Studying CPU and memory utilization of applications on Fujitsu
A64FX and Nvidia Grace Superchip

Yan Kang
The Pennsylvania State University
United States
ybk5166@psu.edu

Mahmut Kandemir
Penn State University
United States
mtk2@psu.edu

Abstract

ARM-based manycore CPU architectures are well-positioned to
provide the rising memory throughput requirements of modern
data intensive scientific applications in High Performance Comput-
ing (HPC). The Fujitsu A64FX CPU platform is based on the ARM
v8.2A architecture, and is the processor of the flagship Japanese
supercomputer - "Fugaku", which was previously ranked as the
#1 supercomputer in the world according to the Top500 list. The
Nvidia Grace superchip features 144 Neoverse V2 cores based on
the ARMv?9 architecture with 4x128b SVE2, providing exceptional
computational power. The chip supports up to 480GB of memory,
making it ideal for AI, machine learning, and scientific computing
workloads. In this paper, we conduct a thorough performance ex-
ploration of a variety of parallel bandwidth-sensitive benchmarks
and applications compiled with the native Fujitsu compiler on a
Fugaku A64FX compute node and ARM (LLVM) Compiler on an
NVIDIA Grace superchip compute node, engaging all the computa-
tional cores per cluster using OpenMP multithreading (assuming
the cores can drive the available bandwidth). Our ultimate goals
are to study the resource utilization of scientific applications and
benchmarks on A64FX and Grace superchip, considering graph
application scenarios (GAP Benchmark suite) and eleven appli-
cation proxies from the Rodinia heterogeneous benchmark suite
(considering domains such as Data Mining, Bioinformatics, Fluid
Dynamics, Pattern Recognition, etc.). Through exhaustive perfor-
mance monitoring, we quantify the resource utilization of diverse
OpenMP-based HPC applications on both the Fujitsu A64FX and
the Nvidia Grace Superchip platforms.

Keywords

Fujitsu A64FX, Fugaku, NVIDIA Grace superchip, Graph analytics,
Rodinia benchmark suite, GAP benchmark

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only. Request permissions from owner/author(s).

MEMSYS °24, September 30-October 03, 2024, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1091-9/24/09

https://doi.org/10.1145/3695794.3695813

198

Sayan Ghosh
Pacific Northwest National Lab
United States
sayan.ghosh@pnnl.gov

Andrés Marquez
Pacific Northwest National Lab
United States
andres.marquez@pnnl.gov

ACM Reference Format:

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez. 2024.
Studying CPU and memory utilization of applications on Fujitsu A64FX and
Nvidia Grace Superchip. In The International Symposium on Memory Systems
(MEMSYS ’24), September 30—October 03, 2024, Washington, DC, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3695794.3695813

1 Introduction

Since the deployment of high-performance ARM multicore CPUs
(i.e., Fujitsu A64FX) on formerly #1 supercomputer in the world,
RIKEN Fugaku (circa 2020), there has been a number of high-end
energy efficient processor design roadmaps with ARM-based CPUs
(exhibiting 1 TB/s memory bandwidth, private caches and hundreds
of CPU threads), among cloud/hyperscaler and data center product
vendors. Most recently, NVIDIA™ released their first data center
CPU, Grace, using a custom chip-to-chip interconnect (i.e., NVIDIA-
C2C) to weave two CPU modules into a “superchip”. We compare
Fujitsu A64FX and NVIDIA Grace superchip in Fig. 1, listing the
officially released performance numbers. Aside from being a larger
CPU chipset (144 cores in Grace vs. 48 cores in A64FX), Grace su-
perchip also offers a relatively large (117MiB/#NUMA node) shared
Last Level Cache (LLC), which compared to A64FX’s shared (per
NUMA node or core group) L2 cache is 15X larger.

NVIDIA Grace Superchip (ARM Neoverse V2
@ 3.2GHz, ARM v9-A, SVE2 4x128b SIMD)

Fujitsu AB4FX, FX1000 @ 2.2GHz
(custom u-arch, ARM v8.2-A, 512b SIMD)

240 GB LPDDR5X NUMA #1

240 GB LPDDR5X NUMA #0

A
pell
ecutionunits ~ 5(2) |l

~4 10 cycles,
cycles 128B/cycle !

4-way SA [JERWEVETS
(OGN MiBL2

Private caches (64B line)

Dispatch 8 ins/cycle

8GB HBM2
8GB HBM2
8GB HBM2

g 5 cvoles (INT)
LAl 5/11 cycles
6aKiBL1 [

2568 li
[sreea 1ovoysn .2 S
Shared 16-way SA 8MiB L2 [SNERN

®
3
o
=
~

<
3
=
2|3
-
o~ 3
o= | &
HE
(8

:
=
&

o
= ©
= a
i =
aQ b
[0}

® =

Figure 1: Fujitsu A64FX and NVIDIA Grace Superchip high-level
components (using publicly available information).

A number of prior works have discussed the role of the ARM
ecosystem in HPC, most recently laying out the architectural as-
pects of Fujitsu A64FX and NVIDIA Grace superchip, in the con-
text of scientific applications [1, 9-12, 14, 17-19]. A key design

https://orcid.org/0009-0002-8718-1491
https://orcid.org/0000-0001-8758-7657
https://orcid.org/0000-0002-9940-9951
https://orcid.org/0000-0002-4313-1882
https://doi.org/10.1145/3695794.3695813
https://doi.org/10.1145/3695794.3695813
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3695794.3695813&domain=pdf&date_stamp=2024-12-11

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

criteria of these “data center” CPUs are to enhance the through-
put of memory-bound applications, which are ubiquitous in High
Performance Computing (HPC). As such, both A64FX and Grace
are capable of providing high instruction throughput, sustainable
memory bandwidth and low latencies across the memory hierar-
chies (corroborated through popular benchmarks), yet performance
footprints of myriad applications exhibit significant differences. In
Fig. 2, we capture the memory latency spectrum for strided data
transfers (as reported by LMBench [16]), corresponding to accesses
across the memory hierarchy on “data center” CPUs (A64FX and
Grace) vs. desktop CPU system, Apple M3. The impact of a rela-
tively large LLC is evident in delaying the latency spikes as the
data sizes increase (indicating data movement beyond private and
shared caches).

—e— Fujitsu A64FX (custom u-arch, ARM v8.2-A)
NVIDIA Grace superchip (Neoverse V2, ARM v9-A)
101 —— Apple M3 Max W 16 cores and 64GB LPDDRS (custom u-arch, ARM v8.6-A)

Latency (ns)
£y

273 20 23 20 2°
Data Transferred (MB)

Figure 2: Access latencies (using LMBench, stride=128) across the
memory hierarchy of Fujitsu A64FX, NVIDIA Grace and Apple M3.

In this paper, we consider both regular and irregular applications
— while regular applications demonstrate fixed strides to access the
memory blocks and may effectively engage the available cores to
drive bandwidth, irregular scenarios might demonstrate relatively
higher and unpredictable memory accesses and workload patterns.
We have deliberately excluded FLOPs-intensive applications and
benchmarks from our analysis, as scientific applications are leaning
towards becoming more data-intensive and sparse, requiring broad
set of optimizations to derive performance from future extreme-
scale architectures. Recent research investigated time spent on
Basic Linear Algebra Subprogram (BLAS) operations across several
applications to not exceed 25% of the total execution time [20], there-
fore, optimizing third-party linear algebra libraries may not yield
sustainable performance improvement. Our approach considers
benchmark evaluation (using STREAM and graph neighborhood ac-
cess benchmarks to study impact of contiguous vs. non-contiguous/
irregular writes) using various inputs followed by thorough profile-
driven application analysis, using recommended compilers, options
and profilers to extract the best performance from the individual
platforms. Since the #cores vary between the platforms, we have
a third configuration, which uses 48 cores on the NVIDIA Grace
platform to keep parity with Fujitsu A64FX. Our studies indicate
that most data intensive (especially irregular) applications benefit
from a deeper memory hierarchy including a large LLC, and effi-
ciencies in the load/store pipelines in processors can lead to free
performance when applications are ported from A64FX platform
to NVIDIA Grace superchip.

199

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez

2 Benchmarks and Applications

We use standard HPC benchmarks and applications in our anal-
ysis, discussed in this section. The benchmarks incorporate the
fundamental data-access patterns present in parallel applications.
Most applications exhibit regular/contiguous access patterns, in
which data movement happens across distinct memory locations
at regular intervals, conducted by an iterative loop. On the other
hand, graph applications involve graphs, which are mathematical
structure analogous to a set comprising of points and lines; lines
form “edges” to join two arbitrary points in the set, implying some
type of relationship which can expressed via an attribute such as a
scalar (or vector) weight over an edge. Usually, data corresponding
to graphs is expressed by a hierarchical data structure, such as
Compressed Sparse Row (CSR) format, which requires two levels of
loop nesting to scan the edges corresponding to a vertex. This type
of range indexing leads to irregularities in memory accesses, as the
number of edges corresponding to a vertex may vary with diverse
input graphs (edge distributions across a range of input graphs is
shown in Fig. 3). We consider a multithreaded execution environ-

—%— vasStokes
—=— Bump

—— orkut
uk2002

—=— ljournal
—&— indochina

rag
10*

#Edges

102

213
#Vertices

o 75 30

Figure 3: Top 100K #edges distribution across vertices of graphs.

ment (using OpenMP) in which a portion of the loop iterations are
(statically) assigned to distinct processor threads. For our evalua-
tions, we have not updated any code, benchmark or application, and
present the results as-is. While it is practical to use a single metric
or Figure-of-Merit (FOM) for a benchmark, for an application or
even a mini-application, it is often intractable since different areas
of an application may utilize different capabilities of the underlying
processor. Therefore, we rely on visualizing performance profiles
to understand the overall impact on the system across applications
and inputs.

