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Abstract

The crystal structure and bonding environment of K>Ca(CO3): biitschliite were probed under
isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder x-ray
diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit
to the x-ray data yields a bulk modulus, K, = 46.9 GPa with an imposed value of K, = 4 for the

ambient pressure-phase. Compression of biitschliite is highly anisotropic, with contraction along
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the c-axis accounting for most of the volume change. Biitschliite undergoes a phase transition to
a monoclinic C2/m structure at around 6 GPa, mirroring polymorphism within isostructural
borates. A fit to the compression data of the monoclinic phase yields V, = 322.2 A3, K, = 24.8
GPa and K} = 4.0 using a 3" order fit; the ability to access different compression mechanisms
gives rise to a more compressible material than the low-pressure phase. In particular,
compression of the C2/m phase involves interlayer displacement and twisting of the [CO3] units,
and an increase in coordination number of the K" ion. Three more phase transitions, at ~28, 34,
and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to

new [COz3] bonding environments within the structure.
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1. Introduction

The rare carbonate mineral biitschliite (also spelled buetschliite), with chemical formula
K>Ca(CO3)2, has been observed to form in highly disparate geological environments. First
discovered and named in 1947, the mineral was initially found in wood-ash stones from the
western United States (Milton and Axelrod 1947). More recently, biitschliite has been identified
as an inclusion/daughter phase in mantle-derived olivine and diamond crystals (Abersteiner et al.
2022; Logvinova et al. 2019). Occurrences of biitschliite in granitic pegmatites have also been
reported (Bermanec et al. 2011).

The identification of biitschliite inclusions not only in diamond, but in mantle-derived
olivine as well, suggests that alkaline carbonate melts and solid mineral phases could play an
important role in the petrogenesis of kimberlites and carbonatites. Indeed, Chayka et al. (2021)
suggests that even alkaline-poor carbonatites may be derived from substantially alkaline-
enriched parental magmas. Candidates for potassium-bearing mineral phases in the mantle are
limited: the phyllosilicate mineral phlogopite and the amphibole richterite have been identified in
a number of mantle-derived xenoliths and within the results of experiments on hydrated and
carbonated peridotite (e.g., Harlow and Davies, 2004; Meltzer and Kessler, 2023), but in terms of
potassic carbonate minerals, only biitschliite has been reported in mantle assemblages. Several
studies have explored the stability of the related synthetic material K;Mg(CO3). (Brey et al.
2011; Golubkova et al. 2015; Arefiev et al. 2018), but this compound has not been identified as a
mineral phase in nature.

Investigations into the stability and structure of biitschliite at non-ambient conditions
have been limited. McKie (1990) studied the system K>Ca(CO3)2-NaxMg(CO3) and determined

that fairchildite, the intrinsically-disordered high-temperature polymorph of biitschliite, and
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eitelite (NaxMg(COs3)2) can form an extensive solid solution, while biitchsliite and eitelite are
almost completely immiscible (limited to < 2 mol% solid solution). Arefiev et al. (2019) and
Shatskiy et al. (2015) studied the KoCO3-CaCOs system at high temperatures and 3 and 6 GPa,
respectively, and observed the presence of biitschliite as a sub-solidus phase at each pressure.
Hou et al. (2022) and Tian et al. (2023) employed first-principles simulations via the VASP
calculational package (Kresse and Furthmiiller, 1996) to examine the structure of biitschliite
under isothermal compression to ~22 and ~26 GPa, respectively, and both studies calculated
transitions to monoclinic and triclinic phases, albeit with different sequences and at different
pressures. Zhuravlev (2022) deployed the CRYSTALI17 ab initio package to calculate the elastic
constants of biitschliite under compression. He noted that the C4, shear elastic constant appeared
to be soft, trending towards zero at 5.8 GPa, thus indicating that an unspecified phase transition
is anticipated at this pressure. In this study, we present the results of the first in-situ high-
pressure, ambient-temperature Raman spectroscopy and synchrotron x-ray diffraction
experiments on biitschliite to 95 GPa. These delineate the transition pressures and properties of
the high-pressure phases of this material. Our results shed light on the crystal structures and
bonding environments of low symmetry carbonate minerals at high pressures, as well as the role

played by cations in the compressibilities of these minerals.

2. Methods and Sample Synthesis

Biitschliite crystals were synthesized following the method of Pabst (1974), in which millimeter-
scale cleavage rhombs of optical-quality calcite are immersed in a saturated KoCOj3 solution and
heated to between 50 to 70°C for several days. Crystals grown in this manner are typically

euhedral and free of inclusions, making them suitable for both optical and x-ray-based
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measurements. While biitschliite was the most abundant phase produced by this method, small
amounts of other (possibly hydrated) potassium/calcium carbonate phases were sporadically
detected in Raman spectroscopy measurements. Biitschliite is hygroscopic and deliquesces
readily in air over the course of a few hours. Samples were stored in toluene after synthesis;
crystals stored in this organic liquid remain stable indefinitely. As a mildly non-hydrostatic
pressure medium, silicone oil was chosen for some experiments over a methanol/ethanol solution
to minimize the risk of crystal degradation due to hydration; neon, which more closely
approaches hydrostaticity at high pressures, was used as a pressure medium for a large number of
the experiments. Notably, crystals stored in high purity methanol/ethanol solutions (< 0.01%
water) at slightly elevated pressure did not show any signs of degradation over the course of a

few weeks.

