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Abstract
ARM-based manycore CPU architectures are well-positioned to
provide the rising memory throughput requirements of modern
data intensive scienti!c applications in High Performance Comput-
ing (HPC). The Fujitsu A64FX CPU platform is based on the ARM
v8.2A architecture, and is the processor of the "agship Japanese
supercomputer - "Fugaku", which was previously ranked as the
#1 supercomputer in the world according to the Top500 list. The
Nvidia Grace superchip features 144 Neoverse V2 cores based on
the ARMv9 architecture with 4x128b SVE2, providing exceptional
computational power. The chip supports up to 480GB of memory,
making it ideal for AI, machine learning, and scienti!c computing
workloads. In this paper, we conduct a thorough performance ex-
ploration of a variety of parallel bandwidth-sensitive benchmarks
and applications compiled with the native Fujitsu compiler on a
Fugaku A64FX compute node and ARM (LLVM) Compiler on an
NVIDIA Grace superchip compute node, engaging all the computa-
tional cores per cluster using OpenMP multithreading (assuming
the cores can drive the available bandwidth). Our ultimate goals
are to study the resource utilization of scienti!c applications and
benchmarks on A64FX and Grace superchip, considering graph
application scenarios ( GAP Benchmark suite) and eleven appli-
cation proxies from the Rodinia heterogeneous benchmark suite
(considering domains such as Data Mining, Bioinformatics, Fluid
Dynamics, Pattern Recognition, etc.). Through exhaustive perfor-
mance monitoring, we quantify the resource utilization of diverse
OpenMP-based HPC applications on both the Fujitsu A64FX and
the Nvidia Grace Superchip platforms.
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1 Introduction
Since the deployment of high-performance ARM multicore CPUs
(i.e., Fujitsu A64FX) on formerly #1 supercomputer in the world,
RIKEN Fugaku (circa 2020), there has been a number of high-end
energy e#cient processor design roadmaps with ARM-based CPUs
(exhibiting 1 TB/s memory bandwidth, private caches and hundreds
of CPU threads), among cloud/hyperscaler and data center product
vendors. Most recently, NVIDIA™ released their !rst data center
CPU, Grace, using a custom chip-to-chip interconnect (i.e., NVIDIA-
C2C) to weave two CPU modules into a “superchip”. We compare
Fujitsu A64FX and NVIDIA Grace superchip in Fig. 1, listing the
o#cially released performance numbers. Aside from being a larger
CPU chipset (144 cores in Grace vs. 48 cores in A64FX), Grace su-
perchip also o$ers a relatively large (117MiB/#NUMA node) shared
Last Level Cache (LLC), which compared to A64FX’s shared (per
NUMA node or core group) L2 cache is 15→ larger.
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Figure 1: Fujitsu A64FX and NVIDIA Grace Superchip high-level
components (using publicly available information).

A number of prior works have discussed the role of the ARM
ecosystem in HPC, most recently laying out the architectural as-
pects of Fujitsu A64FX and NVIDIA Grace superchip, in the con-
text of scienti!c applications [1, 9–12, 14, 17–19]. A key design

198

https://orcid.org/0009-0002-8718-1491
https://orcid.org/0000-0001-8758-7657
https://orcid.org/0000-0002-9940-9951
https://orcid.org/0000-0002-4313-1882
https://doi.org/10.1145/3695794.3695813
https://doi.org/10.1145/3695794.3695813
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695794.3695813&domain=pdf&date_stamp=2024-12-11


MEMSYS ’24, September 30–October 03, 2024, Washington, DC, USA Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Márquez

criteria of these “data center” CPUs are to enhance the through-
put of memory-bound applications, which are ubiquitous in High
Performance Computing (HPC). As such, both A64FX and Grace
are capable of providing high instruction throughput, sustainable
memory bandwidth and low latencies across the memory hierar-
chies (corroborated through popular benchmarks), yet performance
footprints of myriad applications exhibit signi!cant di$erences. In
Fig. 2, we capture the memory latency spectrum for strided data
transfers (as reported by LMBench [16]), corresponding to accesses
across the memory hierarchy on “data center” CPUs (A64FX and
Grace) vs. desktop CPU system, Apple M3. The impact of a rela-
tively large LLC is evident in delaying the latency spikes as the
data sizes increase (indicating data movement beyond private and
shared caches).