2.1 STREAM and Graph Neighborhood Accesses

STREAM benchmark [15] is commonly used to study the memory
bandwidth of CPUs, by engaging all the processor cores to perform
contiguous reads/writes to/from distinct memory locations, and per-
forming simple arithmetic operations with the data. Additionally,
we explore another benchmark to study irregular/noncontiguous

Studying CPU and memory utilization of applications on Fujitsu A64FX and Nvidia Grace Superchip

memory accesses, in the form of accessing the vertex neighbor-
hoods of multifarious real-world graphs (comprising of a varied
vertex-edge distributions), as depicted in Fig. 4, compared with
access patterns in STREAM. As a result of the variation in the edges
per vertex (owing to graph structure), if the loop over vertex is
parallelized (which is often the case in real graph applications),
there might be nontrivial load imbalance among the edges. Unlike

STREAM

#pragma omp parallel for
for i in LARGE_SIZED ARRAY:
a[i] = b[i]

Graph Neighborhood Access

#ipragma omp parallel for
for i in #Vertices:
for j in #Neighbors[i]:
a[i] = b[j]

Figure 4: Distinct streaming access patterns: contiguous read/write
in STREAM vs. non-contiguous read—contiguous write in Graph
Neighborhood Access benchmark.

STREAM, memory access patterns of the graph neighborhood ker-
nels primarily consists of traversing a doubly-nested loop mandated
by the CSR representation of a graph. We use same set of graphs
on different applications running on the experimental platforms,
to study the effect of graph structure and application logic on the
execution footprints. Influenced by STREAM, we develop parallel
variants of copy, add and max kernels in the context of graphs
(referred as graph neighborhood access kernels); the copy kernel
copies the edge weights into an array, max collects the maximum
of the edge weights among the vertex neighborhood into an ar-
ray, whereas add accumulates the edge weights of a neighborhood
copying it into an array. We generate a random geometric graph
with good connectivity properties (dense clusters in the graph) in
memory for benchmarking purposes. Like STREAM, we report the
rate in MB/s for a kernel across a fixed number of iterations.

2.2 GAPBS and Rodinia

The GAP benchmark suite [3] consists of optimized parallel imple-
mentations of common graph algorithms supporting a wide variety
of scientific applications. We use four complex graph kernels in
our analysis: Breadth First Search (BFS), PageRank (PR), Connected
Components (CC) and Betweenness Centrality (BC). Breadth First
Search (BFS) performs level-by-level traversal of graphs. PageRank
(PR) iteratively computes the popularity score of the vertices in
a graph, by conducting repetitive sparse matrix-vector computa-
tions, such that the updated values are available immediately to
be adjusted in the current iteration. The CC benchmark performs
labeling of graph vertices according to their connected components,
which is a set of vertices linked together by a path. Betweenness
Centrality (BC) is about updating the scores of the vertices by com-
puting shortest paths from a subset of vertices, usually implemented
using several BFS traversals to approximate the scores.

Rodinia suite [5] comprises of several standalone mini-applications
representing a variety of scientific application domains. We chose
eleven mini-applications — Kmeans, Needleman-Wunsch (NW),
HotSpot (HS), SRAD (versions V1 and V2), Back Propagation (BP),
Leukocyte Tracking (LC), Stream Cluster (SC), CFD Solver (CFD),

200

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

LU Decomposition (LUD) and Heartwall Tracking (HW); with ap-
propriate input scenarios, as mentioned in Table 3. Kmeans is a tradi-
tional data mining application scenario that partitions datasets into
a pre-defined set of clusters. Needleman-Wunsch (NW) is a dynamic
programming method used to determine optimal genome sequence
alignment. HotSpot (HS) consists of an iterative transient thermal
simulation kernel that solves a series of differential equations for
a block of temperatures. SRAD implements an image denoising
technique based on partial differential equations representing a dif-
fusion algorithm. Back Propagation is a classic Machine Learning
algorithm for training weights of a neural network—comprising of
the forward and backward phases. Leukocyte Tracking (LC) tracks
White Blood Cells (WBC) in blood vessels; WBCs are first detected
in an input video frame, which are subsequently tracked across
rest of the frames, by computing specific gradients for each pixel.
Stream Cluster (SC) performs online clustering for an input stream
of points. CFD Solver (CFD) solves 3-D Euler equation for compress-
ible flow, employing a finite volume formulation on unstructured
grids. LU Decomposition (LUD) is a popular linear algebra algo-
rithm for solving linear equations, by decomposing a matrix into
lower and upper triangular matrices to maximize parallel efficiency.
Heartwall Tracking (HW) uses image processing methods to track
the shape of mouse heart over a sequence of fixed-resolution ultra-
sound images.

3 Evaluations and Analysis

Testbeds. Our testbed platforms are Fujitsu A64FX processor
node of the Fugaku system [14] and NVIDIA Grace superchip node
from Stony Brook University’s Ookami cluster [4]. We use the rec-
ommended platform compilers and environment settings, as listed
in Table 1. All the benchmarks and applications use OpenMP multi-
threading [7]. Since Grace superchip has 3x more CPU cores than

Table 1: Platform software details.

[i A64FX [GRACE
Compiler FUJITSU 4.10 ARMCLANG 24.04
-Kfast -Ofast
Options -mcpu=a64fx -mcpu=native
-Kopenmp -fopenmp
. OMP_PLACES=cores OMP_PLACES=cores
Affinity

OMP_BIND=spread OMP_BIND=spread

XOS_MMM_L_ARENA_LOCK_TYPE=0
XOS_MMM_L_HPAGE_TYPE=hugetlbfs
XOS_MMM_L_PAGING_POLICY=
demand:demand:demand

Environment N/A

Fujitsu A64FX, we additionally include a 48-threads configuration
for Grace (selecting threads across the CPU sockets) in our baseline
performance comparisons, to match with 48-thread runs of A64FX.

Datasets and Input Parameters. We use various real-world
graphs for the graph application scenarios in GAPBS. They are
listed in Table 2. Typically, graphs are chosen such that the input
size is greater than the Last Level Cache (LLC), to induce sufficient
memory accesses. We use the same graphs on both A64FX and
Grace platforms, although the latter can support larger graphs due
to 16X greater main memory.

Table 3 lists the input arguments for the Rodinia benchmarks.

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

Table 2: Characteristics of the input graphs.

Domain & Applied Benchmarks/Applications

Graphs (GN : Graph Neighborhood Kernels) #Vertices | #Edges ‘ Max Deg. ‘

corm-orkat Social network{GN, GAPBS) ™ P K
TEEn2.24.50 Tandom geometric(GN, GAPBS] T6M T32M)

2002 web crawl{GN, GAPBS) 18M 584 104K

AW ljournal 2008 Social network{GN. GAPBS) M 79M 20K

indochina-2004 web crawl(GN) 7™ 194M 256K
VISTvas_stokes_4M semiconductorGN] ™ 1M s
VISTstokes semiconductor(GN) TIM 349M K
Jarma/Bump_2911 Teservoir simulation(GN, GAPBS) ™ T28M 195

Table 3: Rodinia kernels and input arguments.

‘ Application ‘ Domain ‘ Problem Sizes ‘
Kmeans Data Mining 819200 data points, 34 features, 512 clusters
Needleman-Wunsch (NW) Bioinformatics 81920 X 81920 data points with penalty of 10
HotSpot (HS) Physics Simulation 1024 X 1024 data points with 1,500,000 iterations

Back Propagation (BP) Pattern Recognition
SRAD V1 Image Processing
SRAD_V2 Image Processing

Leukocyte Tracking (LC) Medical Imaging
Stream Cluster (SC) Data Mining
CFD Solver (CFD) Fluid Dynamics
LU Decomposition (LUD) Linear Algebra
Heart Wall Tracking (HW) Medical Imaging

65536 input nodes
502 X 458 image size with 100000 iterations
2048 X 2048 image size with 100000 iterations
219 X 640 pixels/frame
655360 points, 256 dimensions
0.2M elements
2048 X 2048 data points
609 X 590 pixels/frame

Profiling metrics. We compare end-to-end execution times (in
seconds) of the benchmarks and applications on a single Fujitsu
A64FX and NVIDIA Grace superchip node. However, execution
times alone does not convey the reasons behind the performance
variations between application versions on the different platforms.
Hence, we rely on systems profiling by studying the low-level per-
formance events to understand the impact on the underlying system.
Our profiling metrics consists of rates and unitless quantities char-
acterizing specific CPU instruction overhead and load/stores across
the memory hierarchy per NUMA node. Due to differences in the
platform profilers, we are able to sample data at a finer granular-
ity on A64FX platform (using Fujitsu Advanced Profiler, FAPP),
as compared to userspace metrics collected from the perf Linux
profiler on Grace superchip (enabling “—per-node” to aggregate
per-NUMA-node measurements). Profiling metrics of A64FX and
Grace are listed in Tables 4 and 5. We engage all the available cores
during performance profiling.