2.1 Raman Spectroscopy

Ambient and high-pressure Raman spectra were collected on a LabRAM HR Evolution
spectrometer equipped with a 532 nm excitation laser nominally rated at 50 mW. A grating of
1200 lines/mm was employed and spectral resolution is ~1 cm™!. Samples were loaded into
symmetric-style diamond anvil cells equipped with 250 or 350 um culet diamonds. Rhenium
gaskets were used for all Raman experiments, and silicone oil or neon were used as pressure
transmitting media in different runs. Ruby spheres or small amounts of ruby powder were loaded
into the sample chamber and the calibration of Shen et al. (2020) was used for pressure
determination. Ruby emission lines became unresolvable at pressures above ~85 GPa, and

pressures were determined from the Raman shift of the diamond anvil measured at the center of
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the culet (Akahama and Kawamura, 2006). Peak fitting and deconvolution were carried out with

the Horiba LabSpec 6 software.

2.2 Synchrotron Single Crystal X-ray Diffraction

The high-pressure single-crystal x-ray diffraction experiments were performed at ambient
temperature using short symmetric, Merrill-Bassett, and BX-90 diamond anvil cells equipped
with 300400 pm culet Boehler-Almax diamond anvils and c-BN/WC seats providing a ~90°
opening angle. Re and Inconel gaskets were indented to ~30—-50 um, and sample chambers were
drilled with diameters of 150—180 pm with a laser-milling system. Single-crystal samples,
measuring ~50x50x10 um?, were mounted directly onto the diamond culet with a small amount
of vacuum grease to minimize movement of the crystal during loading of the pressure media.
Neon or silicone oil were used as pressure transmitting media in different runs. Pressure media
were loaded into the sample chambers immediately after sample loading to avoid the risk of
sample degradation.

The high-pressure diffraction data were collected at end-station 2 of beamline 12.2.2 of
the Advanced Light Source at Lawrence Berkeley National Laboratory using synchrotron x-rays
monochromated by silicon (111) with an energy of 30 keV (1 = 0.4132(1) A), focused to a
10x10 pm? spot. The diffraction spots were collected on a Pilatus3 S 1M fast detector. Exposure
times ranged from 1 to 8 sec/®. Detector distance and wavelength calibration were performed
using CeO2 powder and a NIST single-crystal ruby sphere. The sample was aligned to the
rotational center of the goniometer, and data were collected throughout the range of 8 = —35° to
35° (in 0.50° and 1.00° increments) for a total coverage of ~70° sample rotation. The diffraction

data were corrected for the reduction of reflection intensities due to the DAC-gasket shadowing
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and indexed and reduced to Akl sorted structure factors by integration using the program SAINT
v8.34A in APEX3 (Bruker, 2016). Before structure solution steps, a few individual reflections
(with negative and almost zero intensities) were removed from the data set because their
intensities were affected by simultaneous diffraction events in the diamond anvils. A total of
~150-250 unique reflections were available for subsequent structural analysis. The structure
solutions were carried out with SHELXS (embedded in APEX) using direct methods and refined
with SHELXT (Sheldrick, 2008) by full-matrix least-squares on F2. For every structure, ~34
parameters including overall scale factor, isotropic atomic displacement factors, and fractional
coordinates of the atoms were refined; for biitschliite-1I, the greater number of distinguishable
atoms within the unit cell increased the number of parameters solved. Ball and stick structural

models were produced in VESTA 3 (Momma and Izumi, 2011).

2.3 Synchrotron Powder X-ray Diffraction

High-pressure powder x-ray diffraction measurements were also collected at ALS beamline
12.2.2, using BX-90, symmetric, and Merrill-Bassett diamond anvil cells with diamond culet
sizes ranging between 300—500 um. Diamonds were mounted on c-BN or WC seats. Inconel and
rhenium foils were used for gasket materials, and silicone oil or neon were employed as pressure
media in different runs. An exposure time of 30 sec was used and x-ray beam energies of 25 and
30 keV were used in different runs. Powder patterns were indexed with the LeBail method in
GSAS-II (Toby and Von Dreele, 2013). Peterson (2004) suggests that the LeBail method can be
inappropriate for low symmetry phases; however, this method was preferable to the Rietveld
method for these samples since the acquired powder patterns were highly textured due to

apparent preferred orientation of grains of the first high pressure phase.
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3. Results and Discussion
3.1 Single Crystal and Powder X-ray Diffraction of Biitschliite

X-ray diffraction measurements were previously made on biitschliite-I under ambient
conditions. Mrose et al. (1966) erroneously reported, due to a misprint in the original publication,
that biitschliite crystallizes in the R3 space group. Pabst (1974) determined that biitschliite
crystallizes in the R3m space group (reported as R32/3) witha =538 A, c=18.12 A, and Z=
3, and has a structure very similar to that of eitelite, despite the difference in space groups
(eitelite belongs to the R3 space group and lacks a mirror plane due to rotation of the carbonate
anions). The ambient biitschliite structure is characterized by planar sheets of [CO3] units
separated by alternating interstitial layers of Ca?* and K* cations (Figure 1a,b). Pabst (1974)
reports a unit cell volume of 454.2 A3, which is in excellent agreement with our measured value
of 453.9 A3. Compression of biitschliite is strongly anisotropic, with contraction of the c-axis
accounting for most of the volume change (Figure 2a—c). The contraction of the unit cell along
the c-axis follows a steeply linear trend up to the first phase transition, with Ac/AP = 0.23 A/GPa.
This style of anisotropy has also been observed in the isostructural synthetic compound
K>Mg(CO3)2, and is a result of the greater compressibility of the [KOo] polyhedra compared to
the alkaline earth cation polyhedra and trigonal planar [CO3] units (Golubkova et al., 2015).
Most of the reduction in the biitschliite unit cell volume occurs via reductions of the K-Ca and
K-O distances. The C-O, O-O, and Ca-O distances remain largely unchanged during

compression (Figure 1).
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176 Figure 1 Structural refinements of biitschliite and biitschliite-II at 0 and 7.6 GPa, respectively, from different perspectives (a-e).

