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Fine structure of the doublet P levels of boron
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We report high-accuracy calculations of the ground and the lowest eight excited 2Po states of the two stable
isotopes of the boron atom, 10B and 11B, as well as of the boron atom with an infinite nuclear mass ∞B. The
nonrelativistic wave function of each of the states is generated in an independent variational calculation by
expanding it in terms of a large number, 12 000–17 000, of all-electron explicitly correlated Gaussian (ECG)
functions whose nonlinear parameters are extensively optimized with a procedure that employs analytic energy
gradient determined with respect to these parameters. These highly accurate wave functions are used to compute
the fine-structure splittings using the first order of the perturbation theory (∼α2), where α is the fine-structure
constant, which are then corrected for the electron magnetic moment anomaly (∼α3). As the nonrelativistic
Hamiltonian explicitly depends on the mass of the nucleus, the recoil corrections up to the order of α2 are
automatically accounted for in the fine-structure calculations. Furthermore, the off-diagonal corrections to the
fine structure (∼α4) are estimated using the multireference methods based on one-electron Gaussian orbitals. The
results obtained in this paper are considerably more accurate than those available in the literature. Moreover, we
report accurate splittings for a number of excited 2Po states, for which there have been no reliable experimental
or theoretical data at all. The calculated values presented in this paper may serve as a valuable guide for future
experimental measurements of the fine structure of the boron atom. As the fine structure of an atom provides a
spectral signature that can facilitate atom’s detection, our data can also aid the search for trace amounts of boron
in the interstellar medium.
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I. INTRODUCTION

In the cosmological hierarchy of elemental abundances,
boron does not approach the prevalence of primordial hy-
drogen or helium, nor does it rival the quantities of heavier
nucleosynthetic products such as carbon. Indeed, boron’s
presence in the universe is scarce [1]. However, boron
occupies a unique position within cosmic studies, being syn-
thesized in minimal amounts during the terminal nuclear
fusion processes of stars and via the cosmic ray-mediated
fragmentation of more massive elements present in the in-
terstellar medium [2]. The elemental scarcity of boron,
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juxtaposed with its unique formation pathways, renders it a
probe of exceptional value in the examination of astrophys-
ical phenomena, providing insights into the underpinnings
of cosmic ray interactions and the nucleosynthetic history of
the universe [3,4]. Furthermore, the previous studies showed
that the fine-structure transitions can be used to estimate the
density of the absorbing medium or the ambient intensity of
a strong photon flux and relative abundance of 10B and 11B
isotopes [5–8].

Despite the importance of the spectral properties of the
boron atom, very few accurate experimental and theoretical
studies of these properties have been reported in the literature.
The most accurate experimental measurements are mainly
available for gases composed of highly volatile elements,
including boron. In general, creating gaseous samples with
a sufficient optical density can be quite challenging. For in-
stance, the available fine-structure splitting measurements of
boron show relatively poor agreement with each other [9,10].
On the theoretical side, because of the complexity of the
electronic structure of the boron atom, even most accurate
electronic structure methods such as coupled-cluster (CC)
[11] or multiconfiguration Hartree–Fock (MCHF) [12] have
not been capable to provide a reasonably accurate estima-
tion of the fine-structure splittings of the boron atom. It is
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also worth mentioning that in the aforementioned theoretical
studies, the finite nuclear mass effect was not considered
in the calculations and the reported values were obtained
for the boron atom with an infinite nuclear mass (∞B). In
other words, the calculations were performed by assuming the
Born-Oppenheimer (BO) approximation. The most accurate
value for the fine-structure splitting in the ground state of
the 11B isotope was computed in Ref. [13] using all electron
explicitly correlated Gaussian (ECG) basis functions. Their
values are in good agreement with the data available in the
NIST ASD database [14]. However, they did not provide any
values for the 10B isotope, which is as important as the 11B
isotope in astronomical studies. The value of the fine-structure
splitting of the ground state [1s2 2s2 2p (2P)] of the boron
atom presented in this paper is in full agreement with the
value obtained in Ref. [13] and improves it by reducing the nu-
merical uncertainty. However, in addition to the ground-state
calculations for 10B and 11B, we also carry out calculations for
the lowest eight excited 2P states.

