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ABSTRACT: Low-lying rotationless states of the lithium hydride molecule are studied in the framework
of the variational method without assuming the Born−Oppenheimer (BO) approximation. Highly accurate
solutions to the six-particle (two nuclei and four electrons) Schrödinger equation are obtained by means of
expanding the wave functions of the considered states in terms of many thousands of all-particle explicitly
correlated Gausssians. The basis functions are optimized independently for each state using the analytic
energy gradient with respect to the nonlinear parameters. The non-BO wave functions obtained in the
calculations are used to evaluate the leading-order relativistic and quantum electrodynamics energy
corrections in the framework of the perturbation theory. The geometric structure of the molecule in the ground and excited states is
discussed based on the analysis of the nucleus−nucleus correlation functions. The non-BO energies and structural parameters
obtained of this work are compared with the most accurate BO results currently available.

■ INTRODUCTION

The accuracy of the quantum-mechanical calculations of
molecular stationary states depends on several factors, the
most important of which is how close the multiparticle
functional basis set used in the calculations is to being complete.
Since the particles that make up amolecule, electrons and nuclei,
have very di'erent masses, it is generally possible to reduce the
complexity of the original quantum-mechanical problem by
separating particles into fast and slow ones. In this process, one
solves the Schrödinger equation to determine the electronic
wave function and the corresponding electronic energy at some
selected geometries of the molecule and generates a potential
energy surface (PES), which is subsequently used to determine
stationary states associated with the rovibrational motion of the
nuclei in the molecule. This separation constitutes one of the
pillars of modern quantum chemistry�the Born−Oppen-
heimer approximation. In most PES calculations the electronic
wave function is expanded in terms of Slater determinants
(configurations) formed using a set of molecular orbitals (MOs)
that usually are linear combinations of single-electron atomic
orbitals. The accuracy of the calculation mainly depends on the
completeness of the configuration space and the completeness
of molecular-orbital space. However, in some cases small or not-
so-small inaccuracy may also come from the separation of the
electronic and nuclear motions.
Let us start with some general comments concerning our

development works of methods that aim at increasing the
completeness of the configuration and orbital manifolds for the
electronic problem. To make the configuration space more
complete we implemented the complete single-reference
coupled cluster (CC) method with single, double, triple, and
quadruple excitations (CCSDTQ)1 and a multireference

coupled cluster method with the complete-active-space (CAS)
reference wave function�the CASCC method.2−4 Both
methods are rigorously size extensive. To increase the
completeness of the molecular-orbital space for single- and
multireference coupled cluster calculations we have introduced
two methods. In the first method, applicable to atomic and
diatomic systems, numerical orbitals generated for every
electron-pair in the system using a numerical-orbital multi-
configuration self-consistent field procedure (MCSCF) are
combined to form a basis set for the CC calculation.5−11 The
second method involves generating a set of virtual orbitals
(VOs) in an SCF calculation (RHF or UHF) using an extended
atomic-orbital basis set, than partitioning this set into a smaller
set of active VOs and a set of inactive VOs, and using the second-
order correlationHylleraas functional tomix the active VOswith
the inactive VOs with a unitary transformation matrix whose
matrix elements are determined by the minimization of the
Hylleraas functional determined using only the active VOs.12−21

Subsequently, the optimized active RHF (or UHF) VOs (also
called the first-order correlation orbitals) are used to perform the
CC calculation. Thus, an extended atomic basis set can be used
in the calculation because the post-SCF calculation is performed
not with all SCF virtual orbitals, but with a much smaller set of
the active VOs. A procedure has also implemented for the zero-
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order wave function being an MCSCF wave function22 and for
generating active VOs that are optimized for the contributions of
the double excitations, as well as the single excitations, to the
wave function. In the latter case the fourth-order Hylleraas
functional is used.23