177 Atomic spacings of biitschliite and biitschliite-II derived from single-crystal measurements (f-k). Note that the structures in (c-¢)
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are drawn with the K* ions in 12-fold coordination. The unfilled square symbols in (h) show distances between unbonded

potassium and oxygen atoms that become bonded after the phase transition.

The combined single crystal and powder pressure-volume data were recast into Eulerian
stress-strain coordinates and fit with a Birch-Murnaghan equation of state (Figure SI 1). The
equation of state was fit to the stress-strain data using an orthogonal distance regression to
account for uncertainties in both pressure and volume resulting in a bulk modulus of K, =
46.9(17) GPa with an imposed value of Ky = 4 (Figure 2f). The equation of state fit to the x-ray
diffraction data indicates that the structure is more compressible than the results from the first
principles calculations of Hou et al. (2022), but close to the results of Zhuravlev (2022). Our
values of K is 23% smaller than the value calculated by Hou et al. (2022). Notably, our
measurements of the biitschliite low-pressure phase extend to higher pressures than the
calculations of Hou et al. (2022), as their calculations yield a P1 phase intermediate between the
R3m and C2/m phases at pressures between 3.3 and 10.3 GPa: this phase is not seen in the x-ray
diffraction data in this pressure range. In terms of elasticity, the discrepancy between the theory
and experiment appears to primarily involve the compressibility of the c-axis: the calculations of

Hou et al. (2022) underpredict the experimentally observed compressibility of this axis.
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195 Figure 2 Lattice parameters (a-c), S-angles (d), formula unit normalized volumes (e), and unit cell volumes of biitschliite and
196 biitschliite-II during compression (f). The green markers in (c¢) show the 3csin(f) trend, which is directly comparable to the c-
197 axis in the low-pressure phase. The black star in (f) is the calculated zero-pressure volume of biitschliite-II from the method of
198 Jeanloz (1981). Equation of state parameters for (f) are reported in the text. Fits only include the experimental x-ray data. The
199 data point of Hou et al. (2022) at 10 GPa is in a metastable regime of the C2/m phase: they calculate that the P1 structure is stable
200 from 3.3 to 10.3 GPa. Tian et al. (2023) do not report lattice parameters or S-angles; the C2/m phase is stable in their calculations
201 from either 3.3 or 3.5 GPa to 10.3 or 10.5 GPa (their paper is inconsistent in its reporting of the pressure of transitions). Error

202  bars fall within the symbols.

203

204 3.2 Single Crystal and Powder X-ray Diffraction of Biitschliite-11
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Biitschliite undergoes a phase transition between 5.5 and 6.0 GPa. Our lowest pressure
refinement of the biitschliite-1I phase from the single crystal data is at 6.3 GPa. The high-
pressure phase crystallizes in the monoclinic system with C2/m symmetry (space group #12) and
Z =2, with cell parameters at this pressure of a = 9.182(7) A, b =15.299(6) A, c = 6.354(11) A,
and f = 120.06(3)°. The volume change across the phase transition on a formula unit basis is
small but discontinuous, indicating that the transition is first-order (Figure 2¢). This is in accord
with hysteresis observed in the transition using Raman spectroscopy, described below. Based on
the single-crystal data, there is a 2% density increase associated with the transition from the
hexagonal to monoclinic phase between 5.5 and 6.3 GPa. The small AV across the phase
transition indicates that the Clapeyron slope between the two phases is likely to be relatively flat,
which in turn suggests that the pressure of the phase transition is unlikely to have a robust
temperature dependence. The transition from the hexagonal to monoclinic phase is reversible,
with the high-pressure phase reverting to biitschliite on decompression below ~2 GPa. Following
the method of Jeanloz (1981), an equation of state was fit to the high-pressure biitschliite-II
phase (Figure SI 2) with parameters V, = 322.2 A3, K, = 24.8(44) GPa, and K} = 4.0(11)
(Figure 2f). Our fit bulk modulus is 50% smaller than the value calculated by Hou et al. (2022).
And, the bulk modulus of biitschliite-II is substantially less than the bulk modulus of
KoMg(CO3)2-11, Ky = 58.4 GPa, reported by Golubkova et al. (2015). The bulk moduli of the
biitschliite-I and -II phases are low relative to most other carbonates, but that of the low-pressure
phase is comparable to the bulk moduli of BaCOs-witherite and Ag>CO; (Wang et al. 2015;
Santamaria-Perez et al. 2023). Similarly, the lower bulk modulus of the high-pressure phase is
unusual, but not unprecedented for carbonates: a high-pressure phase in layered Ag>COs has a

bulk modulus of 26 GPa (Santamaria-Perez et al. 2023). A key aspect here is that the C2/m
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symmetry phase appears to be stabilized at high pressures by its high compressibility.:its

Notably, there is not particularly good agreement between the volumes and phase

transition pressures of the theoretical calculations and experiments plotted in Figure 2. The first
principles simulations of Hou et al. (2022) and Tian et al. (2023), carried out at 0 K, both predict
phase transitions near 3.5 and 10.5 GPa, but the order of the transitions is different. Hou et al.
(2022) reports a transition from the R3m phase to a triclinic P1 structure at 3.3 GPa followed by
a transition to the monoclinic C2/m structure at 10.3 GPa, while Tian et al. (2022) reports a
transition to the monoclinic C2/m structure at 3.3-3.5 GPa and a transition to the triclinic P1
structure at 10.3—10.5 GPa. The source of this disparity is unclear, as both simulations were
conducted using the VASP software package, and the cut-off and convergence criteria of their
calculations seem to be essentially identical. That said, the reported differences in enthalpies
between the three phases at 0 K are quite small: near 10 GPa, less than 0.08 eV/formula unit
reported by Hou et al. (2022), and less than 0.07 eV/atom according to Tian et al. (2023). The
difference between the C2/m and the P1 structures is even smaller, being less than 0.01
eV/formula unit (Hou et al. 2022) or 0.01 eV/atom (Tian et al. 2023) up to 12 GPa. As such,
calculations at 0 K without thermal corrections might not accurately predict phase stabilities for
such energetically close phases even at ambient temperatures. For comparison, Zhuravlev (2022)
(using a different ab initio software package) predicts a shear instability to an unspecified
structure at 5.8 GPa. There is also likely an effect of kinetics on the experimentally observed
biitschliite-I to -1I phase transition at 300 K: the transition is observed on the up-stroke near 6