We should mention that spectral properties of the boron
atom were a subject of our previous studies that employed
all-electron ECG basis functions and the variational approach
[15–17]. The variational calculations were used to optimize
the ECG nonlinear parameters with a procedure that employs
the analytical derivatives of the nonrelativistic non-Born-
Oppenheimer (non-BO) energy of the atom determined with
respect to the nonlinear parameters. The use of the analytic en-
ergy gradient greatly expedited the optimization process and
allowed for achieving very high accuracy in the calculations.
The purpose of the present paper is to use a similar approach
to enhance and refine the currently available computational
data concerning the fine-structure splittings of both stable
isotopes of boron (10B and 11B), as well as of the boron atom
with an infinite nuclear mass (∞B). The efficacy and precision
of the method for the fine-structure calculations employed
here has been previously validated in studies of the lithium
atom [18] and the C+ ion [19].

II. METHOD

A. Nonrelativistic nuclear-mass-dependent Hamiltonian

In the present nonrelativistic variational calculations of
the boron atom, it is first necessary to separate out the
translational motion of the system as a whole from the
internal motion. The corresponding internal Hamiltonian rep-
resenting the internal motion is obtained by separating out
the atom’s center-of-mass motion from the nonrelativistic
laboratory-frame Hamiltonian. This separation yields an “in-
ternal” Hamiltonian, which is used in the present calculations.
The separation is rigorous and results in the reduction the
N-particle problem (N = 6 for the boron atom comprising
five electrons and a nucleus) to an n-pseudoparticle problem
(n = N − 1 = 5) represented by the internal Hamiltonian ex-
pressed in terms of the internal Cartesian coordinates, ri’s. In
the approach we adopt, these internal coordinates are chosen
to be the position vectors of the electrons with respect to
the nucleus, which serves as a reference particle. The in-
ternal nonrelativistic Hamiltonian has the following form in

atomic units:
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Here q0 = 5 is charge of the nucleus, qi = −1 (i = 1, . . . , 5)
are the electron charges, m0 is the nuclear mass (m0 =

18247.468 631 92 for 10B and m0 = 200 63.736 943 13 for
11B), μi = m0mi/(m0 + mi ) is the reduced mass of electron
i (mi = 1, i = 1, . . . , 5), ri is the distance between the ith
electron and nucleus, and ri j = |r j − ri| is the distance be-
tween electrons i and j. The prime symbol (′) stands for the
vector/matrix transpose.

The calculations involving the nonrelativistic Hamiltonian
H int

nr can be carried out for both finite and infinite mass of
the B nucleus. They yield the nonrelativistic ground- and
excited-state energies (Enr) and the corresponding wave func-
tions. Thus, both the energy and the wave function depend on
the mass of the nucleus. In what follows we report both the
finite-mass and infinite-mass results.

B. Basis functions

The all-electron ECG functions employed for expanding
the spatial part of the wave functions of P states in this paper
have the following form:

φk (r) = zik exp[−r′Akr], (2)

where zik is the z coordinate of the ikth electron. Subscript
ik , which is an electron label, can take integer values in the
range (1, . . . , n). Moreover, ik may be treated as an additional
integer variational parameter in the calculations. With this,
each zik factor can be different in each basis function. The
value of ik is determined variationally when the gaussian basis
function φk is first added to the basis set. In expression (2), r

is a 3n-component column vector formed by stacking three-
component vectors ri on top of each other and matrix Ak is a
3n × 3n real symmetric matrix of the exponential parameters.
Ak is constructed as Ak = Ak ⊗ I, where Ak is a n × n dense
real symmetric matrix, I is the 3 × 3 identity matrix, and ⊗

denotes the Kronecker product. Such representation of matrix
Ak ensures that the exponential part of the basis functions is
invariant with respect to 3D rotations.

To be used in expanding wave functions of stationary
states, each basis function (2) has to be square integrable.
This requires that Ak matrix is positive definite. To ensure the
positive definiteness of Ak , it is represented in the Cholesky-
factored form as Ak = LkL′

k , where Lk is a n × n lower
triangular matrix. In this representation, Lk matrix elements
can take any real values and the positive definites of Ak is au-
tomatically maintained. This is an important property because
it allows varying them without any restrictions in the (−∞

to +∞) range when the variational energy minimization (a
numerically very costly procedure) is carried out. For more
information on the basis sets see [20,21].