Figure 2: Access latencies (using LMBench, stride=128) across the
memory hierarchy of Fujitsu A64FX, NVIDIA Grace and Apple M3.

In this paper, we consider both regular and irregular applications
— while regular applications demonstrate !xed strides to access the
memory blocks and may e$ectively engage the available cores to
drive bandwidth, irregular scenarios might demonstrate relatively
higher and unpredictable memory accesses and workload patterns.
We have deliberately excluded FLOPs-intensive applications and
benchmarks from our analysis, as scienti!c applications are leaning
towards becoming more data-intensive and sparse, requiring broad
set of optimizations to derive performance from future extreme-
scale architectures. Recent research investigated time spent on
Basic Linear Algebra Subprogram (BLAS) operations across several
applications to not exceed 25% of the total execution time [20], there-
fore, optimizing third-party linear algebra libraries may not yield
sustainable performance improvement. Our approach considers
benchmark evaluation (using STREAM and graph neighborhood ac-
cess benchmarks to study impact of contiguous vs. non-contiguous/
irregular writes) using various inputs followed by thorough pro!le-
driven application analysis, using recommended compilers, options
and pro!lers to extract the best performance from the individual
platforms. Since the #cores vary between the platforms, we have
a third con!guration, which uses 48 cores on the NVIDIA Grace
platform to keep parity with Fujitsu A64FX. Our studies indicate
that most data intensive (especially irregular) applications bene!t
from a deeper memory hierarchy including a large LLC, and e#-
ciencies in the load/store pipelines in processors can lead to free
performance when applications are ported from A64FX platform
to NVIDIA Grace superchip.

2 Benchmarks and Applications
We use standard HPC benchmarks and applications in our anal-
ysis, discussed in this section. The benchmarks incorporate the
fundamental data-access patterns present in parallel applications.
Most applications exhibit regular/contiguous access patterns, in
which data movement happens across distinct memory locations
at regular intervals, conducted by an iterative loop. On the other
hand, graph applications involve graphs, which are mathematical
structure analogous to a set comprising of points and lines; lines
form “edges” to join two arbitrary points in the set, implying some
type of relationship which can expressed via an attribute such as a
scalar (or vector) weight over an edge. Usually, data corresponding
to graphs is expressed by a hierarchical data structure, such as
Compressed Sparse Row (CSR) format, which requires two levels of
loop nesting to scan the edges corresponding to a vertex. This type
of range indexing leads to irregularities in memory accesses, as the
number of edges corresponding to a vertex may vary with diverse
input graphs (edge distributions across a range of input graphs is
shown in Fig. 3). We consider a multithreaded execution environ-

Figure 3: Top 100K #edges distribution across vertices of graphs.

ment (using OpenMP) in which a portion of the loop iterations are
(statically) assigned to distinct processor threads. For our evalua-
tions, we have not updated any code, benchmark or application, and
present the results as-is. While it is practical to use a single metric
or Figure-of-Merit (FOM) for a benchmark, for an application or
even a mini-application, it is often intractable since di$erent areas
of an application may utilize di$erent capabilities of the underlying
processor. Therefore, we rely on visualizing performance pro!les
to understand the overall impact on the system across applications
and inputs.

2.1 STREAM and Graph Neighborhood Accesses
STREAM benchmark [15] is commonly used to study the memory
bandwidth of CPUs, by engaging all the processor cores to perform
contiguous reads/writes to/from distinct memory locations, and per-
forming simple arithmetic operations with the data. Additionally,
we explore another benchmark to study irregular/noncontiguous
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memory accesses, in the form of accessing the vertex neighbor-
hoods of multifarious real-world graphs (comprising of a varied
vertex-edge distributions), as depicted in Fig. 4, compared with
access patterns in STREAM. As a result of the variation in the edges
per vertex (owing to graph structure), if the loop over vertex is
parallelized (which is often the case in real graph applications),
there might be nontrivial load imbalance among the edges. Unlike

#pragma omp parallel for
for i in LARGE_SIZED_ARRAY:

a[i] = b[i]

#pragma omp parallel for
for i in #Vertices:

for j in #Neighbors[i]:
a[i] = b[j]

STREAM Graph Neighborhood Access

Figure 4: Distinct streaming access patterns: contiguous read/write
in STREAM vs. non-contiguous read—contiguous write in Graph
Neighborhood Access benchmark.

