that fall

outside the data they were trained on (Ming et al. 2022). This

highlights the critical role of OOD detection in data fusion

with neural networks. By identifying and handling these

unknown OOD inputs, the algorithm can apply safety pre-

cautions and avoid making unreliable predictions based on

out-of-scope data. Further research on synchronization, data

validation, and advanced fusion methods are crucial for

ensuring reliable control based ona comprehensive picture of

the nanoscale features.

3.4 Key findings for R2R

nanomanufacturing: metrology

– An inherent limitation of sensors with nanoscale reso-

lution is that they can only cover a limited (from a

macroscopic perspective) area of the substrate, and

additional effort is required to obtain relevant nano-

scale information for the entire substrate at all times

(i.e., inline). One possible solution to this problem is

using an inline AFM for acquiring real-time nanoscale

data directly during the manufacturing process since it

requires minimal sample processing and causes mini-

mal damage.

– While electron microscopy offers unparalleled resolu-

tion for analyzing nanostructures, it presents signifi-

cant drawbacks in the context of R2R manufacturing

with flexible substrates. The technique’s limitations in

sample size restrict its applicability for monitoring

large, continuous webs. Additionally, the extensive

preprocessing steps required to prepare samples for

electron microscopy and requirements on vacuum

during measurement, are incompatible with the real-

time, in-line process control needed in R2R setups.

– Increased dependence on inline and virtual metrology:

It is infeasible to isolate samples of fabricated nano-

structures for offline inspection until the final products

are produced. This contrasts with semiconductor

manufacturing where actual metrology data from

intermediate process steps are more easily available.

Consequently, offline metrology data could lag signifi-

cantly behind upstream fabrication processes. This

leads to increased dependence of VM models on inline

metrology data. Hence, it is essential to obtain feature

dimensions (inline) with high accuracies at nanoscale.

– The use of machine learning approaches to enable

improved inline process monitoring can take the

following forms:

– Learning and filtering environmental factors –

enabling image denoising to reconstruct high quality

images while improving data acquisition speeds.

– Integration of multiscale and multimodal data for

process monitoring, whichmay not be feasible using

first principles modeling approaches.

– Fast computation of solutions to inverse problems

using optical metrology information.

– Virtual Metrology techniques can be adopted due to

the sparse nature of high-resolution in-situ and

ex-situ measurements (actual metrology data) in a

continuous R2R setup. Moving window approaches

can be explored to enable automated model training

for inline implementation, to counteract the effects

of process non-stationarities/drifts.

4 Machine learning for process

control

Limitations in the mechanistic understanding of the com-

plex interactions amongmaterials, pressures, temperatures,

and chemicals involved in nanofabrication become a critical

hurdle to achieving tight control, especially as device fea-

tures shrink and performance demands increase. Atomic

layer processes are typically nonlinear, and several methods

have been investigated to integrate nonlinear input–output

relationships into run-to-run (RtR) control models in the

semiconductor industry (Smith and Boning 1997). Atomic

layer deposition (ALD) exemplifies this, using sequential,

self-limiting surface reactions with reactive gaseous pre-

cursors and purge cycles to control film thickness and

composition precisely. The process’s nonlinearity stems

from the interactions among surface reactions, precursor

adsorption/desorption, and transport phenomena. Nwanna

et al. (2022) identified a nonlinear relationship between flow

rates and film deposition rates, with lower purge flow rates

enhancing mass fraction distribution and deposition rates

due to increased precursor residence time. Additionally, the

rate of surface reactions is nonlinearly dependent on tem-

perature, another potential manipulated variable (along
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with flow rates) for process control. An approach to

nonlinear process control, as proposed by Yun et al. (2022),

involves linearizing a pre-generated, non-linear dataset

using a sigmoidal-like, median-effect equation. This essen-

tially transforms the complex data into a format that a linear

R2R control model can work with. Another study investi-

gated and compared two different run-to-run (RtR) control

strategies for spatial thermal atomic layer etching of

aluminum oxide thin films. One approach utilized a control

law based on an artificial neural network (ANN) in feedback

with the actual process to achieve disturbance rejection ca-

pabilities, while the other relied on a traditional Exponen-

tially Weighted Moving Average (EWMA) method (Tom et al.

2022). It was found that while a lower EWMA weight effec-

tively minimized noise and variance during shift distur-

bances, it failed to achieve the desired target when subjected

to a non-deterministic drift disturbance in simulations. In

contrast, the ANN-based RtR controller successfully miti-

gated the effects of both mild and severe shift disturbances,

as well as drift disturbances.

