IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 23 September 2024, accepted 16 October 2024, date of publication 23 October 2024, date of current version 1 November 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3484947

== RESEARCH ARTICLE

Evaluating Large Language Models for Enhanced
Fuzzing: An Analysis Framework for
LLM-Driven Seed Generation

GAVIN BLACK 1, (Member, IEEE), VARGHESE MATHEW VAIDYAN"1,
AND GURCAN COMERT "2

! Department of Computer and Cyber Sciences, Dakota State University, Madison, SD 57042, USA
2Benedict College, Columbia, SC 29204, USA

Corresponding author: Gavin Black (Gavin.Black @trojans.dsu.edu)

This work was supported in part by the National Center for Transportation Cybersecurity and Resiliency (TraCR), USA, headquartered

at Clemson University, Clemson, SC, USA; in part by the Cyber-Ag-Law Research Collaborations with the Department of Energy Minority
Serving Institutions Partnership Program (MSIPP) managed by the Savannah River National Laboratory under Battelle Savannah River
Alliance (BSRA) under Contract TOA 0000525174 CN1; in part by the Minority Science and Engineering Improvement Program (MSEIP)
II Cyber, USA, under Grant P120A190061, Grant P120A210048, and Grant FM-MHP-0678-22-01-00; in part by the National Science
Foundation (NSF), USA, under Grant 1954532, Grant 2131080, Grant 2200457, Grant OIA-2242812, Grant 2234920, and Grant 2305470.

ABSTRACT Fuzzing is a crucial technique for detecting software defects by dynamically generating and
testing program inputs. This study introduces a framework designed to assess the application of Large
Language Models (LLMs) to automate the generation of effective seed inputs for fuzzing, particularly in
the Python programming environment where traditional approaches are less effective. Utilizing the Atheris
fuzzing framework, we created over 38,000 seed inputs from LLMs targeted at 50 Python functions from
widely-used libraries. Our findings underscore the critical role of LLM selection in seed effectiveness.
In certain cases, seeds generated by LLMs rivaled or surpassed traditional fuzzing campaigns, with a corpus
of fewer than 100 LLM-generated entries outperforming over 100,000 conventionally produced inputs. These
seeds significantly improved code coverage and instruction count during fuzzing sessions, illustrating the
efficacy of our framework in facilitating an automated, scalable approach to evaluating LLM effectiveness.
The results, validated through linear regression analysis, demonstrate that selecting the appropriate LLM
based on its training and capabilities is essential for optimizing fuzzing efficiency and facilitates the testing
of future LLM versions.

INDEX TERMS Fuzzing, machine learning, large language models, python.

I. INTRODUCTION These seeds are designed to guide the fuzzing process into

Fuzzing is a widely recognized technique for uncovering
defects in software by profiling program behavior through
dynamic analysis [1]. This process systematically generates
a series of inputs for specific functions and observes the
outcomes, seeking to discover unexpected behaviors or
crashes [2]. The effectiveness of fuzzing largely hinges on its
ability to explore new logical paths and maximize coverage
of the program’s instruction set. To facilitate this exploration,
a collection of initial seed inputs is often employed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Magno

areas of the code that might not be typically reached by
random input generation, enhancing the likelihood of finding
significant vulnerabilities [3].

However, the generation and selection of effective seeds
pose significant challenges, especially when automating the
fuzzing of numerous functions at scale. Traditional methods
often require seeds to be manually crafted for each specific
function, demanding a deep understanding of the expected
input formats. This labor-intensive process limits the scalabil-
ity and efficiency of fuzzing. In response to these challenges,
recent advances in machine learning—particularly the devel-
opment of large language models (LLMs)—offer promising

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

156065

https://orcid.org/0000-0002-5748-6553
https://orcid.org/0000-0002-9737-242X
https://orcid.org/0000-0002-2373-5013
https://orcid.org/0000-0003-0368-8923

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

solutions [4], [5], [6]. These sophisticated models, capable of
understanding and generating human-like text, are now being
adapted to assist in various computational tasks, including
the enhancement of software security through enhanced
fuzzing [7].