STREAM, memory access patterns of the graph neighborhood ker-
nels primarily consists of traversing a doubly-nested loop mandated
by the CSR representation of a graph. We use same set of graphs
on di$erent applications running on the experimental platforms,
to study the e$ect of graph structure and application logic on the
execution footprints. In"uenced by STREAM, we develop parallel
variants of copy, add and max kernels in the context of graphs
(referred as graph neighborhood access kernels); the copy kernel
copies the edge weights into an array, max collects the maximum
of the edge weights among the vertex neighborhood into an ar-
ray, whereas add accumulates the edge weights of a neighborhood
copying it into an array. We generate a random geometric graph
with good connectivity properties (dense clusters in the graph) in
memory for benchmarking purposes. Like STREAM, we report the
rate in MB/s for a kernel across a !xed number of iterations.

2.2 GAPBS and Rodinia
The GAP benchmark suite [3] consists of optimized parallel imple-
mentations of common graph algorithms supporting a wide variety
of scienti!c applications. We use four complex graph kernels in
our analysis: Breadth First Search (BFS), PageRank (PR), Connected
Components (CC) and Betweenness Centrality (BC). Breadth First
Search (BFS) performs level-by-level traversal of graphs. PageRank
(PR) iteratively computes the popularity score of the vertices in
a graph, by conducting repetitive sparse matrix-vector computa-
tions, such that the updated values are available immediately to
be adjusted in the current iteration. The CC benchmark performs
labeling of graph vertices according to their connected components,
which is a set of vertices linked together by a path. Betweenness
Centrality (BC) is about updating the scores of the vertices by com-
puting shortest paths from a subset of vertices, usually implemented
using several BFS traversals to approximate the scores.

Rodinia suite [5] comprises of several standalonemini-applications
representing a variety of scienti!c application domains. We chose
eleven mini-applications – Kmeans, Needleman-Wunsch (NW),
HotSpot (HS), SRAD (versions V1 and V2), Back Propagation (BP),
Leukocyte Tracking (LC), Stream Cluster (SC), CFD Solver (CFD),

LU Decomposition (LUD) and Heartwall Tracking (HW); with ap-
propriate input scenarios, as mentioned in Table 3. Kmeans is a tradi-
tional data mining application scenario that partitions datasets into
a pre-de!ned set of clusters. Needleman-Wunsch (NW) is a dynamic
programming method used to determine optimal genome sequence
alignment. HotSpot (HS) consists of an iterative transient thermal
simulation kernel that solves a series of di$erential equations for
a block of temperatures. SRAD implements an image denoising
technique based on partial di$erential equations representing a dif-
fusion algorithm. Back Propagation is a classic Machine Learning
algorithm for training weights of a neural network—comprising of
the forward and backward phases. Leukocyte Tracking (LC) tracks
White Blood Cells (WBC) in blood vessels; WBCs are !rst detected
in an input video frame, which are subsequently tracked across
rest of the frames, by computing speci!c gradients for each pixel.
Stream Cluster (SC) performs online clustering for an input stream
of points. CFD Solver (CFD) solves 3-D Euler equation for compress-
ible "ow, employing a !nite volume formulation on unstructured
grids. LU Decomposition (LUD) is a popular linear algebra algo-
rithm for solving linear equations, by decomposing a matrix into
lower and upper triangular matrices to maximize parallel e#ciency.
Heartwall Tracking (HW) uses image processing methods to track
the shape of mouse heart over a sequence of !xed-resolution ultra-
sound images.

3 Evaluations and Analysis
Testbeds. Our testbed platforms are Fujitsu A64FX processor

node of the Fugaku system [14] and NVIDIA Grace superchip node
from Stony Brook University’s Ookami cluster [4]. We use the rec-
ommended platform compilers and environment settings, as listed
in Table 1. All the benchmarks and applications use OpenMP multi-
threading [7]. Since Grace superchip has 3→ more CPU cores than

Table 1: Platform software details.