A key difference between nanomanufacturing process

control and traditional chemical process control lies in the

higher frequency of tool maintenance and repair. This is

driven by the increased sensitivity of nanomanufacturing

processes to environmental contaminants. Even minor

imperfections on tools or the presence of foreign particles

can significantly impact the precise control required at the

nanoscale. Product specifications should be regulated using

feedback control to compensate for tool degradation.

In the context of manufacturing, system identification

plays a vital role in making production scheduling decisions,

enhancing control policies, and adapting to changes in pro-

cess requirements and system structures. By utilizing

approaches like machine learning algorithms or genetic

programming, system identification can address the short-

comings of traditional approaches and offer more accurate

models that reflect the dynamic nature of manufacturing

systems (Denno et al. 2018). There is increasing interest

in approaches that decrease reliance on process models

for controlling complex dynamical systems. Traditional

modeling techniques can fail to capture the multiscale

nature of systems, especially in scenarios involving large

state and action spaces and multiple inputs and outputs. The

use of simplified linearized process models often becomes

necessary, either due to the impracticality of constructing

nonlinearmodels or tominimize the issues of computational

burden and solution intractability associated with nonlinear

models (Spielberg et al. 2019).

Developing accurate process models in industrial

settings is particularly time-consuming and challenging, and

it frequently requires model reidentification runs that can

halt plant operations for extended periods. Reinforcement

learning (RL) offers substantial advantages in addressing

these challenges through its model-free approach, which

learns action policies (i.e. an implicit control law) directly

from interactions with the environment, thereby obviating

the need for precise pre-existing models. RL’s adaptability

enables it to manage environmental or process dynamics

changes without requiring explicit model updates, making it

well-suited for handling multiscale disturbances and com-

plex dynamics. Advanced RL algorithms can effectively

manage continuous state and action spaces, facilitatingmore

precise and nuanced control strategies (Cai and Vasile 2021).

Deep RL (DRL) techniques offer inherent flexibility and

generalization capabilities, reducing the need for constant

parameter tuning and control law redesign (Bougie et al.

2022). Additionally, RL can be integrated with other meth-

odologies, such as wavelet analysis, to bolster its capacity to

manage multiscale disturbances and complex dynamics

(Ganesan et al. 2007). In contrast to model-based approaches

such as robust MPC which incorporate model uncertainties

directly into the optimization framework, DRL controllers

continuously update network parameters at each sampling

instant based on their latest observations, thus not requiring

external tuning efforts (Spielberg et al. 2019).

On the other hand, the assumptions of discrete-time

dynamics and the availability of complete state information

in RL-based controllers hamper their implementation in the

industry. In the context of nanofabrication, Leinen et al.

(2020) demonstrated the use of RL to autonomously manip-

ulate single molecules despite challenges posed by envi-

ronment non-stationarity and limited state observability at

the nanoscale. Implementing RL-based controllers in

continuous nanomanufacturing requires careful selection of

variables for the RL state vector. This selection is critical as it

influences the number of trials needed for training and the

feasibility of achieving effective control. If the chosen state

description does not adhere to the Markovian property,

successful control may not be guaranteed. At the nanoscale,

the use of hybrid learning approaches is recommended

(Leinen et al. 2020), by integrating fundamental process

physics knowledge in simulations to steer the agent’s

exploration of potential solutions.

4.1 Machine learning for process fault

detection and classification

Typical inline metrology datasets include images and

spectra. ML algorithms can help identify empirical correla-

tions within such data at fast rates once models are trained

off-line, prior to their deployment. The use of supervised
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learning approaches such as convolutional neural networks

for the analysis of images (which are inherently spatially

correlated) has been successful (Guo et al. 2017; Hussain et al.

2019; Li et al. 2014).

Deep learning has been widely employed for image

recognition, enabling automatic image categorization and

labeling. For example, Anand et al. (2021) focused on

leveraging deep learning techniques to enhance the in-

spection process and reverse defects in nanopillar arrays,

crucial for advancing next-generation transistors. By opti-

mizing the use of a small dataset of defective nanostructures,

this method demonstrated improved efficiency in identi-

fying and rectifying collapsed nanostructures, offering a

versatile platform for high-throughput inspection and defect

elimination in 3D nanofabrication processes. In a production

setting, it is highly likely (and preferable) that the number of

defective samples will be small. Another example involves

the use of predictor-corrector CNN models to address the

challenge of high sensitivity of photonic devices to nano-

fabrication process variations (Gostimirovic et al. 2023). By

automatically correcting design layouts before fabrication,

these models aim to enhance the fabrication fidelity of

photonic devices, ensuring higher quality and performance

in the final products. Prior to deploying such models on

running processes, they must be trained offline on large,

high-quality datasets which can take a considerable amount

of time. A key challenge lies in accounting for potential class

imbalance in training datasets while building neural

network-based classifiers for defect classification, especially

since the amount of “normal” operating data would far

exceed the amount of “faulty” process data.