At the lowest-order approximation, the spin–orbit interac-
tion that gives rise to the fine-structure splitting is obtained
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as a sum of two terms. In the finite-nuclear-mass (FNM)
approach, the first term is an expectation value of the follow-
ing operator:

HSO = HSO1 + HSO2

= −
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where HSO1 and HSO2 are the one- and two-electron parts of the
HSO operator, respectively. They are often referred to as the
spin–orbit and spin–other–orbit interactions, respectively. In
the lowest order, the fine-structure splitting is calculated as the
expectation value of HSO using the nonrelativistic wave func-
tion obtained in the variational calculation using the internal
Hamiltonian (1). Similar to the nonrelativistic Hamiltonian,
the Hamiltonian for calculating the spin–orbit interaction also
depends on the nuclear mass m0 [22]. In the limit of an infinite
nuclear mass, the Hamiltonian reduces to a sum of the stan-
dard spin–orbit and spin–other–orbit interaction operators.
Therefore, all recoil corrections to the spin–orbit interaction
are automatically included in the calculations. To obtain the
leading-order energy correction the expectation value of HSO

is multiplied by α2, where α = 1/137.035 999 084 is the fine-
structure constant. The next-order effect contributing to the
fine-structure splitting arises from the anomalous magnetic
moment (AMM) of the electron. This term is given by the
expectation value of the following Hamiltonian:

HAMM = HAMM1 + HAMM2

= −
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The HAMM term is multiplied by 2κα2, where
κ = 1.159 652 181 28 × 10−3 [23] is the electron magnetic
moment anomaly. The resulting contribution of this effect is
roughly proportional to α3. It should be noted that operator
HAMM is obtained within the infinite-nuclear-mass (INM) ap-
proximation and, thus, does not contain any recoil corrections.
For more information on the operators see [18,19].

C. Higher-order corrections

Estimation of the contribution of the higher-order
relativistic corrections to the fine-structure splitting of
the 2P states of ∞B atom is performed in this paper with the
use of the multi-reference methods based on the complete
active space (CAS). The orbital Gaussian-type basis set
is generated to adequately describe the n 2P states up to
n = 11 considered in the present calculations. The electron

correlation is accounted for within the CASSCF method
by the multireference character of the wave function
[24–26] and by the second-order perturbation-theory (PT2)
correction calculated using the CASPT2 method [27–29].
The spin–orbit interaction is calculated via the restricted
active-space state-interaction method (RASSI) [30] using the
atomic mean-field integral (AMFI) approximation [31,32].
Within RASSI method the matrix of spin–orbit operator is
constructed between all the considered n 2P states of ∞B atom
and completed on the main diagonal with the corresponding
spin-free energies obtained with CASPT2 method. The
eigenvalues of such matrix exhibit the fine-structure splittings
including the off-diagonal coupling between different n 2P
states. Inclusion of states of only one n 2P atomic term within
RASSI method provides the corresponding fine-structure
splitting without the off-diagonal couplings. The differences
in the fine-structure splittings obtained with and without the
off-diagonal coupling provides an estimation of the missing
α4 energy terms that are not included in the ECG calculations.
All these calculations are performed with the MOLCAS 8.4
computer program [33,34].

The complete contribution at the order of α4 correc-
tion has been established by Puchalski and Pachucki using
nonrelativistic QED approach, which has been applied to
fine-structure splitting of Li and Be+ species [13,35]. A thor-
ough assessment of this correction in more complex systems
or excited states is quite intricate. Therefore, some studies
have turned to employing the Dirac formula to roughly es-
timate the α4 correction for Li [36] and O+5 [37]. In this
paper, the same approach has been adopted to roughly gauge
some missing contributions of the order of α4 and higher.
The resulting values have been found to be smaller than the
estimated uncertainties of the δoffdiag quantity (see below).
For instance, a value of 1.2 × 10−5 cm−1 has been obtained
for the ground state using the Dirac formula, which notably
exceeds the values obtained for higher states. Furthermore,
the estimated δoffdiag value (3.2 × 10−4 ± 1.6 × 10−4 cm−1)
are significantly larger than the latter value. For this reason, in
this paper, we restrict our analysis by including only the δoffdiag

contribution at the α4 level when computing the fine-structure
splittings of 2P states of boron.

III. RESULTS

A. Computational details

Our in-house parallel computer code written in FORTRAN
and employing MPI (Message Passing Interface) for the in-
terprocessor communication has been used in the present
calculations. The generation of large ECG basis sets together
with high accuracy targeted in the calculations requires the
use of extended precision (80-bit) arithmetic, which has a
hardware implementation in floating-point modules on the
x86 architecture. The calculations performed with extended
precision are typically slower by a factor of 3–5 compared to
more common double-precision calculations. Yet it provides
additional 12 bits (or about four decimal figures) of accuracy
compared to the standard double precision.

