Extending RISC-V Keystone to Include Efficient Secure Memory

Zach Moolman
zach.moolman@colorado.edu
University Of Colorado Boulder
Boulder, Colorado, USA

Abstract

Given that mobile and embedded devices are at the center of day
to day activities, they are often the target of cyber attacks. Despite
their heightened security criticality, these devices do not often pro-
tect their data in memory. The reason for this lack of protections is
resource limitations. In this work we propose an efficient mecha-
nism to extend the Trusted Execution Environment (TEE) in RISC-V,
Keystone, to include Secure Memory features to protect data in
memory from physical and remote memory attacks.

1 Introduction

Embedded and mobile devices have infiltrated most day-to-day
operations. As a result, they are responsible for handling sensitive
information, such as passwords, social security numbers, credit
cards, among many others. Since embedded and mobile devices are
typically not housed within robust physical protections, they are
vulnerable to memory attacks. Memory attacks refer to physical
or remote attacks that leverage the vulnerable nature of memory
devices to extract sensitive information or change values in memory
to gain unauthorized access to the system.

Typical embedded and mobile devices are not equipped to pro-
vide protection for memory attacks, given they have limited re
sources. Typical protection mechanisms for data in memory in-
volve both encrypting and integrity protecting the data. To encrypt
the data before going to memory, the system needs to include a
hard ware encryption engine. This additional circuit is typically
found in SOC but usually used for protecting data in storage only,
not memory. One reason for this design decision is likely due to
resource and latency limitations, as memory accesses already take a
long time to retrieve data, and this latency is on the critical path of
computation. For integrity verification, secure systems use crypto-
graphic hashes stored in memory alongside the data. This approach
to integrity verification requires too much memory overhead and
additional hashing latency on the critical path to retrieve data from
memory.

In this work, we explore existing optimization mechanisms to
alleviate the overheads of secure memory and extend the proposed
RISC-V Keystone features to aid in secure memory operations. Our
goal is to produce an efficient implementation of a trusted execution
environment (TEE) with Secure Memory suitable for embedded
and mobile devices.

In this work, we are looking to address the performance and
resource limitations of secure memory systems by investigating the
potential for the RISC-V TEE, Keystone, to enable secure memory
features efficiently. As part of our research, we are considering
extending the Physical Memory Protections (PMP) table to include
some of the secure memory metadata. This extension is a signifi-
cant step in alleviating the overhead. Furthermore, we are actively

Tamara Silbergleit Lehman
tamara.lehman@colorado.edu
University Of Colorado Boulder
Boulder, Colorado, USA

working on implementing a prototype on an FPGA, a crucial step
in exploring the feasibility of the design in a real-world context.

Threat Model.

The proposed security mechanism is based on the threat model
that assumes an adversary has remote (or physical) access to the
machine and can probe the hardware to infer information about the
victim program. The adversary can run any program they desire on
the target machine to subvert the processor to leak secrets through
various vulnerabilities (including privilege escalation and physical
attacks). These vulnerabilities are well-understood and part of the
threat model, which has been thoroughly studied [1, 8-13, 16-18].
The traditional solution to protect against these types of attacks
involves secure memory and TEE.

2 Background

Trusted Execution Environment (TEE), such as Intel Software Guard
eXtensions (SGX) and ARM Trustzone commonly found in modern
processors, can boost the security of end-user devices by isolating
the execution of well-defined programs [1, 2, 5]. The idea behind a
TEE is that anything coming from outside the chip boundary is un-
trusted, including the kernel data and code, as a kernel can be taken
over by a malicious party and modified to steal sensitive data. TEEs
offer protection at the hardware level to prevent rogue access or
compromise. TEE’s main goal is to secure a system without trusting
the privileged software (such as the operating system). Applications
developed for the TEE, need to have a restricted interface with the
insecure world. It’s important to remember that strict software
practices are not just recommended, but crucial for passing data in
and out of the trusted boundary. This responsibility lies with the
developers and users of TEEs, reinforcing the importance of these
practices in maintaining the security of the system.

