Check for
Updates

A Survey of K-12 Teacher Needs for an Online Programming
Learning System

Ally Limke Veronica Cateté Tiffany Barnes
anlimke@ncsu.edu Marnie Hill tmbarnes@ncsu.edu
North Carolina State University vmcatete@ncsu.edu North Carolina State University
Raleigh, NC, USA mehillé@ncsu.edu Raleigh, NC, USA

North Carolina State University
Raleigh, NC, USA

ABSTRACT

This article examines US K-12 computing teacher needs for a pro-
gramming learning system. We surveyed 39 K-12 teachers about
the necessity of programming learning system features. We found
that teachers needed to view student code remotely, student code
auto-save, differentiation of student assignments, and a tutorial
library for students to learn about the programming environment.
In addition to rating feature usefulness, we also asked teachers
to list features or needs that the survey did not address. Through
qualitative responses, we found that teachers wanted cheating pre-
vention and detection, the ability to freeze and project code onto
student screens, and student and classroom-level analytics. We also
compare the needs of teachers who teach computing as the main
subject in their classroom to the needs of teachers who integrate
computing into another discipline. This research can inform the
development of programming learning systems to better support
teachers and their students.

CCS CONCEPTS

+ Human-centered computing — Empirical studies in HCI; «
Applied computing — Learning management systems.

KEYWORDS

Programming learning, K-12, learning systems, K-12 teachers, On-
line learning environments

ACM Reference Format:

Ally Limke, Veronica Cateté, Marnie Hill, and Tiffany Barnes. 2024. A Survey
of K-12 Teacher Needs for an Online Programming Learning System. In
Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems (CHI EA °24), May 11-16, 2024, Honolulu, HI, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3613905.3651110

1 INTRODUCTION

As more states in the US are adopting computer science (CS) as a
high school graduation requirement[8], it has become important to
find ways to support K12 teachers in teaching CS and programming.
In 2023, only 57.45% of high schools offered CS courses [10]. This

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI EA 24, May 11-16, 2024, Honolulu, HI, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0331-7/24/05

https://doi.org/10.1145/3613905.3651110

is due to a lack of well-prepared CS teachers. When teachers do
learn CS, it is important to understand how to support them in their
everyday practice through programming learning systems (PLS).

Teachers are reluctant to adopt learning tools because of the lim-
itations on their time in conjunction with their high workloads, the
lack of training with the tools, and the high conceptual complexity
of new tools [11]. We can ease the burden of adopting new class-
room software by ensuring that tool designs align with the needs
and processes of teachers. To do so, it is important to involve users
in the design of new learning systems, especially when establishing
design requirements [26]. Past co-design research can inform us of
some design considerations for new learning environments. This
includes supporting different class formats [33], mapping of learn-
ing environment content to curricula [33], and preserving teacher
autonomy [1]. While prior research on the design of educational
technologies is informative, we know that teachers’ instructional
processes are complex. These processes include 1. defining learning
goals, 2. planning instruction, 3. teaching content, 4. evaluating
learning, and 5. refining instructional methods [29]. The implemen-
tation of these processes differs between teachers, disciplines, grade
levels, and classroom contexts.

In this study, we aim to understand the unique needs of K12
computing teachers in the United States as users of PLSs, espe-
cially those teaching students in introductory computing courses
using block-based programming environments (BBPE). Many K12
CS teachers have minimal experience with computing topics or
programming [41], and while professional development can help,
there is still great need to support new CS teachers [23].

Online PLSs can help teachers in classroom orchestration. For
example, GradeSnap [30], a grading tool for the Snap! BBPE, was
created to address the time-consuming nature[5] and difficulty [40]
of grading block-based programs. Other platforms, like Code.org
[9] and Microsoft MakeCode[3], integrate curricula and automated
grading into their platforms. However, PLSs that provide fully au-
tomated grading limit student creativity and teacher curriculum
choices.

To develop robust PLSs that can support teachers in all stages of
the instructional process [29], we first need to know what teachers
need from these online platforms. In our prior work, we conducted
participatory design with three K12 CS teachers, resulting in a list
of 16 features needed in a PLS [24]. However, it is unclear whether
these identified features apply to a broader sample of teachers and
which features should be prioritized in PLSs for K12.

Therefore, we created and administered a survey to 39 K12 CS
teachers in the United States to answer the research question: What

https://orcid.org/0000-0002-4801-8723
https://orcid.org/0000-0002-7620-7708
https://orcid.org/0009-0003-4017-8700
https://orcid.org/0000-0002-6500-9976
https://doi.org/10.1145/3613905.3651110
https://doi.org/10.1145/3613905.3651110
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613905.3651110&domain=pdf&date_stamp=2024-05-11

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

do teachers see as the most important features needed in an online
programming learning platform to support their instructional prac-
tice?. We found the top 4 features for all teachers were: viewing
student code remotely, auto-saving student work, differentiating
assignments based on students’ prior programming experience, and
having a tutorial library students can reference to learn about the
programming environment. A more nuanced investigation showed
differing priorities based on the teacher’s primary discipline, sug-
gesting that teacher needs vary according to the amount of pro-
gramming taught in their courses and the educational needs of
their students. These results suggest that more research is needed
to understand the changing needs of teachers based on the contexts
in which they teach programming.

