
End-to-End Procedural Level Generation in
Educational Games with

Natural Language Instruction
Vikram Kumaran, Dan Carpenter, Jonathan Rowe, Bradford Mott and James Lester

North Carolina State University
{vkumara, dcarpen2, jprowe, bwmott, lester}@ncsu.edu

Abstract—As the role of procedural content generation in
mixed-initiative game design continues to grow, it is crucial
to develop an end-to-end approach that enables non-technical
designers to artfully guide content generation. Recent advances
in large language models, such as GPT-4, are rapidly trans-
forming the landscape of automated generation of text-based
content. Large language models have significant potential for
mixed-initiative procedural level generation by providing natural
language interfaces for designers. This paper presents an end-
to-end procedural level generation framework that interprets
natural language descriptions of level design constraints and
optimization objectives to facilitate the collaborative creation of
game levels for a strategy game focused on environmental sus-
tainability education. The framework enables designers to specify
a problem domain, goal metrics, and target difficulty via natural
language description. It then employs large language models for
the semantic extraction of constraints and optimization targets
to drive the generation of candidate levels. Generated game
levels are evaluated via game-playing agents trained with deep
reinforcement learning techniques to ensure the game levels meet
the level designer’s specifications. Manual evaluation by authors
shows that the proposed framework can effectively transform
designers’ natural language descriptions into fully playable game
levels that reflect their intended design objectives.

Index Terms—Educational games, co-creativity, large language
models, programmatic game-level generation.

I. INTRODUCTION

Mixed-initiative procedural content generation (PCG) has
long been an area of interest in game research because it
combines human creativity with computational generation to
create novel game experiences [1]–[3]. In addition to being
useful in games for entertainment, PCG has also been explored
for educational games [4]. As the scope of PCG expands to
encompass a broader range of users like educators, students,
and subject matter experts, there is a demand for interfaces that
are appropriate for designers who may have limited technical
expertise. A natural language interface would enable designers
to intuitively provide subject matter guidance and instruct PCG
about player experience. In the context of educational games,
this can lead to the creation of engaging virtual worlds that can
enhance students’ critical thinking and other essential skills
necessary for success in today’s world [5], [6]. However, most
of the content creators in this space are not experienced game

designers. A crucial insight from educational game design is
that input from subject matter experts is essential in devel-
oping a game with the necessary pedagogical impact [7]. An
end-to-end framework that balances a programmatic content
generator and a user-friendly natural language interface could
facilitate seamless integration of input from non-technical level
designers.

Large Language Models (LLM) pre-trained on vast amounts
of human-generated text can quickly adapt to new tasks with
limited examples, a process known as few-shot or zero-shot
learning. LLMs such as GPT-4 can perform prediction tasks
by filling unfilled slots in a prompt string using their internal
word prediction probabilities. No domain-specific training is
required, and they can adapt to new tasks with the appropriate
instructions implanted in the prompting text [8]. These models
have also successfully synthesized code with only simple
instructions [9]. We leverage the power of these models to
extract level designer choices expressed in natural language
into structured constraints and optimization goals for our PCG
game-level generator.

Our natural language based PCG framework is evaluated
on a prototype game-based learning environment, FUTURE
WORLDS, for children aged 9-12 to learn about environmental
sustainability. The game engages players in enhancing a virtual
biosphere, where success hinges on optimizing environmental
sustainability metrics and learning through gameplay. Our end-
to-end PCG framework enables level designers to generate
game levels by inputting natural language instructions on the
sustainability problem, goal metrics, and difficulty, which are
then extracted using LLM-based semantic parsing as a zero-
shot multi-class classification engine [9]. We use LLM’s code
generation capability to output classification labels as JSON
objects. This generated data structure is the input to the game-
level generator for generating candidate game levels. We use
Deep RL (DRL) to solve game levels and determine their
difficulty based on the RL engine’s minimum required steps.
The DRL selects the level that best matches designer instruc-
tion on difficulty. We estimate the variability and alignment
of solutions by comparing player-chosen sustainability goals
with the generated levels.

Our novel framework allows for the intuitive and cus-
tomizable creation of game levels with designers controlling
the problem domain, goal metrics, and difficulty levels to979-8-3503-2277-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 C
on

fe
re

nc
e

on
 G

am
es

 (C
oG

) |
 9

79
-8

-3
50

3-
22

77
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
oG

57
40

1.
20

23
.1

03
33

19
5

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

tailor game levels to individual player needs, through natural
language instructions.