We specifically investigate the application of LLMs to
improve seed generation for fuzzing programs written in
Python—a language chosen for its widespread use and a
notable deficiency in robust fuzzing tools. The Atheris [8]
Python fuzzing engine is employed to evaluate the efficacy
of seeds generated by several leading commercial LLMs.
Our experimental setup involves multiple unique functions
drawn from commonly used Python libraries, providing a
broad spectrum of test cases. By comparing the code cov-
erage and instruction counts achieved with LLM-generated
seeds against those obtained with traditional seed inputs,
we demonstrate that LLMs can significantly enhance the
initial phases of fuzzing. Notably, the performance of these
seeds varies depending on the specific function under test and
the LLM used, suggesting a nuanced relationship between
seed effectiveness and the characteristics of both the target
function and the model.

This paper makes the following contributions:

o Introduces a publicly-available framework to LLMs
for enhancing program behavior fuzzing.! This frame-
work systematically evaluates LLM effects on fuzzing
coverage across software systems, incorporating exten-
sive tests on 50 key Python libraries and generating
corresponding datasets (38,000 seeds in this study).
It significantly expands Python fuzzing data and identi-
fies library types that benefit most from LLM-assisted
fuzzing, offering key insights into effective model
utilization detailed in Section IV-A.

« Highlights the critical role of selecting the right LLMs
for generating program inputs in Section IV-B, showing
that the appropriate choice of LLM can enhance fuzzing
coverage of Python libraries by up to 16% compared to
less effective models.

o Demonstrates that variations in large language
model (LLM) settings, including temperature selection
and prompting style, have a minimal impact on the
quality of the resulting fuzzing corpus. This consistency
highlights the robustness of LLMs in generating
effective fuzzing inputs, supporting streamlined testing
with fewer prompting permutations. Further details are
discussed in Section I'V-C.

« Provides validation of the findings through linear regres-
sion testing, as detailed in Section IV-D. The analysis
involves fitting several regression models using the
collected data to demonstrate the significant predictive
ability of code coverage based on settings and LLM
selection. This approach yields a closed-form linear
formula, presented in Equation 2, capable of estimating
code coverage across different models and functions.

1 https://github.com/gavin-black-dsu/fuzzing_seeds

156066

In this study, the yaml.load(data) function is
consistently utilized as a representative example among
the 50 functions examined. This specific function allows
demonstration of the fuzzing process with a clear and
concrete set of inputs and outputs. We will detail the harness
used for fuzzing as shown in Listing 1, describe a prompt
provided to the LLMs in Listing 4, and present samples of
the outputs returned in Listings 6 and 7. Finally, the resulting
coverage is analyzed as illustrated in Fig. 2 and provided
in Table 3.

Il. BACKGROUND

Fuzzing is a method in software testing where mutated data
is fed into programs to detect security vulnerabilities and
bugs [9]. While traditional fuzzing relies heavily on random
or manually crafted inputs, leveraging LLMs promises a
more automated generation of data that could uncover
more complex vulnerabilities. These modern approaches,
as highlighted in the survey by Huang et al. [10], seek to
address the broader historical challenges on fuzzing outlined
by Chen et al. [11], allowing for significant enhancements in
the field.

Current LLMs leverage self-attention introduced by
Vaswani et al. [12] to learn distributions over large amounts
of gathered data. These mechanisms help understand and
generate contextually relevant text for a wide range of tasks
as discussed by Voita et al. [13]. This ability is crucial for
generating meaningful test inputs that are not just random but
are structured in a way that is likely to trigger meaningful
software interactions.

Controlling the generation process of LLMs is critical,
especially in generating structured data. The generation’s
temperature, a parameter influencing the randomness of
output, plays a significant role in balancing between novelty
and relevance of the generated seeds [14], [15]. Prompting
strategies also impact the effectiveness of these models in
fuzzing scenarios [16], guiding the LLMs to produce outputs
that are more likely to expose software flaws.

Applications like WhiteFox and InputBlaster showcase the
versatility of LLMs in generating test cases and unconven-
tional inputs, thereby broadening the scope of automated
testing [17], [18]. These advancements not only enhance
the efficiency of testing but also help in understanding
and documenting software behavior [19], [20], and even in
developing specialized fuzzing drivers for test programs [21].

Several efforts have explored related uses of LLMs for
enhanced fuzzing. Projects like Fuzz4All, TitanFuzz, and
CHATAFL utilize LLMs to generate or mutate inputs in
specific software environments and protocols [22], [23], [24].
For instance, CHATFUZZ leverages LLMs to generate
variations of seeds from a greybox fuzzer’s pool, aiming to
produce high-quality, format-conforming seeds that are more
likely to expose hidden vulnerabilities [25].