A64FX GRACE

Compiler FUJITSU 4.10 ARMCLANG 24.04

Options
-Kfast

-mcpu=a64fx
-Kopenmp

-Ofast
-mcpu=native
-fopenmp

A#nity OMP_PLACES=cores
OMP_BIND=spread

OMP_PLACES=cores
OMP_BIND=spread

Environment

XOS_MMM_L_ARENA_LOCK_TYPE=0
XOS_MMM_L_HPAGE_TYPE=hugetlbfs

XOS_MMM_L_PAGING_POLICY=
demand:demand:demand

N/A

Fujitsu A64FX, we additionally include a 48-threads con!guration
for Grace (selecting threads across the CPU sockets) in our baseline
performance comparisons, to match with 48-thread runs of A64FX.

Datasets and Input Parameters. We use various real-world
graphs for the graph application scenarios in GAPBS. They are
listed in Table 2. Typically, graphs are chosen such that the input
size is greater than the Last Level Cache (LLC), to induce su#cient
memory accesses. We use the same graphs on both A64FX and
Grace platforms, although the latter can support larger graphs due
to 16→ greater main memory.

Table 3 lists the input arguments for the Rodinia benchmarks.
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Table 2: Characteristics of the input graphs.

Graphs Domain & Applied Benchmarks/Applications
(GN : Graph Neighborhood Kernels) #Vertices #Edges Max Deg.

com-orkut social network(GN, GAPBS) 3M 234M 33K
rgg_n_2_24_s0 random geometric(GN, GAPBS) 16M 132M 40

uk-2002 web crawl(GN, GAPBS) 18M 584M 194K
LAW/ljournal-2008 social network(GN. GAPBS) 5M 79M 20K
indochina-2004 web crawl(GN) 7M 194M 256K

VLSI/vas_stokes_4M semiconductor(GN) 4M 131M 1K
VLSI/stokes semiconductor(GN) 11M 349M 2K

Janna/Bump_2911 reservoir simulation(GN, GAPBS) 3M 128M 195

Table 3: Rodinia kernels and input arguments.

Application Domain Problem Sizes
Kmeans Data Mining 819200 data points, 34 features, 512 clusters

Needleman-Wunsch (NW) Bioinformatics 81920 → 81920 data points with penalty of 10
HotSpot (HS) Physics Simulation 1024 → 1024 data points with 1,500,000 iterations

Back Propagation (BP) Pattern Recognition 65536 input nodes
SRAD_V1 Image Processing 502 → 458 image size with 100000 iterations
SRAD_V2 Image Processing 2048 → 2048 image size with 100000 iterations

Leukocyte Tracking (LC) Medical Imaging 219 → 640 pixels/frame
Stream Cluster (SC) Data Mining 655360 points, 256 dimensions
CFD Solver (CFD) Fluid Dynamics 0.2M elements

LU Decomposition (LUD) Linear Algebra 2048 → 2048 data points
Heart Wall Tracking (HW) Medical Imaging 609 → 590 pixels/frame

Pro!ling metrics. We compare end-to-end execution times (in
seconds) of the benchmarks and applications on a single Fujitsu
A64FX and NVIDIA Grace superchip node. However, execution
times alone does not convey the reasons behind the performance
variations between application versions on the di$erent platforms.
Hence, we rely on systems pro!ling by studying the low-level per-
formance events to understand the impact on the underlying system.
Our pro!ling metrics consists of rates and unitless quantities char-
acterizing speci!c CPU instruction overhead and load/stores across
the memory hierarchy per NUMA node. Due to di$erences in the
platform pro!lers, we are able to sample data at a !ner granular-
ity on A64FX platform (using Fujitsu Advanced Pro!ler, FAPP),
as compared to userspace metrics collected from the perf Linux
pro!ler on Grace superchip (enabling “–per-node” to aggregate
per-NUMA-node measurements). Pro!ling metrics of A64FX and
Grace are listed in Tables 4 and 5. We engage all the available cores
during performance pro!ling.

On NVIDIA Grace superchip, we focus on two vital performance
events: the volume of the memory accesses across the memory
hierarchy (caches and main memory) and the CPU pipeline stalls
(which corresponds to the wasted cycles, waiting for memory access
operations or decoding instructions to work on data). Complex
instructions can increase front-end stalls, whereas long-latency
memory operations increase backend-stalls, throttling the front-end.
FAPP onA64FX platform provides amore !ner-grained details, such
as integer and "oating-point related cycles, and instructions break-
up by functional units (i.e., integer, "oating-point or prefetch).

3.1 Benchmarks
In this section, we compare the performance of STREAM (con-
tiguous regular access data streams) with the graph neighborhood
access kernels (demonstrates irregular noncontiguous data access
pattern).