II. RELATED WORK

Mixed initiative co-creation of games addresses a broad
range of creative collaboration with varying degrees of con-
tribution from humans and program-based content generators
[1]–[3]. Guzdial et al. [10] explore human-AI collaboration
types and PCG agent styles. Many co-creation tools, such as
Tanagra [11] and Sentient Sketchbook [3], are visual tools that
work at the level of detailed level specification. Co-creation
with natural language in a game-level generation has received
little research beyond narrative authoring. According to Lai et
al. [12], co-creation systems must offer designers control and
respect their existing workflow. In the case of non-technical
level designers using PCG-based co-creation, their comfort
level is with their subject matter, and their current workflow
uses natural language for communication.

One such challenging area for PCG is educational games,
as the content must be innovative, solvable, and aligned with
learning objectives. Limited progress has been made in this
area, with most studies using pre-existing human-authored
content or guidelines [13], [14] . Hooshyar et al. [4] proposed
a data-driven approach using a genetic algorithm and support
vector machines to automatically generate tailored educational
game content. Prior research on PCG in educational games has
focused on teaching computer programming. These range from
template-based puzzles for programming [13] and training
GANs to generate programming challenges [15] or using graph
grammars to create challenges for parallel programming [16].
However, automating content generation that aligns with edu-
cational goals in other domains like STEM education remains
challenging. Our approach involves a game model with a
customizable library of game blocks to assemble game levels
that align with specific design intentions, as demonstrated in
the FUTURE WORLDS game, addressing sustainability aspects
like river conservation, renewable energy, responsible farming,
and eco-friendly urban development.

Our natural language based PCG framework addresses the
challenge of an intuitive interface for designers by using
pretrained LLMs to convert natural language instructions
into game-level constraints and optimization goals for PCG.
Pretraining LLMs on a large amount of human-generated
text enables them to perform diverse language tasks without
retraining. Sometimes, providing only a small set of examples
as part of the prompt is necessary [17], [18]. Researchers
have fine-tuned these models to respond to human instructions
and generate content according to constraints specified in
the prompt [19]. These models can output their semantically
parsed natural language text as structured data in multiple pro-
gramming languages [20]. Our research uses these pretrained
LLMs to parse level designer preferences into PCG constraints
and optimization goals.

We have developed an end-to-end natural-language-based
PCG framework to address the content and intuitive interface
challenge of educational procedural level generation. Our

Fig. 1. Gameplay in FUTURE WORLDS replacing “Coal Plant” with “Wind
Power Plant”, and “Polluted Farm” with an “Eco-Friendly Farm”.

framework separates educational content creation from game-
level design. The level designer is responsible for deciding
which aspects of the lesson content the generated level will
address and determining the level’s challenge. To make our
framework highly user-friendly, we allow the level designer
to provide their input in free-form natural language text.

III. SUSTAINABILITY-BASED STRATEGY GAME

FUTURE WORLDS is a 3D virtual game focused on envi-
ronmental sustainability that enables players to explore the
impacts of alternative decisions on water, energy, and food.
Players can modify the simulated environment by clicking
on hexagonal tiles and experimenting with modifications to
improve the sustainability of the environment [21]. In FUTURE
WORLDS, players can test their hypotheses about various
environmental tradeoffs and examine relationships between
different environmental choices while accessing visual ele-
ments that impart information about ecological features, such
as forests, power plants, industrial farms, and rivers. The
science content in the game targets learners aged 9-12, and
prior research shows its effectiveness in improving learner
knowledge and engagement [22].

The game has a hexagonal grid map featuring over 35 envi-
ronmental factors as tiles, including cities with energy-efficient
homes, poorly managed farms, nuclear power plants, polluted
rivers, and many more. Each factor affects six components
of the simulation that capture the quality of the environment
(e.g., air quality, water quality, and biodiversity) as well as the
resources available to people living in the environment (e.g.,
housing availability, food availability, and energy sufficiency).
These components were determined by environmental experts
and remain constant across levels, allowing players to under-
stand the consistent implications of each factor. For example,
building farms would increase food availability, but that comes
at the cost of space for building residences, reducing housing
availability. On the other hand, building suburban homes
reduce the land available for farming.