On NVIDIA Grace superchip, we focus on two vital performance
events: the volume of the memory accesses across the memory
hierarchy (caches and main memory) and the CPU pipeline stalls
(which corresponds to the wasted cycles, waiting for memory access
operations or decoding instructions to work on data). Complex
instructions can increase front-end stalls, whereas long-latency
memory operations increase backend-stalls, throttling the front-end.
FAPP on A64FX platform provides a more finer-grained details, such
as integer and floating-point related cycles, and instructions break-
up by functional units (i.e., integer, floating-point or prefetch).

3.1 Benchmarks

In this section, we compare the performance of STREAM (con-
tiguous regular access data streams) with the graph neighborhood
access kernels (demonstrates irregular noncontiguous data access
pattern).

3.1.1 STREAM: . STREAM is memory-access intensive (we use
24GiB input array), greater than 50% of the time is spent on memory
accesses (moving data through the cache hierarchy), as shown in

201

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez

Table 4: Fujitsu A64FX Profiling Metrics

% Busy

FP Busy rate for floating point operation pipelines
INT Busy rate for integer operation pipelines
L1 Busy rate for primary cache
L2 Busy rate for secondary cache
MEM Busy rate for memory

#Cache Misses
LS #Load/store instructions
LM L1 misses
L2M L2 misses

Cycle Accounting (secs.)

PF Stalls due to prefetch port busy
INT Stalls due to integer memory load
FP Stalls due to floating-point memory load
INT(L2) | Stalls due to L2 cache access for integer load

FP(L2) Stalls due to L2 cache access for floating-point load
Data Transfer (MB/s)

own (R) | Throughput of reads within NUMA node

own (W) | Throughput of writes within NUMA node

otr (R) Throughput of reads across NUMA nodes

otr (W) Throughput of writes across NUMA nodes
#Instructions

LS #Load/store instructions

PF #Prefetch instructions

FP #Floating point math and conversion instructions

INT #Integer operation instructions

Total All above plus misc. (predicate, branch, etc.)

Table 5: NVIDIA Grace Profiling Metrics

CPU metrics
INS #CPU instructions
ST #Stalls across CPU pipelines

#Stalls in CPU backend (execution, memory)
preventing instruction dispatch in frontend
STF #Stalls in frontend due to lack of instructions to issue
#Stalled cycles in backend (execution, memory)
preventing instruction dispatch in frontend
STM | #Stalled cycles in backend due to memory load
Memory metrics

LS #Load/store counts

L1M L1 misses

L2M L2 misses

L3M L3 misses

MA #Memory accesses (due to load/stores)

MAR | #Memory reads

MAW | #Memory writes

MRA | #Memory accesses across NUMA nodes

STB

SC

Fig. 6, Grace profiles also corroborates this behavior of relatively
high memory reads than writes, and low cross socket traffic (Fig. 7).
Both FP and INT instruction pipelines are equally busy on A64FX
across the CMGs (up to 7% of overall), suggesting most of the
instructions are load/store.

Studying CPU and memory utilization of applications on Fujitsu A64FX and Nvidia Grace Superchip

- AG4FX-FUJITSU = AGAFX-FUJITSU+zero fill [GRACE-ARMCLANG(144 threads)

MW AG4FX-FUJITSU+pointer segregation FZA GRACE-ARMCLANG(48 threads)

Mean Rate GB/s

Cycle Wait Time(s) «10-: Data Transfer (MB/s) 1o+ # Instructions ;o

-3 2e107es: 2es330 I,
> 1e107e8 3e9 3ea 3L -3
161078 3¢9 304 L |2
1e107es 3¢9 34 L

LS PF PP INT Total

26 13 ECNERY 23

s 15 SN 1 |,

8 13 EINICER 21

8 13 LPMNIY 21

FPOINT L1 L2 MEM s oum L

PEINT FPINTILZFPUZ)

own(Rbwn(Wiotr(R) otr(W)

Figure 6: Performance events of STREAM on Fujitsu A64FX with
Zero Filling (a row corresponds to measurements on a NUMA node,
4 NUMA nodes in A64FX).

lell
Z 7e10 7e8pell 6e9 9e7 6e9 2e112ell4el0 2e6 t;g
uw .

E 9e11 7e10 1e9Bell 6e9 1le8 5e9 2el12elldel0 led -2.5

INS sC ST STB STM STF LS LIM L2M L3M MA MAR MAW MRA
CPU Metrics Memory Metrics

Figure 7: Performance events of STREAM on Grace (a row corre-
sponds to measurements on a NUMA node, 2 NUMA nodes in Grace).

ADD/TRIAD moves about 30% more data than COPY/SCALE, so
the bandwidth numbers are slightly better for ADD/TRIAD rela-
tively, as shown in Fig. 5. We also observe that SCALE/TRIAD is
about 20% worse than COPY/ADD on A64FX. Since pointers can
potentially reference overlapping areas, some software pipelining
optimizations are not turned on by default, causing the disparity.
Upon passing -Krestp=arg (resolves pointer aliasing or segrega-
tion), such optimizations can be utilized (we only observed a major
impact upon enabling this option for STREAM with the Fujitsu
compiler, but not rest of the scenarios). Grace exhibits about 30%
better overall bandwidth than A64FX: this can be due to the auto-
matic enabling of the write streaming mode in Grace, which can
prevent unnecessary cache reads when a cache line would be writ-
ten anyways. In comparison, the Fujitsu compiler can enable the
write streaming mode via the zero-fill (“-kzfill”) compiler option,
which zeroes a cache line using a special instruction (i.e., DC ZVA)
upon detecting a streaming write operation. Enabling zero-fill, we
observe maximum STREAM bandwidth on A64FX to be around
3% less than the full Grace system in Fig. 5. However, our prior
work has shown limitations with implicitly or explicitly enabling
zero-fill beyond simple streaming write scenarios [13]. Therefore,
we exclude zero-fill from the rest of our evaluations.

3.1.2 Graph Neighborhood Access: Instead of considering con-
tiguous reads and writes for bandwidth measurement (best case,

202

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

i.e., STREAM), the graph neighborhood access benchmark consid-
ers traversing an entire graph in parallel (each thread owns fixed
number of iterations over the vertices of a graph and performs
some operations in proportion to the #edges, edge-distribution
across vertices being dissimilar, see §2.1). This type of traversal
leads to irregular/noncontiguous reads. Inspired from STREAM,
we consider COPY, ADD and MAX variants of the graph bench-
mark which works on the edges of a graph incurring the same
number of arithmetic operations per edge-iteration as STREAM.
The baseline performance in Fig. 8 indicates major performance
variations across the graphs, attributed solely due to the structure
of the graphs (as shown in Fig. 3). Also, comparing the STREAM
profiles with graph neighborhood access (for e.g., Figures 6 vs. 9),
the impact of load imbalance is evident: integer/floating-point stalls
and instructions are notably higher than those in STREAM indi-
cating load imbalance and complex indexing. Differences between
A64FX and Grace are also apparent: in a few cases we observe the
performance of the graph neighborhood benchmark on Grace to be
comparable with STREAM, whereas on A64FX, the best outcome
was about 50% of the STREAM bandwidth. However, we observe
similar performances on Grace and A64FX for two graphs—ljournal
and indochina, both depicting highly irregular edge distributions
(Fig. 3) despite relatively high maximum degrees. Irregular degree
distributions can lead to severe load imbalances.

The A64FX performance profiles in Fig. 9 can explain the ob-
served performance differences between ljournal/indochina and the
rest. Both ljournal/indochina exhibits higher stalls due to prefetch-
ing, increased load/store operations and relatively high cross-NUMA-
node traffic. These observations also match the Grace performance
events, as shown in Fig. 10, which depicts significantly high memory
accesses compared to other inputs.

