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Abstract. Providing safety guarantees for autonomous systems is dif-
ficult as these systems operate in complex environments that require
the use of learning-enabled components, such as deep neural networks
(DNNs), for visual perception. DNNs are hard to formally verify due to
their size (they can have billions of parameters), lack of formal specifica-
tions, and sensitivity to slight changes in the surrounding environment.
Furthermore, the high-dimensional inputs to the DNNs come from sen-
sors such as high-fidelity cameras that are themselves complex and hard
to model — they bear complex relationships to the system states and are
subject to random environmental perturbations. We present a survey of
verification techniques that aim to provide quantitative or qualitative
formal guarantees for such autonomous systems.

1 Introduction

Complex autonomous systems, such as autonomous aircraft taxiing systems |26,
49] and autonomous cars [29,32,42,73], need to perceive and reason about their
environments using high-dimensional data streams (such as images) generated by
rich sensors (such as cameras). Machine learned components, especially deep neu-
ral networks (DNNs), are particularly capable of the required high-dimensional
inference and classification; hence they are increasingly used for perception in
these systems. Formal analysis of the safety of these systems is highly desirable
due to their safety-critical operational settings and the error-prone nature of
learned components. However, in practice this is very challenging because of the
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Fig. 1. Example of autonomous system using a DNN for visual perception

complexity of the system components, including the high complexity of the neu-
ral networks (which may have millions or billions of parameters), the complexity
of the camera capture process, and the random and hard to characterize nature
of the environment in which the system operates (i.e., the world itself).

Typical assurance techniques for such autonomous systems include simula-
tions and in-field testing, which have the advantage of being applicable to full-
scale systems, but do not provide guarantees, unlike formal verification. In this
work, we survey recently-proposed techniques that use formal methods with the
goal of providing formal system-level guarantees.

While there may be other papers and surveys on techniques and challenges
for safe artificial intelligent (AI) systems, see [70,84| for prominent examples, we
specifically focus here on formal verification techniques for autonomous systems
that incorporate DNNs for perception from high-dimensional data. To the best
of our knowledge, such a survey has not been performed before. It is our hope
that this survey can serve as a quick reference to the techniques in this rapidly
evolving space and the guarantees that they provide. To scope this work, we
focus on verification techniques, while related approaches, such as synthesis of
safe vision-based controllers, are not covered in depth in this study.

The rest of the paper is organized as follows. In the next section we present a
schematic description of an autonomous system with a DNN for visual perception
and discuss properties for such a system. Section 3 gives details about the surveyed
verification techniques. Section 4 surveys related verification techniques that also
target autonomous systems, albeit with DNNs that have low-dimensional input
space, while Sect. 5 outlines some future challenges and conclusion.

2 A Vision-Based Autonomous System

Let us consider an autonomous system consisting of four components; sys-
tems with more components can be treated similarly. The system contains a
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Perception component (i.e., a DNN) which processes images (img) and produces
estimates (ses¢) of the system state, a Controller that sends commands (¢) to
the physical system (the plant) being controlled in order to maneuver it based
on these state estimates, the Dynamics modeling the evolution of the actual
physical system states (s) in response to control signals, and the Sensor, e.g.,
a high-definition camera, that captures images representing the current state of
the system and its surrounding environment. There may be other sensors (radar,
LiDAR, GPS) that we do not consider here for simplicity. The environment may
have its own dynamics which may or may not depend on the system under veri-
fication and may also be subject to environment perturbations, which we ignore
here for simplicity.

Although simple, the type of system we consider resembles (semi-
Jautonomous mechanisms that are already deployed in practice, such as adaptive
cruise controllers and lane-keeping assist systems, which similarly use a DNN for
visual perception to provide guidance to the software controlling electrical and
mechanical subsystems of modern vehicles. An example of such a system designed
for autonomous taxiing of airplanes on taxiways is illustrated in Fig. 1. For this
system, the state captures the position of the airplane on the surface and the
role of the DNN is to estimate this position from images captured by a camera
placed on the airplane.

System-Level Properties. We aim to check that the overall system satisfies a
system-level property P. In the autonomous taxiing example, an example prop-
erty is that the airplane shall never leave the taxiway, which can be written as
|cte| < d meters, where cte is the cross-track error (one of the values that the
DNN aims to estimate) and d is the dimension of the runway [63|. See also previ-
ous works [78,79] for several examples of specifications for autonomous vehicles.
Such properties can be expressed in various flavors of temporal logics depending
on the formalism used to model the system. For instance, the above property
can be encoded in PCTL [14] as follows.