Our study explores the conditions under which
fuzzing techniques such as Fuzz4All and TitanFuzz
are most effective, particularly across a broad spectrum

VOLUME 12, 2024

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

of Python functionalities. Unlike previous research, which
utilize narrow fuzzing targets like compilers and deep
learning libraries, our work extends to a wider range of
common libraries with a particular focus on web-facing and
input-parsing features. Additionally, multiple commercial
LLMs are compared under various settings to underscore the
significance of model selection over other factors.

lll. METHODOLOGY

To investigate the efficacy of LLM-generated fuzzing seeds,
we developed a comprehensive framework designed for
the automated collection of results at scale. Initially, for
each function listed in Section III-A, corresponding fuzzing
drivers were constructed, as elaborated in Section III-B.
Subsequently, a selection of commercial LLMs, whose
specifics are provided in Section III-C, were employed to
generate appropriate fuzzing seeds. These seeds were created
following the prompt template outlined in Section III-D and
subsequently utilized in various combinations to evaluate
their coverage capabilities, as described in Section III-E.
The workflow of this methodology are illustrated in Fig. 1,
highlighting integration of these components.

Prompt

Y

LLMs
(e.g., GPT, Claude)

Function
Orchestration »
)

Seeds

[
Seeds Config

Atheris

Harness

FIGURE 1. Testing pipeline for generating coverage metrics. A prompt is
sent to the target language model to generate seeds suitable for fuzzing a
specified function. These seeds are then input into an Atheris driver,
which runs the function with coverage tracking enabled, thereby
producing a percentage of the module’s code that is executed during
fuzzing.

A. FUNCTION SELECTION

The functions chosen for this study are representative of
various layers of application logic—from low-level binary
file handling to high-level network requests and data parsing.
Each group of functions was selected based on its usage
patterns and the type of data it processes, including functions
that deserialize data, parse user-supplied inputs, handle
multimedia files, and manage network operations. These
functions are of particular interest because they inherently
interact with external entities and control critical information
flows within applications.

The subsequent subsubsections detail the chosen cate-
gories of functionality, the specific functions selected, and
their brief descriptions as outlined in Table 1. This discussion
aims to underscore the diversity of these functions and their
importance in general security practices and fuzzing.

VOLUME 12, 2024

1) CONFIGURATION PARSING

This category contains functions that parse standard textual
and configuration data formats such as JSON, YAML,
XML, and CSV. These formats are ubiquitous in software
applications, serving as the backbone for configuration
management and data interchange [26]. The importance of
rigorously testing these functions is crucial, as vulnerabilities
in parsing can lead to critical security flaws like unauthorized
data access, injection attacks, and execution of arbitrary code.
Since these data formats are commonly used to handle user
or system-generated input, their secure parsing is essential for
maintaining the integrity and confidentiality of the data they
manipulate.

2) BINARY FORMAT PARSING

Functions that deal with binary and complex media formats,
including images, audio files, and documents, are categorized
here. Parsing such data is inherently riskier due to the
possibility of underlying memory issues, improper handling
of headers, or execution of embedded malicious code within
seemingly innocuous files [27]. These functions are frequent
targets in fuzzing because they directly interact with file
input/output operations that are susceptible to attacks using
specially crafted inputs.

3) NETWORK COMMUNICATION

This category includes functions that facilitate network com-
munications or manage network-related data. Functions such
as FTP, SSH, SMTP, and HTTP request handlers are integral
to many applications’ operations, handling everything from
data transfer to remote server management. The security of
these functions is critical as vulnerabilities can lead to man-
in-the-middle attacks, data leaks, or unauthorized system
access [28]. Given the diverse range of protocols and data
formats these functions handle, they present a complex
attack surface that requires thorough testing to secure against
external threats.

4) NETWORK FORMAT HANDLING

This category contains functions that handle various network
protocols and complex data formats, particularly those used
in web environments such as HTML, CSS, and related data
formats. These functions often parse and generate outputs that
are directly rendered or executed by client devices. Incorrect
parsing or handling of these formats can lead to cross-site
scripting, cross-site request forgery, and other web-based
attacks, necessitating robust testing [29].