2 RELATED WORK

The increasing importance of CS skills [32] has prompted efforts
to expand CS and programming education in U.S. K12 schools
[2, 4], especially through a new high school CS course [14, 16],
but also through integrating computing into other courses [19].
However, few K12 teachers have adequate CS backgrounds [41]
or professional development resources to help them build their
programming and pedagogical knowledge [23].

A systematic literature review shows that most K12 CS and com-
putational thinking (CT) studies teach CS/CT using programming
environments, sometimes augmented with physical tools, such as
robotics kits [23]. There are many existing programming environ-
ments used in K12 education [15] including Scratch [27] and Snap!
[17]. Learning pedagogical and technical aspects of new program-
ming environments is a taxing time commitment for teachers [28],
that is in addition to their existing duties.

A critical analysis of 73 systematic literature reviews shows that
the most effective educational technologies are those “involving
interaction, gamification, constructivism, student-centered learn-
ing, and feedback” [21], but only 19% of reviews examined teaching
or pedagogical aspects. A survey of university-level CS educators
on the features needed for an online learning environment for pro-
gramming showed needs for programming assignment submission,
automated assessment, interactive debugging support, algorithmic
visualization, and plagiarism detection [34]. However, it is still un-
clear whether these needs are similar for K12 teachers, who teach
primarily introductory programming, and who are more likely to
be using block-based programming environments.

To better understand K12 teacher needs, in 2022, as part of a
Research Experiences for Teachers (RET) program, we engaged
three K-12 teachers in intensive week-long participatory design
sessions [24] following the Make, Tell, Enact cycle by Sanders et al.
[6, 35, 36]. Data collected included audio recordings and design ar-
tifacts including drawings, notes, and prototypes created in Figma
[13]. First, we conducted the Tell step with a Future workshop
using Troxler et al. and Lauttamak et al. frameworks [22, 39] to
help the teachers outline their workflows, identify pain points in
their workflows, and describe a world in which their problem no
longer existed, often describing a technology solution. Then teach-
ers identified realistic software solutions. Second, we conducted
a ’Make’ session that combined elements of a Sketch-in [25] with
Live Prototyping. Here, the three teachers created a list of 16 new

Trovato and Tobin, et al.

SnapClass features, that we use here and are listed in Table 1. Each
solution was discussed, and then the teachers each chose a solution
that was highest priority to them and designed for it.

One of our participants, Amanda, was a high school CS teacher
who had been teaching for over 20 years. Amanda taught AP Com-
puter Science Principles using the Snap! BBPE [4]. Her students
mostly worked on open-ended programming projects, but she also
assigned closed-ended tasks that allowed her to provide imme-
diate and specific feedback. Amanda assigned independent and
group work to prepare students for academic and industry careers.
Amanda chose to design peer- and self-assessment features to help
prepare students for the AP exam.

Becca was a seventh-grade science teacher who had been teach-
ing for more than 10 years. Chad was a sixth grade science teacher
who had been teaching for more than 20 years. Programming ac-
tivities in Becca and Chad’s classrooms were open-ended and col-
laborative, helping students creatively explore what they learned
in science while also practicing programming and computational
thinking. Becca designed an assignment differentiation feature,
both to address different levels of programming experience and to
address student educational needs. Chad designed a help-request
queue to help him manage peer help. Chad already established a
classroom culture where students would help one another during
programming, a proposed strategy to improve access to help during
programming [12].

3 METHODS

Our prior participatory design sessions gave us rich insights into
the needs of a few K12 computing teachers. This study investigates
how their needs align with the needs of the larger population of K-
12 computing teachers. Therefore, we surveyed K12 teachers on the
features they need in an online learning platform for programming.
Starting from the list of 16 features created during the participatory
design sessions [24], we asked teachers to rate the usefulness of
each feature on a 5 point labeled scale: “Not useful”, “Slightly use-
ful”, “Somewhat useful”, “Very useful” and “Critical to my job”, later
converting these to scores from 1-5 and averaging them for each
feature. Finally, we asked teachers to list any other features they
might need in a programming assignment system. The teachers
requested a total of 71 features. Two researchers each tagged the
responses separately, first identifying if any of the requests over-
lapped with the 16 initial PD features in Table 1. The remaining
requests were open-coded by the two researchers separately and
then discussed together to find 14 newly discovered features shown
in Table 2.

Teachers were eligible to participate if they lived in the United
States and either taught CS or integrated computing activities into
their classrooms. Participants were recruited through email, social
media, and CS educator organizations. There were 39 responses,
with 31 teaching computing as their primary subject, and 8 teaching
other subjects, such as math or business education. Fifteen partici-
pants had 1-5 years of teaching experience, while 11 had 6-10, and
13 had 11 or more. The primary languages participants indicated
using in their classrooms were block-based (32), Python (20), Java
(14), and JavaScript (7), with 10 other languages listed.