P =?[F(|cte| > d)]

Here P =7 indicates that we want to calculate the probability that eventually
(F') the system reaches an error state.

In order to check this property, one could run many simulations using a
high-fidelity simulator such as CARLA [20] or X-Plane [54]. However, best-effort
simulation alone may not be enough to achieve the high degree of confidence in
the correctness of the system necessary for deployment in a safety-critical setting.
The goal is therefore to formally verify the property. To this end, one needs to
formally model the autonomous system operating in the environment (denoted
System) and to check that System = P holds with a provable guarantee.

Verification Challenges. Formally verifying System presents serious scala-
bility challenges, even ignoring the learning-enabled aspect, since the conven-
tional components (Controller and Dynamics in our simplified case) can be
quite complex; nevertheless they can be tackled with previous formal verifica-
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Table 1. Summary of surveyed techniques.
Technique Modelling for Perception Analysis Environment Sy level Case-studies
(Techniques and Tools) Guarantees
163] (Sect. 3.1) Probabilistic Abstraction of Probabilistic Model Checking Stochastic Probabilistic with Airplane Center-line
Env, Sensor, DNN PRISM, STORM, Confidence Intervals Tracking
Incorporates DNN Verification
[7] (Sect.3.1) Probabilistic Abstraction of Probabilistic Model Checking Stochastic Probabilistic Urban Driving

Env, Sensor, DNN

STORM

Car-Pedestrian Scenario

[39,55] (Sect. 3.2)

Non-deterministic Approximation

(contract)
of Env, Sensor, DNN

C ined Optimi
Reachability Analysis
Data-driven construction of contracts

Problem

Non-probabilistic

Lane Keeping,
Vision-based Landing,
Formation flight systems

64] (Sect. 3.3)

Non-deterministic Abstraction of
Env, Sensor, DNN

Model Checking
Extended with Assumption Generation

Non-deterministic

Non-probabilistic

Airplane Center-line
Tracking

[16,33,68] (Sect. 3.4)

Geometric, Mathematical Models
of Env and Sensor

Decision Procedures, Z3, PPL
AirVERIF
DNN Verification

Deterministic

Non-probabilistic

Auto Drone
Vision-based Landing

[4,10,51] (Sect. 3.5)

GAN Model for Env and Sensor

DNN Verification
Reachability Analysis

Stochastic

Non-probabilistic

Airplane Center-line
Tracking

Continuous-time Reachability analysis

Verify GAN
[81] (Sect.3.5) Canonical Env Model with Hybrid Model Checking Deterministic Non-probabilistic Mountain Car,
Data-driven Noise Models, Verisig F1/10 Auto Racing Car

Hybrid System Model of DNN
Scenic program for Env
Connected to Simulation

[23] (Sect. 3.6) Statistical Model Checking Stochastic

VerifAl

Statistical Autonomous Driving,
Airplane Taxiing,
UAVs, Indoor Robotics
Autonomous Driving,
Airplane Taxiing

[76] (Sect. 3.6) Scenic program for Env Run-time Monitoring Stochastic

VerifAl

Run-Time Safety

tion techniques (such as software, probabilistic, or hybrid model checking) pos-
sibly involving abstraction to reduce the size of the state space. The perception
components, including the DNN and the camera, make the scalability problem
extremely severe. A DNN can have billions of parameters, which precludes for-
mal verification for most realistic, state-of-the-art networks. Furthermore, the
high-dimensional inputs to the DNN come from sensors—themselves complex
and hard to model—and bear complex relationships to the system states while
also being subject to random perturbations from the external environment that
are difficult to model precisely.

In the next section we describe formal methods techniques that address the
main challenge of reasoning about the perception which involves: the complex
DNN, the high-definition cameras, and the changes from the environment.

3 Verification Techniques

Table 1 briefly summarizes the main techniques (with the corresponding cita-
tions) that we survey in this section. We briefly describe the modeling approach
taken by different techniques when tackling the perception challenges, the par-
ticular verification techniques and tools that are employed to conduct the verifi-
cation of the autonomous system, the assumptions made about the environment
conditions, and the system-level guarantees that are provided by each of the
surveyed techniques. We also highlight the various case studies reported in the
respective papers.