The lowest nine 2P states of the boron atom have been
targeted in this paper. In the first step of the calculations
the nonrelativistic wave functions and the corresponding
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energies have been determined. The calculations were carried
out using the standard variational method and involved the
generation of separate sets of the ECG basis functions for each
state with progressively larger basis set sizes. The growing
of the basis set for a particular state has been performed
independently from the other states. The growing process
involves adding new functions to the set and variationally
optimizing their nonlinear parameters based on a procedure
that employs the analytical energy gradient determined with
respect to the parameters. More details about the basis set
enlargement procedure can be found in our previous papers
[17,21]. The generation of the basis sets for each considered
state is by far the most time-consuming step of the calcula-
tions. It has required over two years of continuous computing
using several hundred cores on parallel computer systems
equipped with Intel Xeon E5-2695v3 and AMD EPYC 7642
CPUs. In generating the ECG basis sets, we used the internal
Hamiltonian that is explicitly dependent on the mass of the
nucleus of the 11B isotope. As the wave function changes very
slightly when going from the 11B to 10B (or ∞B) isotope the
reoptimization of the nonlinear parameters for the other two
isotopes is not necessary. The changes in the wave functions
are captured with sufficient accuracy by adjusting the linear
variational parameters only, which is achieved by solving the
generalized eigenvalue problem for a specific isotope using
the ECG basis set generated for 11B.

B. Nonrelativistic energy

Table I shows the results obtained in the nonrelativistic
variational calculations for the lowest nine Rydberg 2P states
of the boron atom using ECG expansions of the wave func-
tions of the considered states and internal Hamiltonian (1). For
each 2P state the nonrelativistic energy is reported for four ba-
sis set sizes to demonstrate its numerical convergence with the
number of ECGs. Except for the ground state, which has been
studied by two other groups using ECG lobe basis functions
[41] and ECGs with Cartesian angular factors [13], the excited
2P states have never been investigated before with highly
accurate approaches (e.g., variational method with ECG basis
functions). The results obtained in two aforementioned studies
are included in the table for comparison. Our previous ECG
studies of the spectrum of the boron atom include two reports
[16,17]. Very recently, we also performed calculations of the
nonrelativistic oscillator strengths for the transitions between
low-lying 2P and 2S states [42]. In the present study concern-
ing the fine structure of the boron tom, the initial ECG basis
sets are taken from our previous study. However, before being
used in the present calculations of the fine-structure splittings,
the bases were enlarged to 17 000 ECGs. This helped im-
prove the accuracy of the calculated nonrelativistic energies
and the convergence of the expectation values of the spin–
orbit interaction, as well as make more reliable extrapolations
of these quantities in the limit of an infinite basis set.

From the data shown in Table I it is clear that the energies
obtained in the present paper are 1 to 4 orders of magni-
tude more accurate than those reported in previous studies.
For instance, the ground state energy of −24.653 867 537
hartree was obtained using 8192 ECGs in [13], while our
calculation performed with 8000 ECGs yields a lower value

of −24.653 867 60 hartree. In addition to the explicitly
correlated methods, the boron atom has been studied with
other ab initio methods, namely the configuration interaction
(CI) method [38], the multiconfiguration interaction (MCI)
method [40], and the coupled-cluster (CC) method [11]. As it
can be deduced from the table where the previous results are
compared with the results obtained in the present calculations,
the energies obtained using the variational ECG approach
show much superior performance.

As the principal quantum number n increases, the non-
relativistic energies in Table I approach the ionization
threshold—the ground state of B+, which we also calculated
in this paper. Meanwhile, with the increase of n, the average
electron–nucleus distance grows approximately quadratically,
ranging from 1.35 bohr for the 2 2P state to 22.27 bohr and
27.94 bohr for the 9 2P and 10 2P states respectively, which
confirms their Rydberg nature.