Each environmental factor in the game-level grid contributes
to a numerical score representing environmental quality and
resources. Players must modify the environmental factors
on the map to achieve specific goals for certain simulation

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

Natural Language Instruction LLM Parsed PCG
Instruction

I’m looking for a fun video game
that focuses on taking care of
water ecosystems and being re-
sponsible for habitats. The game
should show us why it’s impor-
tant to keep our rivers and their
surroundings healthy. It should
also teach us how to balance
aquatic life and human activities.
Additionally, the game should re-
mind us to protect our lands to
keep them productive without us-
ing up all the resources. It should
be challenging but still enjoyable
for both beginners and experi-
enced players.

{“difficulty”:“medium”,
“size”:“large”,
“metrics”:[“Water Quality”,
“Biodiversity”],
“problem”:[“river pollution”,
“land management”]}

TABLE I
LEVEL DESIGNER INPUTS AND TRANSLATION INTO STRUCTURED

INFORMATION USING LLMS

components. The available options for changes are defined in
a transformation matrix. For instance, players can transform a
river into a river with a hydropower plant, but they cannot
convert a city into a forest. The visual representation of
the virtual environment reflects the choices made. A key
challenge in the game arises from the tradeoffs between
simulation components, as improving one factor may harm
another. Players need to understand the interactions between
environmental factors to succeed. The game is designed as
a multiobjective optimization problem, a versatile approach
applicable to various domains. Fig. 1 illustrates gameplay steps
that enhance air and water quality. In FUTURE WORLDS, level
composition involves various initial environmental factors in
a grid, a transformation matrix for factor interchangeability,
selected simulation components outlining objective criteria,
target values for each component, a move limit for level
completion, and a problem description. Designing levels in-
volves verifying that each goal state aligns with environmental
sustainability concepts. PCG systems can support designers in
creating levels by translating pedagogical intents into potential
new levels.

IV. END-TO-END LEVEL GENERATOR FRAMEWORK

Fig. 2 illustrates our end-to-end game level generator that
interprets natural language instructions to create game levels.
The generator is comprised of four main components. The
NL Instruction Parser module acts as an interpreter for the
dialogue between the designer and the system, collecting key
details such as the game’s sustainability topic, targeted metrics,
and desired level complexity. The Game Level Generator
module then leverages these parsed instructions to formulate
various potential game levels, using the appropriate tiles to
meet the intended learning objectives and simulation targets.
Following this, the DRL Level Evaluator module applies deep
reinforcement learning to assess and estimate the difficulty
of each prospective game level. Finally, the Playable Level

Generation module translates this into a 3D game level in the
FUTURE WORLDS Unity game. The following section will
delve deeper into these modules.

A. NL Instruction Parser
LLM’s zero-shot and few-shot capabilities form the basis

for our natural language instruction parser [17], [18]. Earlier
language models, such as GPT-2 and BERT, required fine-
tuning to a specific problem requiring extensive training data.
Recent LLM model iterations have achieved human-level
natural language understanding without task-specific training,
often requiring only a few examples of text prompts, with zero-
shot matching few-shot with the right prompt [20]. Reynolds et
al. [20] outline various meta-prompting strategies, employing
a multi-step process where the language model generates suit-
able prompts for the given problem. Our NL instruction parser
uses a QA-style prompt model for problem categorization,
simulation target metric, difficulty, and size [8]. For instance,
a sample prompt template is “given that ’metrics’ can only
include < MetricList > and given a text < X >, list the
metrics referred to in the text.” Next, we direct the LLM to
transform the prior prompt results into JSON objects.

Our natural language based PCG framework uses OpenAI’s
GPT-3.5 engine [17] for natural language understanding in
deciphering level designer instructions. Our framework isn’t
exclusive to GPT-3.5; other instruction-tuned LLMs could
also be used. LLM-based natural language interfaces provide
more flexibility than menu-based ones in understanding the
designer’s intent, especially with vague inputs, and allow the
framework to improve without changing the interface.