3.1 Verification with Probabilistic Abstractions for Perception

We begin our survey with verification techniques that are probabilistic, which
are perhaps the most natural since the camera images capturing the state of
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the world are subject to randomness due to the environment; further DNNs
are learnt from data and are not guaranteed to be 100% accurate. To render the
complexities introduced by sensor noise and DNN-based perception tractable, 6]
and [63] build a probabilistic abstraction of the perception components. At a
high level, the probabilistic abstraction maps each (discrete) system state to a
distribution over the state estimates that the DNN-based perception component
would output.

These distributions are based on confusion matrices computed for the DNN-
based perception component on a representative dataset. A confusion matrix is a
commonly used performance metric for classification problems which succinctly
summarizes the accuracy of a network for each output class. These accuracy
values can be translated directly into probabilities on transitions connecting
actual and estimated system states.

Importantly, the representative dataset must accurately reflect the opera-
tional conditions of the system. Composing the probabilistic abstraction with
a known model of the system dynamics and controller yields a discrete-time
Markov model that can then be analyzed with a probabilistic model checker
such as PRISM [53] or STORM |37].

As the probabilities are estimated based on empirical data, and thus are sub-
ject to error, [63] computes confidence intervals in addition to point estimates
for these probabilities to strengthen the soundness of the analysis. Further, [63]
shows how to leverage local, DNN-specific analyses as run-time guards to fil-
ter out misbehaving inputs and increase the safety of the overall system. The
use of DNN-specific analyses builds on the authors’ prior work [11,12] that uses
probabilistic abstractions of perception to synthesize controllers with safety guar-
antees.

In the special case where the perception module is an object detector [7]
introduces distance-parameterized and proposition-labeled confusion matrices to
help construct a suitable probabilistic abstraction. Each of these augments the
traditional notion of a confusion matrix with class divisions that are not explicitly
predicted by the object detector but may be correlated with the object detector’s
performance or system-level behavior of the closed-loop system.

Also related is the verification approach of PACTI [44| which provides an
algebra of assume-guarantee contracts along with algorithms to infer component
contracts given a system-level contract. For example, PACTI can take the quo-
tient of a system-level contract and the controller’s contract to obtain a contract
that the perception component needs to uphold. Since strong (non-probabilistic)
guarantees may be too stringent in realistic settings, PACTI allows the user
to supply a minimum satisfaction probability alongside the system level con-
tract. In this case, PACTI computes a contract for the perception component
that is strong enough to guarantee the minimum satisfaction probability while
occasionally allowing errors that lead to system-level violations. The probabilis-
tic perception contract is formalized in terms of a proposition-labeled confusion
matrix. To check whether the contract is upheld, one can compare the contract
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against a probabilistic abstraction of perception constructed using the techniques
surveyed earlier in this section.

3.2 Symbolic Model Checking with Perception Contracts

An alternative approach for verification of learning-enabled autonomous systems
centers around perception contracts that serve as the specifications for the
machine learning (ML) models (e.g., DNNs for perception) that can be used
to verify system-level properties [5,39]. The methods was used to assure the
safety of lane-keeping systems for simulated vehicles and agricultural robots,
and more recently, vision-based automated landing [55,71] and formation flight
systems [38].

As outlined in Sect. 2, the ML model in the autonomous system serves as
a state estimator for the plant state. Suppose s.4 is the DNN’s output of the
ground truth estimate and s is the ground truth state. The correctness of the
DNN module can be specified in terms of some relation M (s, Sest) relating the
quality of the estimate s.q with respect to ground truth s. For example, although
it is unrealistic to formally specify the “lane markings” in terms of color-density of
pixels in an image, it is easy to specify that a vision-based lane detection system
should, ultimately, estimate the distance s between the center of the ego car
and the center of the lane. The correctness specification of such a lane detector
could then be stated in terms of the raw error s.s; — s, and one can just choose
M (s, 8¢st) to be = |s — s¢qt|> — 7 < 0 with r being the perception error bound.
In auto-landing, adaptive cruise control, pedestrian detection and avoidance,
ML models are similarly used to estimate pose of the ego aircraft (relative to
runway ), separation between vehicles, distance and intent of pedestrians, etc.
Getting access to ground truth-labeled data is straightforward in simulations,
and albeit more expensive it is also reasonably accessible for instrumented and
controlled real world experiments.