A Survey of K-12 Teacher Needs for an Online Programming Learning System

Table 1: Ranking of listed features.

Feature Average # of
requests

View student code remotely | 4.41 1
Autosaving 4.32 1
Differentiation for 415)
programming experience ’

Tutorial library for prog. env. | 4.13 0
Group Work 4.08 5
Forgotten login credentials 4.05 0
Curricula Library 4.03 15
Differentiation for edu needs | 4 2
Automated Grading 3.97 3
Customizable Rubrics 3.77 1
Student self-assessment 3.72 0

LMS integration 3.71 1
Rubric library 3.62 1

Help request queue 3.5 0
Export grades 3.47 0

Peer Assessment 3.46 1

Table 2: Qualitative responses of additional features.

Additional # of
requested features requests

Teacher demo / control screens 6
Scaffold ind. learning 6
Usability / Intuitive GUI 6

Help teachers prevent / 4
identify cheating

Classroom level analytics 3
Create assignments / starter code | 3
Individual student analytics 2
Web-based 2
Built-in instructions 1
Creating graded 1

and ungraded assignments

Students add code explanations 1
Control assignment visibility 1
Timed assigments 1

Sort assignments into groups 1

4 RESULTS

Survey results for quantitative feature rankings and open-ended
responses are given in Tables 1 and 2. The seven most highly ranked
needs by teachers in the quantitative survey were: 1) viewing stu-
dent code remotely (4.41), 2) autosaving (4.32), 3) assignment differ-
entiation for varying experience (4.15), 4) a tutorial library for the
programming environment (4.13), 4) group work support (4.08), 5)
forgotten login credentials (4.05), 6) a curricula library (4.03), and
7) assignment differentiation for differing educational needs (4.00).
These results are visualized in Figure 1.

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

In the open-ended feature question responses, the most fre-
quently requested feature was a curricula library, with 15 feature
requests related to finding, creating, and customizing curricula.
Teachers wanted familiar curricula to be integrated into a program-
ming activity platform, including BJC [14], CSAwesome [18], CMU
CS Academy [38], and Python for Everybody [37]. Three teachers
who wanted curricula in the platform did not specify a specific
curriculum, instead noting that any curricula should be “designed
around student learning objectives”. In terms of creating assign-
ments, one teacher mentioned that they wanted to write ‘starter
code’ for their students while another wanted to “create custom
assignments with all the functionality as a built-in problem”.

The second-most frequent feature, with 6 requests, focused on
scaffolding independent problem-solving. Three teachers wanted
real-time support for students including having “quick tips pop up”,
“ask[ing] provoking questions to guide students”, and a button that
says “click here for more help”. Two teachers wanted static resources
for student reference. Specifically, one wanted a “troubleshooting
guide for fixing recurring error types” and another wanted “vocab-
ulary reference”. Finally, one teacher desired progress monitors to
give “clear feedback to students on what they’ve completed and
what they still need to accomplish” to orient their independent
work. These responses are similar to our 3 prior participatory de-
sign teachers who wanted a tutorial library for the programming
environment, to enable students to work more independently.

The third-most frequent open-ended feature listed was group
work, with 5 requests. One teacher said that they structure their
class so that “students always work collaboratively on labs and
homework assignments”. Teachers suggested three features that
would support pair-programming in their classes: shareable screens,
concurrent editing, and saving a copy of code to both student ac-
counts.

On the quantitative survey, teachers ranked the following items
with lower priority: 1) automated grading (3.97), 2) customizable
rubrics (3.77), 3) student self-assessments (3.72), 4) LMS integration
(3.71), 5) a rubric library (3.62), 6) a help request queue (3.5), 7)
exporting grades (3.46), and 8) peer assessment (3.46). These re-
sults, which are visualized in Figure 2, suggest that many of the
K12 teacher participants have already determined how to grade
programs, or at least that they value other features that would be
harder to do without built-in platform support.

4.1 Differences Between Teaching Contexts

We split the quantitative survey results into two groups: teachers
who taught CS as the main subject in their classrooms (computing
teachers) and those who primarily taught another subject (inte-
grating teachers). Computing teachers have more formal training
in computing (e.g. through an undergraduate major or a job) and
therefore have a higher level of facility in managing the processes
of assigning, collecting, and grading programs, and have more
ability to quickly assess student programs and provide feedback.
Integrating teachers have usually taken a short course (usually a
5-day workshop) on block-based programming and are voluntarily
adding this new content to their classrooms. Therefore, each step of
the teaching process offers extra barriers that are not part of their
required job duties.

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

Trovato and Tobin, et al.

Figure 1: Highest ranked needs from the survey.

of responses

X

\|
\

Autosaving

20
15
10
5
o m\

View student

code remotely for experience

Differentiation Tutorial library
for the prog.
Env.