3.1.1 STREAM: . STREAM is memory-access intensive (we use
24GiB input array), greater than 50% of the time is spent on memory
accesses (moving data through the cache hierarchy), as shown in

Table 4: Fujitsu A64FX Pro!ling Metrics

% Busy
FP Busy rate for "oating point operation pipelines
INT Busy rate for integer operation pipelines
L1 Busy rate for primary cache
L2 Busy rate for secondary cache
MEM Busy rate for memory

#Cache Misses
LS #Load/store instructions
L1M L1 misses
L2M L2 misses

Cycle Accounting (secs.)
PF Stalls due to prefetch port busy
INT Stalls due to integer memory load
FP Stalls due to "oating-point memory load
INT(L2) Stalls due to L2 cache access for integer load
FP(L2) Stalls due to L2 cache access for "oating-point load

Data Transfer (MB/s)
own (R) Throughput of reads within NUMA node
own (W) Throughput of writes within NUMA node
otr (R) Throughput of reads across NUMA nodes
otr (W) Throughput of writes across NUMA nodes

#Instructions
LS #Load/store instructions
PF #Prefetch instructions
FP #Floating point math and conversion instructions
INT #Integer operation instructions
Total All above plus misc. (predicate, branch, etc.)

Table 5: NVIDIA Grace Pro!ling Metrics

CPU metrics
INS #CPU instructions
ST #Stalls across CPU pipelines

STB #Stalls in CPU backend (execution, memory)
preventing instruction dispatch in frontend

STF #Stalls in frontend due to lack of instructions to issue

SC #Stalled cycles in backend (execution, memory)
preventing instruction dispatch in frontend

STM #Stalled cycles in backend due to memory load
Memory metrics

LS #Load/store counts
L1M L1 misses
L2M L2 misses
L3M L3 misses
MA #Memory accesses (due to load/stores)
MAR #Memory reads
MAW #Memory writes
MRA #Memory accesses across NUMA nodes

Fig. 6, Grace pro!les also corroborates this behavior of relatively
high memory reads than writes, and low cross socket tra#c (Fig. 7).
Both FP and INT instruction pipelines are equally busy on A64FX
across the CMGs (up to 7% of overall), suggesting most of the
instructions are load/store.
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Figure 5: Performance of STREAM (GB/s, higher is better).

Figure 6: Performance events of STREAM on Fujitsu A64FX with
Zero Filling (a row corresponds to measurements on a NUMA node,
4 NUMA nodes in A64FX).

Figure 7: Performance events of STREAM on Grace (a row corre-
sponds to measurements on a NUMA node, 2 NUMA nodes in Grace).

ADD/TRIAD moves about 30% more data than COPY/SCALE, so
the bandwidth numbers are slightly better for ADD/TRIAD rela-
tively, as shown in Fig. 5. We also observe that SCALE/TRIAD is
about 20% worse than COPY/ADD on A64FX. Since pointers can
potentially reference overlapping areas, some software pipelining
optimizations are not turned on by default, causing the disparity.
Upon passing -Krestp=arg (resolves pointer aliasing or segrega-
tion), such optimizations can be utilized (we only observed a major
impact upon enabling this option for STREAM with the Fujitsu
compiler, but not rest of the scenarios). Grace exhibits about 30%
better overall bandwidth than A64FX: this can be due to the auto-
matic enabling of the write streaming mode in Grace, which can
prevent unnecessary cache reads when a cache line would be writ-
ten anyways. In comparison, the Fujitsu compiler can enable the
write streaming mode via the zero-!ll (“-kz!ll”) compiler option,
which zeroes a cache line using a special instruction (i.e., DC ZVA)
upon detecting a streaming write operation. Enabling zero-!ll, we
observe maximum STREAM bandwidth on A64FX to be around
3% less than the full Grace system in Fig. 5. However, our prior
work has shown limitations with implicitly or explicitly enabling
zero-!ll beyond simple streaming write scenarios [13]. Therefore,
we exclude zero-!ll from the rest of our evaluations.