The accuracy one can achieve with an orbital-based methods,
even if the methods are rigorously size-extensive and highly
configurationally complete, and even if a very large set of atomic
orbital is used, is somewhat limited. The results for such
properties as, for example, interstate transition energies, are not
as accurate as the state-of-the-art high-resolution spectroscopic
measurements. To achieve or even to exceed the ever increasing
accuracy of the experimental spectroscopy one needs to employ
a method that is capable of almost exactly account for the
electron-correlation e'ects in the system. For small molecular
systems with 2−4 nuclei and with up to 5−6 electrons, and for
small atoms with up to 6−7 electrons this can currently be
achieved only by expanding the wave functions of the considered
states of the system in terms of all-particle explicitly correlated
basis functions (ECBF), i.e., the basis functions that explicitly
depend on the interparticle distances. While in the BO ECBF
molecular calculations the basis functions only depend on the
coordinates of the electrons, in the non-BO calculations, where
all particles are treated on an equal footing, they depend on the
coordinates of both the electrons and nuclei. The non-BO
calculations are more intricate than the BO calculations, as in the
latter ones the wave function not only represents the quantum
state of the electrons, but also describes the motion of the
system’s nuclei. In our works we have used various forms of all-
particle explicitly correlated Gaussian functions (ECGs) in
atomic and molecular BO and non-BO molecular calcula-
tions.24−27As theHamiltonian used in the atomic andmolecular
non-BO calculations that represents the internal motion of the
system is isotropic (i.e., invariant with respect to 3D rotations)
these functions should provide basis sets for irreducible
representations of the SO(3) group. The ECGs used in this
work for expanding the wave functions of the ground and excited
states corresponding to the zero total orbital angular quantum
number are such functions. In the present work we present an
example of high-precision non-BO ECG calculations performed
for the lowest nine states of the lithium hydride (LiH) molecule
that correspond to the zero total orbital angular momentum of
the molecule (i.e., the angular momentum associated with the
rotational motion of the electrons and the nuclei).We nominally
call these states rotationless vibrational states even though,
stricly speaking, the vibrational quantum number is not a good
quantum number to label energies and the corresponding wave
functions obtained by solving the time-independent Schrö-
dinger equation for all particles. The reason for it not being a
good quantum number is the nonadiabatic coupling of the
vibrational motion of the nuclei and the motion of the electrons.
They are directly accounted for in the all-particle non-BO
Hamiltonian that represents the motion of the electrons and the
motion of the nuclei in the system. Despite the inexactness of the
term “vibrational states” it will be used in the further discussion
in the present work because of the lack of a better term.
The LiH calculations presented in this work are the largest

high-precision non-BO molecular calculations for the ground
and excited states of a molecular system performed to date. LiH,
despite its seemingly straightforward electronic structure,
continues to captivate researchers in the field of quantum
chemistry. Its importance extends across various scientific
domains, driven by several compelling factors. With only four

electrons, LiH serves as an ideal benchmark for assessing the
accuracy and reliability of new computational methods. LiH
molecule is often used as a reference system to validate data
obtained from emerging techniques, ensuring their correctness.
Over recent decades, LiH has gained significance in both
chemistry and physics. The molecule features prominently in
theoretical studies, particularly regarding its bonding nature.
However, due to inherent approximations, results from di'erent
methods occasionally diverge. The significance of the LiH
molecule has made it a subject of several theoretical
investigations employing ECG basis functions over the past
decades. Highly accurate nonrelativistic energies have been
obtained, both within the framework of the BO approxima-
tion28−30 and beyond the BO approximation.31,32

On the experimental side, LiH’s observation in the center of
the galaxy has captured the attention of astrophysicists. This
cosmic context adds to its scientific allure. Furthermore, the ever
improving precision of measurement techniques provides
increasingly accurate electronic structure data. For this reason
computational chemists and physicists are compelled to enhance
the precision of their calculations.

■ METHODS

The approach used in this work to calculate the lowest nine
rotationless vibrational states of the LiHmolecule was described
in our previous papers.31−33 Let us only briefly summarize the
major features of the method. The following nonrelativistic
internal Hamiltonian is used in the present calculations:
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where n N 1= with N being the total number of particles in
the molecule (e.g., the sum of the number of the nuclei and the
number of electrons; N = 6 for LiH), m0 is the mass of the
reference nucleus (7Li, m m12786.392282

e0
=

34) and q0 is its
charge, qi, i n1, ...,= , are the charges of the other particles,

m m m m/( )
i i i0 0= + is the reduced mass of particle i (mi,

i n1, ...,= , are the particle masses), ri, i n1, ...,= is the
distance from particle n + 1 to the reference particle, i.e., particle
1, and rij is the distance between particle j + 1 and particle i + 1.
The prime symbol in eq 1 denotes the matrix/vector
transposition. The internal Hamiltonian describes the motion
of n particles whose charges are the charges of the original
particles but their masses are changed to the corresponding
reduced masses. We refer to these particles as “pseudoparticles”.
They move in the central field created by the charge of the
reference nucleus. The internal Hamiltonian is invariant upon all
rotations about the center of the internal coordinate system and
one can think of it as an “atom-like” Hamiltonian. The
eigenfunctions of this Hamiltonian can be classified using the
same symmetries as the wave functions of an atom. These
eigenfunctions and the corresponding eigenvalues (energies)
represent all modes of the internal motions of the molecule
including the electronic, vibrational, and rotational motions. In
particular, the ground-state solution is spherically symmetric,
i.e., it is invariant under 3D rotations.
Hamiltonian (1) can also be conveniently written in the

matrix form:35
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is a 15-component column gradient vector, and M M I= is
the Kronecker product of a 5× 5matrixM and the 3× 3 identity
matrix I. The diagonal elements of matrix M are
1/(2 ), ..., 1/(2 )