For uk-2002 input, both A64FX and Grace demonstrate better
performance relative to other inputs; uk-2002 demonstrates rela-
tively uniform degree distribution (standard deviation of #edges/
vertex is about 13), and as a result a balanced workload across the
NUMA nodes (as shown in Figures 9 and 10), leading to better
stalls profile (stalls indicate waiting for data either from memory
or cache, lower is better); inputs bump and rgg also demonstrates
better bandwidth on Grace, due to uniform degree distributions.
Additionally, bump demonstrates significantly better performance
on Grace as compared to A64FX. On Grace, bump demonstrates
the least cross-NUMA domain memory accesses among the other
inputs, which is not observed in A64FX. Another reason behind
greater than about 30% improved performance on Grace compared
to A64FX as shown in Fig. 8 can be attributed to the large capac-
ity of LLC (234MiB). In Fig. 6, we observe relatively comparable
L1 and L2 cache misses, whereas on Grace, L2 cache misses can
be seen to be two or three orders of magnitude lower in compari-
son (Fig. 10), indicating significant data reuse (L3 is unified, so the
reported numbers might be higher than private/separate L2).

3.2 Application Scenarios

We discuss the application evaluations in this section, starting with
the GAP benchmark suite in §3.2.1, which consists of optimized
reference implementations of several key graph algorithms. Next,

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez

1200 ; ; ; ; ‘
BN AG4FX-FUJITSU GRACE-ARMCLANG(48 threads) ~[——] GRACE-ARMCLANG(144 threads)
1000
&
3 800
(9]
T 600
o
< 7
3 400 ﬁ
: ¢
200 g
7
/)

COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX
com-Orkut uk-2002 ljournal-2008 indochina-2004 vas_stokes_4M bump rgg stokes
Figure 8: Performance of graph neighborhood kernels (GB/s, higher is better) across compilers and graphs.
i Cycle Wait Time(s Data Transfer (MB/s # Instructions lell
% Busy x10 # Cache Misses 1l Yy e ()lel 8 lel sez(o S5e10y 27 3e0 1le8 SN
2 R Ees & 14 3el 6el 3el 4 lel 4 5 2e2 | 5e2 lell: 9e7 4e9 7e8
% : wos W O nEE e b5 e o i e
2e-2 7e-2 2e-l 3 le-1l 3e2 Sel 8el
1 ies & 30 21 5 2 1 jo e oae e 2000 “Gelo 3e7 3e9 2e8 [2ell 4
2 3e3 3e2 8el 1 lel lel 2el | 6e2 WETEEN 3el0 2e7 2e9 1le8 9eld
3 7 3e10 3e8 2e8 12 lell 9e7 5e9 6e8
e 8e-2 2el 2 Te2 140 6 8 3e2 2e2
2 el 3el 6 lel 4e1 9 5e2 6el lell 7e7 8e9 4e8
- ER S .] T 16T Te I TTRe2 362 2e10" 286389 26T be
13 6 2e2 8el 4el 4 lel 3e-2 3e2 202 _ 2e2 2e10 2e6 4e9 9e7 '8eld
L 1.0 8 1 26l 2 lel 120 pE Jel 3el 1s00 2610 3e6 2e9 3e7 7eld
2 6 82 6el 3 2l PIERN 3el 2e1 | 6e2 7e10 1le7 3¢9 4e7 ECEN 3
; ; AN B M = W g
e e- {2 e e €.
169 0.8 7e3 9e2 2 2 1 100 TSRS 62 3e2 2e2 2e10 1le6 5e9 8e7 6ell
12 %1 9 5 __li5el ,,gg;,z, ,,,,,, 2e2 | 5e2_ 3el0 3e6 7e9 6e7 [lell
————— g 2 2 el 1 lel 2e3 2el 2el Te2 2e103e6 3e9 2e7 6elld
13 -4 2 4el 7el 4 del -80 4e2 Sel 2e2 9 | 1000 el0 2e6 4e9 9e7 7ell
2 Los lel 3 2l 2 lel 5e-2 9e-2 3e2 3e2 3el0 4e6 2e9 3e7 lell 2
3 : 5 2l lel 2 3 lel 5e2 4e2 3e2 7e10 le7 4e9 4e7
8 3 4e2 2 3el 1 lel 5e-2 6e-2 3e2 7e2 3el0 3e6 3e9 2e7 6el0
6 3 2 2l 3el 8 -60 2e-1 2e-l | 6e2 5e2 9e9 9e5 2e9 1le7 3el0
19 4e-2 8e-2 3e-l 1 le-1 8e2 7el 2e2 4e2 3el0 2e6 5e9 8e7 6el0
12 04 6e2 2 3 762 4el | 5e2 3el0 2e6 7e9 6e7 lell
""" B 2 TeT 86T 16 2 1 a0 Te2 T 1e2 5 500 261077366269 2e7 T IelT
15 3 lel 6 4 1 42 20l lel 8 2e10 1le6 5e9 9e7 7el0 1
6 Se4 2 3el 2 lel 8e2 6e2 5e2 3e2 el0 2e6 3e9 3e7 7el0
7 0.2 6 2e1 lel 2 4 2e-1 6e-2 4e2 8el0 1le7 8e9 de7
11 -1 ’ 3e2 6el lel 2 1 -20 6e-2 5e2 = 5e2 3el0 3e6 4e9 2e7 8eld
5 3 2 2l del 7 9e-2 lel = 5e2 5e2 2e10 3e6 2e9 le7 7el0
19 4e2 8e2 3 1 1 4e2 6e2 2el | Be2 3el0 3e6 5e9 8e7 6eld
21 2 lel 2 3el Se-l [m7e2 8 5e10 3e6 1el0 6e7 |lell
FP PFINT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) LS PF FP INT Total

Figure 9: Performance events of graph neighborhood benchmarks on Fujitsu A64FX for various graphs (a row corresponds to

measurements on a NUMA node, 4 NUMA nodes in A64FX).

1

5

1e1
EBB:e11 101110114610 3e9fpenn 2¢9 267 2e9 Belizennzero zea | B8 c11 161116114010 Geo.

uk

W8l cc1060106010 100 3¢9 Hell 8es 306 ses dell3ellselo ses 8B ce107¢106e10 769 5e0 fienl 2e0 1¢7 2e9 delldeln selo 1e6

1e12
€11 2¢9 4e7 269 Aell3en13e10 1ed | ‘1o
05

3¢103e103¢10 4e9 3¢9

ljour orkut

03e102€10 1e9 3e9

[4e104e103101e10 100

B8 :c1040104010 309 109

HSE1c11 1611 1611 410 960

rgg Vstok

H8Elsc105¢104010 360 8e0

INS SC ST STB STM STF
CPU Metrics

12
11 3¢5 7e6 3es Jelldeltzelo zeq | 1O

s
e11 5e8 4c6 Se8 3elldell3el0 25

ey,
11 sea 9es 6es 2elizednzel0 ces'| 13
ell 1e9 4e6 1e9 2ell2ellzel0 4e5 = 25
11 109 3e7 1e9 Jell3elizelo aes | 1.0
le11 1e9 6e6 leo delldellselo ees = O-°
LS L1ML2M L3M MA MARMAWMRA
Memory Metrics

indo

stok bump

BP0 10 1¢119¢102010 669
BB ac 100108010 309 560
P®¥6e107¢107¢103010 109
B¥5c1050103010 8es 100

Bl2e11 2011 211 9010 269

191096109010 de9 2¢9

INS SC ST STB STM STF
CPU Metrics

e12

e12 aco 267 7en del2ien20e10 26 | 3

3

€12 2¢9 Se6 2e9 lel21e129e10 6e5 = 1
e11

e11 ges 167 908 2ell2e1L2e10 1ed | 5.0

ell 8e8 206 8e8 2e112ell2el0 leb 25

le1g

o1l 169 Se7 109 delldelnel0 2ed | 1

o

ol

€11 3¢9 7e6 3e9 SellSellaelo 2e6

LS LIML2M L3M MA MARMAWMRA
Memory Metrics.

Figure 10: Performance events of graph neighborhood benchmarks
on NVIDIA Grace superchip for various graphs (a row corresponds to
measurements on a NUMA node, 2 NUMA nodes in Grace superchip).

in §3.2.3 we discuss several benchmarks from the Rodinia suite,
covering diverse application domains.

3.2.1 GAP Benchmark Suite. The GAP benchmark suite [3] aims
to standardize benchmarking of graph analytics, by providing a
specification and high-performance modern C++-based reference
shared-memory implementations of common graph algorithms
with a wide variety of applications. We use four graph kernels from
the benchmark: Breadth First Search (BFS), PageRank (PR), Con-
nected Components (CC) and Betweenness Centrality (BC). The
baseline results are shown in Fig. 11 against five input graphs (Ta-
ble 2); increasing the #threads does not improve the performance
significantly, but we still observe about up to 10X better perfor-
mance on Grace than A64FX.

203

GAP implements an optimal “direction-optimizing” method of
BFS [2] which combines the classic top-down BFS with a bottom-
up step that allows a vertex to check whether its parent is in the
“frontier” list of unvisited vertices (instead of a vertex checking
its adjacent vertices, akin to a parent looking for a child). The
amount of parallelism is proportional to the size of the frontier,
as a result BFS on certain graphs can suffer from starvation with
increased number of threads. PageRank (PR) iteratively computes
the popularity score of the vertices in a graph by implementing
sparse matrix-vector computations, employing OpenMP nested
parallelism which may not be supported by the underlying runtime
due to overheads associated with oversubscription, leading to minor
improvements between 48 and 144 threads on Grace for various
inputs. The CC benchmark performs parallel labeling of the graph
vertices according to their connected components, which is a set
of vertices linked together by a path. Betweenness Centrality (BC)
is about updating the scores of the vertices by computing shortest
paths from a subset of vertices. This is usually implemented using
multiple BFS traversals to approximate the scores, and uses atomic
operations to track possible paths.