3.1.2 Graph Neighborhood Access: Instead of considering con-
tiguous reads and writes for bandwidth measurement (best case,

i.e., STREAM), the graph neighborhood access benchmark consid-
ers traversing an entire graph in parallel (each thread owns !xed
number of iterations over the vertices of a graph and performs
some operations in proportion to the #edges, edge-distribution
across vertices being dissimilar, see §2.1). This type of traversal
leads to irregular/noncontiguous reads. Inspired from STREAM,
we consider COPY, ADD and MAX variants of the graph bench-
mark which works on the edges of a graph incurring the same
number of arithmetic operations per edge-iteration as STREAM.
The baseline performance in Fig. 8 indicates major performance
variations across the graphs, attributed solely due to the structure
of the graphs (as shown in Fig. 3). Also, comparing the STREAM
pro!les with graph neighborhood access (for e.g., Figures 6 vs. 9),
the impact of load imbalance is evident: integer/"oating-point stalls
and instructions are notably higher than those in STREAM indi-
cating load imbalance and complex indexing. Di$erences between
A64FX and Grace are also apparent: in a few cases we observe the
performance of the graph neighborhood benchmark on Grace to be
comparable with STREAM, whereas on A64FX, the best outcome
was about 50% of the STREAM bandwidth. However, we observe
similar performances on Grace and A64FX for two graphs—ljournal
and indochina, both depicting highly irregular edge distributions
(Fig. 3) despite relatively high maximum degrees. Irregular degree
distributions can lead to severe load imbalances.

The A64FX performance pro!les in Fig. 9 can explain the ob-
served performance di$erences between ljournal/indochina and the
rest. Both ljournal/indochina exhibits higher stalls due to prefetch-
ing, increased load/store operations and relatively high cross-NUMA-
node tra#c. These observations also match the Grace performance
events, as shown in Fig. 10, which depicts signi!cantly highmemory
accesses compared to other inputs.

For uk-2002 input, both A64FX and Grace demonstrate better
performance relative to other inputs; uk-2002 demonstrates rela-
tively uniform degree distribution (standard deviation of #edges/
vertex is about 13), and as a result a balanced workload across the
NUMA nodes (as shown in Figures 9 and 10), leading to better
stalls pro!le (stalls indicate waiting for data either from memory
or cache, lower is better); inputs bump and rgg also demonstrates
better bandwidth on Grace, due to uniform degree distributions.
Additionally, bump demonstrates signi!cantly better performance
on Grace as compared to A64FX. On Grace, bump demonstrates
the least cross-NUMA domain memory accesses among the other
inputs, which is not observed in A64FX. Another reason behind
greater than about 30% improved performance on Grace compared
to A64FX as shown in Fig. 8 can be attributed to the large capac-
ity of LLC (234MiB). In Fig. 6, we observe relatively comparable
L1 and L2 cache misses, whereas on Grace, L2 cache misses can
be seen to be two or three orders of magnitude lower in compari-
son (Fig. 10), indicating signi!cant data reuse (L3 is uni!ed, so the
reported numbers might be higher than private/separate L2).

3.2 Application Scenarios
We discuss the application evaluations in this section, starting with
the GAP benchmark suite in §3.2.1, which consists of optimized
reference implementations of several key graph algorithms. Next,
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Figure 8: Performance of graph neighborhood kernels (GB/s, higher is better) across compilers and graphs.

Figure 9: Performance events of graph neighborhood benchmarks on Fujitsu A64FX for various graphs (a row corresponds to
measurements on a NUMA node, 4 NUMA nodes in A64FX).

Figure 10: Performance events of graph neighborhood benchmarks
on NVIDIAGrace superchip for various graphs (a row corresponds to
measurements on a NUMAnode, 2 NUMAnodes in Grace superchip).

in §3.2.3 we discuss several benchmarks from the Rodinia suite,
covering diverse application domains.

3.2.1 GAP Benchmark Suite. The GAP benchmark suite [3] aims
to standardize benchmarking of graph analytics, by providing a
speci!cation and high-performance modern C++-based reference
shared-memory implementations of common graph algorithms
with a wide variety of applications. We use four graph kernels from
the benchmark: Breadth First Search (BFS), PageRank (PR), Con-
nected Components (CC) and Betweenness Centrality (BC). The
baseline results are shown in Fig. 11 against !ve input graphs (Ta-
ble 2); increasing the #threads does not improve the performance
signi!cantly, but we still observe about up to 10→ better perfor-
mance on Grace than A64FX.