It is noteworthy that perception contracts are not input-output contracts
for DNNs. They cannot hence be formally verified (say using DNN verification
techniques). Rather, they are specifications that relate the implicit ground truth
associated with an image to the ground truth estimated by the DNN.

In this sense they are similar to the probabilistic maps developed in [63] and
the nondeterministic maps used in [64] which map ground-truth states to (sets of)
estimated states. As we shall see below, perception contracts are constructed so
that they verify the system-level safety property—i.e., the car does not go off the
road—with M substituting the actual perception components in the autonomous
system. Furthermore, unlike a traditional uniform estimation error bounding |s—
Sest|, M can be a much more expressive, nonuniform, nonconvex, algorithmically
synthesized relationship between s and s.g;.

The key benefit of perception contracts is that we can stand on the founda-
tions laid by decades of prior work on verification of control system and hybrid
systems that do mot use ML components. If we assume for a moment that the
state estimation s.s provided by the DNN conforms to the perception con-
tract, then the safety assurance problem becomes amenable, to a battery of
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existing techniques from formal verification, control theory, and program anal-
ysis [3,9,57,59,65—-67,87]. This is achieved with the following assume-guarantee
strategy:

— Conformance (A). Synthesize a perception contract: Construct a per-
ception contract (PC) for the ML module, using input/output perception
data and available system information, that captures the estimation quality
via a relation M (s, Sest) under all operating environments Env.

— Correctness (B). Prove safety under perception contract: Formally
verify the composition of the above contract M and the rest of the system
(Dynamics, Controller,...) against the system safety requirement using one of
the above techniques.

It is conceptually easier to think of two steps: conformance (A) and correct-
ness (B) sequentially, however, more precise contracts are obtained by solving
for M jointly. In [5,39] the contracts are computed using constrained optimiza-
tion problems that always satisfies correctness and maximizes conformance with
respect to collected data. In [55], hybrid reachability analysis (Verse tool [56]) is
used for checking the correctness condition of the constructed contracts.

If we set M(s,Scst) = |5 — Sest|?> —r < 0, then the above approach reduces
to certifying the safety with gross error bounds. This idea works in relatively
stationary environments [15,19], but is too restrictive as environment variations
increase. In contrast, perception contracts are more flexible and are typically
represented by logical formulas, decision trees, simpler neural networks, and
with other expressive data structures.

Perception contracts have been used to discover safe Operational Design
Domains (ODDs), that is, the environmental conditions under which the
autonomous system can be expected to work safety. Start with a large set of envi-
ronmental conditions E, compute the corresponding perception contract Mg, if
Mg satisfies the conformance and correctness conditions, then it can be declared
as a safe environment, otherwise, shrink E to a smaller environment, and iter-
atively repeat the process. For guaranteed convergence, the shrink step should
keep at least one environmental condition (nominal environment) in which the
system works safely. In [55], this procedure is used to find ranges of ambient
lighting conditions and sun angles that are safe for automated landing.

We close this section by remarking that perception contracts are useful for
offline verification of ML-enabled autonomous systems, but they are limited for
online or runtime monitoring. It is tempting to think of M(s) as a set of estimated
states that are provably safe, and therefore, could be used to raise an alarm
or take corrective actions when the actual s.s; at runtime is outside this set.
However, to use M(s) we need the actual ground truth state at runtime which
is of course not available. In [71], the authors address this issue by computing
the preimage of the perception M ~! contract and using that for online recovery.
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3.3 Compositional Verification with Assumption Generation
for Perception

Another approach builds upon the technique in [63]| described earlier, to provide
qualitative, i.e., non-probabilistic, guarantees for system-level safety properties.
This follow-up work [64] describes a compositional verification approach which
uses a form of abductive reasoning, where the autonomous system, modeled as
a labeled transition system, is analyzed in the absence of the DNN, the cam-
era, and the environment, using instead a nondeterministic abstraction mapping
actual states to all the possible estimated states, and thus assuming worst-case
behaviour for perception. The approach then automatically derives conditions,
in the form of assumptions, on DNN behaviour that guarantee the safety of the
overall system.