- N

X AN N N

\) \ \
Group work Forgotten login Curricula Library Differentiation

for educational
needs

credentials

M Not useful [lSlightly useful X\ Somewhat useful [Very useful B Critical for my job

Figure 2: Lowest ranked needs from the survey.

20
g 15
c
a
g 10 N\
“ N, N
5 \ - \
H* N N N
[N A)
. l.§ N - SN N N
Automated Customizable Studentself LMS integration Rubriclibrary Help request Export grades Peer assessment
Grading rubrics assessment queue

Ml Not useful [lSlightly useful XX Somewhat useful

Here, we report any features whose average scores differed by
0.5 or more between teacher primary subjects. Computing teachers
rated the following features higher: automated grading (by 1.07),
LMS integration (by .93), viewing student code remotely (by .67),
forgotten login credentials (.54), and a curricula library (by .50). The
highest integrating teachers needs were autosaving (4.25), differ-
entiation for differing educational needs (4.13), differentiation for
varying programming experience (4), and the tutorial library for
the programming environment (4). The highest computing teacher
needs were viewing student code remotely (4.55), autograding (4.19),
autosaving (4.19), and differentiation for varying experience (4.19).

4.2 Additional Qualitative Results

Five participants who requested additional features for assign-
ments, including: grouping the assignments by unit, creating timed
assignments, creating graded or ungraded activities, controlling
assignment visibility, and allowing students to add explanations to
their code. Three other teachers wanted to create assignments with
starter code.

ery useful B Critical for my job

Six teachers needed additional features to help them lead activi-
ties. One teacher wanted students to be “able to use their laptops to
watch [them] demo instead of everyone wanting to sit closer to a
TV or projection screen” Another teacher added that they wanted
to lock student screens “so that students don’t use other software
during the lessons”. One teacher wanted assignment instructions
built into the programming environment.

Six teachers suggested additional features that would help them
with assessment. Three wanted classroom level analytics and two
wanted analytics about individual students. Four teachers wanted
to prevent cheating by blocking Al support, a plagiarism checker,
recording a log of student keystrokes, and keeping student assign-
ments private.

Eight teachers requested features to improve usability for stu-
dents/school contexts. For a programming assignment system to
be useful, two teachers needed software to be web-based so that
“no downloads are required” and it “works on Chromebooks”. Six
teachers emphasized usability, mentioning “legible font” and “in-
tuitive navigation”. Other needs included an immersive reader for

A Survey of K-12 Teacher Needs for an Online Programming Learning System

students and not using programming jargon that is inaccessible to
beginners.

5 DISCUSSION

5.1 Results aligned with Participatory Design
Findings

Teachers in the participatory design and in the survey expressed
needing support in addressing individual student needs. It
is typical for students to enter K-12 computing classrooms with
varying levels of programming experience. This is partially due to
programming courses being inequitably distributed across gender,
race, geographical location, and disability [10]. Individualizing in-
struction, through a PLS, may help teachers provide more equitable
instruction to their students. One approach to individualization is
assignment differentiation - ranked third highest in need. Differ-
entiation is the practice of creating different versions of the same
assignment to meet various student needs/experience levels. For
programming, assignments are often differentiated through provid-
ing more or less starter code. However, it is important to note that
teachers also must differentiate assignments to meet varying educa-
tional needs, not just prior programming experience. In our survey,
computing teachers were more likely to highlight differentiation
for programming experience, while teachers with another primary
teaching discipline were more likely to request differentiation to
meet other student needs. This indicates that, as computing is in-
creasingly integrated into mainstream classrooms, it will become
more important to allow for differentiation of the content, both for
prior experience and for diverse learners.

In both studies, teachers needed support in finding curricula.
Two teachers in the participatory design sessions integrated pro-
gramming into their science classrooms. These teachers needed
support in finding programming activities that related to their sci-
ence content. The 31 teachers, who rated a curricula library as
“Very Useful” or “Critical”, may want curricula built into a PLS
as it can be laborious to transfer activities into learning systems,
especially when curricula undergo updates. Although teachers ex-
pressed wanting a curriculum library, they did not want to be
limited by provided curricula. One teacher wanted the “flexibility,
where teachers can change assignments or the requirements of
assignments, or pull from a bank of projects or questions”. It may
be important for teachers to change assignments to cater to their
specific classroom contexts. Past research has shown that teachers
are wary of pre-written exercises in a learning management sys-
tem (LMS), because they don’t match individual teaching styles;
but also, that an LMS without exercises requires extensive work
to build exercises [34]. Teachers often use activities from multi-
ple curricula[31]; facilitating the combination of materials from
multiple sources may provide teachers flexibility.