1 5
, while all o'-diagonal elements are equal

to m1/(2 )0 .
In order to obtain accurate eigenvalues and wave functions

corresponding to rotationless states of Hamiltonian (2), we
expand the wave functions in terms of spherically symmetric all-
electron explicitly correlated Gaussian (ECG) basis functions,
which have the following form:

r rr A Iexp ( )
k

m

k1
k= [ ] (3)

where r1 is the distance between the nuclei,mk is an even integer
(in this work, mk is constrained within the range 0−200 and it is
regarded as an integer variational parameter), and Ak is an n × n
real symmetric matrix of the exponential variational parameters.
Note that both Ak andmk are unique and independently tunable
for each basis function, which is indicated by the presence of
index k. Vector r in eq 3 is a 3n-component vector formed by
stacking the internal Cartesian coordinates, ri:
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Let us denote A A I
k k

= . Matrix Ak and, by extension, Ak,
have to be positive definite in order for Gaussian basis function
(3) to be square integrable. To ensure positive definiteness of Ak
we adopt the following Cholesky-factored form for it:
A L L I( )
k k k

= , where Lk is a n × n lower-triangular matrix
of real numbers. In this representation, Ak is automatically
positive definite for any real-valued Lk. The elements ofmatrix Lk
are variational parameters that are thoroughly optimized in the
present calculations. The optimization employs the analytical
energy gradient determined with respect to the Lk matrix
elements. The optimization is carried independently for each
considered state.
All present calculations are performed using our in-house

parallel computer code written in Fortran and employing MPI
(Message Passing Interface) for communication between
parallel processes. It should be noted that the generation of
the basis set for each considered state is by far the most time-
consuming step of the calculations. It has required well over a
year of continuous computing using several hundred cores on
parallel computer systems equipped with x86 central processing
units. The parameters of the generated basis sets for all
considered states in this work are available in the Supporting
Information. The need for inclusion of rm

1
k factors in Gaussian

basis functions can be explained by analyzing the internal
Hamiltonian. Specifically, within the context of

nr
, pseudo-

particle 1 represents the proton. Consequently, a significant
Coulombic repulsion arises between this proton and the charge

of the lithium nucleus located at the center of the internal
coordinate system. The pair correlation function between the
two nuclei, which dependends on the internuclear distance r1,
must rapidly approach zero as r1 approaches zero. Conversely,
for a diatomic molecule in the ground state, this pair correlation
function exhibits a pronounced peak around r r

e1
, where re is

the equilibrium bond length of the molecule. In the case of
vibrationally excited states, the corresponding pair correlation
function displays multiple radial peaks, all distinct from the
origin at r1 = 0. Given that an origin-centered Gaussian function
achieves its maximum at r1 = 0, it necessitates shifting the
Gaussian maximum away from coordinate center. However, this
shifting has to be done in a spherically symmetric manner so that
the spherical symmetry of the Gaussian is not broken. For the
basis functions used in this work, the adjustment is achieved by
introducing the r

m

1
k preexponential factors, which not only

displace the Gaussian maxima away from the origin but also
allows to describe the radial oscillations of the wave functions
that correspond to vibrational excited states.
The present calculations concern the ground and lowest nine

vibrational excited singlet states of the LiH molecule. In
constructing the wave functions for these states, the proper
permutational symmetry of the electrons is taken into account.
This is achieved using the spin-free formalism.36−38 The key
element of this formalism is the construction of an appropriate
permutational symmetry projector, . The action of this
projector on each basis function yields a combination of
Gaussians which are used to calculate the Hamiltonian and
overlap matrix elements. These terms can be equivalently
generated by combining the (spatial) basis functions with the
appropriate spin components and summing over the electronic
spin coordinates. By applying projector to each basis function
the desired permutational symmetry is implemented. For the
LiHmolecule with four electrons (labeled as particles 3, 4, 5, and
6; particle 1 is the Li nucleus and particle 2 is the proton) in a
singlet state the operator has the following form in terms of
the labels of the original particles:

(1 )(1 )(1 )(1 )34 56 35 46= + + (5)

where permutations ij exchange the indices of electrons i and j.