We identify a 4-tuple (P , M , S, D) as essential for
level generation by PCG for FUTURE WORLDS game: P
signifies target sustainability issues, M denotes simulation
goal metrics, S corresponds to level size, and D indicates
difficulty. Table 1 shows an example designer input text and
the corresponding level generation parameter output. As noted
above, we employ a multi-stage prompting technique. Initially,
we extract the four-tuple values, followed by mapping and
constraining parameters to game-compatible values.

B. Game Level Generator
In FUTURE WORLDS, a game level consists of a certain

number of environmental factors where each factor can be
one of 35 different possible tiles. Based on the inputs provided
by the level designer in the previous section, we calculate a
distribution of weights for the various likely environmental
factors. The level designer instruction 4-tuple (P , M , S,
D) discussed in the previous section identifies the problem
domains that drive the subset of tiles favored in constructing
the game level.

• We initialize all environmental factors to have the same
weights.

• We add a fixed value to the weight of the factors in
the same category as the given P . Suppose the input P
stipulates that the game level should focus on affordable
housing or farming. In this case, the game level should

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. End-to-end level generator architecture.

prioritize farm, city, or suburban factors more frequently
in the grid.

• Based on the provided simulation goal metric M , we rank
all factors according to their contribution to the metric.
Factors with lower contributions receive higher weights.

• The factors are then sampled based on the updated
weights.

• The parsed level designer’s instructions S decides the grid
size.

• The deep reinforcement learning-based level evaluator,
discussed in the next section, assesses the solvability and
difficulty of solving the game level to match the level
designer instruction D.

The output from the stage includes a list of environmental
factors (forest, organic pig farm, hydropower plant, etc.), the
transitions allowed for each factor, a set of simulation metrics
(Air Quality, Biodiversity, etc.), and the minimum goal values
the game board needs for the simulation metrics to solve the
game level.

C. DRL Level Evaluator
Game-level solvability and solution difficulty are deter-

mined by setting it up as a deep reinforcement learning
(DRL) problem to solve the game-level grid. One could also
use methods like planning and graph-search for this task
without losing generality. We use the OpenAI implementation
of the Proximal Policy Optimization (PPO) algorithm for our
DRL implementation [23]. PPO implements a policy gradient
method that updates the objective function represented by the
neural network in mini-batches after multiple sample steps.
This method outperforms other policy gradient methods on
multiple benchmarks like Atari games and robot locomotion.

The game-level generator generates multiple candidate lev-
els constrained by the 4-tuple (P , M , S, D) attributes. We
define the reinforcement problem as follows:

• Transition Matrix (State): A matrix of allowed/blocked
transitions from one environmental factor to another.

• Score Matrix (State): The score values for each of the
six simulation components for each of the allowed en-
vironmental factors. The score values are relative values
aggregated to get the score for the grid.

• Target Score (State): Corresponds to goal values for
a subset of simulation components, for example: {Air
Quality : 3, Biodiversity: 4}.

• Observation Space (State): A set of environmental factors
in a given game-level grid.

• Action Space: A multi-discrete action space with a 3-tuple
(factor category, optimization metric, improve/degrade).
The factor category can be one of seven values: forest,
farm, land, housing, river, energy, and city. The simula-
tion goal metric can be one of six values: air quality, water
quality, biodiversity, food availability, housing availabil-
ity, and energy sufficiency.

• Rewards: Each factor change has a penalty of -1. Each
step also gets a Z-scaled difference between current and
simulation goal scores if the goal has not been reached.
The agent earns 50 points, and the game ends when the
target is achieved.

The primary task for players involves determining the
appropriate sequence of tile switches to achieve the target
score based on the designated goal metrics. Due to constraints
imposed by the transition matrix, certain tile transitions are
restricted. The problem’s difficulty level is characterized by
the minimum number of tile modifications required to reach a
solution. The DRL model runs on each candidate game level
generated to identify the set of solvable game levels with
appropriate difficulty, as measured by the minimum number
of tile changes.

D. Playable Level Generation

FUTURE WORLDS is a Unity engine-based 3D virtual en-
vironment. FUTURE WORLDS was designed using an iterative
process involving interdisciplinary collaboration among devel-
opers, educators, and subject matter experts in game design,
elementary science education, and environmental disciplines.
The current implementation of the game contains environmen-
tal factor tiles visualized as hexagonal tiles in the game, with
associated images and educational content consisting of visual
and text-based information about the environmental factor’s
characteristics and its effect on environmental sustainability.
The game engine picks up the game-level details using a
data-driven framework. The input to the module consists of
the following: A set of environmental factor tiles, a transition
matrix detailing all permitted transitions, a tile layout grid,
a problem description text generated using the LLM based
on the level designer’s input parameters, and lastly, the goal
values for simulation metrics that will be monitored and
assessed throughout gameplay.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example game level progression: (a) The initial puzzle level. (b) Details about a single tile and possible transitions. (c) Simulation metrics value and
gap to target for the game level grid.