They build on previous work on automated assume-guarantee compositional
verification [8,31,61], to automatically generate these assumptions in the form of
labeled transition systems, encoding sequences of DNN predictions that guaran-
tee system-level safety. The assumptions are the weakest in the sense that they
characterize the output sequences of all the possible DNNs that, plugged into
the autonomous system, satisfy the property. They further propose to mine the
assumptions to extract local properties on DNN behavior, which in turn can be
used for the separate testing and training of the DNNs. These local properties
relate the ground truth with the estimates and are thus similar to the perception
contracts described above.

The approach can be applied at different development phases for the
autonomous system. At design time, the approach can be used to uncover prob-
lems in the autonomous system before deployment. The automatically generated
assumptions and the extracted local properties can be seen as safety require-
ments for the development of neural networks. At run time, the assumptions can
be deployed as safety monitors over the DNN outputs to guarantee the safety
behaviour of the overall system.

A key challenge in building the monitors is that the system does not have
access to the ground truth states, but only to the estimated states as output by
the DNN and therefore subject to error. The way they solve this challenge is
by restricting the alphabet of the automatically generated assumptions to only
refer to the estimated states. Further, although the work provides qualitative
guarantees, the work also leverage quantitative, probabilistic model checking
(PRISM) to quantify the permisiveness of the generated assumptions.

In general, early works that apply compositional verification to closed-loop
systems with DNN-based perception start by defining component-level contracts,
then apply compositional reasoning to yield system-level guarantees. For exam-
ple, the 2018 white paper [62] first uses clustering to discover regions of the per-
ception component’s input space that yield predictable behavior, then uses Relu-
plex [50] to prove input-output properties for these regions, and finally encapsu-
lates these properties as an input-output contract on the perception component.
Although the resulting contract is guaranteed to hold, it is not necessarily suffi-
cient to prove system-level safety. Another approach is to handcraft a contract
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before verifying that it is upheld by the perception component, as is done in
the robustness contracts framework [60]. Although robustness contracts offer an
expressive formalism for contract-based design, it may be difficult for a human
to design contracts that are both amenable to existing verification tools and are
strong enough to ensure safety.

3.4 Verification with Mathematical Models of the Cameras
and the Environment

Considering more accurate models of perception camera and environment can
provide a higher level of assurance about the correctness and safety. Instead of
abstracting away perception components, the following works [16,33,68] incor-
porate (geometric) mathematical models of the camera and the environment
alongside the perception DNN and the conventional components (such as con-
troller and vehicle dynamics) in their analysis.

NNLander-VeriF [16,68| considers a geometric model of the pinhole cam-
era to capture the relation between the system states (e.g., position of the air-
craft) and the images processed by the DNN that represents a combined per-
ception/control module. The camera model depends of the environment, that
is, the runway parameters in the aircraft landing case study considered in the
paper. To address the scalability issues of the closed-loop verification, the pro-
posed approach remodels the camera as a neural network and constructs a sin-
gle neural network by augmenting the DNNs of the camera model and the given
perception/control module, and use neural network model-checkers to verify this
augmented neural network in the closed-loop verification.

The camera model in [16,68] is specific to an environment, requiring remodel-
ing and retraining for different environment models. In [33], the authors consider
a more decoupled approach by modeling the camera and the environment sep-
arately. A synthetic 3-D environment E (created using a 3-D-design tool like
Blender) is considered where the environment is represented as a collection of
triangles that represent the triangulated faces of objects in the environment (e.g.
obstacles which the vehicle must avoid when traveling). The camera model C
specifies the parameters of the camera, including the canvas details and the focal
length of the lens. A central modeling of the paper is a mathematical function
imgc(F, p) which takes as input the environment E, camera model parameters
C and the camera/vehicle position p and outputs the image captured by the pin-
hole camera on its canvas from that position. The paper then uses these models
to do a symbolic reachability analysis and falsification.

One of the important steps in the symbolic verification process is to compute
the set of output images of the camera for a given set of positions. This is accom-
plished using the notion of an image invariant region, which corresponds to a set
of positions in the 3-D space from which the camera captures identical images.
More precisely, the given region - set of positions - is split into image invariant
regions, and each image invariant region and the corresponding image is propa-
gated through the loop independently. The computation of the image invariant
regions of a given set of positions is computationally expensive as the number
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of such regions can be huge (upper bounded by the number of different possible
images on the canvas). Hence, an abstraction-based approach to speed-up the
propagation through the loop is proposed. The experimental results point to the
benefits in proving safety and falsification for an autonomous vehicle with several
synthetic road environments with up to 800 triangle edges in the synthetic envi-
ronment; however, scalability still remains a challenge as the technique already
takes about an hour for the largest environments considered. An abstraction-
refinement algorithm based on an abstract data structure for representing a set
of images called interval image is explored in [34] which substantially scales the
verification.