As the internal Hamiltonian and, consequently, the wave
function depend not on the coordinates of the original particles,
but on the coordinated of the pseudoparticles, i.e., on the
internal coordinates, needs to be first expressed in terms of
the pseudoparticle labels before it is applied to the basis
functions.
The first step of the present calculations involves determining

the nonrelativistic non-BO energies and the corresponding
nonrelativistic wave functions of the considered states. Even
though these calculations are very precise and very well
converged, they would fall short in accurately determining the
total energies and the interstate transition energies when
compared to the state-of-the-art spectroscopic measurements.
To achieve better agreement with experiment, one needs to
account for the relativistic and QED energy corrections in the
calculations. In practice, accounting for these e'ects involve
expanding the total energy of the studied system in a series in
terms of powers of the fine-structure constant, α:39,40

E E E E ...tot nr
2

rel
(2) 3

QED
(3)

= + + + (6)
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where Enr is the nonrelativistic energy of the considered state of

the system, the second term, E
2

rel
(2), represents the leading-order

relativistic correction, the third term E
3

QED
(3) represents the

leading-order QED correction, and so on. Each of these terms is
evaluated as an expectation value of a certain e'ective

Hamiltonian. In our calculations, quantity Erel
(2) in eq 6 is the

expectation value of the Breit-Pauli Hamiltonian,
rel
,

corresponding to the singlet state.41,42 In the present work,

rel
, before it is used in the calculations, is expressed in terms of

the internal coordinates. The mass−velocity term (
MV

), the
Darwin term (

D
), the orbit−orbit interaction term (

OO
),

and the spin−spin Fermi contact interaction term (
SS
) are

included in
rel
:

rel MV D OO SS
= + + + (7)

The explicit expressions for the corresponding e'ective
operators in the internal coordinates are as follows:35,43
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Table 1. Convergence of the Nonrelativistic Variational Non-BO Energy (Enr) and the Expectation values of the Mass−Velocity
Hamiltonian (

MV
), Orbit−Orbit Hamiltonian (

OO
), and One- and Two-electron Dirac δ-functions for the Lowest Nine

Vibrational States of the LiH Moleculea

State Basis Enr H
MV

H
OO

r( )e r( )H e r( )e e

v = 0 13 000 −8.06643893 −79.05380 −0.4730653 3.451749 0.095057 0.09164891

15 000 −8.06643902 −79.06215 −0.4730649 3.452126 0.095078 0.09164623

17 000 −8.06643920 −79.06261 −0.4730611 3.452145 0.095099 0.09164556

−8.06643939(20) −79.06315(54) −0.4730560(51) 3.452171(26) 0.095126(27) 0.09164503(54)

v = 1 13 000 −8.06024309 −79.0284 −0.4724645 3.45088 0.094253 0.09157994

15 000 −8.06024336 −79.0291 −0.4724673 3.45093 0.094263 0.09156291

17 000 −8.06024379 −79.0325 −0.4724724 3.45113 0.094273 0.09155992

−8.06024420(41) −79.0368(43) −0.4724793(68) 3.45138(26) 0.094287(14) 0.0915570(29)

v = 2 13 000 −8.0542462 −78.9958 −0.471586 3.44962 0.09343 0.091533

15 000 −8.0542504 −78.9971 −0.471594 3.44972 0.09344 0.091526

17 000 −8.0542521 −79.0003 −0.471600 3.44989 0.09358 0.091515

−8.0542538(17) −79.0046(43) −0.471609(83) 3.45010(21) 0.09377(19) 0.091504(11)

v = 3 13 000 −8.0484472 −78.9724 −0.470175 3.44848 0.09249 0.091529

15 000 −8.0484564 −78.9783 −0.470276 3.44912 0.09252 0.091503

17 000 −8.0484596 −78.9828 −0.470311 3.44942 0.09260 0.091467

−8.0484636(40) −78.9888(60) −0.470357(46) 3.44983(41) 0.09272(11) 0.091427(40)

v = 4 13 000 −8.0428375 −78.9293 −0.46775 3.44672 0.091755 0.091515

15 000 −8.0428560 −78.9352 −0.46801 3.44720 0.091776 0.091500

17 000 −8.0428619 −78.9381 −0.46813 3.44742 0.091803 0.091462

−8.0428687(68) −78.9422(40) −0.46828(16) 3.44769(28) 0.091816(13) 0.091450(12)

v = 5 13 000 −8.037412 −78.9150 −0.46528 3.44584 0.09108 0.091501

15 000 −8.037445 −78.9257 −0.46574 3.44671 0.09112 0.091475

17 000 −8.037456 −78.9256 −0.46601 3.44697 0.09126 0.091445

−8.037470(14) −78.9282(26) −0.46640(38) 3.44730(34) 0.09147(20) 0.091428(17)

v = 6 13 000 −8.032158 −78.8748 −0.46679 3.44417 0.090325 0.091410

15 000 −8.032216 −78.8830 −0.46694 3.44490 0.090407 0.091360

17 000 −8.032236 −78.8878 −0.46703 3.44537 0.090454 0.091316

−8.032259(24) −78.8945(67) −0.46715(12) 3.44599(62) 0.090515(61) 0.091264(52)