GAP implements an optimal “direction-optimizing” method of
BFS [2] which combines the classic top-down BFS with a bottom-
up step that allows a vertex to check whether its parent is in the
“frontier” list of unvisited vertices (instead of a vertex checking
its adjacent vertices, akin to a parent looking for a child). The
amount of parallelism is proportional to the size of the frontier,
as a result BFS on certain graphs can su$er from starvation with
increased number of threads. PageRank (PR) iteratively computes
the popularity score of the vertices in a graph by implementing
sparse matrix-vector computations, employing OpenMP nested
parallelism which may not be supported by the underlying runtime
due to overheads associated with oversubscription, leading to minor
improvements between 48 and 144 threads on Grace for various
inputs. The CC benchmark performs parallel labeling of the graph
vertices according to their connected components, which is a set
of vertices linked together by a path. Betweenness Centrality (BC)
is about updating the scores of the vertices by computing shortest
paths from a subset of vertices. This is usually implemented using
multiple BFS traversals to approximate the scores, and uses atomic
operations to track possible paths.

Pro!ling analysis of GAPBS considers di$erent NUMA nodes
and input graphs, measurements of di$erent graphs are stacked
per NUMA node (depicted by broken blue lines), as shown in Fig-
ures 12, 13, 14 and 15. The A64FX pro!les indicates most of the
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Figure 11: Performance of GAP benchmarks (GAPBS) on A64FX and Grace platforms.

Figure 12: Performance events of GAPBS(BFS) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

Figure 13: Performance events of GAPBS(PR) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

Figure 14: Performance events of GAPBS(CC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

overhead in integer operations (despite "oating-point instruction
throughput being higher) and tra#c across the NUMA nodes. Ac-
cordingly, corresponding Grace pro!les (Figures 16 and 17) also
points to the tra#c across the NUMA nodes and relatively high
backend stalled cycles. However, the data movement across NUMA
nodes for A64FX is higher than that of Grace (in the A64FX pro!les,
data transfer is represented in MB/s, so the numbers should be
multiplied with 106 to roughly compare with corresponding Grace
memory metrics), and relatively less misses in the cache hierarchy
led to improved end-to-end performance. Also, the cache behavior

and the prefetch instructions of GAPBS are comparable to the graph
neighborhood benchmarks, due to same input graphs. Comparing
the Grace pro!les of GAPBS with graph neighborhood benchmarks
(Figures 16 and 17, vs. 10), we observe comparable volumes of mem-
ory accesses (reads), nearly all stalls are backend stalls (waiting
on memory loads). Therefore, having better latencies across the
memory hierarchy (about 50% better in Grace relative to A64FX,
Fig. 2) is bene!cial for graph workloads.
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Figure 15: Performance events of GAPBS(BC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

Figure 16: Performance events of GAPBS BFS and PR on NVIDIA
Grace for several graphs.

Figure 17: Performance events of GAPBS CC and BC on NVIDIA
Grace for several graphs.

Figure 18: Impact of graph inputs on theGrace andA64FXplatforms
across Neighborhood Access benchmarks (left) and GAPBS (right).
We compare the performance events datasets (collected from Perf)
for distinct input graph pairs via the Pearson correlation coe"cient
which measures linear relationships between the sets (0 implies no
correlation, whereas 1 indicates positive correlation).

3.2.2 Impact of input graphs. The inherent structure of the graphs
can impact the overall performance, due to the load imbalance
across the available threads. In Fig. 18, we calculate the Pearson
correlation coe#cient [6] between the subsequent CPU/memory
access pro!les (considering the same events collected using Perf
on both the platforms as listed on Table 5, but does not distinguish
NUMA regions) of Neighborhood Access and GAPBS scenarios

across pairwise input graphs. While quantifying the impact of in-
puts via simple linear relationships can be problematic, but the goal
here is to compare the performance footprints of multifarious input
graphs across the platforms (engaging all available processing cores/
threads). The results indicate a signi!cant diversity between inputs
(for both benchmarks and applications) on the A64FX platform
particularly, as compared to Grace. Aside from the performance
di$erences due to the hardware capabilities, relatively a smaller
number of threads on A64FX (48 vs. 144 on Grace) accentuates the
load imbalance (each thread owns a !xed number of iterations re-
sembling vertices, but dissimilar number of edges). As the number
of vertices per thread reduces (due to greater processing cores on
Grace), so does the load imbalance. This e$ect can be observed in
Fig. 11 by comparing the respective patterns of 48 vs. 144 threads
performance of GAPBS applications under di$erent inputs.