3.5 Verification Using Generative Models for Perception

Another related work [51] proposes a method to address the challenges of mod-
eling the perception by training a generative adversarial network (GAN) to map
states to plausible input images. Concatenating the generator network with the
control network results in a network with a low-dimensional input space, which
allows for the use of existing closed-loop verification tools to obtain formal guar-
antees on the performance of image-based controllers. This approach is applied
to provide safety guarantees for an image-based neural network controller for
an autonomous aircraft taxi problem. The resulting guarantees are with respect
to the set of input images modeled by the generator network, and so a recall
metric is provided to evaluate how well the generator captures the space of plau-
sible images. The resulting closed-loop systems are analyzed with traditional
(non-probabilistic) formal verification techniques. The recent work [10] builds
on this approach by composing the system dynamics with the generative model
and unrolling multiple steps of this composition into a large neural network to
reduce the overapproximation that occurs at each timestep. An orthogonal app-
roach to mitigating compounding overapproximation is to use a continuous time
model; another recent work [4] builds on the approach of [51] by incorporating
a piecewise linear approximation of the neural controller to permit the use of
continuous-time reachability techniques.

In contrast to the aforementioned techniques that learn a monolithic noise
model, [81] takes a compositional approach. The authors first obtain a canonical
environment model (from first principles or from a simulator) that represents
perfect perception under nominal conditions. Then, they use real-world data to
learn a noise model that augments the canonical model with realistic observa-
tions. The authors distinguish two kinds of noise: benign noise (e.g. image blur)
that can be accurately modeled by a generative model and adversarial noise
(e.g. reflected LiDAR rays) for which they train instead a classifier that predicts
which component of the observation should be perturbed. Once a noise models
is learned, it can be composed with the canonical environment model, resulting
in a hybrid system that can be analyzed using Verisig [48]. The resulting safety
guarantees are only meaningful if the data driven noise models faithfully model
real-world conditions; in future work, the authors plan to incorporate a PAC
bound on the modeling error into the verification problem.
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3.6 Compositional Statistical Model Checking, Simulation-Based
Verification, and Run-Time Verification

An important class of formal verification techniques are those that integrate
with simulation and can be performed not just at design time, but also at run
time. Simulation presents important advantages: high fidelity simulators contain
more details of complex dynamical systems than the high-level models used in
verification, simulation can be used on full-scale software and hardware imple-
mentations of autonomous systems, and simulations are widely used even for
highly complicated systems. The main disadvantage is that, in general, simula-
tion does not provide formal guarantees. Additionally, traditional simulation is
not coupled with high-level formal models; traditional simulation models (e.g.,
Matlab/Simulink code) are executable models that do not capture the stochas-
ticity and non-determinism present in operating environments. In this section,
we describe multiple inter-related contributions that address the limitations of
traditional simulation and show how to perform scalable, compositional formal
analysis that builds upon simulation methods.

Stochastic Formal Modeling with Probabilistic Programming: Learning-
enabled autonomous systems operate in environments about which there is typ-
ically a great deal of uncertainty. Indeed, learning is introduced to reason about
and handle this uncertainty. One needs formal modeling languages that can
capture this uncertainty as well as the stochastic behavior of the objects and
agents in the environment. As argued in [70], probabilistic programming lan-
guages are well-suited to modeling environments of complex learning-enabled
autonomous systems. One such language is Scenic [27,28]. Scenic is a formal
modeling language, with well-defined semantics, and can express not only com-
mon formalisms such as Markov chains and Markov Decision Processes, but also
more complex stochastic models. Importantly, for learning-enabled vision-based
autonomy, Scenic can also be interfaced to simulators such as CARLA [20], X-
Plane [54|, and Webots [83] which implement high-fidelity models of system
dynamics and sensors. A basic unit of modeling in Scenic is a scenario, a distri-
bution over configurations of objects and agents in the physical world and their
dynamics. Scenic allows one to build up complex scenarios from simpler ones
using compositional modeling constructs.