Advances in process design alone may not guarantee

product quality due to the complexity and nature of

uncertainties and disturbances involved in multistage

manufacturing processes. Fault detection and classification

(FDC) in manufacturing processes is therefore crucial for

ensuring products with high standards and the reliable and

safe operation of industrial equipment. Since unexpected

deviations in sensor measurements from actual values can

degrade control performance, determining if a fault has

occurred using additional data (besides metrology) is

important. This means that information from the operation

of the machines (speed, tension, temperature, power, etc.)

and controllers can be fused with metrology data to make

the determination (typically binary) regarding whether the

product is “normal” or a fault has occurred – the con-

struction of a decision rule, for which statistical methods

such as multivariate control charts are among the most

widely used.

A conventional approach to FDC involves an assumption

that the observations fall within amultidimensional Gaussian

distribution with unknown mean and variance structure. In

such a scenario, the Hotelling t2 statistic is the most appro-

priate method to detect faults arising from shifts in means of

observations. Prior to the implementation of such a rule, it is

recommended to reduce the dimensionality of data using

projection methods such as principal component analysis

(PCA), whichfinds place in a host of literature concerning FDC

in a wide range of industrial processes (Russell et al. 2000;

Venkatasubramanian et al. 2003). The next logical step in FDC

involves the determination of the cause of thedetected fault. A

widely used solution is the contribution plot, which shows the

contribution of each process variable to the statistic calcu-

lated. A high contribution of a process variable usually in-

dicates a problemwith this specific variable (Westerhuis et al.

2000). Smith et al. (2024) present a Riemannian framework for

material shape analysis. This domain-agnostic, computation-

ally efficient method integrates well with common data

analysis techniques (statistical moments, dimensionality

reduction, statistical process control). Unlike ML-based image

analysis, it does not require large amounts of well-sampled

training data particularly containing substantial defective

samples.

4.2 Process control in R2R manufacturing

Continuous manufacturing in R2R setups on flexible sub-

strates calls for increased automation in controlling the size,

uniformity, and quality of nanostructures. Implementation

of real-time process control in such a setup needs to over-

come challenges such as limited physics-based process un-

derstanding and the unavailability of in-situ measurements

of important process variables. The continuous nature of

R2R processes means that variations at one stage can prop-

agate downstream, potentially leading to cumulative quality

deviations. Identifying the true source(s) of such variations

using metrology information predominantly acquired

downstream in the processing line is critical to ensuring

tight product quality control.

Graff and Djurdjanovic (2022) investigated the use of

single input-single output (SISO) control strategies on an

R2R-based physical vapor deposition process, to control the

deposited film thickness with sputtering power as the input

variable. Spectroscopic measurements on finished portions

of the web aided in film thickness estimation and the

modeling of film thickness as a function of input power. This

highlights the need for reliable data-driven process models

to achieve control of desired variables for all such constit-

uent processes in R2R nanomanufacturing. In a more real-

istic scenario involvingmultiplemanipulated and controlled

variables (Multiple input-multiple output; MIMO), there
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typically exist non-linear and interactive relations among

the variables, and consequently, the complexity of model

building increases. Since measurements of outputs are ex-

pected to be made downstream of the actual process, they

can lag the process significantly.

Just like metrology, control in continuous nano-

manufacturing must also consider multiple and disparate

time and length scales. This requires tight control of web

tension and web speed at the macroscopic level and feature

dimensions at the nanoscale. The reader is referred to

existing literature on of web tension, speed, and position

control problems (Feng et al. 2021; Lee et al. 2020; Raul and

Pagilla 2015; Yan and Du 2020). High radial stresses induced

during web take-up are recognized to be a significant

contributor to post-winding product deformation.

Conversely, insufficient radial stresses can lead to web

loosening. As winding tension is the sole controllable

parameter influencing the radial stress state within the web,

these considerations establish critical constraints on theweb

tension control strategy. Themaximumoperatingweb speed

should enable the slowest step of the process to be operated

robustly in the case of a single-pass, single-line operation.