Gameplay is through clicking and changing individual tiles
based on the provided transition options and the information
available for each option. Fig. 3 shows a version of the initial
problem game level, information dialog, and solution progress
for the game level.

V. EVALUATION

We evaluate our end-to-end natural language based PCG
framework with four metrics: solvability, difficulty, variability,
and design intention capture. In the following subsections, we
describe the measures and their significance

A. Solvability
Solvability measures the success rate of the DRL level

evaluator. Solvability, as we define it, is a metric that evaluates
both the ability of the level generator to create solvable
levels and the DRL engine’s ability to solve the problem.
The solvability score might be lower even if the level gen-
erator generates candidates that a human could solve but
the DRL engine cannot. We explore the solvability of the
candidate game level space by exploring various dimensions
of simulation metrics. We assess solvability across a range of
goal values for these metrics under three distinct correlation
scenarios: uncorrelated metrics (Example: Air Quality and
Energy Sufficiency), positively correlated metrics (Example:
Biodiversity and Water Quality) and negatively correlated met-
rics (Food Availability and Housing Availability). A positive
correlation is when improving one metric also improves the
other without changing the game tiles. A negative correlation
is when improving one metric decreases the score of the other.
Uncorrelated means improving one metric has no impact on
the other’s score. We divide the range of possible values for
metric pairs into bins and generate ten games for each target
value bin to evaluate the number of solvable games within
each bin.

B. Difficulty
The DRL engine provides a game-level solution, and we

evaluate the difficulty as the minimum number of steps
required to reach the solution. We create a distribution of
difficulty values from a range of solvable candidate levels
to evaluate the difficulty metric. In the results section, we
explore the difficulty distribution across various problem (P)

and metric (M) choices by level designers. We consider
difficulty to be a controllable feature of our generator if we
can produce candidate levels with diverse difficulty levels,
spanning from solutions needing only a single tile modification
to those requiring adjustments to all tiles. We use the solvable
game levels generated to evaluate solvability to evaluate the
difficulty distribution.

C. Variability

Variability of the generated game levels is a metric related
to novelty. The distance between two candidate game levels
is calculated as the minimum number of distinctly different
tiles between the two levels. This distance or corresponding
similarity metric is used to quantify variability. To calculate
distance, we ignore the transition matrix restrictions used for
the game-level solution as we are only interested in the variety
of the candidates and not in their solvability. We examine the
distribution of distances and corresponding Vendi scores [24].
The Vendi Score measures diversity in a sample set given a
similarity function. Similar to difficulty and solvability, we
look at the distribution of variability for various simulation
metric correlation scenarios. Variability is a controllable metric
if we can generate candidate game levels that are typically
different from one another on at least half of their tiles.
We also look at the expressive range [25], [26] comparing
the number of distinct tiles in each generated game level
and the corresponding difficulty of the level, for solvable
levels. We generate 100 game levels of size 16 tiles for three
sustainability problem-goal metric pairs and calculate inter-
level distances by counting distinct tiles. Given the definition
of distance, the range for distance is 0 to 32 for a 16-tile grid.
We independently calculate the distance distribution for the
level solution set and the generated problems set as separate
distributions.

D. Pedagogical Relevance

We evaluate the levels generated for their alignment to
the designer’s intention expressed through their instruction.
It is crucial to acknowledge that provided goal simulation
metrics may permit multiple solutions per level, which may
not all align with intended learning outcomes. We analyze the
final solution’s selected tiles to determine if they address the

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Solvability by metric value heatmap: (a) Solvability of correlated simulation metrics. (b) Solvability of uncorrelated simulation metrics. (c) Solvability
of negatively correlated simulation metrics.