Compositional Falsification and Abstract Perception Models: Simul-
ation-based falsification has found widespread industrial adoption in conven-
tional cyber-physical systems. However, the complexity of neural networks used
in vision-based autonomy makes these systems beyond the reach of conventional
falsification tools. Additional methods are needed to scale up to industrial-scale
systems. One approach is to use compositional reasoning coupled with abstrac-
tions of perception components. The first work on this topic was by Dreossi
et al. [21,22], showing how to perform simulation-based falsification of temporal
logic specifications by first abstracting away the DNN based perception compo-
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nent with a simpler function approximation and then computing a set of envi-
ronment states where the output of the perception component, if wrong, can
flip the outcome of the safety property from safe to unsafe. This set is then
used to generate a pre-condition over the input space of the DNN with respect
to which a localized adversarial analysis of the perception component can be
performed. This method was demonstrated to scale up to falsify autonomous
driving systems using neural networks with hundreds of millions of parameters.
In subsequent work, Ghosh et al. [30] gave a counterexample-guided approach to
generating abstractions of perception components and using those abstractions
to provide formal guarantees on control of autonomous systems. The abstractions
take the form of non-deterministic over-approximate relations between the state
of the environment being perceived and the output of the perception component
(classification, object detection, distance estimation, etc.). In essence, these are
a variant of perception contracts as introduced earlier in this paper. One can
also perform correct-by-construction controller synthesis with respect to such
abstract models of perception components, where one synthesizes a controller
that keeps the system safe even when the perception component makes an error.

Temporally Compositional Statistical Model Checking (SMC) and Fal-
sification: Another source of complexity for simulation-based verification arises
from long-horizon scenarios, where even running a single simulation can take
hours or even days. To deal with this temporal dimension of complexity, we
can take a model-based approach. Specifically, one can use Scenic to model a
long-horizon scenario as a composition (sequential, parallel, random, etc.) of sim-
pler scenarios. Yalcinkaya et al. [85] show how this compositional structure of a
Scenic program can be exploited to split up a statistical model checking (or falsi-
fication) problem for a Markovian safety specification into several simpler SMC
(or falsification) sub-problems. Simulations of shorter sub-scenarios can be per-
formed in parallel and the results can be composed to provide the same guaran-
tee as one would achieve with monolithic SMC or falsification. These algorithms
are implemented in VerifAl [23|, an open-source toolkit accompanying Scenic
that can perform several verification, debugging, and synthesis tasks including
SMC and falsification. Scenic and VerifAl have been together used on several
industrial-scale autonomous systems, including a DNN-based autonomous taxi-
ing system [26] and a full-scale autonomous vehicle evaluated both in simulation
and on the road [29].

Runtime Monitoring of Operational Design Domains: Scenic is also use-
ful for run-time verification, which is crucial for vision-based autonomy as real-
world environments can deviate from the models assumed at design time. In this
context, an important notion is that of an operational design domain, a specifi-
cation of operating environments in which the autonomous system is designed
to perform safely. Scenic provides a formalism for ODDs; i.e., a Scenic program
can precisely represent the ODD of a system [75,76]|. Importantly, ODDs must
be monitorable at run time: it is important to be able to tell at run time whether
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you are within the ODD or might exit the ODD. However, not all variables of the
Scenic model can be monitored accurately at run time; for example, one may
not know ground truth values of positions or other attributes of environment
vehicles. Torfah et al. [76] provide an algorithmic method to learn a runtime
monitor from a Scenic program over a subset of monitorable variables so as to
predictively monitor whether a system is in its ODD or not. This capability
has been demonstrated on autonomous driving systems and avionics systems
including for automated taxiing and landing.

4 Other Related Techniques

Formal proofs of closed-loop safety have been obtained for systems with low-
dimensional sensor readings in the absence of sensor noise [24,25,40,41,45,46,48,
52,69,72,77,82]. For example, Verisig [46,48] models both the system dynamics
and the neural component as a hybrid system, permitting the use of the existing
hybrid verification tool Flow* [13]. Verisig has successfully verified safety and
liveness for simulated autonomous racecars that use LIDAR sensors and an end-
to-end neural controller with sigmoid activations [47] but has not been scaled up
to handle the convolutional neural networks commonly used to process visual
input. Support for CNNs is provided by the NNV 2.0 tool [58|, however addi-
tional treatment of hard-to-model sensor behavior is needed to apply any of the
aforementioned techniques to realistic settings with high dimensional perception.