Teachers have a finite, and sometimes insufficient, amount of
time to help students individually. Hence, they need to enable stu-
dents to solve problems independently. The participatory design
RET teachers requested a forum for students to ask assignment-
related questions, allowing both the teacher and peers to provide an-
swers as a student reference. The same sentiment is reflected in the
six open-ended survey responses focused on scaffolding indepen-
dent problem-solving. According to Kolb’s learning cycle, effective

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

learning happens when students have a concrete experience with
a concept, reflect on the experience, use their reflection to modify
their conceptualization, and then experiment with what they’ve
learned [20]. Some teacher responses indicate they are thinking
more deeply about student learning that may be happening in such
learning cycles, with one teacher requesting a feature with “pro-
voking questions to guide students to complete their assignment”,
scaffolding the reflection phase of the learning cycle. This feature
would model for students how to think through problems they en-
counter. One teacher noted that the intelligent supports they might
like to include could be abused by students, so teachers are seeing
a need for systems that provide help but don’t allow students to
cheat or complete assignments without learning.

Survey and participatory design teachers both expressed a desire
for automated grading. Although it was the 10th ranked feature,
it seems important to at least a subset of teachers as there were
three open-ended responses requesting autograding. This finding
aligns with a previous survey completed with 31 CS educators who
reported wanting automated feedback and assessment in a LMS
[34]. Two teacher feature responses specifically needed the ability
to write unit tests. However, many other teachers assign open-
ended programming activities where creativity of theme, style, and
function are encouraged. These types of projects are harder to write
unit tests for and take teachers longer to grade. One participant
echoed this problem saying they need “a way to read code that
allows for multiple ways [for students to solve], yet still meet the
criteria”. Teachers who integrate computing into other subjects
often grade student projects for completion which may explain why
they rated the automated grading feature as a much lower need for
their classrooms than the teachers who mainly teach computing.

5.2 Misaligned results

In the participatory design sessions, Amanda designed a self and
peer-assessment feature. However, in survey results, these fea-
tures ranked eleventh and sixteenth respectively. Amanda teaches
AP Computer Science principles and is an AP exam grader. Amanda
shared that the College Board expects students to work individually
on written assignments and therefore, written reflections may pre-
pare her students for the AP test. Other CS teachers may have their
students work more collaboratively, as in Chad and Becca’s class-
rooms. In those cases, students would already be getting constant
feedback from their peers. Another factor impacting the ranking
may be that teachers already have peer/self assessment practices
that work for their classrooms, they may not have enough time to
assign reviews, or they may not believe that peer and self assess-
ments would improve student learning.

During the participatory design, Chad designed a help-request
queue which was a digital list of students requesting help from
the teacher. Not only would the system notify him when students
needed help, but would automatically assign them a peer tutor.
Chad’s room is highly collaborative and Chad matches peers for
tutoring. In the survey, a help-request queue ranked twelfth. Addi-
tionally, in the open-ended survey responses, there were no sug-
gested classroom management features that would be used during
project work time. It may be that teachers were not wanting or
envisioning technical solutions to their classroom environment

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

problems. While research suggests that teachers could benefit from
classroom management features [12], but that features need to be
designed in a manner that matches teacher processes. For exam-
ple, a curriculum-integrated game put red flags directly on student
screens that needed help [7]. This may be a better alternative to a
dashboard that is viewed from a single teacher monitor, as teachers
often walk around their classrooms to monitor students [33]. Addi-
tionally, a help request feature might help teachers provide more
equitable instruction by guiding them to students who may be less
likely to receive an intervention in their class.

In the survey, there were four responses focusing on preventing
or identifying cheating unlike the participatory design sessions
who did not focus on cheating. This may be because avenues for
cheating, like ChatGPT, have become more popular among students
since the participatory design sessions were conducted in 2022.
Alternatively, it may be that two of the teachers in the design
sessions integrated computing into their science classrooms using
a system where code sharing was very clunky, and graded students
for completion rather than accuracy.

5.3 How teaching context affects programming
learning systems

The differences between the teachers who instruct CS as the main
subject in their classrooms (Computing teachers) and those who
primarily teach another subject and integrate programming activ-
ities into that subject (Integrating teachers) can help developers
determine how to prioritize features based on their target users.

Both computing and integrating teachers agreed that auto-
saving, a tutorial library for the programming environment, and
assignment differentiation were top priorities. Both types of teach-
ers lead programming activities that span multiple days. Saving
code is important so no progress is lost. Next, a tutorial library for
the programming environment may save teachers time answering
students’ questions about environment basics. Integrating teachers
may not feel confident answering student programming questions,
making the tutorials of even higher importance.

Automated grading and the ability to view student code remotely
were in the top rated features of the computing teachers, but
not the integrating teachers. The difference in the need for auto-
mated grading may be the result of the number of programs that
computing teachers grade. Integrating teachers often only run a
few computing activities a semester and grade based on comple-
tion. Next, viewing student code remotely might allow computing
teachers to non-intrusively check student progress as computing
teachers are more likely to have the programming skills to quickly
evaluate and debug student code. Integrating teachers might be
more focused on helping students understand their own discipline
and CS/CT through coding rather than very specific programming
learning objectives.