5) TEXT PROCESSING UTILITIES

Functions in this category are focused on processing user
inputs and other forms of arbitrary text data. They perform
tasks such as data decoding, string splitting, and syntax
tokenization. Due to their potential for direct interaction with
user-provided data, these functions are susceptible to various
forms of input validation vulnerabilities, including SQL
injection, command injection, and buffer overflow attacks.
Ensuring that these functions handle inputs securely is crucial

156067

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

TABLE 1. Evaluated functions.

Baseline (%) Function Description

Configuration Parsing
4.36 json.loads (data) Parses JSON formatted string into a dictionary.
23.30 yaml.load (data, Loader=yaml.FullLoader) Loads YAML formatted data into Python objects.
23.33 yaml.safe_load (data) Safely parses YAML formatted data.
16.42 django.core.deserialize (data) Translate Django objects to configurations.
5.87 pandas.read_csv (io.StringIO (data)) Reads CSV formatted data into a DataFrame.
27.20 geojson.loads (data) Parses GeoJSON string into data structures.
7.61 configparser.read_string(data) Parses configuration from a string in INI format.
16.70 plistlib.dumps (data) Serializes Python objects into plist format.

14.11 toml.loads (data)
8.59 simplejson.loads (data)

Parses TOML formatted string into a dictionary.
Parses JSON data with extendabile options.

12.87 tablib.import_set (data, format='csv’) Imports CSV data into a Tablib Dataset.
29.85 pyexcel.get_sheet (file_content=data) Loads data into a PyExcel Sheet object.
Binary Format Parsing
17.69 PIL.Image.open (io.BytesIO (data)) Opens and identifies an image file as a stream.
27.00 wave.open (io.BytesIO(data), ’rb’) Opens a WAV audio file stream for reading.
26.89 sunau.open (io.BytesIO(data), 'rb’) Opens an AU audio file stream for reading.
17.12 pydub.AudioSegment.from_file (data) Creates an audio segment from a file stream.
23.25 mido.MidiFile (file=io.BytesIO (data)) Parses MIDI data from a file stream.
27.84 rarfile.RarFile (io.BytesIO(data)) Opens a RAR archive file from a stream.
14.02 x1lrd.open_workbook (file_contents=data) Opens a workbook from an XLS data stream.
38.31 ics.Calendar (data) Parses iCalendar formatted data into objects.
24.74 iptcinfo3.IPTCInfo (io.BytesIO (data)) Extracts IPTC metadata from image files.
2.92 scipy.optimize.minimize (data, ’'BFGS’) Minimizes a function using the BFGS algorithm.
Network Communication
19.13 ftplib.FTP (data) Initiates an FTP connection to an address.
20.48 paramiko.SSHClient () .connect (data) Establishes an SSH connection.
21.79 smtplib.SMTP (data) Initializes an SMTP client session.
31.46 requests.get (data) Sends an HTTP GET request to the URL.
0.72 urllib.parse.parse_gs (data) Parses a query string storing key-value pairs.
0.56 urllib.parse.parse_gsl (data) Parses a query and stores tuples.
Network Format Handling
16.48 cgi.parse_header (data) Parses a MIME header into a dictionary.
30.49 cgi.parse_multipart (data, pdict) Parses multipart/form-data from a stream.
11.74 email.message_from_string(data) Parses an email message from a string.
11.76 email.parser.parsebytes (data) Parses an email message from a byte stream.
11.70 email.parser.Parser () .parsestr (data) Parses an email message from a string.
4.16 email.utils.parseaddr (data) Parses a single email address into its components.
4.03 email.utils.parsedate (data) Parses a date string based on e-mail rules.
15.60 bsd.BeautifulSoup (data, ’"html’) Parses HTML data into a soup object.
23.03 html.parser.HTMLParser () . feed (data) Feeds HTML content into a sequential parser.
21.28 html5lib.parse (data) Parses HTMLS5 content into a tree.
16.35 markdown.markdown (data) Converts Markdown text to HTML.
25.89 markdown?2 .markdown (data) Alternative Markdown to HTML conversion.
Text Processing Utilities
0.78 ast.literal_eval (data) Evaluates and parses an expression from a literal.
40.24 chardet .detect (data) Detects the character encoding used.
30.10 construct.Struct.parse (data) Interprets bytes as structured data.
13.43 exrex.getone (data) Generates a random string that matches a regex.
24.30 fnmatch.filter ([files], data) Filters filenames that match a Unix pattern.
13.21 glob.glob (data) Finds pathnames matching a specified pattern.
24.88 phonenumbers.parse (data, 'US’) Parses strings representing phone numbers.