v = 7 13 000 −8.027067 −78.8498 −0.46636 3.44286 0.08952 0.091453

15 000 −8.027168 −78.8547 −0.46649 3.44363 0.08968 0.091378

17 000 −8.027200 −78.8584 −0.46658 3.44401 0.08977 0.091338

−8.027238(38) −78.8637(53) −0.46671(13) 3.44458(57) 0.08991(14) 0.091320(18)

v = 8 13 000 −8.022126 −78.8203 −0.46566 3.44087 0.088784 0.091444

15 000 −8.022294 −78.8297 −0.46580 3.44244 0.088882 0.091379

17 000 −8.022337 −78.8369 −0.46587 3.44300 0.088973 0.091336

−8.022383(46) −78.8463(94) −0.46597(10) 3.44376(76) 0.089097(12) 0.091288(48)
aResults obtained with basis sets of di'erent size are shown along with the extrapolated values. The numbers in parentheses are estimated
uncertainties of the extrapolation due to the basis set truncation. All values are in a.u.
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where in the last expression, si denotes the spin operator of the i-
th pseudoparticle. For LiH in a singlet state, s s 3/4i j = . The

relativistic corrections for a particular state are calculated as the
expectation values of the above operators using the state’s
nonrelativistic non-BO wave function.
The largest contribution to the leading QED correction arises

from the term which includes the so-called Bethe logarithm,
kln
0.
44,45 In our previous work,31 we discussed the challenges

associated with computing this QED correction. The primary
diMculty lies in accurately determining the term involving kln

0
.

To our knowledge, no direct calculation of kln
0 for the LiH

molecule has been reported. However, it is known that the
dominant contribution to kln

0
in atoms arises from the inner

shell electrons. Therefore, one can adopt the following
approximate expression for the e'ective leading-order QED
Hamiltonian:
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where kln (Li) 5.1780800 = and kln (H) 2.9841290 = are the
Bethe logarithm values for the Li and H atoms, respectively.46,47

Equations 8, 9, 11, and 12 contain singular operators, namely
the fourth powers of the linear momenta and Dirac delta
functions, whose expectation values are known to exhibit
somewhat slower convergence with the basis size compared to

Table 2. Comparison of the Calculated and Experimentally Derived v v v1 ( 0 ... 7)+ = Transition Energies (ΔE) for the
Rovibrational States of LiH.a

Method E
nr

E
nr rel+

Enr rel QED+ +
Method E

nr
E
nr rel+

Enr rel QED+ +

1 → 0 2 → 1

non-BO-ECG 1359.681(53) 1359.73(53) 1359.725(53) non-BO-ECG 1314.83(20) 1314.90(18) 1314.889(18)

BO-ECG28,b 1359.77 BO-ECG28,b 1314.90

BO-FCI49,c 1359.66 BO-FCI49,c 1314.68

MR-CISD50,d 1360.63 MR-CISD50,d 1315.58

Experiment51,e 1359.71(2) Experiment51,e 1314.89(2)

Experiment52,f 1359.7085(20) Experiment52,f 1314.8518(20)

3 → 2 4 → 3

non-BO-ECG 1271.13(18) 1271.17(18) 1271.16(18) non-BO-ECG 1228.28(28) 1228.33(27) 1228.31(28)

BO-ECG28,b 1270.97 BO-ECG28,b 1227.86

BO-FCI49,c 1270.55 BO-FCI49,c 1227.31

MR-CISD50,d 1271.46 MR-CISD50,d 1228.19

Experiment51,e 1270.89(2) Experiment51,e 1227.77(2)

Experiment52,f 1270.9098(20) Experiment52,f 1227.8061(20)

5 → 4 6 → 5

non-BO-ECG 1185.73(79) 1185.77(78) 1185.77(77) non-BO-ECG 1144.5(12) 1144.41(2) 1144.4(12)

BO-ECG28,b 1185.51 BO-ECG28,b 1143.80

BO-FCI49,c 1184.87 BO-FCI49,c 1143.06

MR-CISD50,d 1185.70 MR-CISD50,d 1143.86

Experiment51,e 1185.44(2) Experiment51,e 1143.77(2)

Experiment52,e 1185.4519(20) Experiment52,f 1143.7438(20)

7 → 6 8 → 7

non-BO-ECG 1102.9(21) 1103.0(21) 1103.0(21) non-BO-ECG 1064.5(28) 1064.6(28) 1064.5(28)

BO-ECG28,b 1102.62 BO-ECG28,b 1061.83

BO-FCI49,c 1101.72 BO-FC49,c 1060.73

MR-CISD50,d 1102.58 MR-CISD50,d 1061.69

Experiment51,e 1102.60(2) Experiment51,e 1061.78(2)