6 CONCLUSION

We administered a survey (n=39) to understand teacher needs in
programming learning systems. While previous research findings
gave us depth of insight into three teachers’ needs, we wanted to

know the needs of a broader sample of K-12 computing teachers
in the United States. Our results can provide a basis for other re-

searchers to design tools to support teachers leading programming

Trovato and Tobin, et al.

activities. We found that teachers needed to view student code re-
motely, for student code to auto-save, differentiation of assignments,
and to have a tutorial library about the programming environment
for student reference. Through open-ended responses, we found
that teachers wanted cheating prevention and detection, the ability
to freeze and project code onto student screens, and student and
classroom level analytics.

This study has limitations in sample size, and also a lack of in-
formation about teacher contexts and specific uses of computing in
their classrooms. Our sample size was small and therefore statis-
tical tests between computing and integrating K12 teachers were
not appropriate in our context. Our results merely suggest that
there may be a difference in needs between these populations, but
more investigation is needed to confirm our results. Further, teach-
ers’ imaginations for features may be limited by their views of the
structure of traditional learning systems and what they think is
technologically possible within these systems. Future studies may
first investigate, through interview or observation, K-12 computing
teacher processes and struggles to understand how a system can
support them. We believe that future work should include partici-
patory design with teachers, as well as classroom studies, to design,
develop, and evaluate features that will make the most impact on
teacher practices and student learning for programming in K12.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 2112635. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES

[1] Pengcheng An, Kenneth Holstein, Bernice d’Anjou, Berry Eggen, and Saskia
Bakker. 2020. The TA Framework: Designing Real-time Teaching Augmentation
for K-12 Classrooms. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems (<conf-loc>, <city>Honolulu</city>, <state>HI</state>,
<country>USA</country>, </conf-loc>) (CHI "20). Association for Computing
Machinery, New York, NY, USA, 1-17. https://doi.org/10.1145/3313831.3376277

[2] Owen Astrachan, Jan Cuny, Chris Stephenson, and Cameron Wilson. 2011. The

CS10K project: mobilizing the community to transform high school computing. In

Proceedings of the 42nd ACM Technical Symposium on Computer Science Education

(Dallas, TX, USA) (SIGCSE ’11). Association for Computing Machinery, New York,

NY, USA, 85-86. https://doi.org/10.1145/1953163.1953193

Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michat Moskal,

and Jacqueline Russell. 2019. Microsoft MakeCode: embedded programming for

education, in blocks and TypeScript. In Proceedings of the 2019 ACM SIGPLAN

Symposium on SPLASH-E (Athens, Greece) (SPLASH-E 2019). Association for

Computing Machinery, New York, NY, USA, 7-12. https://doi.org/10.1145/

3358711.3361630

College Board. 2023. AP Computer Science Principles Course and Exam

Description. https://apcentral.collegeboard.org/media/pdf/ap-computer-

science-principles- course-and-exam- description.pdf?course=ap-computer-

science-principles Accessed: 2024-01-24.

Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and

Diana Franklin. 2013. Hairball: lint-inspired static analysis of scratch projects. In

Proceeding of the 44th ACM Technical Symposium on Computer Science Education

(Denver, Colorado, USA) (SIGCSE ’13). Association for Computing Machinery,

New York, NY, USA, 215-220. https://doi.org/10.1145/2445196.2445265

Eva Brandt, Thomas Binder, and Elizabeth B-N Sanders. 2012. Tools and tech-

niques: Ways to engage telling, making and enacting. In Routledge international

handbook of participatory design. Routledge, London, 145-181.

Melissa N Callaghan, JJ Long, EA Van Es, Stephanie M Reich, and Teomara

Rutherford. 2018. How teachers integrate a math computer game: Professional

development use, teaching practices, and student achievement. Journal of Com-

puter Assisted Learning 34, 1 (2018), 10-19.

&

—
=t

5

G

—
=

https://doi.org/10.1145/3313831.3376277
https://doi.org/10.1145/1953163.1953193
https://doi.org/10.1145/3358711.3361630
https://doi.org/10.1145/3358711.3361630
https://apcentral.collegeboard.org/media/pdf/ap-computer-science-principles-course-and-exam-description.pdf?course=ap-computer-science-principles
https://apcentral.collegeboard.org/media/pdf/ap-computer-science-principles-course-and-exam-description.pdf?course=ap-computer-science-principles
https://apcentral.collegeboard.org/media/pdf/ap-computer-science-principles-course-and-exam-description.pdf?course=ap-computer-science-principles
https://doi.org/10.1145/2445196.2445265

A Survey of K-12 Teacher Needs for an Online Programming Learning System

Code.org. 2023. Code.org recommends graduation requirements in computer
science. https://codeorg.medium.com/code-org-recommends-graduation-
requirements-in-computer-science-5f04fbf24de Accessed: 2024-01-25.
code.org. 2024. Code.org platform for computer science curricula.
//code.org/ Accessed: 2024-01-25.

code.org. 2024. State of CS Report. https://advocacy.code.org/stateofcs Accessed:
2024-01-25.