3.82 pygments.lex (data, lexer
10.84 quopri.decodestring (data)
23.57 shlex.split (data)

to preventing attackers from exploiting input validation errors
to gain unauthorized access or disrupt service [30].

B. FUZZING DRIVERS

To conduct fuzzing effectively, it is important to develop
a driver for the specific functionality being tested. These
drivers are small programs that provide necessary instru-
mentation and trigger the execution of the program logic

156068

Tokenizes source code for syntax highlighting.
Decodes a string with quoted-printable encoding.
Splits a string using shell-like syntax.

under test [31]. For each function listed in Section III-A,
a corresponding driver was created.

Building upon this setup, we selected the Atheris coverage-
guided fuzzer, specifically designed for Python, to enhance
our testing process. Atheris is actively maintained by Google,
ensuring it remains current with evolving software practices.
Its integration with libFuzzer allows the tool to leverage byte-
level mutations, which are guided by detailed code coverage

VOLUME 12, 2024

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

1 import atheris

2 import yaml

3 import sys

4

5 def fuzz_test(data):

6 try:

7 yaml.load (data, Loader=yaml.FullLoader)
8 except yaml.YAMLError as e:

9 pass

10

11 def main():
12 atheris . Setup(sys.argv,
13 atheris .Fuzz ()

fuzz_test)

14
15 if __name__ == "__main__":
16 main ()

LISTING 1. Atheris fuzzing driver for yaml.load.

data, to uncover hard-to-detect bugs in both Python code and
native extensions [8], [32]. This capability makes Atheris
particularly effective for our project, where comprehensive
testing of Python libraries is crucial. The fuzzer’s focus on
unexplored code paths and its ease of use also contribute to
its selection, providing an efficient method to enhance code
reliability and security.

An example of the harness used for yaml . load testing
is provided in Listing 1. The setup begins with the inclusion
of the Atheris library on line 1 via import, alongside
the yaml library on line 2, which contains the function
under test. The configuration for testing is specified on
line 12, based on command-line arguments (sys.argv).
This configuration includes specifying the number of fuzzing
runs, the maximum input size, and an optional seeding
corpus for the current test. The fuzz_test function, which
directs the fuzzing process, starts on line 5. A straight-
forward try/except block within this function aims to
capture expected errors known as yaml.YAMLError,
with any other unanticipated errors being recorded as a
crash. The actual testing of the yaml.load function
happens on line 7, where data provided by the fuzzer is
inputted. Here, Loader=yaml.FullLoader is used to
impose stricter input validations and support advanced Yaml
specifications [33].

To facilitate command-line operation, lines 15 and
16 include a handler for the main function, allowing the
harness to integrate with coverage tooling, as detailed
in Section III-E. This integration also includes a feature to
monitor the yaml module within coverage, tracking the
execution of lines in the yaml codebase. The command-line
invocation below demonstrates how to run the harness with a
simple corpus generated by GPT-3.5, specifying the number
of runs, maximum input length, and the corpus file:

coverage run —--source=yaml \
yaml.load_driver.py \
./gpt3.5_simple_corpus \
-max_len=500 \
—atheris_runs=10000

VOLUME 12, 2024

Note that a fixed configuration is used, consisting of
500 bytes maximum input size and 100,000 fuzzing muta-
tions. This configuration is designed to show early coverage
gains by incorporating seeds generated from LLMs. The
choice of 500 bytes balances complexity with efficiency,
allowing for quick test cycles while adequately encapsulating
meaningful data structures. The 100,000 runs allow us to
conduct multiple repeated trials across various configurations
within a reasonable timeframe, even for functions that
execute more slowly. These choice of constants represent
a trade-off between performance and effectiveness to allow
focusing on multiple LLM model selections and settings for
validating our framework.