Profiling analysis of GAPBS considers different NUMA nodes
and input graphs, measurements of different graphs are stacked
per NUMA node (depicted by broken blue lines), as shown in Fig-
ures 12, 13, 14 and 15. The A64FX profiles indicates most of the

Studying CPU and memory utilization of applications on Fujitsu A64FX and Nvidia Grace Superchip

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

100 BFS 100 PR _ cc __ _ BC
T G cracE e e £ G e s Ty cc e s 3 G e et 102 | e e w5 o
101
z % Gl 3 10
10t 7 . g 1
£ 7 £ £
£ 7 £ E g0
< V) 1072 < 10
S S S
H U 7 El s
i 7l M 7 o /- W
— V1 W) Z) Z) A) = V)) 2 2 V1 W)~) 2
orkut uk2002ljournal rgg Bump orkut uk2002ljournal rgg Bum orkut uk2002ljournal rgg Bump orkut uk2002ljournal rgg Bump
Figure 11: Performance of GAP benchmarks (GAPBS) on A64FX and Grace platforms.
% Busy X101 # Cache Misses 1e11 Cycle Wait Time(s) Data Transfer (MB/s) x10? # Instructions le12
4e8 1e8 g:'g 9 g:'g %Z% ésg 80 4el lel 2el 3el 3ell 8e6 8e8 7e6
| 7ell EER 1e8 . . = Sel 3el 3el 3el 7ell le7 209 2¢7 [EWA
7 T 2ell 1e8 4e7 6 2e-4 _lel 5e3 le-2 70 1e2 21l 6e6 6e8 5e6 | 7eil 20
2 9e8 5e8 2e-5 2e-2 le-l 2¢2 IS 20 3ell 9e6 9e8 2e7 :
2ell 2e8 se7 le-3 2el 2e2 2el 7e2 del 1lel 9 Tel : 2ell 7e6 7e8 8e6 Bell
75 7 6 4e10 & 26 5 Te-37 el "6e-3™ Tel "3e2 60 2el 8 2el 2el 4610666 7e2 2ed lell
24 2 5e10 2e8 1le8 7e-4 7 2e-3 2el 7e3 3el 2el 3el 4el 5e10 7e6 7e2 1le5 2ell
20 4 5 3el0 le8 4e7 4 le-3 _2el le-2 3e-2 50 5el 5el 3el0 5e6 7e2 3e4 lell 15
20 9 6e10 8e8 5e8 5e-4 3e-2 EEDM 2e1 sel IFYEENTY] 15 6e10 7e6 7e2 1le7 2ell
24 3 3el0 9e7 4e7 2e-3 [3el 4e2 | 3el le-l 3el 9 lel 9 3el0_6e6 8e2 5e5 lell
25 2 4 4810 368 168 de-d""Tel 9e37 lel 3e2 40 el 8 261 26T 461077666 7e2 2e4 Teil
24 2 5e10 2e8 le8 -3 6e-4 9 2e-3 2el 7e-3 3el 2el 3el 4el 5el10 7e6 7e2 le5 2ell -1.0
20 4 L3 3e10 1e8 4e7 8e-d 2el 4e3 le-2 30 _5el 4el [9el -1.0 3el0 5e6 7e2 3ed lell
19 9 6e10 8e8 5e8 5e-4 Se-2 EIN 2e-1 5el 6el0 7e6 7e2 le7 2ell
24 3 3e10 9e7 2e7 -2 2e-3 | 3el 4e-2 | 3el 1lel el 8 Tel 9 3el0__6e6 _7e2 _ 5e5_ lell
35 3 -2 4810 368 1e8 4e-d " Tel 9e3 lel 3e2 -20 2el 8 26l Zel 4810 7eb6 72 Ze4 Teil -0.5
24 2 5e10 2e8 1e8 6e-d 6 4e3 2el le2 3el 2el 3el 3el -0.5 5e10 8e6 7e2 le5 2ell :
21 4 -1 3e10 1e8 5e7 -1 4e-4 lel 3e-3 PEOM le-2 -10 __6el Sel [i9elunle2 3el0 5e6 7e2 3e4 lell
20 9 6e10 8e8 5e8 2e-4 4e-2 EEISW 2e-1 2c2 WNCISEM 2c2 2c2 6el0 7e6 7e2 le7 2ell
24 3 3e10 1le8 4e7 2e-3 [3el . 5e-2 | 3el lel el 9 Tel 9 3el0 6e6 7e2 5e5 lell
L1 L2 Ls L1M L2M PFINT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) Ls PF FP INT Total

Figure 12: Performance events of GAPBS(BFS) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

%101 # Cache Misses lell Cycle Wait Time(s) %102 Data Transfer (MB/s) x10% # Instructions lel2
1 2e10 3e9 le5 " 3el 7el 5 3el 14 9el 2el 5el el 3ell 1le7 2010 3e8 25
2 6 9e8 7e8 7 5 3¢l 5 3 1630 7el 3e2 [ule3 4.0 7ell| le7 4el0 1e9
3 17 7 3ell 2e9 8e8 2el lel 9 2e2 4e2 3ell 1le7 1el0 4e8 9ell,
3 2 4 6e8 4e8 6 6e-1 7 5] 2 12 2e2 3el 2e2 3e2 35 4ell 6e6 2el0 9e8
2 1 6 2ell 4e8 le8 3el 8 5 22 2el le2 22 2ell _6e6__6e9 _le8 9ell 2.0
""" . Tell 7610 3697 2 5T 7el 8 6el T TBel 1611 866 2610 368 dell
3 7 lell 9e8 7e8 5 de1 7 4 10 le2 2el 6e2 3e2 3.0 lell 8e6 4el0 1le9 5ell
3 22 5 lell 2e9 6e8 2e1 lel 8 32 del 6e2 lell le7 9e9 4e8 4ell
8 5 8e10 6e8 4e8 1 8 6 2 0 282 3l 2e2 3e2 25 8e10 5e6 2010 9e8 3ell 1.5
9 6 " 4e10 1le8 9e7 4 3 319 6 - 2e2 2el le2 2e2 4e10__5e6 _5e9 _9e7_ lell
""" 37 3 9ei0 1610 3e9 1 2 57TT3eT 7el 8 5617 78el 50 9610 866 Zel0 2e8 4ell
3 7 lell 9e8 7e8 3 6 el 7 5 o6 le2 2el 7e2 3e2 lell B8e6 4el0 1le9 5ell
3 7 -3 lell 2e9 7e8 2el B 2e1 7 : 2e2 del 5e2 lell le7 9e9 4e8 4ell | -1.0
8 5 8e10 6e8 4e8 1 8 5 2 2e2 2el 202 3e2 [1.5 8el0 5e6 2010 9e8 3ell
9 6 4e10 1le8 9e7 -2 4 3¢l 8 6 S04 _2e2 _2el le2 2e2 4e10 5e6 5e9 9e7 lell
""" . 3 [2 Teil 1e10 369 LIS 6 36T 6el 8 5e1 T 7el -1.0 Tell "9e6 2el0 268 dell
3 7 lell 9e8 7e8 5 ldel 7 5 2e2 2el 6e2 3e2 lell 8e6 4el0 1le9 5ell 05
3 20 -1 lell 2e9 7e8 -1 2el lel 8 -02 2e2 5el 2e3 4e2 “05 lell 1le7 9e9 4e8 dell
9 6 8e10 6e8 4e8 ge-l 7 6 2 2e2 3el 202 3e2 8e10 5e6 2010 9e8 3ell
9 6 4e10 1le8 9e7 3e4 3 3¢l 9 6 2e2 2el le2 2e2 4e10 5e6 5e9 9e7 lell
FP L2 Ls L1M L2M FP INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) LS PF FP INT Total

Figure 13: Performance events of GAPBS(PR) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

Cycle Wai

o 1 # Cache Misses it Time(s) Data Transfer (MB/s) x10? # Instructions le12
% Busy 3 3e8 1e8 (o e 2 ey e o L3 9 2el 3el L, 3ell 7e6 Be8 7es

| 7ell ER 1e8 <5 e- e- 5el 3el 4el | 5el - 7e1l 9e6 209 2¢7 EWA

7 2611 2e8 5e7 6 le-4 [1el 5e-3 EEDM le-2 1e2 1e2 1e2 1e2 2ell 7e6 6e8 5e6 7ell 2.0

5e8 9e7 1 6 4e3 IS Te-2 2el 3el 3ell 6e6 9e8 9eb

6 2ell 4e8 de7 5 = Se:2 40 ..3el__lel 2el 3el 1.0 2ell 6e6 7e8 7e6 | 8ell
7 4e10 2e8 268 Zel 8 261 76l 4610 566 8e2 Ze3 Iell