Otherwise, the operation can be split into more than one

line, each operating at a different speed (multi-line), or by

running the web multiple times through the same line at

different speeds, performing different operations in each

pass (multi-pass). However, a multi-pass/multi-line opera-

tion incurs additional cost and lowers throughput, and

hence should be avoided to the extent possible. Additionally,

a multi-pass operation suffers from another important

limitation-that of producing sheets possessing nano-

structures with noticeable variations along the CD.

The creation of nanoscale objects is irreversible in that

reworks on existing nanostructures are nearly impossible.

Therefore, the feedback loop can only ensure improvements

to the quality of nanostructures fabricated subsequently

(Willmann et al. 2014). Since the large-scale R2R production

of nanostructures will be advantageous from a cost

perspective only if scrap rates are kept low, an important

goal is to minimize the amount of substandard products

generated. Much variation in the process arises during start-

up and shutdown, and tightening control in these regimes

can increase product yields.

Rollers and substrates are critical components of an

R2R manufacturing system at the macroscale. In paper

production, fluctuations in web tension have been found to

impact the rheology of ink deposited on the substrate. Since

the post-exposure development of coated polymer films

requires the use of a solvent, ensuring its uniform distri-

bution becomes key to the generation of uniform

nanostructures, which becomes yet another reason to

tightly control web tension. Lateral motion errors can

create wrinkles in a moving web subsequently leading to

register errors. It was found that tension-related distur-

bances accumulating in webs through tension transfer

could also lead to register errors (Lee et al. 2022).

Most of the current industrial R2R processes are not

fully observable due to the lack of sufficient in-situ sensors

which are cost-effective. Virtual metrology approaches

have been proposed (Jin et al. 2019; Shui et al. 2019) which

aim to predict spatial variations in substrate characteris-

tics (alignment, speed, tension, etc.) by integrating first

principles models based on web kinematics and sparsely

available physical sensor measurements. As discussed

earlier, increased availability of estimated/measured var-

iables at high spatial and temporal granularities would

allow for more reliable detection of faults and/or defects.

The presence of different sampling rates associated

with high resolution versus large area metrology tech-

niques lend itself to the use of multirate control strategies

(Dai et al. 2022; Li et al. 2020). A single controller regulating

multiple outputs sampled asynchronously at different

frequencies providing control moves at fast rates, can be

designed with the aid of decentralized multirate state

estimation schemes (Sun et al. 2024; Zhang et al. 2022).

However, a key distinctive feature of the nano-

manufacturing problem is that the input variables of such

a controller pertain to vastly different length scales,

and using a single controller could pose numerical

challenges.

At the nanoscale, the metrology techniques reviewed

earlier represent the foundation of controlling feature

creation and ultimately the quality of the product. The fact

that information at the nanoscale is sparse in both space

and time poses an inherent challenge to control perfor-

mance and ensure product quality. Manohar et al. (2018)

investigated the problem of optimized sensor placement

for signal reconstruction using customized sets of features

extracted using data-driven approaches. Here, advantage

was taken of the fact that the dynamics of high-dimensional

states typically have low-rank representations, which al-

lows for sparse sampling and full signal reconstruction

from a small subset of measurements. However, R2R

nanomanufacturing would involve sensors with multiple

data types corresponding to different scales. A similar

challenge arises in the process control of semiconductor

manufacturing (described in greater detail below), where

actual metrology data from individual processes are

available only from measurements made on a few sampled

wafers.
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4.3 Process control in semiconductor

manufacturing

Run-to-run (RtR) control is themost commonand established

control strategy used at the equipment level usingmetrology

data, where the processing conditions of each equipment are

updated after each batch of wafers is processed. RtR fine

tunes recipes of either the previous (feedback) or next pro-

cessing step (feedforward; to compensate for variations

caused in the previous process) to minimize the effects of

process drift and variability. While RtR control can

compensate for process and equipment drifts through

metrology feedback, it cannot compensate for metrology

drifts and uncertainties (Qin et al. 2006).

Advanced process control (APC) regulates processes fab-

wide, by determining set points for the lower-level RtR con-

trollers based on yield analysis using metrology results

obtained from finished wafers – in other words, it aims to

maximize yield,whilemeeting requireddemands.High yields

also significantly decrease manufacturing cycle times, facili-

tating timely product delivery, thus representing one of the

most important performance indices of the manufacturing

process. Various studies have proposed models to accurately

predict yield that can be used in model-based controllers in

APC; reviews of yieldmodeling approaches for semiconductor

manufacturing canbe found in (Kumaret al. 2006;Milor 2013).