The sole deviation from this standard occurs in tests where
only the seeds are used, as illustrated for the LM Only
strategy in Fig. 4 and 2. In such instances, the number of
runs is adjusted to equal the size of the corpus, ensuring
that the test executes only the seeding samples without any
further mutations. This approach provides a clear measure
of the coverage achievable by the LLM-generated samples in
isolation, focusing solely on their potential to increase code
coverage.

C. MODEL SELECTION

In the context of software testing, LLMs are increasingly
being utilized not only as augmentations but, in some
cases, as potential replacements for traditional fuzzing
techniques [22], [23]. Our study specifically explores this
emerging application, assessing the efficacy of general LLM
models in generating effective early inputs. While special-
ized, format-specific LLM models might offer benefits for
specific data types, their development and implementation
are not well established at this time. Training such models
must address the scarcity of tailored datasets and the com-
plexity of model training for specific formats. Additionally,
training our own models would necessitate attention to the
diversity of data and justification for the selected transformer
architectures.

Furthermore, the few existing format-specific fuzzers tend
to be very targeted and are not readily applicable to our
broad set of tests [34], [35]. These limitations underscore
the practicality of using existing LLMs for software security
testing, while highlighting the need for future studies. Such
studies should compare format-aware fuzzing against the
learned format structures inherent in LLMs, as discussed
in Section V-A.

The LLM:s selected for our experiments are chosen for their
recent development and widespread use across various appli-
cations, ensuring their relevance to current trends. Models
from leading companies are included: OpenAl’s GPT-3.5 and
GPT-4, Anthropic’s Claude-Instant and Claude-Opus, and
Google’s Gemini-1.0 [36], [37], [38]. These models were
chosen based on their robust performance metrics, extensive
usage in the industry, and their integration into popular tools.
For example, GPT-4 powers GitHub’s Copilot, a widely
used Al pair programmer [39], demonstrating its practical

156069

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

Generate several corpus samples for
fuzzing the Python function
"{func_name}"

The ’'data’ variable indicates the
location for fuzzing.

[The samples should be diverse and have
varying complexity.]

Provide the samples in a Python
array of strings with no commentary.

Ensure that your reply fits in a single
response.

LISTING 2. Prompt template for requesting fuzzing seeds.

utility and impact. This selection allows us to explore the
capabilities and differences of models that are not only
theoretically advanced but also practically proven in real-
world applications.

Temperature is a parameter in language models that
influences the randomness of the generated outputs [40].
A lower temperature (e.g., 0.0) results in more deterministic
and predictable outputs, favoring the most likely pattern of
tokens. Conversely, a higher temperature (e.g., 1.0) increases
randomness, leading to more diverse and less predictable
responses. In our study, we selected temperature values of 0.0,
0.5, and 1.0 to comprehensively assess how this parameter
affects the quality and variety of the seeds generated by
the models. This range allows us to evaluate the models’
performance across a spectrum from conservative to creative
outputs, enabling analysis on their practical applications
under varying degrees of randomness.

D. PROMPTING

The prompts provided to the large language models are
deliberately straightforward, yet follow best practices from
multiple sources [41], [42], [43]. Each prompt was crafted
to provide the LLMs with a clear context of the task and
the expected outputs, along with a specified output format
to facilitate automated processing of the results. An optional
command was included to elicit samples that are diverse
and of varying complexity, which provides the distinction
between the simple and complex corpora. The template
used for the prompts is provided in Listing 2.

Note that the final directive Ensure that your
reply fits in a single response is essential
due to our testing at low temperatures. It was frequently
observed that at a temperature setting of 0.0, outputs often
looped indefinitely. A common pattern in many binary sam-
ples, for instance, involved repeated null padding, as shown
in Listing 3. Such infinite loops would prevent the response
from completing, causing the test to fail. This behavior and its
implications are further discussed in Section IV-C1. In cases

156070

b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00

LISTING 3. Repeat padding seen with temperature 0.0.

Generate several corpus samples for
fuzzing the Python function
"yaml.load (data)"

The ’"data’ variable indicates the
location for fuzzing.

Provide the samples in a Python
array of strings with no commentary.

Ensure that your reply fits in a single
response.

LISTING 4. yaml.load prompt for a ‘simple’ corpus.

where corpus generation was compromised by such repetitive
patterns, any samples generated prior to the issue were
retained. Additionally, due to this behavior, all comparisons
other than temperature are conducted with the temperature
setting set to 1.0. This approach prevents the skewing of
results from truncation issues that predominantly occur at
lower temperatures.