Francesca Maria Dagnino, Yannis A Dimitriadis, Francesca Pozzi, Juan I Asensio-
Pérez, and Bartolomé Rubia-Avi. 2018. Exploring teachers’ needs and the existing
barriers to the adoption of Learning Design methods and tools: A literature
survey. British Journal of Educational Technology 49, 6 (2018), 998-1013.
Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski,
and Satabdi Basu. 2018. Peer tutor matching for introductory programming: Data-
driven methods to enable new opportunities for help. In ICLS 2018 Proceedings.
International Society of the Learning Sciences, Inc.[ISLS]., London, UK, 1377-
1378.

Figma. 2016. Figma: the collaborative interface design tool. Figma. http://figma.com
Dan Garcia, Brian Harvey, and Tiffany Barnes. 2015. The beauty and joy of
computing. ACM Inroads 6, 4 (2015), 71-79.

Varvara Garneli, Michail N. Giannakos, and Konstantinos Chorianopoulos. 2015.
Computing education in K-12 schools: A review of the literature. In 2015 IEEE
Global Engineering Education Conference (EDUCON). IEEE, Tallinn, Estonia, 543
551. https://doi.org/10.1109/EDUCON.2015.7096023

https:

[16] Joanna Goode, Jane Margolis, and Gail Chapman. 2014. Curriculum is not

enough: the educational theory and research foundation of the exploring com-
puter science professional development model. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education (Atlanta, Georgia, USA)
(SIGCSE ’14). Association for Computing Machinery, New York, NY, USA, 493-498.
https://doi.org/10.1145/2538862.2538948

Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
SNAP! (build your own blocks) (abstract only). In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (Denver, Colorado, USA)
(SIGCSE ’13). Association for Computing Machinery, New York, NY, USA, 759.
https://doi.org/10.1145/2445196.2445507

Beryl Hoffman and Barbara Ericson. 2021. CSAwesome: A Free Curriculum
and Ebook for Advanced Placement Computer Science A (CS1 in Java). https:
//doi.org/10.1145/3408877.3432504

Robin Jocius, Deepti Joshi, Yihuan Dong, Richard Robinson, Veronica Cateté,
Tiffany Barnes, Jennifer Albert, Ashley Andrews, and Nicholas Lytle. 2020.
Code, Connect, Create: The 3C Professional Development Model to Support
Computational Thinking Infusion. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE °20).
Association for Computing Machinery, New York, NY, USA, 971-977. https:
//doi.org/10.1145/3328778.3366797

David A Kolb. 2014. Experiential learning: Experience as the source of learning and
development. FT press, Upper Saddle River, New Jersey.

Jennifer WM Lai and Matt Bower. 2020. Evaluation of technology use in education:
Findings from a critical analysis of systematic literature reviews. Journal of
Computer Assisted Learning 36, 3 (2020), 241-259.

Ville Lauttaméki. 2014. Practical guide for facilitating a futures workshop. ,
2-11 pages.

Sang Joon Lee, Gregory M Francom, and Jeremiah Nuatomue. 2022. Computer
science education and K-12 students’ computational thinking: A systematic
review. International Journal of Educational Research 114 (2022), 102008.

Ally Limke, Nicholas Lytle, Sana Mahmoud, Maggie Lin, Marnie Hill, Veronica
Cateté, and Tiffany Barnes. 2023. Participatory Design with Teachers for Block-
Based Learning with SnapClass. In 2023 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, limke2023participatory, Washington,
DC, USA, 173-178.

Rosemary Luckin, Sadhana Puntambekar, Peter Goodyear, Barbara Louise Hop-
kins Grabowski, Joshua Underwood, Niall Winters, et al. 2013. Handbook of

[26

[27

[28

[29

&
S 2

[31

[32

[33

(34

[35

[36

[37

[38

[39

[40]

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

design in educational technology. Routledge, London.

P. Luff, M. Jirotka, C. Heath, and D. Greatbatch. 1993. Tasks and social interaction:
the relevance of naturalistic analyses of conduct for requirements engineering. In
[1993] Proceedings of the IEEE International Symposium on Requirements Engineer-
ing. IEEE, San Diego, CA, USA, 187-190. https://doi.org/10.1109/ISRE.1993.324818
John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1-15.

Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-Ari. 2010.
Learning computer science concepts with scratch. In Proceedings of the Sixth
International Workshop on Computing Education Research (Aarhus, Denmark)
(ICER ’10). Association for Computing Machinery, New York, NY, USA, 69-76.
https://doi.org/10.1145/1839594.1839607

V Meisalo, E Sutinen, and Jorma Tarhio. 2003. Modernit oppimisympéristot-

Tieto-ja viestintatekniikka opetuksen ja oppimisen tukena.
Alexandra Milliken, Veronica Cateté, Amy Isvik, and Tiffany Barnes. 2020. Poster:

Designing GradeSnap for Block-Based Code. In 2020 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). IEEE, Dunedin, New
Zealand, 1-2. https://doi.org/10.1109/VL/HCC50065.2020.9127284

Alexandra Milliken, Christa Cody, Veronica Catete, and Tiffany Barnes. 2019.
Effective Computer Science Teacher Professional Development: Beauty and Joy
of Computing 2018. In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE ’19).
Association for Computing Machinery, New York, NY, USA, 271-277. https:
//doi.org/10.1145/3304221.3319779

United States Department of Labor. 2023. U.S. Bureau of Labor Statistics. https:
//www.bls.gov/oes/tables.htm Accessed: 2024-01-25.

Zhongxiu Peddycord-Liu, Veronica Cateté, Jessica Vandenberg, Tiffany Barnes,
Collin F. Lynch, and Teomara Rutherford. 2019. A Field Study of Teachers
Using a Curriculum-integrated Digital Game. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI °19). Association for Computing Machinery, New York, NY, USA, 1-12.
https://doi.org/10.1145/3290605.3300658

Guido Ro8ling, Mike Joy, Andrés Moreno, Atanas Radenski, Lauri Malmi, Andreas
Kerren, Thomas Naps, Rockford] Ross, Michael Clancy, Ari Korhonen, et al. 2008.
Enhancing learning management systems to better support computer science
education. ACM SIGCSE Bulletin 40, 4 (2008), 142-166.

Elizabeth B.-N. Sanders, Eva Brandt, and Thomas Binder. 2010. A framework
for organizing the tools and techniques of participatory design. In Proceedings of
the 11th Biennial Participatory Design Conference (Sydney, Australia) (PDC ’10).
Association for Computing Machinery, New York, NY, USA, 195-198. https:
//doi.org/10.1145/1900441.1900476

Elizabeth B.-N. Sanders and Pieter Jan Stappers. 2014. Probes, toolk-
its and prototypes: three approaches to making in codesigning. = CoDe-
sign 10, 1 (2014), 5-14. https://doi.org/10.1080/15710882.2014.888183
arXiv:https://doi.org/10.1080/15710882.2014.888183

Charles Severance. 2016. Python for Everybody. https://www.py4e.com/. Ac-
cessed: 2024-03-08.

Mark Stehlik, Erin Cawley, and David Kosbie. 2020. CMU CS Academy: A
Browser-based, Text-based Introduction to Programming through Graphics and
Animations in Python. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education (Portland, OR, USA) (SIGCSE ’20). Association
for Computing Machinery, New York, NY, USA, 1420. https://doi.org/10.1145/
3328778.3372541

Peter Troxler and Beate Kuhnt. 2007. Future workshops. The unthinkable and
how to make it happen. , 483-495 pages.

Aman Yadav, David Burkhart, Daniel Moix, Eric Snow, Padmaja Bandaru, and
Lissa Clayborn. 2015. Sowing the seeds: A landscape study on assessment in
secondary computer science education.

Aman Yadav, Sarah Gretter, Susanne Hambrusch, and Phil Sands. 2016. Expanding
computer science education in schools: understanding teacher experiences and
challenges. Computer science education 26, 4 (2016), 235-254.

https://codeorg.medium.com/code-org-recommends-graduation-requirements-in-computer-science-5f04fbf24de
https://codeorg.medium.com/code-org-recommends-graduation-requirements-in-computer-science-5f04fbf24de
https://code.org/
https://code.org/
https://advocacy.code.org/stateofcs
http://figma.com
https://doi.org/10.1109/EDUCON.2015.7096023
https://doi.org/10.1145/2538862.2538948
https://doi.org/10.1145/2445196.2445507
https://doi.org/10.1145/3408877.3432504
https://doi.org/10.1145/3408877.3432504
https://doi.org/10.1145/3328778.3366797
https://doi.org/10.1145/3328778.3366797
https://doi.org/10.1109/ISRE.1993.324818
https://doi.org/10.1145/1839594.1839607
https://doi.org/10.1109/VL/HCC50065.2020.9127284
https://doi.org/10.1145/3304221.3319779
https://doi.org/10.1145/3304221.3319779
https://www.bls.gov/oes/tables.htm
https://www.bls.gov/oes/tables.htm
https://doi.org/10.1145/3290605.3300658
https://doi.org/10.1145/1900441.1900476
https://doi.org/10.1145/1900441.1900476
https://doi.org/10.1080/15710882.2014.888183
https://arxiv.org/abs/https://doi.org/10.1080/15710882.2014.888183
https://www.py4e.com/
https://doi.org/10.1145/3328778.3372541
https://doi.org/10.1145/3328778.3372541

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	4 Results
	4.1 Differences Between Teaching Contexts
	4.2 Additional Qualitative Results

	5 Discussion
	5.1 Results aligned with Participatory Design Findings
	5.2 Misaligned results
	5.3 How teaching context affects programming learning systems

	6 Conclusion
	Acknowledgments
	References