TEEs also often have the benefit of remote attestation [1, 4].
When using the TEE technology, a program running in a remote
device can attest to the security of the processor in which it is
running, as well as the security of the binary before it runs. Remote
attestation uses a hardware-embedded cryptographic key, machine-
only readable, to derive keys that can prove that a machine has the
necessary features to run a program securely. For example, Intel
processors with SGX enabled have an embedded key inside each
processor that can prove its identity as a verified Intel processor.
This remote attestation can be leveraged to verify the integrity of
the software by signing it with a private key to verify its origin.
The integrity verification of the binary is done by comparing a
signature previously recorded by the developer with the recently
computed signature when the binary is loaded [10, 15].

TEEs alone cannot protect data in memory. The TEE is capable
of protecting the execution environment but it does nothing to
protect the data once it is at rest in memory. Physical and remote
attacks have been shown to be effective in extracting data even in

the presence of TEEs [6]. As a result, we want to investigate secure
memory features to protect the data in memory.

Secure Memory. Data in memory should retain its confidential-
ity property to detect and prevent memory attacks by an attacker.
An attacker should not be able to read the values that cross the
communication bus between the processor and the memory. Confi-
dentiality prevents sensitive data from being disclosed. However,
confidentiality alone does not prevent an active attack, in which the
attacker modifies the values in memory to control the program’s be-
haviour. To protect against active memory attacks, secure memory
systems should also guarantee data integrity, which is the property
that ensures that no data is modified in an unauthorized way.

Systems with secure memory often include a hardware encryp-
tion engine that enables the encryption of the data before it is
stored in the main memory. When the data is fetched from the
main memory, in its encrypted form, it is first decrypted and only
then forwarded upstream to the cache hierarchy and the processor
for execution. When the data is updated and sent to the main mem-
ory, the value is re-encrypted, and its ciphertext is placed in the
main memory. Encrypting data in memory avoids unauthorized
access to the secure memory region, as accessing it without the
proper channels would simply return the ciphertext. The crypto-
graphic keys used throughout the secure hardware are guarded
within the trusted execution environment and tied to a particular
thread.

Typical secure memory systems use counter-mode encryption
due to its ability to parallelize the data fetch with the encryption
itself. Counter mode works well for secure memory because it is
able to hide the slow part of the encryption process while the mem-
ory controller fetches the data from memory. While the memory
controller sends the request to fetch the data from memory, the
AES hardware engine computes a one-time-pad (OTP) for the par-
ticular block to then XOR it with the ciphertext to decrypt the data
or the plaintext to encrypt it. To ensure each block of data has a
temporal and spatial unique OTP, counters are assigned to each
block and incremented on an update to the corresponding block.
Given that counters are larger than what can be held on chip, they
are normally placed in memory in a specific address, that can be
calculated based on the physical address of the block the counter
protects.

To enable integrity verification, cryptographic hashes (HMAC)
are used as a signature for what the data should be. When the
processor writes to memory, the memory controller computes the
corresponding HMAC and stores it in memory alongside the data.
Efficient implementations of secure memory use the Error Correct-
ing Code (ECC) chip of the memory device to store the HMAC in
order to save the additional memory access to fetch it [14]. When
fetching data from memory, the memory controller recomputes the
hash of the data and compares it to the previously stored hash. If
the hashes are the same, the integrity of the data is verified and it
is forwarded to the processor to continue execution.

HMACS alone cannot protect the system against replay attacks,
where the attacker records both the HMAC and the data and then
replays them both simultaneously at a later point in time. To provide
detection and protection against replay attacks, secure memory
systems usually use Bonsai Merkle trees (BMT), a hash tree built
over the encryption counters [11]. The BMT establishes the root of

Zach Moolman and Tamara Silbergleit Lehman

End-User Device

Untrusted Encl 1 2 3

Untrusted | | Untrusted Enclave Enclave Enclave

App (UA) App App App App

Software os Trusted Trusted Trusted
Runtime Runtime Runtime

Security Monitor
|

r '
H
PMP PMP)
H
Enc | Enc | OS | UA UA | Enc | OS | Enc | ||
Core, Corep '
- |
Hardware
Memory NIC Other /O

Figure 1: RISC-V Keystone

trust by storing the root of the tree always on chip. When a piece
of data is fetched from memory, the tree is traversed from leaves to
the root, comparing hashes along the way, to verify the integrity
of the data.