C. Fine-structure splitting

Table II shows the fine-structure splittings obtained for the
considered nine 2P states of boron in the present paper along
with some experimental results from the compilations of [14]
and [43] as well as some previous most accurate theoretical
results [11,13,40]. The fine-structure splittings are computed
as follows:

E (n 2P3/2) − E (n 2P1/2)

= α2 CSO〈HSO〉
︸ ︷︷ ︸

∼α2

+ 2κα2 CSO〈HAMM〉
︸ ︷︷ ︸

δAMM

+α4 E
offdiag
n,SO

︸ ︷︷ ︸

δoffdiag

, (5)

where the expectation values, 〈HSO〉 and 〈HAMM〉, are calcu-
lated between states |n 2P, MS =1/2, ML =1〉, whose wave
functions are obtained for different boron isotopes. The CSO =

3 factor that appears in Eq. (5) is derived from the recoupling
coefficients of the states’ angular momenta (for more details
see [22]). The last term, δoffdiag, incorporates the off-diagonal
corrections to the fine-structure splittings. The E

offdiag
n,SO

is calculated as the difference of the fine-structure splittings
calculated with RASSI method (see Sec. II C). However,
E

offdiag
n,SO can be seen in first approximation as the second-order

correction to the fine-structure splitting of the state with the
principal quantum number n,

E
(2)
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∣
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∣
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E
(0)
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where |ψ (0)
n 〉 ≡ |n 2P〉 and E (0)

n are, respectively, the nonrel-
ativistic wave function and energy of state n 2P; here, the
summation was limited to the states k 2P up to k = 11. It
is noted that the contributions from other states of the boron
atom within the energy range of the considered n 2P states
vanish either because of the parity or orthogonality of states
with different J quantum numbers. However, there are higher
states with 1s2 2p3 and 1s2 2p2 np configurations that may
couple via the spin–orbit operator, but their impact, according
to our numerical estimates, is expected to be of rather sec-
ondary importance.

As it was discussed before, the fine-structure splitting in
the ground state of the boron atom was studied before in
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TABLE I. Convergence of the nonrelativistic energies of the n 2P (n = 2, . . . , 10) states of 10B, 11B, and ∞B atoms with the number of
ECG basis functions. All values are in a.u. The present calculations are performed with 12 000–17 000 ECGs and the energies are extrapolated
to an infinite basis set limit. For the lowest three states we provide comparison with the best literature values obtained using the configuration
interaction (CI), diffusion Monte Carlo (DMC), explicitly correlated Gaussian (ECG), and multiconfiguration interaction (MCI) methods. The
numbers in parentheses are estimated numerical uncertainties resulting from the basis truncation.

State Method Basis Reference 10B 11B ∞B

2 2P ECG 12000 this paper −24.652 502 43 −24.652 626 07 −24.653 868 27
ECG 14000 this paper −24.652 502 57 −24.652 626 21 −24.653 868 42
ECG 16000 this paper −24.652 502 69 −24.652 626 33 −24.653 868 54
ECG 17000 this paper −24.652 502 70 −24.652 626 34 −24.653 868 55
ECG ∞ this paper −24.652 502 84(17) −24.652 626 48(17) −24.653 868 69(17)
CI lmax = 20 [38] −23.653 837 33

DMC [39] −23.653790(3)
ECG 8192 [13] −24.653 867 537
MCI lmax = 6 [40] −24.652 032

ECG lobes 10304 [41] −24.653 868 064
ECG lobes ∞ [41] −24.653 868 90(14)

3 2P ECG 12000 this paper −24.430 973 68 −24.431 097 66 −24.432 343 37
ECG 14000 this paper −24.430 973 81 −24.431 097 79 −24.432 343 50
ECG 16000 this paper −24.430 973 94 −24.431 097 92 −24.432 343 63
ECG 17000 this paper −24.430 973 94 −24.431 097 93 −24.432 343 63
ECG ∞ this paper −24.430 974 10(18) −24.431 098 08(18) −24.432 343 79(18)
MCI [40] −24.389 458

4 2P ECG 12000 this paper −24.389 169 87 −24.389 293 75 −24.390 538 38
ECG 14000 this paper −24.389 170 02 −24.389 293 90 −24.390 538 54
ECG 16000 this paper −24.389 170 20 −24.389 294 08 −24.390 538 72
ECG 17000 this paper −24.389 170 22 −24.389 294 09 −24.390 538 73
ECG ∞ this paper −24.389 170 43(25) −24.389 294 30(25) −24.390 538 94(25)
MCI [40] −24.389 458

5 2P ECG 12000 this paper −24.372 547 12 −24.372 670 95 −24.373 915 06
ECG 14000 this paper −24.372 547 34 −24.372 671 17 −24.373 915 28
ECG 16000 this paper −24.372 547 55 −24.372 671 37 −24.373 915 49
ECG 17000 this paper −24.372 547 61 −24.372 671 43 −24.373 915 55
ECG ∞ this paper −24.372 547 81(29) −24.372 671 64(29) −24.373 915 75(29)