Goal Metric Initial Level Solved Level
Pair Dist Vendi Dist Vendi

EnergySufficiency - AirQuality 15.1±2 22.9 10.4±3 36.3
Housing - FoodAvailability 15.4±3 16.3 13.9±4 28.0
Biodiversity - WaterQuality 16.1±3 19.7 13.4±4 34.1

TABLE II
DIVERSITY IN INITIAL AND SOLVED GAME LEVELS

problem (P) specified by the designer. The design intention
alignment metric involves a manual comparison for end-to-end
solution validation. We manually provide a set of instruction
text and expected solution environmental factor tiles, then
run our framework to obtain game levels and corresponding
DRL-generated solutions. The design intention objective is
met if the tile change from problem to solution includes the
pre-specified environmental factors. A greater correspondence
between instruction and solution signifies a higher level of
alignment.

VI. RESULTS AND DISCUSSION

The relationship between level designer instructions and the
generated games is examined, serving as an implicit measure
of control offered to the game-level designer. While the
instructions specify the overall problem domain and simulation
metrics, the game-level generation controls the minimum goal
value each simulation metric must reach to complete the game
level. Below we discuss the relationship between the problem
domain, simulation metrics, and metric goal values and their
impact on the generated game-level solvability, difficulty, and
variance. All the charts in the following sections are for a
game level with 16 tiles.

A. Solvability
Our study explores three scenarios by taking a problem

domain pair, such as urban planning and responsible farming,
and examining positive, negative, or uncorrelated goal metric
pairs. We display our findings in Fig. 4, which shows a
solvability heatmap for these three situations. Each cell on
the heatmap represents the solvability of a game level. The X
and Y axis represents the metric values to reach solvability.

Fig. 5. Game level difficulty distribution for correlated (Biodiversity - Water
Quality), uncorrelated (Energy Sufficiency - Air Quality) and negatively
correlated (Housing - Food Availability) metric pairs.

Blue cells indicate higher solvability, while red squares in-
dicate lower solvability. For Fig. 4a, we analyze the metric
pair “Water Quality” and “Biodiversity.” These simulation
metrics are positively correlated. This relationship between
the simulation metrics allows higher goal values (top right
corner) to be solvable (not dark red). Fig. 4b corresponds
to the metric pair “Air Quality” and “Energy Sufficiency,”
which are uncorrelated simulation metrics in the game. The
heatmap displays a solvability zone in the lower left portion,
corresponding to simulation metrics’ mid to lower goal values.
In Fig. 4c, we analyze “Food Availability” and “Housing
Availability,” which are negatively correlated simulation met-
rics. It is difficult to achieve high values for both of them
on a game board, resulting in the smallest solvability zone
of the three scenarios. This zone only allows for low goal
values for the simulation metrics. Our study shows that the
PCG can control solvability when provided with game-level
design instructions by leveraging the relationship between
metric correlation and metric target values, as demonstrated
in the solvability heatmaps of our three scenarios.

B. Difficulty

In our paper, we use the number of steps the DRL-level
evaluator takes to solve a level as a measure of difficulty.
Difficulty, like solvability, depends on the goal values of the
simulation metrics and their correlation. Fig. 5 displays the
difficulty distribution (measured as the number of game tile

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Game level variability shown as: (a) Initial game level tiles distance distribution (b) Solved game level tiles distance distribution. (c) Expressive range
for various difficulty and distinct game level tile counts.

Fig. 7. Alignment of solution to the design intention provided to the natural
language based PCG framework.

changes required for a solution) for various combinations of
simulation goal metrics. We observe that the negatively corre-
lated metric pair (Housing Availability and Food Availability)
has less variety in game-level difficulty than the uncorrelated
metric pair (Energy Sufficiency and Air Quality), which has
a broader distribution of possible difficulty. This difference
is likely due to the limited range of solvable games for the
negatively correlated metric pair, resulting in fewer possible
levels. Additionally, having smaller goal values for simulation
metrics makes reaching the simulation goal value likely with
only a few tile changes.

Uncorrelated goal metrics allow for more tile selection
options when solving the problem. For example, changing
Air Quality tiles does not affect Energy Sufficiency and vice
versa. This lack of correlation increases possible game levels
and solution combinations. We can adjust metric goal values
within set limits through PCG to manage game difficulty.
The relationship between these goals influences difficulty
distribution. Even with a given choice of goal metrics, we
can still develop games with varied difficulty levels (Fig. 5),
ensuring PCG aligns with designer intentions.