All of these features of secure memory can be leveraged to im-
prove the security of an embedded or mobile device running un-
trusted programs. The confidentiality and integrity of TEEs can
prevent the device from allowing rogue applications from accessing
sensitive information. Furthermore, the integrity of the binary in
the TEE can prevent adversaries from modifying the functionality
of trusted programs. The remote attestation feature allows trusted
devices to verify that they have a secure environment to prevent
man-in-the-middle attacks.

RISC-V TEE The RISC-V community proposed a new style of
TEE, Keystone, which allows for hardware developers to customize
the interface of the TEE with the rest of the system [7]. RISC-V
Keystone achieves this flexibility by introducing the idea of the ma-
chine mode. This mode is an elevated privilege execution mode that
can manage the memory partitions (including ranges and access
permissions) for the whole system. The different memory partitions
are tracked in a structure called the physical memory protections
(PMP) table.

The RISC-V Keystone TEE isolates memory by using the PMP
table, which establishes permissions and priority of access for the
different computing modes (user, supervisor and machine mode).
Software running in machine mode, called the security monitor, is
responsible for managing the context switches, memory accesses,
and establishing access control primitives. Each core has its own
PMP table, which describes the access privileges for each memory
range. The PMP table is checked any time there is a memory ac-
cess in the user or supervisor mode. Given that the PMP table is
implemented as fast access registers, they do not add significant
overhead to the memory accesses, even when accessing the first
level cache. The system design of RISC-V Keystone is shown in
Figure 1.

Extending RISC-V Keystone to Include Efficient Secure Memory

3 System Design

Our main contribution is to extend the physical memory protection
(PMP) table described in the RISC-V privilege specification to in-
clude secure memory. To accomplish the necessary modifications,
we propose a new structure in the memory controller, which con-
tains a copy of some of the information in the per core PMP tables,
aggregated to create a system-wide view called the extended PMP
(ePMP). In addition, we proposed to include a memory encryption
engine that extends the memory controller with the logic necessary
to encrypt and decrypt, compute secure hashes, and decide when
the security features need to be applied.

The MEE constructs an integrity tree per memory region to en-
able the dynamic allocation of the secure memory region described
in the PMP tables. The MEE then tracks the root of each tree in its
own table (the aggregated ePMP table), indexed by the PMP entry
table index and the core ID that made the memory request.

A key feature of the proposed design is that we can use PMP
entries without relying on a specific TEE implementation. Secure
memory is orthogonal to TEE, allowing for much more flexible
implementations. On the other hand, it can seamlessly be inte-
grated with Keystone without any changes to the Keystone TEE
implementation.

3.1 The Aggregated Extended PMP Table

The proposed aggregated extended PMP (ePMP) table residing in the
memory controller incorporates metadata for enabling an efficient
and dynamic implementation of secure memory (shown in Figure 2).
The circled numbers on the figure is to match the components
within the FPGA design to the security metadata stored in memory
shown on the right side of the figure.

The ePMP status registers enable the dynamic allocation of se-
cure memory regions. To accomplish this dynamicity, the memory
controller needs to be aware of any new ranges defined by the core.
We propose creating the aggregated ePMP table at the memory
controller to enable this feature. The MEE will monitor all data
requests as they pass through the MEE and update the meta entries
in the ePMP according to their respective entries in the PMP of
each core.

To be able to discretize the differing memory regions, the Bonsai
Merkle tree needs to be built separately and independently for each
region. In order to implement multiple independent Bonsai Merkle
trees, the aggregated PMP table in the memory controller needs
to also include the corresponding tree root, which needs to reside
on-chip at all times. The tree root can be a small 8B HMAC that
encompasses all the values in the memory region it protects.

In addition to the tree root, given that Bonsai Merkle trees have
fixed mappings from data to metadata based on the physical address
and size of the secure memory region, the aggregated PMP table
needs to also track the size of the memory region. To track this
information in a concise format, we synthesize this information
into the field which we call the tree mode. The tree mode is used to
find the corresponding mapping from data to metadata. The tree
mode is simply the number of levels in the integrity tree based on
the size of the memory range. When we know how many levels
in the tree we have, then we can derive the mapping of data to
metadata by simply using the data physical address. The size of

each memory range can be easily derived by the core at the time
of the memory range entry creation. The core communicates the
memory range size to the memory controller when the security
monitor creates the new range in the M mode.