Experiment52,g 1102.57(7) Experiment52,g 1061.76(15)
aResults obtained in the present work are extrapolated to the infinite basis set limit and labeled as non-BO-ECG. All values are in cm−1. bBO
calculations with 2400 ECG basis functions. cFull Configuration-Interaction/(42s18p10d). dThe internally contracted configuration interaction in
the single and double space (MR-CISD) level with four electrons distributed among the five orbitals arising from the 1s, 2s, and 2p atomic orbitals
in the multiconfigurational self-consistent-field (MCSCF) part of the calculations are used. eThe original published data does not contain
uncertainties. The uncertainty was estimated by the current authors. fThe original published data does not contain uncertainties. We estimated the
uncertainties based on the employed experimental data for the ground electronic X state in the fitting procedure. gThe original published data does
not contain uncertainties. We estimated the uncertainties based on the uncertainty of the employed experimental data (the vibratinally-resolved
transition between the ground electronic X state and first electronic excited A state) in the fitting procedure.
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the nonsingular ones (e.g., nonrelativistic Hamiltonian). In this
work all these expectation values are evaluated directly, i.e.,
without invoking any regularization technique. However, the
resulting accuracy is still suMcient for the purpose of this work.

■ RESULTS AND DISCUSSION

Table 1 shows the results of the calculations of the total non-BO
nonrelativistic energies, and leading relativistic corrections, and
some key expectation values for the LiH molecule in the lowest
nine vibrational states (v 0 8= ). The results shown in the
table are obtained with the basis set sizes that increase from 13
000 to 17 000. The energies and the other expectation values are
extrapolated to the infinite basis set size limit. Our experience
with ECG calculations over the past two decades indicates that
the increments of the energy (and some other properties)
obtained when the basis is extended by a certain number of
functions often exhibit a pattern that is similar to a geometric
progression. Therefore, our extrapolation to the infinite basis set
size limit is based on the geometric progression approximation.
For more information, please see our previous paper.48

The extrapolated values are shown in the table along with the
corresponding estimated uncertainties. As one can see, all LiH
expectation values are relatively well converged. However, as
expected, the convergence rate is better for the lower states than
for the higher ones. The basis sets used to obtain the results in

Table 1 are generated in a process that begins with a small set of
Gaussian functions, whose nonlinear parameters are selected
using a mix of random and physically motivated choices and
then optimized. Subsequently, the basis set is expanded in
several steps. In each step, new Gaussian functions are added
and variationally optimized using a procedure that employs the
analytical energy gradient. The enlargement and subsequent
optimization are done using a one-function-at-a-time approach.
After a newly added function is optimized, it is checked for
linearly dependency (within a predefined threshold) with the
functions already included in the set. If no linear dependency is
detected, the function is included in the basis set. As mentioned
previously, both the Lkmatrix elements and themk powers in the
r1 preexponential factosr are subject to the optimization.
However, because mk’s can only take a even integer values,
their optimization is done only once and is based on a stochastic
search with a predefined number of trials. The probability
density from which the Lk and mk parameters of new random
candidate functions are sampled is based on the distribution of
these parameters in the existing basis. After the stochastic trials
of random candidate functions are complete, the one that lowers
the energy themost is included in the basis. The range of allowed
values for mk’s is set to 0−200. After a certain number of
Gaussians are added, the nonlinear parameters of all functions in
the basis set generated so far are reoptimized, again using a one-

Table 3. Expectation Values of the Interparticle Distances ri and rij as well as their Squares for the Lowest Rotationless States of
LiH Obtained in this Work (Values Extrapolated to the Infinite Basis Set Limit are Shown)a

Quantity Method v = 0 v = 1 v = 2 v = 3 v = 4

r
Li H

non-BO-ECG 3.06103685(61) 3.1549895(37) 3.2512667(11) 3.3500062(69) 3.451386(25)

r
Li H

BO-ECG28,b 3.06029188 3.15422580 3.25046745 3.34916919 3.45050556

r
Li H

MRCISD53,c 3.01901570

re Fitting51 3.015217

re Fitting52,d 3.01523597

re Fitting54,e 3.01394640

r
Li e

non-BO-ECG 1.97193294(25) 2.0070042(16) 2.04291183(43) 2.0796617(30) 2.1172597(65)

r
H e

non-BO-ECG 2.56510469(25) 2.6242863(25) 2.6851230(32) 2.7477748(66) 2.812442(20)

r
e e

non-BO-ECG 2.95593984(31) 3.0087987(28) 3.0631229(15) 3.1189796(27) 3.1764480(98)

r
Li H

2 non-BO-ECG 9.4197074(62) 10.104694(38) 10.8261936(45) 11.586883(84) 12.38962(27)

r
Li e

2 non-BO-ECG 6.5857432(14) 6.866602(15) 7.160562(10) 7.468172(22) 7.790007(73)

r
H e

2 non-BO-ECG 7.7452174(12) 8.171204(17) 8.621241(27) 9.097530(43) 9.602690(65)

r
e e

2 non-BO-ECG 10.9660723(27) 11.394848(27) 11.844963(31) 12.317734(27) 12.81476(11)