3 4e10 2e8 1e8 4el 2el ' 5el 5el 4e10 6e6 8e2 2e3 2ell 15

4 5 3e10 1e8 5e7 4 4el 08 3el0 6e6 8e2 2e3 lell :

7 4e10 5e8 8e7 30 4el lel 3el . 4del : 4e10 5e6 9e2 2e3 lell
4 4 3el0 7e7 3e7 el 8 2el 3el 3e10_ 5e6 8e2 2e3 lell
7 4610 368 2e8 |3 2el 7 Jel " 2el 46107566 Be2 2e3 Tell

3 4e10 2e8 1e8 3el 2el S5el Sel 06 4e10 6e6 B8e2 2e3 lell -1.0
3 -3 3e10 1e8 5e7 -20 4el 3el0 6e6 7e2 2e3 lell
7 4e10 5e8 8e7 |, 4el 9 3el 4del 4e10 5e6 8e2 2e3 lell
4) 3el0 7e7 3e7 2el 8 2el _ 2el -0.4 3el0_5e6 _8e2 _2e3_ lell

7 [4610 2e8 168 P 7 Tel Zei 4610 666 Be2 263 Teil o5
3 4e10 2e8 le8 |, 4e-4 lel 4e-3 7e-3 -10 3el 2el 4el 4el 4e10 6e6 8e2 2e3 lell
4 -1 3e10 2e8 5e7 Se-4 [2el 2e-3 NN 9e-3 4el 02 3el0 6e6 8e2 2e3 lell
7 4e10 5e8 8e7 1 6 4c-3 EESW 8e-2 4el lel 3el 4el - 4e10 5e6 8e2 2e3 lell
4 3e10 7e7 3e7 8e-3 NEEIM 3e-2 LI 9e-2 3el 8 2el 3el 3el0 5e6 8e2 2e3 lell
INT L1 L2 Ls L1M L2Mm PFINT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) Ls PF FP INT Total

Figure 14: Performance events of GAPBS(CC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

overhead in integer operations (despite floating-point instruction
throughput being higher) and traffic across the NUMA nodes. Ac-
cordingly, corresponding Grace profiles (Figures 16 and 17) also
points to the traffic across the NUMA nodes and relatively high
backend stalled cycles. However, the data movement across NUMA
nodes for A64FX is higher than that of Grace (in the A64FX profiles,
data transfer is represented in MB/s, so the numbers should be
multiplied with 10° to roughly compare with corresponding Grace
memory metrics), and relatively less misses in the cache hierarchy
led to improved end-to-end performance. Also, the cache behavior

2

04

and the prefetch instructions of GAPBS are comparable to the graph
neighborhood benchmarks, due to same input graphs. Comparing
the Grace profiles of GAPBS with graph neighborhood benchmarks
(Figures 16 and 17, vs. 10), we observe comparable volumes of mem-
ory accesses (reads), nearly all stalls are backend stalls (waiting
on memory loads). Therefore, having better latencies across the
memory hierarchy (about 50% better in Grace relative to A64FX,
Fig. 2) is beneficial for graph workloads.

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez

x10! # Cache Misses 1e12 Cycle Wait Time(s) Data Transfer (MB/s) %102 # Instructions 1013
2 2e10 2e9 2e-6 5 2el 3e-1 PSW de2 | 3e2 iy 3e12 1e9 3e9 2¢7 [EEIE]
2 1lel0 1le9 5 1 EESEN de-1 2e12 9e8 4e9 9e7
2 lel2 6e9 8e8 5 ge% 5 lel2 6e8 29 2e7 5el2 20
EEDYEE 310 4e9 e 5el2 3e9 5e9 9e7 3
] 4 lel0 1e9 . el el 1o 3o 2o BUH
G S [3e12 TS T 4 = 3612 169 769 Te7
2 2e12 1lel0 1e9 4 2el2 9e8 209 7e7 7el2
2 lel2 69 9e8 lel2 6e8 1e9 2e7 Sel2 15
2 3 3e10 4e9 5 5e12 3e9 5e9 8e7
2 le10 leo 3 (2012 1e9 2e9 le7 |
""""""""""" T DS vel0 e T = 3612 189 269 Te7
2 2el2 lel0 1e9 1 2el2 9e8 2e9 7e7 7el2 “1.0
2 2 1le12 69 8e8 2 - 3 lel2 6e8 1le9 2e7 5el2
2 3e10 3e9 e 4 2 5e12 3e9 5e9 8e7
2 lel0 19 : 1 212 19 269 le7
""""""""""" 27T BESYEN el0 7269 2e4 6 2e1 3ei2 1e9 3e9 T 1e7 ~05
2 -1 2el2 1el0 1e9 -1 le3 5 1 2el 1 2e12 9e8 209 7e7 7el2 :
2 1le12 69 7e8 2e-4 9 3 lel2 6e8 le9 2e7 5el2
2 3e10 3e9 6e-6 ' 2el 4 [N 5e12 3e9 5e9 8e7
2 1lel0 1le9 2e-5 lel 1 [N 2e12 1e9 2e9 le7
L2 Ls L1M L2M PF INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) Ls PF FP INT Total

Figure

1e12
2e112e112¢11 1011 1010fi813 9es ses 7es TeBTEIF 1011 87" | 8B sc11 5011 5011 4e11 2e10p@13 30102010

pei23e102¢103e10 20122812 2011 105 | 2
fle12 1e9 3e8 1e9 2ei21e122e11 168" | 4

2011211 2e11 1011 8e9Jle12 7e8 4es

90109e1080101€10 99 1812 308 6e7 3e8 le121e122e11 367 | 4

52109e108e101610 6e9fle12 3¢5 767 3e8 le121e129e10 3e7 he12 109 38 1e9 lel21e121e11 9e7 ZZ
fe12 3e0 169 300 281210121011 767 |4
2

1
6e10821070102¢10 5e9 il 108 6e7 zes le129eanient 3¢7 |,
he12 seo 209 seo lel21e121e11 767

Te12.

he12 ses 2es 100 Berzsernien 2e7 |3

08e107€102e10 4e9 [Bell 1e8 7e7 2e8 9ellBell7el0 3e7

1
le12,

€12 209 109 1e9 2e122e122011 263 |50

5

012 269 109 1e9 2e122e121e11 3e8
Te12
11 168 4e7 28 Sellgellselo sei | 2

pett 2e8 3e7 2es Beiizeiroeto ses |3
1

1

€11 1e8 4e7 18 8ell7ell6e10 5e7 [e11 168 267 1e8 Fen17e116010 107
INS SC ST STB STM STF
CPU Metrics

ST STB STM STF LS L1ML2M L3M MA MARMAWMRA

LS L1M L2M L3M MA MARMAWMRA
Me ry Metrics

mory Metrics

NS sC
CPU Metrics. Memor

Figure 16: Performance events of GAPBS BFS and PR on NVIDIA
Grace for several graphs.

1e12
1e112e112e11 1011 5eo [i613 4e8 den 3es [@IFIGII 1011 007 | ?

1e12
613 4e0 3¢9 3¢9 [[EIBIEIF 1011 e8| 3
11 5e8 4e8 28 1e129e115e10 9e7

1e112e112e111e11 6e9 R €12 429 3e9 3e9 lel2lel2lell 4es
€12 308 6e7 3es le12lelz2e11 27 | 3
7e7 3e8 le129e118e10 3e7

Te12

1e8 208 lel29e1i1e11 267 | 5
2e8 3es 9ellBell7e10 3e7 | 1
le12
367 4e8 lel29elllel 6e6 | 5
1

e12,
eo[le12 7es 3es ses eizierzzenr 28 | 4
2

212 7c8 38 7ed lel21e129e10 2e8
Te12
el 109 9e8 9es le121eiz1e11 268 |,
jell 1e9 9e8 1eo lel29e11selo 2e8 | 1
Te12
012 429 3e9 4e9 3el23e123ell 7ed 7
12

ell 3e8
jeil 2es
e11 3ea
1l 7e8
e11 ses e12 4e9 3¢9 4eo el23el2ze1l 7en
el 57 266 1e8 Bell7ellse10 6eb | 2

166 97 7ell6ellcelo 107 | 1

4e7 4e8 Bell7e116e10 17
e

el 3e8 1e8 4e8 Gellgellienl 1c8 |,
i

€11 37 o1l 3¢5 18 3e8 BellBell7elo les

SC ST STB STM STF
CPU Metrics

LS L1M L2M L3M MA MARMAWMRA
Memory Metrics

NS sC
crl

ST STB STM STF
4

LS LIM L2M L3M MA MARMAWMRA
Metrics Mem

ory Metrics

Figure 17: Performance events of GAPBS CC and BC on NVIDIA
Grace for several graphs.