C. Variability
Fig. 6 displays the distance distributions for the initial (Fig.

6a) and solved (Fig. 6b) game levels, between 100 generated
levels as described in the previous section. Initial levels exhibit
minimal dependence on goal metric choice and controlling
difficulty, and solvability does not affect variability. However,
solved levels depend on goal metric choice, which is expected

due to tile-type constraints imposed by the goal metric. We
note that the initial game level average distance is around 16,
which corresponds to at least half the tiles on average being
different between the generated game levels, which shows that
we can produce good variability in generated levels. Looking
at the expressive range in terms of difficulty and distinct tiles in
a level (Fig. 6c), we notice a good coverage of the expressive
range, albeit biased towards lower difficulty.

Utilizing the Vendi score, we assess the diversity of gen-
erated initial and solved game levels (Table 2). A notable
trend emerges between average distance and Vendi score; as
one moves from the initial to the solved level, the average
distance decreases while the Vendi score increases. The trend
can be attributed to the method of calculation for distance and
similarity. Unlike the distance measure, the similarity measure
is independent of the set size. The analysis shows that no loss
of variability is observed in solvable game-level generation
across different problem domains or goal values of simulation
metrics.

D. Pedagogical Relevance
The authors created 25 examples of designer instructions

and corresponding tiles we expect in the solution. For instance,
if the designer talks about renewable energy, we expect to see
solar or wind energy power plant in the solution grid. We
assign our input into sustainability categories such as respon-
sible farming, forest preservation, and other related areas. The
comparatively low alignment for “responsible farming” could
be attributed to the distribution of sustainability metrics across
tiles, suggesting that other tiles might handle the same effect
intended by responsible farming. For example, one instruction
could be, “I want a game that’s fun and engaging for kids, but
still educational about sustainable fishing and the importance
of protecting our oceans and marine life.” This example would
correspond to the topic of river pollution and would expect
to optimize for biodiversity and have the tile, “River with
riparian buffers” in the solution. Fig. 7 shows the alignment of
the solutions for each of the categories. We demonstrate that
for all categories, the alignment is greater than 50%, and the
average alignment is 79%. Fig. 7 demonstrates that our end-to-
end game-level generation can capture text-based instruction
and reflect their intended design objectives in the generated
game level.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

We have introduced an end-to-end PCG framework that
enables designers to generate levels in a strategy game with
natural language instruction. By providing an end-to-end
framework that combines natural language interfaces with
semantic parsing and deep reinforcement learning techniques,
we enable non-technical designers to quickly create game
levels that address specific goals related to environmental
sustainability. Our evaluation results show that the proposed
framework successfully transforms designers’ natural language
descriptions into fully playable game levels that adhere to
the intended design objectives. This work contributes to co-
creativity in game design by offering an accessible and intu-
itive interface for a diverse population, including educators,
students, and domain experts, to participate in level design.
The developed framework can be applied to various educa-
tional game domains, allowing game-level customization to
meet the needs of individual level creators.

In FUTURE WORLDS, the mutually exclusive effects of
environmental factors on goal metrics enable straightforward
weighted selection for level generation. As the framework is
expanded to other game genres, exploring diverse strategies for
generating levels is essential. Promising directions for future
work include expanding the genres of games that the PCG
framework can support and extending the PCG framework to
enable designers to refine game levels continuously. It will
also be important to explore LLM-based methods that enable
designers to engage in mixed-initiative PCG that supports
increasingly expressive co-creation processes.

ACKNOWLEDGEMENTS

This work is supported by the National Science Founda-
tion under award DRL-2112635. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] G. Lai, F. F. Leymarie, and W. Latham, “On mixed-initiative content
creation for video games,” IEEE Transactions on Games, vol. 14, no. 4,
pp. 543–557, 2022.

[2] N. Shaker, J. Togelius, M. J. Nelson, A. Liapis, G. Smith, and N. Shaker,
“Mixed-initiative content creation,” Procedural content generation in
games, pp. 195–214, 2016.

[3] G. N. Yannakakis, A. Liapis, and C. Alexopoulos, “Mixed-initiative co-
creativity,” 2014.