3.2 The Memory Encryption Engine

The memory encryption engine (MEE) extends the original mem-
ory controller with an encryption engine, capable of performing
cryptographic operations, the logic necessary to decide when a
memory request needs the security features and the aggregated
ePMP table. The MEE monitors all data requests that come into the
memory controller. Requests that fall in a memory address range
that belongs to a secure environment will necessitate to go through
the security features of secure memory: decryption for reading
from memory, encryption for writing to memory and integrity ver-
ification for both. To allow the MEE to make this decision without
completely replicating the information on the core’s PMP table, we
expand the communication protocol (TileLink) to indicate when an
address falls within a secure memory region by simply adding a
secure bit to the request. Given that the MEE needs to be aware of
any changes to each of the cores PMP tables, the communication
protocol is also expanded to include two new commands.

In order to synchronize the information in the cores’ PMP tables
and the information at the MEE, the communication protocol is
extended to include two new types of commands: create new entry
and delete entry. The create new entry command is initiated at the
core whenever the security monitor creates a new secure memory
range in the PMP table. This command needs to communicate to the
MEE which entry in its own version of the ePMP table needs to be
updated. To communicate which entry, we concatenate the core’s
PMP entry index with the core identifier. The MEE, once it receives
this command, updates the corresponding entry by resetting the
root of the integrity tree and the tree mode size to the corresponding
mode according to the new range size. The range size information
is embedded into the command’s payload.

The second command, the delete entry, is initiated by the core
when the security monitor in the machine mode removes one of
the ePMP entries. Once the MEE receives this type of command, it
resets the integrity tree root and mode to zero to indicate that the
corresponding entry is invalid.

The memory encryption engine needs to include NxP entries
on a chip, where N is the number of cores in the system, and P is
the number of PMP entries in each core. Typical designs include
up to 16 entries for the per-core PMP entries. For a system with
eight cores, the MEE will require a total of 128 entries in its table.
Each entry contains the root of the BMT for the region (up to 8B of
data) and the tree mode (a 1B value, which allows for 256 different
modes). With these values, the total amount of additional on-chip
storage is a little over 1KB (9B * 128 = 1152 B), a minimal overhead
to incur for the sake of securing the data in memory.

3.3 Modifications to the Security Monitor

In addition to the extension of the PMP table, the security monitor
needs to be modified to be able to allocate a memory range that
includes the additional space required to store the security metadata
in contiguous memory. When the security monitor requests a range

PMP CSR Registers on Core 1

Zach Moolman and Tamara Silbergleit Lehman

|

ePMP
Encl | Enc2 | OS | Enc3

ePMP CSR Registers on MEE

enc; Integrity Root, |Tree Mode; | key | asid,

enc; Integrity Root; |Tree Mode; | key, | asid,

ency Integrity Rooty | Tree Mode; | keys | asid, . SoC

08, na na nfa | asid, FPGA

Bnict addr, cfg; | acess; = ee
enc; addrs cig; | acess; P e I
ency addrs cfgs = acess; ees n PMP
/Enc1 Encz | OS | Enc3
?) i | Core1
05, addr, cfg, | acess, ee, f

Memory EncrypiionAEnglne (MEE) ,

@
Intagrity Tree CaGpGrCp
®
Tree CCx Tree CCph
Sw e s

Tree C, Tree Cg

: @ 2 A 4 4
L Integrity Tree Encryption Encryption Encryption Encryption
m H Counter A Gounter B Gounter G ‘Counter D
Enclave 3
Dala B ‘ Data G Data D
Hash A Hash B Hash C Hasn O

Figure 2: High Level Design

of memory from the Operating System(OS), it normally requests the
same amount that was requested by the user creating the new secure
environment. The security monitor can be extended to request
of the untrusted OS the original size with additional space (in
traditional systems this additional space required is about 20%)
to accommodate the metadata [11]. The 20% comes from needing a
total of 1.5% for the encryption counters, 12.5% for the data hash,
and 6% for the integrity tree.The additional space should not be
readable or writable by any mode, as no application (not even ones
running on the secure environment) should be able to address these
locations explicitly. The only component able to operated on these
values is the memory controller which does not go through the
PMP checker.