3.2.3 Rodinia benchmarks. Rodinia heterogeneous suite [5] com-
prises of several standalone benchmarks spanning a range of appli-
cationmotifs, as discussed in §2.2. The baseline result is presented in
Fig. 20; aside from StreamCluster (SC), we observe about up to 10→
improvement in end-to-end performance on the Grace platform, as
compared to A64FX. Like the GAP kernels, we observe performance
saturation on Grace using all of the available 144 cores (see Fig. 20).
Also unlike the graph benchmarks and mini-applications, we ob-
serve di$erent patterns in the A64FX performance pro!les (Fig. 19),
such as very high reuse (due to loop blocking), higher "oating-
point operation overheads (compared to integer operations) and
stalls due to memory accesses and instruction execution. However,
both GAPBS and Rodinia exhibits relatively similar data transfer
volumes (especially writes) across the NUMA regions.

On Grace, several Rodinia kernels such as CFD, SRAD and SC
exhibits high stalls, limiting the parallel e#ciency, as shown in
Fig. 21. Due to the high capacity of LLC, we also observe maximum
reuse (and unbalanced memory access overhead) and minimal stalls
in LUD, depicting multiple orders of magnitude speedup on Grace
relative to A64FX. We also observe relatively high remote memory
accesses for some of the benchmarks such as HS, SC and CFD.
A64FX partitions the cache into sectors such that misses are only
restricted to a particular “sector”, with the intention to improve
the overall cache misses due to premature eviction of an entire
line. We observe a minor impact of the sector cache in reducing the
LLC cache misses by about 5% for some of the compute intensive
applications in Rodinia (e.g., BP, CFD, etc.); for the graph workloads,
we do not observe any particular evidence of improvement.
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Figure 19: Performance events of Rodinia mini-applications (per line) on Fujitsu A64FX (broken blue lines indicates NUMA node, for e.g., a
row on every NUMA node corresponds to a speci!c application).

Figure 20: Performance of Rodinia mini-applications on A64FX
and Grace platforms.

Figure 21: Performance events of Rodinia on NVIDIA Grace.

4 Concluding Remarks
In this paper, we provide a thorough quantitative analysis of various
HPC applications on two contemporary ARM-based multiproces-
sor platform — Fujitsu A64FX and NVIDIA Grace superchip. We
observed competitive performance on regular benchmarks such as

STREAM across the platforms, but for more irregular benchmarking
scenarios, NVIDIA Grace outperformed Fujitsu A64FX by 30–50%
for a variety of input graphs. Moreover, considering more involved
data intensive application scenarios, the performance gap between
A64FX and Grace were signi!cant, up to orders of magnitude (with
no code changes). Our high-level takeaways are as follows:
• Regular application patterns such as streaming writes or nontem-
poral stores might bene!t from platform optimizations such as
write-allocate evasion or elimination (available on both A64FX
and Grace), however they are not likely on the critical path in
applications (primarily used for initializing data structures), so
the outcome will depend on the speci!c application situation.
This option can detect simple benchmarking patterns, such as
STREAM, so more complex and irregular workload analysis is
mandatory.

• For irregular workloads such as graph analytics, the structure of
the input graph is quite relevant in determining the throughput.
However, more available threads can also reduce the overall load
imbalance due to the graph structure.

• Even irregular applications have regular patterns, having high-
capacity LLC is bene!cial in optimizing reuse.

• A number of applications depend on integer pipeline throughput,
optimizing integer pipeline is as important as "oating-point.

• For a number of data intensive applications, data exchange tra#c
across the NUMA nodes can be signi!cant, therefore, sustainable
bandwidth between NUMA nodes is crucial.

• A number of applications are unable to drive the available band-
width, using all the available cores might lead to starvation and
impact the parallel e#ciency. This is partly due to the algo-
rithm implementation and limitations in the underlying pro-
gramming model. Adopting modern performance portability ab-
stractions [8] in developing memory bound applications can
potentially enhance the parallel e#ciency.

206



MEMSYS ’24, September 30–October 03, 2024, Washington, DC, USA Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Márquez

Overall, our results quantitatively reinforces the immense poten-
tial of performance improvement for scienti!c applications across
contemporary high-performance ARM data center CPU platforms.
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