Quantity Method v = 5 v = 6 v = 7 v = 8

r
Li H

non-BO-ECG 3.555642(25) 3.663227(88) 3.77388(30) 3.88912(24)

r
Li H

BO-ECG28,b 3.55471135 3.66206834 3.77288418 3.88765124

r
Li e

non-BO-ECG 2.155738(16) 2.195150(28) 2.235335(98) 2.276832(73)

r
H e

non-BO-ECG 2.879364(16) 2.949006(89) 3.02162(18) 3.09770(18)

r
e e

non-BO-ECG 3.235661(39) 3.296795(80) 3.35999(18) 3.42548(27)

r
Li H

2 non-BO-ECG 13.23822(59) 14.13675(27) 15.0872(31) 16.10223(51)

r
Li e

2 non-BO-ECG 8.12674(11) 8.47951(24) 8.8473(11) 9.2365(11)

r
H e

2 non-BO-ECG 10.14030(30) 10.71460(52) 11.3312(20) 11.9953(23)

r
e e

2 non-BO-ECG 13.337795(90) 13.89030(72) 14.4742(18) 15.0921922(18)

aFor comparison we also present vibrationally averaged bond lengths reported in some BO calculations ( r
Li H

) and the “experimental”
equilibrium bond lengths determined by fitting the potential energy curve using the existing spectroscopic data for LiH (re). All values are in a.u.
bBO calculations with 2400 ECG basis functions. cInternally contracted configuration interaction calculations with single and double excitations
(MRCISD) from configurations obtained by distributing four electrons among five active orbitals (MRCISD+Q) arising from the 1s, 2s, and 2p
atomic orbitals in the multiconfigurational self-consistent-field (MCSCF) part of the calculations were used. dDirect least-squares fit of the e'ective
potential energy, Born-Oppenheimer breakdown (BOB) and J−independent non-adiabatic functions to experimental data were used. eInversion of
the BOB corrections procedure were used in the least-squares fit.
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function-at-a-time approach. In this reoptimization, however,
only the Lk matrix elements are varied, while the mk values are
kept unchanged. At the largest basis set size of 17 000 used in the
present work, several additional reoptimization cycles are
performed, which further lowered the nonrelativistic energies.
This is the reason why some of the energy gains going from 15
000 to 17 000 function basis sets in Table 1 are larger than those
that correspond to the di'erence between the 13 000 to 15 000
function basis sets.
The vibrational transition energies calculated using the

nonrelativistic non-BO energies (Enr), nonrelativistic non-BO
energies plus leading relativistic corrections (E

nr rel+
), and

nonrelativistic non-BO energies plus leading relativistic and
QED corrections (Enr rel QED+ +

) are shown in Table 2. In

addition to the non-BO values calculated in the present work,
some most accurate values obtained in previous experimental
studies and theoretical BO calculations are also shown in the
table. All of the previous calculations,28,49,50 have been
performed assuming the BO approximation; although, adiabatic
correction has been included in the calculations performed by
Holka et al.50 and Tung et al.,28 which makes their values more
accurate than those obtained in other studies and more directly
comparable to the present work. It should be noted that of the
three referenced BO calculations, only those by Tung et al.28

show good agreement with experimental transition energies.
As can be seen in Table 2, the values obtained in this study, are

the most accurate theoretical values ever reported for the lowest
three states. For instance, the value of 1 359.725(53) cm−1

obtained in the present work for the v v0 1= = transition,

is in excellent agreement with the values of 1 359.71(2)51 and
1359.708 5(20)52 derived from the experimental data. Although
17 000 ECGs have been used in the wave function expansion for
all considered states, the accuracy of the obtained transition
energies decreases with increasing the excitation level.
Specifically, in the case of the v v8 7= = transition (the
highest two states we studied), the di'erence between the
calculated transition energy of 1 064.5(28) cm−1 in this work
and the experimental values of 1 061.78(2)51 and 1
061.76(15)52 are relatively large. This clearly indicates that
one must employ an even large number of ECGs than 17 000 in
the wave function expansion and/or increase the number of
cycles optimizing the nonlinear parameters of the Gaussians to
alleviate the error. Furthermore, a comparison of the transition
energy values obtained in the ECG calculations with and
without assuming the BO approximation reveals the importance
of accounting for the coupling between the motion of the
electrons and the nuclei. As shown by Holka et al.50 and
confirmed by the present study, the nonadiabatic e'ects are
important to account for even for the fundamental vibrational
transition of the LiH molecule if one aims at spectroscopic
accuracy in the calculations.
The nonrelativistic non-BO wave functions obtained for LiH