[4] D. Hooshyar, M. Yousefi, M. Wang, and H. Lim, “A data-driven
procedural-content-generation approach for educational games,” Journal
of Computer Assisted Learning, vol. 34, no. 6, pp. 731–739, 2018.

[5] D. B. Clark, E. E. Tanner-Smith, and S. S. Killingsworth, “Digital games,
design, and learning: A systematic review and meta-analysis,” Review
of educational research, vol. 86, no. 1, pp. 79–122, 2016.

[6] J. P. Gee, “What video games have to teach us about learning and
literacy,” Computers in entertainment (CIE), vol. 1, no. 1, pp. 20–20,
2003.

[7] K. Isbister, M. Flanagan, and C. Hash, “Designing games for learning:
insights from conversations with designers,” in Proceedings of the sigchi
conference on human factors in computing systems, 2010, pp. 2041–
2044.

[8] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[10] M. Guzdial, N. Liao, J. Chen, S.-Y. Chen, S. Shah, V. Shah, J. Reno,
G. Smith, and M. O. Riedl, “Friend, collaborator, student, manager: How
design of an ai-driven game level editor affects creators,” in Proceedings
of the 2019 CHI conference on human factors in computing systems,
2019, pp. 1–13.

[11] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive planning and
constraint solving for mixed-initiative level design,” IEEE Transactions
on computational intelligence and AI in games, vol. 3, no. 3, pp. 201–
215, 2011.

[12] G. Lai, W. Latham, and F. F. Leymarie, “Towards friendly mixed
initiative procedural content generation: Three pillars of industry,” in
Proceedings of the 15th International Conference on the Foundations of
Digital Games, 2020, pp. 1–4.

[13] Y. Dong and T. Barnes, “Evaluation of a template-based puzzle generator
for an educational programming game,” in Proceedings of the 12th
International Conference on the Foundations of Digital Games, 2017,
pp. 1–4.

[14] L. Rodrigues, R. P. Bonidia, and J. D. Brancher, “A math educacional
computer game using procedural content generation,” in Brazilian Sym-
posium on Computers in Education (Simpósio Brasileiro de Informática
na Educação-SBIE), vol. 28, no. 1, 2017, p. 756.

[15] K. Park, B. W. Mott, W. Min, K. E. Boyer, E. N. Wiebe, and J. C. Lester,
“Generating educational game levels with multistep deep convolutional
generative adversarial networks,” in 2019 IEEE Conference on Games
(CoG). IEEE, 2019, pp. 1–8.

[16] J. Valls-Vargas, J. Zhu, and S. Ontañón, “Graph grammar-based con-
trollable generation of puzzles for a learning game about parallel
programming,” in Proceedings of the 12th International Conference on
the Foundations of Digital Games, 2017, pp. 1–10.

[17] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: A survey on few-shot learning,” ACM computing surveys
(csur), vol. 53, no. 3, pp. 1–34, 2020.

[18] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[19] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” arXiv preprint
arXiv:2203.02155, 2022.

[20] L. Reynolds and K. McDonell, “Prompt programming for large language
models: Beyond the few-shot paradigm,” in Extended Abstracts of the
2021 CHI Conference on Human Factors in Computing Systems, 2021,
pp. 1–7.

[21] J. P. Rowe, E. V. Lobene, B. W. Mott, and J. C. Lester, “Play in the
museum: Design and development of a game-based learning exhibit
for informal science education,” International Journal of Gaming and
Computer-Mediated Simulations (IJGCMS), vol. 9, no. 3, pp. 96–113,
2017.

[22] A. K. Vail, J. F. Grafsgaard, K. E. Boyer, E. N. Wiebe, and J. C. Lester,
“Gender differences in facial expressions of affect during learning,” in
Proceedings of the 2016 Conference on User Modeling Adaptation and
Personalization, 2016, pp. 65–73.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[24] D. Friedman and A. B. Dieng, “The vendi score: A diversity evaluation
metric for machine learning,” arXiv preprint arXiv:2210.02410, 2022.

[25] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 workshop on procedural content
generation in games, 2010, pp. 1–7.

[26] A. Summerville, “Expanding expressive range: Evaluation methodolo-
gies for procedural content generation,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment,
vol. 14, no. 1, 2018, pp. 116–122.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on March 25,2024 at 14:35:49 UTC from IEEE Xplore. Restrictions apply.