6 2P ECG 12000 this paper −24.364 218 78 −24.364 342 57 −24.365 586 40
ECG 14000 this paper −24.364 219 21 −24.364 343 00 −24.365 586 83
ECG 16000 this paper −24.364 220 00 −24.364 343 79 −24.365 587 62
ECG 17000 this paper −24.364 220 03 −24.364 343 82 −24.365 587 65
ECG ∞ this paper −24.364 221 0(11) −24.364 344 8(11) −24.365 588 6(11)

7 2P ECG 12000 this paper −24.359 448 1 −24.359 571 9 −24.360 815 5
ECG 14000 this paper −24.359 449 3 −24.359 573 1 −24.360 816 7
ECG 16000 this paper −24.359 451 7 −24.359 575 5 −24.360 819 1
ECG 17000 this paper −24.359 451 8 −24.359 575 6 −24.360 819 3
ECG ∞ this paper −24.359 454 6(32) −24.359 578 3(32) −24.360 822 0(32)

8 2P ECG 12000 this paper −24.356 453 −24.356 577 −24.357 821
ECG 14000 this paper −24.356 456 −24.356 580 −24.357 823
ECG 16000 this paper −24.356 465 −24.356 589 −24.357 832
ECG 17000 this paper −24.356 465 −24.356 589 −24.357 833
ECG ∞ this paper −24.356 476(12) −24.356 600(12) −24.357 843(12)

9 2P ECG 12000 this paper −24.354 431 −24.354 555 −24.355 798
ECG 14000 this paper −24.354 439 −24.354 562 −24.355 806
ECG 16000 this paper −24.354 460 −24.354 584 −24.355 827
ECG 17000 this paper −24.354 461 −24.354 584 −24.355 828
ECG ∞ this paper −24.354 486(29) −24.354 610(29) −24.355 854(29)

10 2P ECG 12000 this paper −24.352 970 −24.353 094 −24.354 337
ECG 14000 this paper −24.352 983 −24.353 107 −24.354 351
ECG 16000 this paper −24.353 034 −24.353 157 −24.354 401
ECG 17000 this paper −24.353 036 −24.353 160 −24.354 403
ECG ∞ this paper −24.353 096(68) −24.353 219(68) −24.354 463(68)

043225-5



SAEED NASIRI et al. PHYSICAL REVIEW RESEARCH 6, 043225 (2024)

TABLE I. (Continued.)

State Method Basis Reference 10B 11B ∞B

B+(1S) ECG 5000 this paper −24.347 517 589 1 −24.347 641 318 4 −24.348 884 476 3
ECG ∞ this paper −24.347 517 591 2(25) −24.347 641 320 5(25) −24.348 884 478 4(25)

Ref. [13] using ECG basis sets. The value of the fine-structure
splitting for the ground state of 11B obtained in the present
paper matches within the uncertainties the values from that
earlier calculation [15.288(2) cm−1] and from the NIST ASD
database [15.2870(18) cm−1] [14,43]. A fairly good agree-
ment was also obtained using the MCI [40] and MCHF
[12] approaches. However, the values obtained in relativistic
coupled-cluster calculations [11] deviate significantly from
the experiment. It should be noted that, in addition to the
ground state, the experimental data on the fine-structure split-
tings is also available for the 3 2P and 4 2P states of boron.
For these states the splitting energies calculated in this paper
are in excellent agreement with the experimental values as can
be seen in Table II.

In Table II we also include estimated uncertainties of our
fine-structure splitting results. The main source of the uncer-
tainty for both lower and higher states can be traced back to
two specific factors affecting the accuracy of the calculations,
namely the basis set incompleteness and the approximations
made in the model used for the fine-structure calculations.
Our final values for the splittings in Table II come with
two parenthesis. The first one represents the basis truncation
error in ECG calculations, while the second one gives an
estimated uncertainty arising from approximate calculations
of the off-diagonal corrections and neglect of higher-order
contributions.