By creating an independent integrity tree per memory region, the
system can alleviate the overhead by only reserving the necessary
space for the metadata. For example, the operating system region,
which is assumed to be all of memory at system boot, requires no
secure memory metadata, as it is assumed that the OS is not trusted.
Therefore, when no secure environment exists, there will be no
region in memory reserved for metadata, as this will not be needed
by any of the regions.

4 Prototype and Future Experimentation

To build our secure System-on-Chip (SoC) we are expanding Rock-
etChip, an open-source System-on-Chip generator along with Berke-
ley Out-of-Order Machine (BOOM) core, a synthesizable and pa-
rameterizable open-source RV64GC RISC-V core [3, 19]. These tools
leverage Chisel, a high-level hardware construction language de-
rived from the Scala language that emits synthesizable RTL. We
leverage RocketChip to generate the modified SonicBoom (BOOMv3)
cores, caches, and memory encryption engine (MEE) and intercon-
nects to design an integrated SoC.

Figure 3 shows the changes we make to the RochetChip to im-
plement the proposed design. We extend the BOOM core Control
Status Record(CSR) to indicate whether a memory region should be
encrypted or not. The pmpchecker validates each memory access
requested by the TLB. We have updated the pmpchecker to obtain

AXI

Master
[PWP]| ELP
‘addr
addr ol
cig g
ee L [AXI to TileLink|
Core 1 Core 2
Tie Tile
! Front Bus
[System Bus.
l l [Control Bus
‘ L2 Bank 1 ‘ ‘ L2 Bank 2 ‘ l
BOOTROM | | PLIC CLINT
ee=?

ePMP | Periphery Bus
root

mode JTAG

asid
TileLink to| | Other
AXI Devices

‘ MEE TileBus ‘

TLio AXI
SoC

Memory Contraller

Figure 3: SoC incorporates our Memory Encryption Engine
(MEE). The colored portion indicates addition and changes
made to the original design.

the encryption-enabled signal that will be sent with any memory
request. RocketChip uses the TileLink protocol as its primary inter-
connect. We update the protocol to include the encryption-enabled
signal. We also extend the memory controller with a Memory En-
cryption Engine. The memory encryption Engine examines each
request. If the request does not require data encryption, the request
bypasses the Encryption Engine(EE). This is true for reading or
writing requests. If an encryption-enabled signal is asserted on
write request, data is encrypted before it leaves the memory en-
cryption engine. On the other hand, read requests are forwarded to

Extending RISC-V Keystone to Include Efficient Secure Memory

the external memory controller. Once the read request is available,
the Encryption Engine decrypts the data using the metadata stored
in the ePMP table.

5 Conclusions and Future Work

Given the fact that embedded and mobile devices are entrenched
in our day to day activities, they are bound to operate on sensitive
data. As a result, these devices need to offer adequate protection
mechanisms to protect the system against memory attacks and
rogue operating systems. Existing approaches to provide defenses
against this threat model require too many resources or incur signif-
icant performance overheads, making them an inadequate option
for these smaller devices. The proposed design has the promise
of enabling a robust and efficient secure system which could en-
able sensitive computations on mobile and embedded devices. The
opportunities that RISC-V introduces can be further leveraged by
the proposed design to alleviate the memory spatial overhead re-
quirements of BMTs and improving the performance of existing
approaches of secure memory. The proposed design is ongoing
work and we will publish the performance results once we get a
fully working prototype.

References

[1] AnaTy I, McKEEN, F., GUERON, S., HarTAO, H., JOHNSON, S., LEsLiE-HURD, R.,
PariL, H., Rozas, C., AND SHAFI, H. Intel software guard extensions (Intel SGX).
In Tutorial at International Symposium on Computer Architecture (ISCA) (2015).

[2] ARM. Arm architecture reference manual.

[3] Asanovic, K., AvizIENTs, R., BACHRACH, J., BEAMER, S., BiaNcoLIN, D., CELIO,
C., Cook, H., DaABBELT, D., HAUSER, J., [ZRAELEVITZ, A., ET AL. The rocket
chip generator. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2016-17 4 (2016), 6-2.