GPa, and the reversion is observed on the down-stroke near 2 GPa. Accordingly, the equilibrium
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transition may occur close to 4 GPa (from the mid-point between the up-stroke and down-stroke
transition pressures) at 300 K. Consideration of kinetic effects thus might somewhat improve the
agreement between theory and experiment with respect to the pressure of the first transition in
this material.

In contrast to the low-pressure phase, where compression occurs predominantly along the
c-axis of the hexagonal cell, rotation and interlayer shifting seem to be almost entirely
responsible for the enhanced compressibility of the biitschliite-II phase. The trend of 3csin(f) in
Figure 2c serves as an analogue for the interlayer spacing within the low-pressure phase, and
shows that the interlayer compression is largely monotonic across the transition. The change in
slope of the 3csin(f) trend is likely a result of changing K-O bond lengths (discussed below).
All axial parameters follow relatively flat linear trends on compression while the f-angles follow
an increasing quadratic trend, with f(P) = —0.033P% + 1.371P + 113.204 (Figure 2d). This
increase in [-angle directly reflects the pressure-induced lateral shifting between layers (e.g.,
Fig. 1d). It is this interlayer shifting that likely renders the high-pressure phase elastically softer
than the low-pressure biitschliite phase: the complementary effects of carbonate group rotation
and layer shifting provide additional means of compaction that are unavailable to the low-
pressure phase. Beyond the rotation and layer shifting, the overarching structural similarities of
the two phases produce pressure-induced trends of bond valence sums (Kunz and Brown 1995)
that appear continuous between the two phases under compression: both cations and the oxygen
ions have bond valence sums that monotonically increase over the pressure range of our single-
crystal measurements.

The phase transition to biitschliite-1I results in the bifurcation of several atomic distances

and bond lengths (Figure 1f, g, j, k). The high-pressure phase gives rise to two unique C-O and

14
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Ca-O bond lengths. The evolution of the K-O bond lengths is more complex. Within both the
biitschliite and C2/m phases, potassium has been generally viewed as being in nine-fold
coordination: in the C2/m phase, the 9-coordinate geometry is that of a distorted tri-capped
trigonal prism (e.g., Akella and Keszler 1995a,b). However, within the K2Ca(CO3)2 C2/m phase,
depending on the radius of the coordination sphere of potassium, the K* cations may be viewed
as undergoing a coordination change, initially forming elongated [KO12] cuboctahedra (perhaps
more appropriately viewed as 9+3 coordination), with the longer K-O bond lengths being
coupled to the rotation of the [CO;3] anions (Figure 1h). Here, we view K-O distances of 3.3 A
and less as being clearly within the coordination sphere of the K ion, based on the maximum
eight-fold K-O distances in a survey of K-bearing compounds being 3.17 A (Wood and Palenik
1999), and the typical difference in bond distance between eight and twelve-fold coordination
being 0.13 A (Shannon 1976). Such distances are accessed by additional oxygens above ~8 GPa
(Figure 1h); the general trajectory of the more distant K-O distances (Fig. 1h) indicates that this
transition to higher coordination is progressive following the transition to the high pressure phase
(with those distances closer than ~3.5-3.6 A potentially being viewed as part of a secondary
coordination distance, giving rise to 9+2 or 9+3 cooordination).

With increasing compression, the [CO3] units become more oblique with respect to the a-
axis and, as shown in Figure 3, there is a direct line-of-sight interaction between the K* ion and
the neighboring carbon ion that is coordinated to the three additional oxygens that approach the
coordination sphere of the potassium. Repulsion between the C and K atoms likely contribute to
the rotation of the [COs] units, as the C-K distance remains constant around 3.25 A during
compression: increasing pressure does, however, induce a rotation of the carbonate units. This

shift in geometry rotates two oxygens closer to the potassium ion, and one further away: as such,
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at 9.5 GPa, the local coordination of potassium might be viewed as 11-fold, or 9+2 coordinated.
Notably, if the C-K distance is indeed near some minimum critical value, then the rotation of
[CO3] units and change in f-angle can be interpreted as structural distortions which serve to

maintain this value.

0 GPa 6.3 GPa 9.5 GPa
R-3m C2/m C2/m

Figure 3 K-O coordination environments of the R3m (a) and C2/m (b,c) phases of biitschliite. Coordination progresses from 9-
fold in (), to 12-fold (9+3) in (b), to 11-fold (9+2) in (c). The dotted line in (c) shows the oxygen atom leaving the potassium
coordination sphere.
We quantify the degree of tilting of the [CO3] units by measuring the angle 8, formed by the
intersection of the (001) plane with a plane passing through the three oxygens atoms of the [COs]
unit, as a function of pressure. This trend is well characterized by a quadratic polynomial in
pressure, with (P) = —66.86 + 15.95P — 0.79P? (Figure 4).