As seen in Table II, the impact of the uncertainty of the
off-diagonal corrections on the overall uncertainty of the fine-
structure splitting for the ground state is significant (δoffdiag =

3.2 × 10−4 cm−1), but it diminishes with the increase of the
principal quantum number. It drops down to below 10−6 cm−1

for the n 2P, n = 9, 10 states. Consequently, the effect of the
off-diagonal corrections on the uncertainties for the higher
states is lower than the accuracy of solving the nonrelativistic
problem for these states. Thus, for them the main source of
uncertainty is the basis set truncation. For the ground and
other low-lying states, however, neglecting the higher-order
corrections is likely to be the dominant source of the over-
all uncertainty. In this paper, we conservatively estimate the
combined uncertainty of computing δoffdiag itself and the un-
certainty arising from the neglect of higher-order corrections
to the fine-structure splittings as 200% of the δoffdiag value.

To the best of our knowledge, the values we report for the
fine-structure splittings of the boron atom in this paper are the

most precise to date. The estimated accuracy of our splittings
exceeds that of both any previous theoretical calculation and
the data available from experiments. We hope that our results
could serve as a guide for future experimental measurements,
especially for states with larger values of the principal quan-
tum number n, for which currently there are no data available.

IV. SUMMARY

In this paper, high-precision calculations are performed
for the lowest nine 2Po Rydberg states of the 10B, 11B, and
∞B atoms. The nonrelativistic energies and the corresponding
wave functions of the considered states are determined in
variational calculations where the BO approximation is not
assumed (i.e., the nucleus is treated on the same footing as the
electrons). The wave functions of the considered states are ex-
panded in terms of all-particle explicitly correlated Gaussian
basis functions and up to 17 000 functions are used for each
state. The nonlinear exponential parameters of the Gaussians
are extensively optimized using a procedure based on the
Rayleigh–Ritz variational principle. The procedure involves
the use of the analytical energy gradient determined with re-
spect to the parameters. Very accurate nonrelativistic energies
and the corresponding wave functions are generated. Next,
the wave functions are used to compute the fine-structure
splittings of the considered states of 10B, 11B, and ∞B. The
calculated values are in very good agreement with the avail-
able experimental data for the ground 2 2P, and excited 3 2P
and 4 2P states. They also reveal that more accurate mea-
surements are needed to provide verification of the results
calculated in this paper. For the most of the considered Ry-
dberg states, these results are the first high-precision values
calculated to date.
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TABLE II. Fine-structure splittings of states n 2P (n = 2, . . . , 10) of the boron atom in cm−1. The leading-order (∼α2) contribution is
calculated as the expectation value in state |n 2P, MS = 1

2 , ML = 1〉 of the 〈HSO〉 Hamiltonian shown in Eq. (5). The δAMM is the 2κα2(≈ α3/π )
contribution representing the anomalous magnetic moment term calculated as the expectation value 〈HAMM〉 of the Hamiltonian shown in
Eq. (4). The δoffdiag term is the off-diagonal correction calculated with multireference methods using one-electron Gaussian orbitals (see
Sec. II C). The numbers in the first parentheses are numerical uncertainties resulting from the finite size of the ECG basis set used. The
numbers in the second parentheses are estimated uncertainties arising from neglecting higher-order corrections. The best literature values for
the fine-structure splittings are included for comparison, with some abbreviations borrowed from the previous table. In addition, CC and MCHF
stand for the relativistic coupled-cluster method and multiconfiguration Hartree–Fock method, respectively.

State Method Basis Reference Contribution 10B 11B ∞B

2 2P ECG 17000 this paper α2 15.245 899 15.245 995 15.246 957
ECG ∞ this paper α2 15.245 913(20) 15.246 007(20) 15.246 972(20)
ECG 17000 this paper α2 + δAMM 15.287 040 15.287 136 15.288 098
ECG ∞ this paper α2 + δAMM 15.287 054(20) 15.287 148(20) 15.288 112(20)
ECG ∞ this paper α2 + δAMM + δoffdiag 15.287 374(20)(640) 15.287 468(20)(640) 15.288 432(20)(640)
MCI [40] α2 + δAMM 15.523
CC [11] α2 19.75

MCHF [12] α2 15.39
ECG [13] α2 + δAMM 15.287 8(20)

Experiment [14,43] 15.287 0(40) 15.287 0(18)

3 2P ECG 17000 this paper α2 1.778 127 1.778 132 1.778 179
ECG ∞ this paper α2 1.778 146(45) 1.778 152(45) 1.778 224(45)
ECG 17000 this paper α2 + δAMM 1.782 894 1.782 899 1.782 947
ECG ∞ this paper α2 + δAMM 1.782 913(45) 1.782 919(45) 1.782 992(45)
ECG ∞ this paper α2 + δAMM + δoffdiag 1.782 813(45)(210) 1.782 819(45)(210) 1.782 892(45)(210)
MCI [40] α2 + δAMM 1.7103
CC [11] α2 0.80