[4] CostaN, V., AND DEVADAS, S. Intel SGX explained. Tech. rep., Cryptology ePrint
Archive, Report 086, 2016.

[5] HowLpiNGs, A. Arm security technology: Building a secure system using trustzone
technology, 2009.

[6] K, Y., DALy, R, Kim,J., FALLIN, C., LEE, J. H., LEE, D., WILKERSON, C., LAL, K., AND
MurLy, O. Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. SSIGARCH Computer Architecture News (2014).

[7] LeE, D., KOHLBRENNER, D., SHINDE, S., AsaNoVI¢, K., AND SoNG, D. Keystone: An
open framework for architecting trusted execution environments. In Proceedings
of the Fifteenth European Conference on Computer Systems (2020), pp. 1-16.

[8] Lemman, T. S., HiLTON, A. D., AND LEE, B. C. Poisonlvy: Safe speculation for
secure memory. In International Symposium on Microarchitecture (MICRO) (2016).

[9] Lemman, T. S., HILTON, A. D., AND LEE, B. C. MAPS: Understanding metadata
access patterns in secure memory. In International Symposium on Performance
Analysis of Systems and Software (ISPASS) (2018).

[10] Lig, D., CHANDRAMOHAN, T., MITCHELL, M., LINCOLN, P., BONEH, D., MITCHELL, J.,
AND Horow1tz, M. Architectural support for copy and tamper resistant software.
SIGPLAN Notices (2000).

[11] RoGERs, B., CHHABRA, S., PRvULOVIC, M., AND SOLIHIN, Y. Using address inde-
pendent seed encryption and Bonsai Merkle trees to make secure processors
OS- and performance-friendly. In International Symposium on Microarchitecture
(MICRO) (2007).

[12] RoGERs, B., PrRvuLovic, M., AND SoLIHIN, Y. Efficient data protection for dis-
tributed shared memory multiprocessors. In International Conference on Parallel
Architectures and Compilation Techniques (PACT) (2006).

[13] Rogers, B, Yan, C., CHHABRA, S., PRVULOVIC, M., AND SOLIHIN, Y. Single-
level integrity and confidentiality protection for distributed shared memory
multiprocessors. In International Symposium on High Performance Computer
Architecture (HPCA) (2008).

[14] SAILESHWAR, G., NAIR, P. J., RAMRAKHYANT, P., ELsAsSER, W., AND QURESHI, M. K.
Synergy: Rethinking secure-memory design for error-correcting memories. In
International Symposium on High Performance Computer Architecture (HPCA)
(2018).

[15] Sm1, W, LEg, H-H. S., GHOsH, M., AND Lu, C. Architecture support for high speed
protection of memory integrity and confidentiality in multiprocessor systems.
In International Conference on Parallel Architectures and Compilation Techniques
(PACT) (2004).

[16]

[17]

(18]

SuH, G. E., CLARKE, D., GAsSEND, B., VAN Dk, M., AND DEvADAS, S. AEGIS:
Architecture for tamper-evident and tamper-resistant processing. In International
Conference on Supercomputing (ICS) (2003).

THOMAS, S., WORKNEH, K., ISHIMWE, A.-T., MCKEVITT, Z., CURLIN, P., BAHAR,
R. L, IZRAELEVITZ, J., AND LEHMAN, T. Baobab merkle tree for efficient secure
memory. IEEE Computer Architecture Letters (2024).

THOMAS, S., WORKNEH, K., MCCARTY, J., ZRAELEVITZ,]., LEHMAN, T., AND BAHAR,
R. 1. A midsummer night’s tree: Efficient and high performance secure scm. In
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2024), pp. 22-37.

ZHAO, J., KORPAN, B., GONZALEZ, A., AND AsaNoviC, K. Sonicboom: The 3rd
generation berkeley out-of-order machine.

	Abstract
	1 Introduction
	2 Background
	3 System Design
	3.1 The Aggregated Extended PMP Table
	3.2 The Memory Encryption Engine
	3.3 Modifications to the Security Monitor

	4 Prototype and Future Experimentation
	5 Conclusions and Future Work
	References