Our powder diffraction data on biitschliite access considerably higher pressure
conditions, up to 67.5 GPa (Figure SI 3). These data show strong evidence for multiple higher

pressure phase transitions, for which the pressures of occurrence are more accurately determined
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by Raman spectroscopy. Nevertheless, clear evidence is seen for three transitions between ~26
and 40 GPa, although indexing of these phases proved challenging due to poor crystallinity/weak
diffraction patterns, as well as probable preferred grain orientation in the high-pressure phases.
New diffraction peaks associated with these phases are shown by arrows in Figure SI 3b. A key
aspect here is that there is continuity of several features in the diffraction patterns throughout the
pressure range to 67.5 GPa (Figure SI 3). This observation provides a general indication that the
overall layered topology of the structure persists, with moderate symmetry changes, to the

highest pressures of these measurements at 300 K.

W77 1T

15F ° -

[CO4] tilt, B (°)

0||1|\
6 7 8 9 10 11 12

Pressure (GPa)

Figure 4 Tilt of [CO3] units in the biitschliite-1I phase as a function of pressure, derived from single-crystal XRD refinements.
The angle 0 is formed by the intersection of the (001) plane with a plane passing through the three oxygen atoms in a [CO3] unit.

The fit is a quadratic fit intended to guide the eye.

3.3 Raman Spectroscopy Overview
Our ambient spectrum of the synthesized biitschliite (Figure 5) is in good agreement with

previous measurements (Arefiev et al., 2019) and calculations (Caracas and Bobocioiu, 2011).
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Figure S Raman spectrum of synthetic biitschliite-I taken under ambient conditions.

Representative spectra taken on compression up to 94 GPa, along with mode shifts, are plotted in
Figure 6. Our Raman measurements access substantially higher pressures than the XRD
measurements, and we documented multiple phase transitions at elevated pressures in detail in

the Raman spectral experiments which are discussed in the following sections.
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Figure 6 Mode shifts (a-b) and representative spectra (c-f) of biitschliite on compression to 94 GPa. The first appearances of new

phases are marked by lines at 6.0, 27.8, 33.5, and 37.4 GPa and the colors correspond to different phase regimes: biitschliite-I is

black, biitschliite-1I is green, biitschliite-III is orange, biitschliite-IV is magenta, and biitschliite-V is blue. For clarity, the largest

peak intensities have been normalized to the same amplitude across panels c-f.

3.4 Raman Spectra of Biitschliite-I

Factor group analysis of biitschliite-1 yields

Toptic = 4A1g + Aqy + Agg + 4A, + SE, + 5E,.

(1)
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In this irreducible representation, the A1z and E; modes are Raman-active. We observe 10 peaks
in the ambient biitschliite spectrum (Figure 5), with eight first order (5E,, 3A1¢) and two second
order modes (assignments are derived from Caracas and Bobocioiu, 2011): six of these peaks are

resolvable once the sample is loaded into the DAC with a pressure medium.
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Figure 7 Mode shifts of biitschliite-I under compression up to the transition to the C2/m phase.

All observed modes exhibit positive linear frequency shifts with pressure up to the first phase
transition to the C2/m structured phase (Figure 7 and Table 1). The symmetric (v;) and
asymmetric (V) stretches have similar pressure shift rates: 5.44 and 5.78 cm™!/GPa, respectively.

The in-plane bend shifts at a considerably slower rate, with a value of 2.48 cm'!/GPa.
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Measured

initial

frequency,
Assignment Symmetry vo (cm-) dvi/dP (cm-1/GPa) Yi
Lattice mode Eq 68 0.62(26) 0.43
Lattice mode Eq 107 - -
Lattice mode Eq 167 3.64(19) 1.03
Lattice mode Aqg 224 7.31(28) 1.54
In-plane bend, v Eq 694 2.48(11) 0.17
Out-of-plane bend, v» Aqq 885 - -
Symmetric stretch, v Aqg 1092 5.44(20) 0.24
Asymmetric stretch, vs Eq 1401 5.78(23) 0.19
Overtone, 2vz (IR) 1730 - -
Overtone, 2v, (Raman) 1766 -- --

Table 1 Symmetry assignments, measured initial frequencies, frequency-pressure derivatives, and mode-Griineisen parameters of

biitschliite-I.

The lattice modes exhibit larger variations in their pressure shifts and are, based on their mode-
Griineisen parameters, more anharmonic. The Aig lattice mode with an initial frequency of 224
cm! shows the largest deviation from harmonicity among all observed modes: the large
pressure-shift of this mode, which is associated predominantly with translations of the carbonate
group along the c-axis of the structure (Caracas and Bobocioiu, 2011), likely directly reflects the
large compressibility of the c-axis observed within the diffraction experiments. Although the
lack of thermal expansion data on biitschliite precludes calculation of a bulk thermodynamic
Griineisen parameter for this phase, it is clear from Table 1 that the largest contributors to this

parameter are, as expected, among the lattice vibrations.

3.5 Raman Spectra of Biitschliite-I1
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The first signs of a phase transition observed in the Raman data occur at 6.5 GPa, and the

spectrum at this pressure likely corresponds to a mixed-phase regime. At this pressure, the first

hint of three new lattice modes appears between 110 to 150 cm™!. The highest frequency lattice

mode broadens asymmetrically prior to splitting into three peaks, and v, and v; broaden

asymmetrically prior to splitting into two peaks each. By 7.2 GPa the sample appears to be fully

converted to the biitschliite-II phase. While the v, vibration is weakly present in the ambient

biitschliite spectrum, it becomes, for the most part, unresolvable once the sample is loaded into

the DAC with a pressure medium. The change in symmetry to C2/m in the high-pressure phase

results in a substantial increase in the amplitude of the v, peak during compression (Figure 8b).
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Figure 8 Raman spectra showing the transition from biitschliite-I (black) to biitschliite-II (green). For clarity, the largest peak
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Factor group analysis of the biitschliite-1I structure yields
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Ioptic = 9Ag + 6A, + 6B, + 9B, (2)
Here, the A and B modes are Raman active. Symmetry assignments and pressure shifts
of the biitschliite-II carbonate modes are reported in Table 2 and Figure 9. The mode Griineisen

parameters are calculated at high pressure using a Taylor expansion of K (P) with a truncating
value of K’ (i.e., Ky = % [63K) — 9K,? — 143]: Birch, 1978). The frequency shifts with
0

pressure of all modes are positive, except for the v, and 2v, vibrations (the CO;3 out-of-plane
bend and its overtone). The negative frequency shift of the v, mode during compression has
previously been explained for the aragonite structure (Pmcn symmetry) as resulting from the
dominance of a negative force constant, produced by coupling between neighboring carbonate
anions, over the positive force constant associated with the bending vibration of an isolated

carbonate ion during compression (Decius, 1955; Kraft et al., 1991).