The APC layer broadly comprises the RtR controllers,

VM systems and the fault detection system. Khan et al. (2007)

designed a fab-wide control framework by utilizing VM

generated for RtR control at the wafer-level. However, a

challenge associated with the use of VM lies in maintaining

high accuracy of prediction models. In practice, machine

conditions change frequently and non-periodically, and it

thus becomes imperative to update the VM prediction

models periodically. Fan and Chang (2013) developed an

integratedAPC system forwafer fabrication processeswhich

used a recursive moving window based VM module which

was updated whenever new metrology data became

available.

Yet another aspect that is closely related to process

control is the scheduling of manufacturing operations. The

varied nature of operations in semiconductor process

flows – from the duration of individual operations to

the nature of processing wafers within an individual pro-

cess – leads to the formation of long queues in front of

machines and a non-linear flow of products, thus calling for

incorporating production schedule optimization (Mönch

et al. 2011). Equipment failures induce downtime and

introduce variability in processing times. Critical ma-

chines, like steppers, often undergo post-repair test runs

followed by a re-qualification process. Re-qualification

verifies if the machine meets process tolerances for wafer

production. If test runs yield non-compliant wafers, they

require rework, further extending the processing queue for

subsequent machines (Sarin et al. 2011). Since APC is con-

cerned with the operation of machines and process recipes,

the scheduling and control problems are mutually depen-

dent (Baldea and Harjunkoski 2014; Baldea et al. 2015;

Caspari et al. 2020; Santander et al. 2023; Tsay and Baldea

2020). The time scales associated with such dynamics are

comparable to those of process control, and hence inte-

grating the two problems becomes essential. Implementing

APC with a sole focus on product quality control without

considering existing schedules can interfere with fab-wide

production plans.

4.4 Key findings for R2R

nanomanufacturing: process control

Unlike in semiconductor manufacturing where the mate-

rials undergo processing as batches of multiple wafers, we

can expect processing to take place simultaneously in

different sections of a single long roll of the substrate in R2R

nanomanufacturing. Figure 4 presents a list of variables of

interest in the advanced process control for R2R nano-

manufacturing. We share some perspectives on process

control and potential challenges that are critical to R2R

nanomanufacturing which are listed below:

– Defects in the fabricated nanostructures could arise

because of faults in equipment such as rollers, sensors,

and photomask (systematic) or due to the contamination

of equipment by dust particles (random) – it becomes

essential to distinguish one type of fault from the other.

– The continuous nature of R2R nanomanufacturing

makes the process amenable to the implementation of

continuous-time cascade control strategies.

– Intermediate process steps can be nonlinear and non-

stationary, calling for data-driven process modeling for

model-based optimal control. Alternatively, data-driven

model-free control approaches such as dissipativity

learning control (DLC) (Tang and Daoutidis 2021) can be

explored to directly extract control-relevant informa-

tion from data. While potentially less comprehensive

than a complete dynamic model, such an approach ex-

hibits a more direct relationship with control

performance.

– Alongside inline metrology on samples performed after

resist development,machine vision systems can be placed

to monitor the progression of the photoresist material

through intermediate processes up to and including
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development. Virtual metrology models can be con-

structed for each zone using data (line scan images, web

tension, speed, rates of reaction, etc.) corresponding to

that zone.

– The sequential single-line nature of R2R nano-

manufacturing makes it more vulnerable to large

process downtimes since a single piece of faulty

equipment would result in the entire process shutting

down. In general, the overall throughput is expected to

be limited by the slowest intermediate process step.

Scheduling of manufacturing operations in such

systems requires further research, which could make

use of reinforcement learning (RL)-based approaches

(Wang et al. 2021).

– Production of multiple types of nanostructures would

require intervention in the form of updating processing

conditions in various units. For instance, in the case of

IL, this could mean changes in photomasks used, light

dosage, exposure times, or development conditions.

Semiconductor manufacturing typically allows for the

use of recyclable “pilot” or test wafers during process

changeovers for equipment qualification or stabiliza-

tion of process performance, due to the batch nature of

unit operations (Yugma et al. 2015). In the entirely

continuous R2R manufacturing setup, such an arrange-

ment is infeasible, which could result in higher scrap

rates than desired.