Experiment [14,43] 1.782 0(57) 1.783 0(50)

4 2P ECG 17000 this paper α2 0.634 552 0.634 553 0.634 564
ECG ∞ this paper α2 0.634 556(15) 0.634 557(15) 0.634 571(15)
ECG 17000 this paper α2 + δAMM 0.636 258 0.636 259 0.636 270
ECG ∞ this paper α2 + δAMM 0.636 262(15) 0.636 263(15) 0.636 277(15)
ECG ∞ this paper α2 + δAMM + δoffdiag 0.636 187(15)(150) 0.636 188(15)(150) 0.636 202(15)(150)
MCI [40] α2 + δAMM 0.803 7

Experiment [14,43] 0.63(14) 0.635(30)

5 2P ECG 17000 this paper α2 0.300 483 0.300 483 0.300 482
ECG ∞ this paper α2 0.300 486(17) 0.300 489(17) 0.300 488(17)
ECG 17000 this paper α2 + δAMM 0.301 292 0.301 292 0.301 292
ECG ∞ this paper α2 + δAMM 0.301 296(17) 0.301 299(17) 0.301 297(17)
ECG ∞ this paper α2 + δAMM + δoffdiag 0.301 227(17)(140) 0.301 230(17)(140) 0.301 228(17)(140)

6 2P ECG 17000 this paper α2 0.165 938 0.165 937 0.165 924
ECG ∞ this paper α2 0.165 939(25) 0.165 938(25) 0.165 924(25)
ECG 17000 this paper α2 + δAMM 0.166 386 0.166 384 0.166 371
ECG ∞ this paper α2 + δAMM 0.166 387(25) 0.166 385(25) 0.166 372(25)
ECG ∞ this paper α2 + δAMM + δoffdiag 0.166 327(25)(120) 0.166 325(25)(120) 0.166 312(25)(120)

7 2P ECG 17000 this paper α2 0.101 209 0.101 206 0.101 182
ECG ∞ this paper α2 0.101 171(39) 0.101 169(39) 0.101 135(39)
ECG 17000 this paper α2 + δAMM 0.101 482 0.101 480 0.101 456
ECG ∞ this paper α2 + δAMM 0.101 444(39) 0.101 442(39) 0.101 408(39)
ECG ∞ this paper α2 + δAMM + δoffdiag 0.101 429(39)(30) 0.101 427(39)(30) 0.101 393(39)(30)

8 2P ECG 17000 this paper α2 0.066 25 0.066 24 0.066 22
ECG ∞ this paper α2 0.066 12(11) 0.066 12(11) 0.066 10(11)
ECG 17000 this paper α2 + δAMM 0.066 43 0.066 42 0.066 40
ECG ∞ this paper α2 + δAMM 0.066 30(11) 0.066 30(11) 0.066 28(11)
ECG ∞ this paper α2 + δAMM + δoffdiag 0.066 30(11)(0) 0.066 30(11)(0) 0.066 28(11)(0)

9 2P ECG 17000 this paper α2 0.045 88 0.045 88 0.045 85
ECG ∞ this paper α2 0.045 64(26) 0.045 64(26) 0.045 61(26)
ECG 17000 this paper α2 + δAMM 0.046 01 0.046 00 0.045 98
ECG ∞ this paper α2 + δAMM 0.045 76(26) 0.045 76(26) 0.045 74(26)
ECG ∞ this paper α2 + δAMM + δoffdiag 0.045 76(26)(0) 0.045 76(26)(0) 0.045 74(26)(0)
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TABLE II. (Continued.)

State Method Basis Reference Contribution 10B 11B ∞B

10 2P ECG 17000 this paper α2 0.033 27 0.033 27 0.033 24
ECG ∞ this paper α2 0.033 04(32) 0.033 04(32) 0.033 01(32)
ECG 17000 this paper α2 + δAMM 0.033 36 0.033 36 0.033 33
ECG ∞ this paper α2 + δAMM 0.033 13(32) 0.033 13(32) 0.033 10(32)
ECG ∞ this paper α2 + δAMM + δoffdiag 0.033 13(32)(0) 0.033 13(32)(0) 0.033 10(32)(0)
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