High pressure

Fit initial frequency, frequency, vp dv/dP (cm-

Assignment Symmetry vo (cm-1) (cm) 1/GPa) Yi
In-plane bend, vaia By 690.73(54) 702 1.18(3) 0.11
In-plane bend, vap Ay 708.31(59) 718 1.56(3) 0.14
Out-of-plane bend, v» Ay 889.69(62) 888 -0.30(3) -0.02
Symmetric stretch, v Ag 1097.83(178) 1129 4.26 — 0.07P 0.22
Asymmetric stretch, vaa By 1405.60(73) 1435 3.79(4) 0.17
Asymmetric stretch, vap ~ Ag 1401.04(267) 1452 7.03-0.14P 0.27
Overtone, 2vat ? 1776.46(218) 1773 -0.37(11) -0.01

Table 2 Symmetry assignments, fit zero pressure frequencies, measured initial high-pressure frequencies, frequency-pressure
derivatives, and mode-Griineisen parameters (Yi) of biitschliite-II evaluated at 7.3 GPa. TEvaluated at 7.6 GPa (no peak observed

at 7.3 GPa).
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Negative frequency shifts of the v, or 2v, mode during compression have also been

observed in a range of carbonate minerals, including calcite, strontianite, magnesite, dolomite,

shortite, and béstnasite (Gillet et al., 1993; Vennari and Williams, 2018; Bayarjargal et al. 2018;

Vennari et al., 2018; Efthimiopoulos et al., 2019; Vennari and Williams, 2019). The trajectory of

the v, mode toward lower frequencies upon compression has substantial consequences for the
evolution of the biitschliite spectrum, contributing to the development of a complex resonance

phenomenon between the v, and v, vibrations observed at higher pressures.

)

~
[o2]
o

Frequency (cm™) Freguency (cm™

Frequency (cm™)

Figure 9 Carbonate mode shifts of biitschliite-II. Blue and red diamonds show extrapolations to zero pressure.
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The spectrum of biitschliite-II is remarkably similar to the ambient-pressure spectrum of

SroMg(BOs), presented by Lv et al. (2018), which also belongs to the C2/m space group,

providing independent confirmation of our single-crystal refinements. In order to semi-
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quantitatively compare the spectra of the borate relative to the carbonate in SroMg(BO3)2 and

K>Ca(CO3)2, we use the quantity

ZyZp
r3u

(3)

$ap =

where 4 and B are bonded elements, Z is the charge, r is the bond length (with values taken from
Shannon, 1976), and u = mym,/(my + mg) is the reduced mass. This relation is simply
derived from Coulombic interactions coupled with harmonic oscillators. For the anions under

consideration, {g_p = 0.61 and {._, = 0.75. The ratio of these quantities,

_ $c-o
X = 6 (4)

serves as a scaling factor with y = 1.23. Application of this scaling factor to the ambient
pressure fits of the biitschliite-II carbonate modes recovers the borate mode frequencies of
Sr:Mg(BO3)2 to within 0.2 to 7.5%, with the largest deviation being for the asymmetric
stretching vibration of the carbonate group (v3), which is anticipated to be substantially affected
by the surrounding cations.

The spectra of biitschliite-1I also show some novel spectroscopic features (Figure 10).
Specifically, Fermi resonance occurs when the wave functions of two vibrational modes with the
same symmetry and similar energies mix. In vibrational spectra, the phenomenon manifests as
the frequencies of two resonating peaks, v_ and v, following a hyperbolic trajectory and
exchanging intensity. We observed a Fermi resonance in the lattice modes of biitschliite-II,
spanning from 9 to 29 GPa (Figure 10). By comparing the spectra of the biitschliite-1I with the
calculated spectrum of Sr,Mg(BO3). from Lv et al. (2018), we are able to infer that the
resonating modes each have A, symmetry and involve vibrations of K* against [COs3] units. The

coupling constant, representing the semi major axis of the hyperbola in pressure-frequency
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space, is § =9.27 cm™! and the maximum resonance occurs at 19.7 GPa. Following Shimizu
(1985), we calculated the unperturbed frequencies v, and v, (Figure 10b), which represent the

frequency trajectories the peaks would follow in the absence of resonance:

vy Vo + /(v — V)2 — 462
v, = >

(5)
vy =Ve Vo — v, (6)
A notable feature of the biitschliite-II Fermi resonance is the nearly linear trajectory of the high
frequency resonating peak, v, (Figure 10b). Despite the asymmetric trajectories of the resonating
peaks, the diagnostic intensity exchange between the peaks is clearly present over the duration of
the resonance (Figure 10c). The resonating modes, and indeed all Raman-active lattice modes in
the C2/m phase, only involve motion of the carbonate and potassium ions. The v, vibration
involves intralayer motion, while the v_ vibration involves interlayer stretching and is dominated
by the K-CO3 motion mostly along the c-axis. This axial direction is more compressible than the
direction associated with the vibration in the ab-plane of v, , resulting in the pronounced
stiffening of the v_ mode during compression. Hence, this resonance provides separate
confirmation of the relative compressibilities of the different axes of the crystal that were

characterized using single-crystal diffraction, and verifies that these structural trends persist to

substantially higher pressures than the single-crystal data probe.
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3.6 Subsequent phase transitions
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powder diffraction data (Figure SI 3): because of their narrow spacing in pressure, the Raman
data provide better constraints on the transition pressures. There are two transitions to phases
with limited stability ranges, biitschliite-III and biitschliite-IV, followed by a transition to
biitschliite-V, which appears to be stable up to our highest-pressure measurement at 94.1 GPa.