An alternate approach for scaling closed-loop safety proofs is to con-
struct (or learn) inductive invariants in the form of control barrier functions
(CBFs) [2,3,17]. One only needs to prove that, over a single step of the sys-
tem dynamics, the invariant is inductive and implies safety. This is no small
task in settings with realistic perception, as safety and system dynamics are
typically defined in terms of the system’s low-dimensional state. To bridge the
gap between LiDAR observations and system-level safety, LOCUS [18] learns an
observation-space CBF defined in terms of observations rather than state esti-
mates. This requires a model of system and sensor dynamics that can predict
the observation one step into the future. Such single-step foresight may be prac-
tical for LiDAR observations, but is much harder for high dimensional camera
observations. To address this challenge, the successor work [74] uses a neural
radiance field (NeRF) to provide visual foresight. The authors of [74] identify
both reducing computational overhead and incorporating bounds on the NeRF’s
reconstruction error into the CBFs (similarly to [19]) as directions for future
work.

Measurement-robust control barrier functions [15,19] enforce safety in the
presence of state estimates that suffer from bounded approximation error. This
approximation error is represented as a function that can be learned from labeled
data to capture the characteristics of the sensor and perception. To provide prob-
abilistic safety guarantees in the presence of imperfect perception, the authors
of [86] use conformal prediction [80] to quantify estimate uncertainty during
CBF construction. Conformal prediction allows the authors to use a representa-
tive calibration dataset to augment the imperfect perception map’s predictions
with regions that contain the true state of the system with high probability.
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The authors demonstrate that their approach can guarantee 75% safety for a
simulated racecar that receives noisy LiDAR observations; the technique could
also be applied to camera observations assuming a readily available source of
calibration data (e.g., from simulation).

In the context of safe reinforcement learning, shielding [1] augments the con-
troller with a shield that disables actions that might lead to safety violations.
Although shielding typically assumes direct access to the symbolic state of the
environment, VSRL [43] treats the case of safe reinforcement learning from high-
dimensional visual inputs. To make enforcing safety tractable, VSRL assumes
access to an object detector that localizes the position of each safety-relevant
object to within an € Euclidean distance of the object’s actual position.

5 Conclusion and Future Directions

We surveyed techniques for the verification of autonomous systems that use
DNNs for perception. While these techniques open the door to analyzing
autonomous systems with state-of-the-art DNNs, they can still suffer from the
well-known scalability issues associated with formal verification techniques, such
as model checking. We believe these can be addressed via judicious use of abstrac-
tion and compositionality.

Since the abstractions of perception, such as the probabilistic abstractions or
the perception contracts, are often constructed with respect to an offline dataset
of states and observations, the safety assurances they afford are only valid when
the deployed system stays within a narrow operational design domain. This is
especially important for bridging the sim-to-real gap, as the labeled data needed
to build the abstractions is readily available in simulation but expensive to collect
in the real world. Furthermore, the simulation environment may not be reflec-
tive of the actual deployment. Future work could investigate ways to combine
large amounts of simulation data with small amounts of labelled real-world data
to practically construct useful abstractions for perception. Another interesting
direction would be to integrate probabilistic abstractions of perception with out-
of-distribution detectors during deployment to qualify safety guarantees in novel
scenarios.

Some of the techniques discussed attempt a mathematical modeling of the
camera and the environment. Models are, in general, only approximations of
the real-world; specifically, the models need to incorporate the uncertainties
in the environment, the camera rendering process and the dynamics. Develop-
ing frameworks that consider uncertainties, possibly through stochastic models,
and corresponding analysis techniques will be an important future direction to
explore.

Existing techniques consider a fully trained neural network for certain com-
ponents of the closed-loop such as perception and control. In practice, these net-
works are continuously evolving due to retraining as more and more data become
available. Techniques that deal with evolving neural network components in a
vision-based closed-loop system is an important open question. Specifically, one
needs to investigate how proofs can be transferred between different versions of
the neural networks in the closed-loop. Some preliminary work in this direction
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has been explored in the context of traditional closed-loop systems with evolving
neural networks [35,36].

Many techniques surveyed treat stateless models of perception that directly

map single-timestep observations to state estimates. Future work could investi-
gate ways to build probabilistic abstractions of perception that incorporate the
time-series nature of observations and perception systems.
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