5 Conclusions and outlook

High-throughput continuous nanomanufacturing offers

numerous opportunities for machine learning based yield

control. One of themost impactful application areas forML in

manufacturing is computer vision (CV)-based part inspection

and process monitoring at multiple length scales. Utilizing

cost-effective sensors like spectral cameras coupled with ML

algorithms can enable high-throughput part inspection, as

established by a wide body of literature in the past decade

(Li et al. 2019; Macaulay and Shafiee 2022; Park et al. 2016;

Rossi et al. 2021). The findings of this article highlight the

pivotal role ML can play in speeding up process control to

real-time operations. ML models can be trained as virtual

sensors or soft sensors, estimating critical process variables

and quality attributes in real-time from available sensor data,

enabling tight process monitoring without relying solely on

physical sensors that may have measurement delays.

ML offers an effective approach for boosting throughput

in continuous nanomanufacturing processes by leveraging

two key techniques: noise reduction and image super-

resolution. Inherent noise in sensor data can be filtered by

ML algorithms trained to recognize and remove these pat-

terns, leading to cleaner data for real-time monitoring and

control (Tian et al. 2020; Yu et al. 2019). Furthermore, ML can

enable image super-resolution by analyzing imperfect

measurement data and reconstructing a high-resolution

Figure 4: Manipulated, controlled and disturbance variables for R2R nanomanufacturing using near-field holographic lithography: an exemplar process.

S. Venkatesan et al.: ML-based control in nanomanufacturing 325



image of the nanostructures (Wang et al. 2021; Yang et al.

2019). This would allow for measurements at increased web

speeds without compromising measurement quality.

Additionally,ML algorithms can build predictivemodels

mapping process parameters to current and future process

behavior and product quality, which can then be leveraged

for model predictive control strategies, anticipating future

dynamics, and taking proactive corrective actions to main-

tain optimal operating conditions in real-time. The paralle-

lization and scalability of ML algorithms across distributed

computing infrastructure allow for handling large volumes

of sensor data and performing computationally intensive

modeling and control tasks in real-time. However, chal-

lenges around handling process constraints, dynamics, and

multi-objective optimization need to be addressed for

effective process control and optimization. Limitations such

as interpretability issues, lack of robustness, and ability to

generalize to arbitrary processing conditions necessitate a

case-by-case cost-benefit analysis. Established algorithms

with well-defined physical models and limited data needs

may be preferable due to their lower computational

complexity and explainable outputs. Other challenges

include handling noise, data scarcity and correlating defects

with process parameters. A collaborative approach, where

ML complements established physics-based methods, is

likely for the foreseeable future.

While parallel deployment of multiple ML models in

continuous nanomanufacturing is natural, a parsimonious

approach is recommended. Complex models can be

computationally expensive on standard hardware, and

excessive models hinder human intervention during trou-

bleshooting. Data-driven discovery of underlying physics,

leading to interpretable process models, is preferable over

opaque “black box” models.

Reliable AI models for multi-scale, nonlinear processes

require strategic sensor placement. Optimizing scanning

paths for high-resolution data and collecting multi-zone

optical measurements are crucial for capturing process

behavior across different length scales. However, controlling

variables across these scales can lead to numerical insta-

bility (model stiffness) for simulation and optimization

owing to vast differences in characteristic scales. A major

challenge lies in developing theoretical criteria for observ-

ability (state estimation) and controllability (state manipu-

lation) in these systems, especially considering the

nonlinearities inherent to neural networkmodels. Formulti-

physics, multi-scale phenomena, sensor placement needs to

account for intricate cross-scale interactions to effectively

capture these complexities in a ML model. Furthermore,

ensuring observability and controllability with opaque

neural networks remains an obstacle for reliable sensor

placement andmodel building. In essence, optimizing sensor

placement for robust AImodels in such domains necessitates

interdisciplinary research addressing challenges in efficient

data acquisition, multi-zone coverage, bridging disparate

scales, mitigating numerical stiffness, and developing theo-

retical frameworks for observability and controllability

analysis of complex ML models.

In conclusion, bridging the gap between the promise

and reality of ML in nanomanufacturing requires a syner-

gistic research approach. This demands the formation of

collaborative teams comprised of specialists in disparate

fields. Machine learning engineers will be crucial for

developing robust algorithms and data pipelines. Nano-

technologists and materials scientists will provide critical

domain expertise to guide model development and ensure

physical feasibility. These steps would also help address data

scarcity for developing ML models. Researchers should

encourage data sharing, establish centralized repositories,

and engage the broader scientific community to contribute

anonymized datasets. By embedding domain-specific phys-

ical laws intoMLmodels, we can enhance their accuracy and

feasibility within the nanomanufacturing context.
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