with the largest basis sets for the studied states were used to
calculate the expectation values of the interparticle distances and
their squares. The mean values of the Dirac delta functions
dependent on interparticle distances were also computed. The
results are shown in Table 3. Additionally, the table includes the
equilibrium bond lengths, re, and the vibrationally averaged

Figure 1.Nucleus−nucleus pair correlation functions, g, of LiH calculated using the non-BO wave functions obtained with the largest basis sets of 17

000 ECGs in this work along with the di'erence, g g g
Li H

non BO

Li H

BO
= , with respect to the square of the corresponding vibrational wave functions

obtained in BO ECG calculations. Each point of the BO potential energy curve calculated with 2400 ECGs has been taken from ref. 28 Note that the
scale for g is shown on the left vertical axis, while the scale for δg is given on the right vertical axis.
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bond lengths, r
Li H

, obtained in BO calculations. One may
notice that one of the experimental re values (3.013 946 40 au
from ref. 54 does not match the other two (3.015 217 in ref. 51
and 3.015 235 97 in ref. 52 As our present non-BO calculations
explicitly account for the coupling between the electron and
nuclear motions, it is expected that the results should exhibit
some small di'erence when compared to the corresponding
expectation values obtained in BO calculations. This is indeed
the case. For example, the di'erence in the r

Li H
value (3.061

036 85(61) bohr vs 3.060 291 88 bohr) occurs in the fourth
decimal figure. Similar di'erences were also found before in the
studies that accounted for the adiabatic and nonadiabatic e'ects
in the calculations of properties of diatomic molecules.50

Lastly, in Figure 1 we show the nucleus−nucleus pair
correlation functions, defined as rg( ) ( )1= , computed
for all considered states of LiH using the largest basis sets of 17
000 ECGs generated in this work. It should be noted that in the
limit of the infinite nuclear mass, the non-BO nucleus−nucleus
correlation function becomes equal to the square of the
vibrational wave function in the BO calculations, i.e., these
two distributions are closely related. Therefore, in order to
highlight the di'erence between them, in Figure 1 we also show

g g
Li H

non BO

Li H

BO (where g
Li H

BO is given by the square of the

corresponding vibrational wave function) for each state. As
expected, the di'erence (red curve) grows inmagnitude with the
increase of the vibrational quantum number. Also, the shape and

oscillations of the di'erence indicate that g
Li H

non BO is very slighly

shifted overall to the right (i.e., larger values of the internuclear

distance) with respect to g
Li H

BO . That said, for all considered

states, the amplitude of the di'erence remains rather small in

relative terms, that is g
Li H

non BO and g
Li H

BO would be hardly

distinguishable if plotted side by side. This correlates with our
previous findings for the HD+ molecular ion, where only for the
highest 1−2 rovibrational states (v 21, 22= ), where a dramatic
breakdown of the Born−Oppenheimer occurs, one observes a
visible mismatch between the nucleus−nucleus correlation
functions obtained in calculations with and without the BO
approximation.55

■ CONCLUSION

This work reports non-Born−Oppenheimer variational calcu-
lations for the LiH molecule in its ground and the lowest eight
vibrationally excited states. The calculations utilize all-particle
explicitly correlated Gaussian basis functions. Extensive
optimization of the nonlinear parameters of the Gaussians is
performed separately for each state, with basis sets expanded to
include up to 17 000 functions. The nonrelativistic non-BO
wave functions are then used to calculate the leading relativistic
and quantum electrodynamics (QED) corrections, which are
added to the non-BO nonrelativistic energies. The corrected
energies are used to calculate the transition energies between
adjacent states. The results obtained for the lowest three states
represent the most accurate theoretical values (regardless of the
method used) ever computed for the LiH molecule and provide
a useful benchmark for future theoretical studies The
corresponding transition energies are in very good agreement
with experimental values. The accuracy is gradually decreased
for higher vibrationally excited states, where the non-BO
calculations are currently behind what is achievable with high-
level ECG approaches that resort to the Born−Oppenheimer

approximation. Further improvements on the theoretical side
will necessitate the use of larger Gaussian sets and inclusion of
higher order relativistic and QED e'ects. We hope this work will
also motivate new spectroscopic measurements of the lithium
hydride molecule.
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