Impact of Inputs for Access

Impact of Inputs for GAPBS

1000 o o e . . " 3
H . , . o1 g g g g g o8 ®oe 9@
H N 20975 = [-
5 098 g "
€ £ 0950
8 N 2
4 o
50961 4 £ 0925
§ N 5
- £ o CCABarx
e A A k1 0900 A4 BCAB4FX
S 0.94 S 0875 m BFS-AB4FX
< E PRAGAFX
2 2 0.850 o CCGrace
8092 b 4 BC-Grace
o Grace 0825 O BFS-Grace
A AGAFX . PR.Grace
0.800
orkut orkut orkut orkut uk uk ljour ljour bump orkut orkut orkut orkut uk uk uk ljour ljour rgg
k ljour bump rgg lour bump rgg bump rgg rgg uk lour rgg bump ljour rgg bump rgg bump bump

Input Graph Pairs. Input Graph Pairs

Figure 18: Impact of graph inputs on the Grace and A64FX platforms
across Neighborhood Access benchmarks (left) and GAPBS (right).
We compare the performance events datasets (collected from Perf)
for distinct input graph pairs via the Pearson correlation coefficient
which measures linear relationships between the sets (0 implies no
correlation, whereas 1 indicates positive correlation).

3.2.2 Impact of input graphs. The inherent structure of the graphs
can impact the overall performance, due to the load imbalance
across the available threads. In Fig. 18, we calculate the Pearson
correlation coefficient [6] between the subsequent CPU/memory
access profiles (considering the same events collected using Perf
on both the platforms as listed on Table 5, but does not distinguish
NUMA regions) of Neighborhood Access and GAPBS scenarios

1e12
11168 | 50

]

205

15: Performance events of GAPBS(BC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

across pairwise input graphs. While quantifying the impact of in-
puts via simple linear relationships can be problematic, but the goal
here is to compare the performance footprints of multifarious input
graphs across the platforms (engaging all available processing cores/
threads). The results indicate a significant diversity between inputs
(for both benchmarks and applications) on the A64FX platform
particularly, as compared to Grace. Aside from the performance
differences due to the hardware capabilities, relatively a smaller
number of threads on A64FX (48 vs. 144 on Grace) accentuates the
load imbalance (each thread owns a fixed number of iterations re-
sembling vertices, but dissimilar number of edges). As the number
of vertices per thread reduces (due to greater processing cores on
Grace), so does the load imbalance. This effect can be observed in
Fig. 11 by comparing the respective patterns of 48 vs. 144 threads
performance of GAPBS applications under different inputs.

3.2.3 Rodinia benchmarks. Rodinia heterogeneous suite [5] com-
prises of several standalone benchmarks spanning a range of appli-
cation motifs, as discussed in §2.2. The baseline result is presented in
Fig. 20; aside from StreamCluster (SC), we observe about up to 10X
improvement in end-to-end performance on the Grace platform, as
compared to A64FX. Like the GAP kernels, we observe performance
saturation on Grace using all of the available 144 cores (see Fig. 20).
Also unlike the graph benchmarks and mini-applications, we ob-
serve different patterns in the A64FX performance profiles (Fig. 19),
such as very high reuse (due to loop blocking), higher floating-
point operation overheads (compared to integer operations) and
stalls due to memory accesses and instruction execution. However,
both GAPBS and Rodinia exhibits relatively similar data transfer
volumes (especially writes) across the NUMA regions.

On Grace, several Rodinia kernels such as CFD, SRAD and SC
exhibits high stalls, limiting the parallel efficiency, as shown in
Fig. 21. Due to the high capacity of LLC, we also observe maximum
reuse (and unbalanced memory access overhead) and minimal stalls
in LUD, depicting multiple orders of magnitude speedup on Grace
relative to A64FX. We also observe relatively high remote memory
accesses for some of the benchmarks such as HS, SC and CFD.
A64FX partitions the cache into sectors such that misses are only
restricted to a particular “sector”, with the intention to improve
the overall cache misses due to premature eviction of an entire
line. We observe a minor impact of the sector cache in reducing the
LLC cache misses by about 5% for some of the compute intensive
applications in Rodinia (e.g., BP, CFD, etc.); for the graph workloads,
we do not observe any particular evidence of improvement.

Studying CPU and memory utilization of applications on Fujitsu A64FX and Nvidia Grace Superchip

%

Kameans 25
" 6
Wotspot
w4
smevi 16
snava |26 12
Lauk 2
sc 4 14
o 240 11
Lo 5
Wesrtwatl 15 [T
i
™ 4
Hotspot [LVNNEY
or s il
w1
snavz 26 11
Leuk 29
sc 4 14
oo 240 8
wo 2
Hearvwall m
Kmaans
o 10
Hotspot 4
or 82
smat 14
snoa | 25
Leuk 28
sc 4
e 28
wo
Weartwanl 12
¥means m?
™
Wotspot 31
o
Smavi 14
smav2 |25
Lok
sc 4
w25
wo 9
wearwar 12 [HEENN

FPINT

Busy x10%
19 4

6 1

5

9 5
28 10 8
30 28 2
18 2
8 8 4
20 4
6 17 7
uo
977
4 6

5

20 1 6
% 1
30 w28 2
19 2
8 8 4
19 11 5
2 6
16
1y

4 3
SR
7 -2
4
1
2
32 N
8 4
5 e
2 6 1eg
16 o Tell
11 12 MEM Ls

Cache Misses
9e1l 2e10 6e7

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

Jel2 Cycle Wait Time(s) # Instructions lel2
4.0 6e9 7e2 lel Sel Tel Data Transfer (MB/s) % e6 lel2 4ell
1 7 2 3 2 e2 3 e
3e1 2el 3el 6el e3 e e
3e-3 9e-1 1 8e-1 e2 4e: 40000 €.
5e-2 3 Sel le2 e3 de e
3 de1 6 e2 Se: e
7e-1 Sel 3el e3 e e
9 40 2e2 4e2 e3 9e! ;=
3 Sel 2el ed e 35000 8
4e2 5e2 3e2 e3 de
2e-3 2 4 e2 le
Te1 L2el el 2e2 2 2e2
> 3 7 Te2 &2
1e1 2 5 1e3 e3 30000
Se-1 2 lel 6e2 e2
Te-2 4e-1 4 4e3 e3
Y 30 _3el 9e2 se e2
71 9e3 2e2 e 6
5 1§z 482 1;31 g 25000
3 8 7 e3 e
se-1 2 e2 e
- lel 3el e2 e:
Te-1 e-1 ez)
12 203 2e2 2 3 20000
. lel 6e2 8e2 e:
7e8 20 463 3e3 3e3 3e »
s e:
3
7 4 de3 [nled
e 2e2 5e2 le3 _Oe2 ~15000
> 4e2 4e2
3 e 5e2 le3 = le
de-2 4el 8el 202 le2
2e:3 _le2 le2 2e2 2e2
7eT 46236l 9 Tez -10000
2 “10 2e3 le3 8e2 2e3 S
lel 4el lel 3e2 4e2
Se-6 6e2 3el lel 3el
663-2 2e-1 5e-1 5e2 7e2
8 5 2e3 4e3 |
1e-2 6el 6el 3 4 5000
e lel 5 2 led led
4e3 plelisel’ "4 3. 6 8 le3 1le3
e2 B8e- - 2 4 le2 1le2
le-6 6e-d 2e-3 2el 2e3 6e-1 6e-l le2 3e2 lell 2e7 5el0 B8e7 5ell L,
PF INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) LS PF FP INT Total

Figure 19: Performance events of Rodinia mini-applications (per line) on Fujitsu A64FX (broken blue lines indicates NUMA node, for e.g., a
row on every NUMA node corresponds to a specific application).

107 W AG4FX-FUJITSU GRACE‘VARMCLANGMB threads) [GRACE-ARMCLANG(144 threads)
102 ?
I V) V) % /
o V] Z / / /
H 'V VY
VLR
" 7 MM
71 73l 700 7hH
o 3 L 3 <

2 AN S
© W 6 o
¢

@&

Figure 20:

and Grace platforms.