The first indications of a transition from biitschliite-II to biitschliite-III occur at 27.8 GPa, with

P R T T
5 10 15 20 25 30

Figure 10 Fermi Resonance in biitschliite-II. Raman spectra of the lattice modes during compression (a). Resonating peaks are

We observe three more phase transitions in the Raman spectra, which are also manifested in the
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the appearance of a low-frequency peak associated with the v; vibration at 1179 cm™! (Figure
11c). In the next pressure step, at 28.9 GPa (shown in Figure 11c¢), the lattice modes broaden and
decrease in intensity, a new high-frequency component associated with the v, vibration grows in
at 898 cm!, the low-frequency component of the v, vibration increases in intensity, and high-
frequency components of both v; peaks appear. The biitschliite-II v, peak loses intensity with
increasing pressure and is fully absent by 35.2 GPa. Hence, the increase in band multiplicity of
the v, and v3 peaks are compatible with an expanded unit cell and/or a larger number of distinct
carbonate groups within biitschliite-III relative to the C2/m structured biitschliite-I1. This inferred
decrease in symmetry is supported by the x-ray data, which show a bifurcation of the d-spacing
associated with the (202) plane at ~26 GPa (Figure SI 3a). The lower frequency of the symmetric
stretch (v;) in biitschliite-IIT might be associated with a lower force constant/longer distance of
the C-O bonds, while the higher frequency components of the asymmetric stretches (v3) might
indicate a stronger interaction with neighboring cations (possibly within a subset of carbonate
sites). The net decrease in symmetric stretching (v, ) frequency at this transition is roughly 15
cm’!; this is a substantially smaller decrement than that associated with the onset of 3+1
coordination of carbonate groups (Vennari and Williams 2018; Vennari et al., 2018), which
generates a decrement of ~50 cm™'. This could be the triclinic P1 structure predicted by Hou et
al. (2022) to occur at 3.3 GPa, and Tian et al. (2023) to become stable at 10.3 or 10.5 GPa. While
we do not preclude this possibility, it is notable that Hou et al. (2022) predicts essentially
constant C-O distances between the C2/m and P1 phases, which does not seem fully consistent
with the change in the frequency of the symmetric stretch (v;) that we observe. In passing, we

note that the clear doublet associated with the v, vibrations likely precludes this phase from
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being associated with the nyererite (Na,Ca(CO3)2) structure: only a single v, band is observed in
this structure (Vennari et al. 2018; Rashchenko et al. 2018).

The transition to biitschliite-IV occurs around 30.4 GPa in Ne. The onset of this phase is
marked by the concomitant splitting of the v, vibration into a triplet and of the v vibration into a
multiplet of peaks, as well as a bifurcation of the (111) spacing in the x-ray data at ~32 GPa
(Figure SI 3a). There is also an increase in the intensity of the lattice mode around 400 cm™'. By
35.2 GPa only a hint of the lowest frequency peak of the v, triplet remains. At 38.4 GPa v,
reverts back to two peaks and the low frequency peak associated with v, starts to broaden. By
39.3 GPa, the components of the v, doublet have become substantially asymmetric. In this
instance, the transition is relatively subtle: no major shifts in vibrational bands occurs, but there
are changes in band multiplicities, with new bands being observed.

The transition to biitschliite-V is more dramatic, and occurs between 37.4 and 39.7 GPa
in silicone oil and above 39.3 GPa in Ne. At 45.3 GPa, v, has split into several peaks (with at
least two new components emerging on its low frequency side), and the v, and v, peaks become
significantly broadened and distorted. Splitting of the v, vibration indicates the presence of
multiple (possibly 4) distinct carbonate units within the unit cell, and the lowered frequency of
these bands implies that a portion of the C-O bonds in the structure have weakened. The v;
vibration becomes unresolvable beyond 50.6 GPa. The convergent trajectories of the v, and v,

vibrations result in a complex resonance phenomenon that initiates at around 70 GPa (Figure 6b).
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Figure 11 Raman spectra showing phase transitions from biitschliite-II through biitschliite-V. For clarity, the largest peak
intensities have been normalized to the same amplitude across the panels. Unlabeled spectra were measured with the sample in a
Ne PTM. Biitschliite-II is shown in green, biitschliite-III in orange, biitschliite-IV in magenta, and biitschliite-V in blue.

The separation between the v, and v, vibrations vanishes near 70 GPa, and the coalesced
peaks move together as a single unit upon further compression. While there is no evidence to
suggest that the wave functions of the two vibrations are mixing, the energy of the vibrations are
clearly becoming similar. In effect, the in-plane and out-of-plane bending vibrations of the
carbonate unit have become energetically identical, and components associated with the two
types of molecular vibrations span across a frequency range approaching 150 cm™!. Given the
breadth of this bending region, it is certainly possible that combination bands of lattice modes as
well as possible difference modes may be resonance enhanced by the bending vibrations,

contributing minor, and possibly broad, peaks to this spectral region. A similar phenomenon was
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observed in dolomite-III (Vennari and Williams, 2018) at similar pressures, and could possibly
be an intrinsic feature of low-symmetry double carbonates subjected to very large compressions.
Notably, there is no indication of an increase in coordination associated with the
carbonate group towards a 3+1 coordination, as has been observed in dolomite-III and shortite
under pressure (Vennari and Williams 2018; Vennari et al. 2018). The principal manifestation of
this change, a softening or lowered frequency of the v; symmetric stretching vibration, does not
occur up to 94 GPa in this material. This maintenance of the three-fold coordinate carbonate unit
can likely be correlated with the maintenance of the layered-like overarching structure associated
with the two lowest pressure phases: the next-closest oxygen to the carbonate units typically

defines the edge of a cation polyhedron (e.g., Figure 1).