I8k 1e11 1611 1e11 569 4e9

Bk 1e11 1611 1e11 6e9 3e9

ESE2e122¢122e121e124¢10

ESE2e122¢122e121e124e10

EBEse115e115¢11 1e112€10

PBEse115¢115¢11 1el1 2¢10)

sradVl Hspot kmeans

PBElGe116e116el1 3¢9 1el)

leuk

P 3e113e113e11 1e8 2l

cfd

EBB161020101€10 6e7 2e9)

Hwall

EB8l16102e101e10 27 1e9)

lel2
€121¢10 6e7 1e1026122€124¢10 566 | 5)

e12 1610 87 1e102e122e123e10 1e7 | 27

lel3
Jle132e112e102e11 1e13 1e139e11 48 ‘ ;
1
3

Jle132¢112€102e11 1e139€129¢11 3e8
lel

pel2 4e9 269 4e9 bel26el2cel1 7e6 | 15
10

Fe12 3¢9 2¢9 3e9 fel26e125e1l 17 05

lel!

pe122e10 7e7 2¢105€125e125e11 2e4 | 1
1

0,

e12 8e7 le6 4e7 Gel25e125ell ded
lel2
ell 4e9 2¢9 4e9 3ell2ell3el0 6e8 ‘ 10
ell 7e9 3e9 7e9 3ell3elldel0 3e8
lell
ell de7 2e6 de7 2el12ell2el0 led ‘ ;g
25

ell 4e5 2e5 de5 3ell2ell2el0 2e4

INS SC ST STB STM STF
CPU Metrics

LS L1M L2M L3M MA MARMAWMRA
Memory Metrics

bp nw

sradv2

Te12p3kpI
v

P8l 1101e101€10 7e9 9es|

P8l 2¢102e101€101e10 Ges|

E88l42104e104€101e10 Se8|

EBM 6e9 6e9 6e9 1le7 Ses|

EQIPIge11 9e11 9el14e10 39|

Bbl9e119e119e114e10 3e9|

26132613 213 2613 2e13 (30

2e10 99

B8 1610 268 2¢8 6e6 7e7

lel3
pe123€10 69 3e102e122e122e11 5e9 l 2

da

Performance of Rodinia mini-applications on A64FX

lell
JBe10 68 6e7 5e8 7e106e10 7e9 les l 2
e10 6e8 Se7 5e8 6el05e10 5e9 2e5

lell
Jlell 2¢9 6es 1e9 lelllell2el0 5e3 | 4

€1l 8ed ded 25 lelllelllel0 2ed

lel2
Jle127e10 3¢8 7el01e128ell lell 2e6 l 3
2

fle127¢10 3¢ 7el0le121e121e11 1e6 | 1

e123e10 5¢9 3e106e125e125e11 8e9

lel0
€10 6e7 2e6 8e7 3e9 2e9 9e8 7 |
25

3e6 3e7 2e7]

9e9 6e7 6e4 2e8 0.0 °

INS SC ST STB STM STF LS LIM L2M L3M MA MARMAWMRA
CPU Metrics (

Memory Metrics

Figure 21: Performance events of Rodinia on NVIDIA Grace.

4 Concluding Remarks

In this paper, we provide a thorough quantitative analysis of various
HPC applications on two contemporary ARM-based multiproces-
sor platform — Fujitsu A64FX and NVIDIA Grace superchip. We
observed competitive performance on regular benchmarks such as

206

STREAM across the platforms, but for more irregular benchmarking
scenarios, NVIDIA Grace outperformed Fujitsu A64FX by 30-50%
for a variety of input graphs. Moreover, considering more involved

ta intensive application scenarios, the performance gap between

A64FX and Grace were significant, up to orders of magnitude (with
no code changes). Our high-level takeaways are as follows:

Regular application patterns such as streaming writes or nontem-
poral stores might benefit from platform optimizations such as
write-allocate evasion or elimination (available on both A64FX
and Grace), however they are not likely on the critical path in
applications (primarily used for initializing data structures), so
the outcome will depend on the specific application situation.
This option can detect simple benchmarking patterns, such as
STREAM, so more complex and irregular workload analysis is
mandatory.

For irregular workloads such as graph analytics, the structure of
the input graph is quite relevant in determining the throughput.
However, more available threads can also reduce the overall load
imbalance due to the graph structure.

Even irregular applications have regular patterns, having high-
capacity LLC is beneficial in optimizing reuse.

A number of applications depend on integer pipeline throughput,
optimizing integer pipeline is as important as floating-point.
For a number of data intensive applications, data exchange traffic
across the NUMA nodes can be significant, therefore, sustainable
bandwidth between NUMA nodes is crucial.

A number of applications are unable to drive the available band-
width, using all the available cores might lead to starvation and
impact the parallel efficiency. This is partly due to the algo-
rithm implementation and limitations in the underlying pro-
gramming model. Adopting modern performance portability ab-
stractions [8] in developing memory bound applications can
potentially enhance the parallel efficiency.

MEMSYS 24, September 30-October 03, 2024, Washington, DC, USA

Overall, our results quantitatively reinforces the immense poten-
tial of performance improvement for scientific applications across
contemporary high-performance ARM data center CPU platforms.

Acknowledgments

This work was supported by the US DOE Office of Science project
“Advanced Memory to Support Artificial Intelligence for Science”
at PNNL. PNNL is operated by Battelle Memorial Institute under
Contract DE-AC05-76RL01830. Research at PSU is supported by
National Science Foundation (NSF) grants #2211018, #1931531, and
#2008398.The authors would like to thank Stony Brook Research
Computing and Cyberinfrastructure, and the Institute for Advanced
Computational Science at Stony Brook University for access to the
Ookami computing system.

References

[1] Fabio Banchelli, Joan Vinyals-Ylla-Catala, Josep Pocurull, Marc Clasca, Kilian
Peiro, Filippo Spiga, Marta Garcia-Gasulla, and Filippo Mantovani. 2024. NVIDIA
Grace Superchip Early Evaluation for HPC Applications. In Proceedings of the
International Conference on High Performance Computing in Asia-Pacific Region
Workshops. 45-54.

[2] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing
breadth-first search. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 1-10.

[3] Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[4] Andrew Burford, Alan Calder, David Carlson, Barbara Chapman, Firat Coskun,
Tony Curtis, Catherine Feldman, Robert Harrison, Yan Kang, Benjamin Michalow-
icz, et al. 2021. Ookami: Deployment and Initial Experiences. (2021), 1-8.

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Teee, 44-54.

[6] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jing-
dong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson correlation coefficient.
Noise reduction in speech processing (2009), 1-4.

[7] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API
for shared-memory programming. IEEE computational science and engineering 5,
1(1998), 46-55.

[8] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru, Patrick Atkin-

son, Codrin Popa, and Justin Salmon. 2019. Performance portability across diverse

computer architectures. In 2019 IEEE/ACM International Workshop on Performance,

Portability and Productivity in HPC (P3HPC). IEEE, 1-13.

Jens Domke. 2021. A64FX-Your Compiler You Must Decide!. In 2021 IEEE Inter-

national Conference on Cluster Computing (CLUSTER). IEEE, 736-740.

Anne C Elster and Tor A Haugdahl. 2022. Nvidia hopper gpu and grace cpu

highlights. Computing in Science & Engineering 24, 2 (2022), 95-100.

[11] Jonathon Evans. 2022. Nvidia Grace. In 2022 IEEE Hot Chips 34 Symposium (HCS).

IEEE Computer Society, 1-20.

Adrian Jackson, Andrew Turner, Michele Weiland, Nick Johnson, Olly Perks,

and Mark Parsons. 2019. Evaluating the arm ecosystem for high performance

computing. In Proceedings of the Platform for Advanced Scientific Computing

Conference. 1-11.

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez. 2024. Impact of

Write-Allocate Elimination on Fujitsu A64FX. In Proceedings of the International

Conference on High Performance Computing in Asia-Pacific Region Workshops.

24-35.

[14] Satoshi Matsuoka. 2021. Fugaku and A64FX: the first exascale supercomputer

and its innovative ARM CPU. In 2021 Symposium on VLSI Circuits. IEEE, 1-3.

John D McCalpin. 1995. Stream benchmark. Link: www. cs. virginia. edu/stream/ref.

html# what 22 (1995), 7.

[16] Larry W McVoy, Carl Staelin, et al. 1996. Lmbench: Portable tools for performance

analysis.. In USENIX annual technical conference. San Diego, CA, USA, 279-294.

Benjamin Michalowicz, Eric Raut, Yan Kang, Tony Curtis, Barbara Chapman, and

Dossay Oryspayev. 2021. Comparing OpenMP Implementations with Applica-

tions Across A64FX Platforms. In International Workshop on OpenMP. Springer,

127-141.

Tetsuya Odajima, Yuetsu Kodama, Miwako Tsuji, Motohiko Matsuda, Yutaka

Maruyama, and Mitsuhisa Sato. 2020. Preliminary performance evaluation of

the Fujitsu A64FX using HPC applications. In 2020 IEEE International Conference

on Cluster Computing (CLUSTER). IEEE, 523-530.

[9

=

[10

[12

[13

[15

=
=

[18

207

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez

[19] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya
Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo
Miyoshi, et al. 2020. Co-design for a64fx manycore processor and” fugaku”.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1-15.

Harry Waugh and Simon McIntosh-Smith. 2020. On the use of BLAS libraries in
modern scientific codes at scale. In Driving Scientific and Engineering Discoveries
Through the Convergence of HPC, Big Data and AI: 17th Smoky Mountains Com-
putational Sciences and Engineering Conference, SMC 2020, Oak Ridge, TN, USA,
August 26-28, 2020, Revised Selected Papers 17. Springer, 67-79.

[20

	Abstract
	1 Introduction
	2 Benchmarks and Applications
	2.1 STREAM and Graph Neighborhood Accesses
	2.2 GAPBS and Rodinia

	3 Evaluations and Analysis
	3.1 Benchmarks
	3.2 Application Scenarios

	4 Concluding Remarks
	Acknowledgments
	References