3.7 Compressibility of compositionally and structurally diverse carbonate phases

The evident rigidity of trigonal [CO3] units in solid carbonate phases indicates that the cations
play a dominant role in volumetric reduction during isothermal compression. Here, we explore
the relationship between cation radius and compressibility for three groups of compositionally
diverse and geologically important carbonate mineral structures: the broadly-defined “double
carbonates” including biitschliite, the calcite-structured group, and the aragonite-structured
group.

Figure 12 shows the relationship between the isothermal bulk modulus, K7, and average
non-carbon cation radius (a proxy for bond strength) for minerals belonging to each of the three
carbonate groups listed above. In the case of the double carbonates, the cation radius is
determined by weighting each cation radius by its stoichiometric subscript and dividing by the

total number of cations (excluding carbon) in the chemical formula. It can clearly be seen that
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the value of the bulk modulus decreases with increasing cation radius. A linear fit to the double
carbonate data yields Ky = —94.7(21)r + 175.0(20) and a linear fit to all data points yields

Ky = —82.4(11)r + 161.3(12). While the separate structures and stoichiometries present in
Figure 12 may each have modestly different trends (with the trend of the transition metal-bearing
calcites having been noted previously by Sawchuk et al. 2021), the overarching trends are
roughly comparable. Figure 12 thus illustrates a rather simple effect: the compaction of the
carbonates is largely modulated by their charge-balancing cations. Deviations from this general
trend (such as might be the case for biitschliite-1I) may reflect the presence of more complex
compressional mechanisms beyond simple compaction of the cation sites (such as angle changes,

carbonate group rotations, and/or coordination changes).
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Figure 12 Isothermal bulk moduli as a function of cation radius for a suite of structurally and compositionally diverse carbonate
minerals. The solid black line is a fit to the double carbonates only and the dotted gray line is a fit to all data. Cation radii are
taken from Shannon (1976). Bulk moduli data are from: biitschliite and biitschliite-1I (K,Ca(COs3),, this study); spherocobaltite
(CoCO;3, Chariton et al., 2017); eitelite (Na;Mg(CO3),) and KoMg(COs), (Golubkova et al., 2015); siderite (FeCO3, Lavina et al.,
2010); thodochrosite (MnCO3, Merlini et al., 2015); aragonite (CaCOs, Palaich et al., 2016); calcite (CaCOs, Redfern and Angel,
1999); dolomite and ankerite (CaMg(COs3), and Ca(Fe,Mg,Mn)(COs),, Ross and Reeder, 1992); gaspéite (Ni,Mg)COs, Sawchuk
et al., 2021); shortite (Na,Cax(COs)3, Vennari et al., 2018); strontianite and witherite (SrCOs3 and BaCOs, Wang et al., 2015);
cerussite (PbCOs, Yu-Feng et al., 2013); and magnesite (MgCOs, Zhang et al., 1997).
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4. Conclusions
Biitschliite is a highly compressible mineral that undergoes a series of four high-pressure phase
transitions during isothermal compression up to 95 GPa. Compression of the ambient-pressure
phase is highly anisotropic, with contraction along the c-axis (i.e., reductions in K-O and K-Ca
distances) accounting for most of the volume change in this material. Our results suggest that the
ambient-pressure biitschliite phase is likely stable to a depth of about 180 km within the Earth;
this stability range in depth is likely to be largely independent of geothermal variations.
Biitschliite converts to a monoclinic phase with C2/m symmetry at ~6 GPa. Compression
of this phase is controlled by interlayer shifting and rotation of the carbonate groups. This new
compression mechanism provides additional means of compaction that are unavailable to the
low-pressure phase, and results in a more compressible structure. The enhanced compressibility
of the C2/m structure likely augments the stability of the biitschliite-II phase, as the large PAV
difference between the R3m phase (in its metastable region above ~6 GPa) and the more
compressible C2/m phase (and possibly the hypothesized P1 phase) will result in an expanded
stability field in the phase diagram. A Fermi resonance observed in the lattice modes of
biitschliite-II provides independent confirmation of the relative compressibilities of different
axes that were characterized with single-crystal x-ray diffraction. Our results, when kinetic
effects are considered, indicate that biitschliite inclusions found in deep-formed diamonds (e.g.,
Logvinova et al., 2019) likely initially crystallized as the C2/m phase and reverted to the R3m
phase during ascent through the mantle or following emplacement. Furthermore, our results also
indicate that previous phase equilibrium experiments in alkali carbonate systems (e.g., Shatskiy
et al., 2015) may not have crystallized biitschliite at 6 GPa, but rather the C2/m phase, which

reverts to biitschliite upon quenching.
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Subsequent phase transitions observed in the Raman data show progressive distortion of
carbonate units, ultimately giving rise to new distinct carbonate units within the structure and
possibly expansion of the unit cell. Nevertheless, the overarching layer-type structure appears to
be maintained at 300 K across these transitions. The stability of biitschliite-V to very high
pressures suggests that this phase could, if stable at high temperatures, play an important role in

deep Earth alkaline carbonate storage and magmatism.
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