The simple prompt for yaml.load shown in Listing 4
demonstrates the process. The input string yaml.load
(data) uses data as the parameter for which samples are
provided. This setup, referred to as the simple corpus,
does not request additional complexity. The output from this
prompt is a Python array containing suitable YAML samples
in string format, prepared for integration into the testing
process.

E. COVERAGE

In our study, we measure the coverage of the Python
module being tested as a percentage. This standardizes results
across modules regardless of their size or complexity. For
example, while a small utility module may have only a
few dozen statements, a larger framework could contain
thousands. Using percentage coverage rather than absolute
statement counts prevents the results from being skewed by
the module’s size, enabling more meaningful comparisons
across different tests.

1) RELATION TO LINES OF CODE

Table 2 lists the total source lines of code (SLOC) for each
module, showing that even small percentage increases in
coverage can represent hundreds of additional lines of code
covered. Additionally, because smaller libraries often rely
on their dependencies, expanding the tested branches can
significantly increase the total logic covered.

VOLUME 12, 2024

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

TABLE 2. SLOC by module comparison.

Module SLOC | Module SLOC
PIL 14406 pandas 247795
ast 1029 paramiko 8712
bs4 5531 phonenumber 4136
cgi 528 plistlib 533
chardet 1568 pydub 1852
configparser 696 pyexcel 2700
construct 3572 pygments 14226
email 5067 quopri 166
django 69998 rarfile 2094
fnmatch 107 requests 2149
ftplib 549 scipy 166316
geojson 353 shlex 263
glob 106 simplejson 2258
html 330 smtplib 514
html5lib 5756 sunau 331

ics 1827 tablib 1919
iptcinfo3 477 toml 1063
json 597 urllib 2501
markdown 3235 wave 300
markdown2 1603 xIrd 4858
mido 2288 yaml 3609

By expressing coverage as a percentage of the total
statements, we provide a scale-independent measure that
reflects the proportion of the module’s functionality exercised
during testing. This metric helps in assessing the effectiveness
of the generated seed inputs relative to the entire scope of the
module. A significant increase in coverage can be demon-
strated when comparing initial runs without LLM-generated
inputs to subsequent tests, although it is not expected for a
single function to execute every statement in a module.

Our experiments consistently utilize the coverage tool
to measure code coverage [44]. This tool calculates the
number of executed statements compared to the total number
of executable statements within a Python module. Its analysis
is strictly confined to the Python code, providing a precise
measure of which parts of the module are being utilized
during tests.

It is important to note that coverage does not include
calls to external supporting libraries. These are interactions
that occur outside the module being tested and are not
part of the package itself. Consequently, these external calls
are excluded from the coverage statistics. This limitation
can result in incomplete representation of the application’s
behavior, especially in cases involving complex interactions
with external systems.

2) BASELINE COVERAGE

Our research concentrates on evaluating the enhancements
in code coverage achieved through the use of different
fuzzing corpora. To accurately measure the impact of these
configurations, it is essential to establish a baseline code
coverage level. This baseline accounts for the coverage
generated by any initialization processes or common lines of
code that are executed regardless of the input provided. Such
lines might include setup tasks, default configurations, and
error handling routines that are triggered by the absence of
inputs [45].

VOLUME 12, 2024

To determine this baseline, we utilize the Atheris driver
for the specific function under test using a single empty
input. This approach ensures that the function is invoked
in its simplest form, without any data that might influence
its behavior and inadvertently increase code coverage.
Subsequently, this baseline percentage, as detailed in Table 1,
is subtracted from the coverage results of all further tests
that employ various fuzzing inputs. This subtraction isolates
the coverage attributable purely to the input variations
introduced by different fuzzing corpora, thereby providing a
clearer insight into the effectiveness of each configuration in
exploring new execution paths within the module.

3) COVERAGE EXAMPLE
For a concrete example, consider the yaml.load (data)
function from the YAML processing library. Initially, a base-
line for code coverage is established by executing the function
with an empty input, dat a=", as input to the test setup shown
in Listing 1. From this baseline run, a coverage of 23.30% is
recorded, as shown in Table 1. This number represents the
minimum coverage achievable, accounting for the execution
of essential code paths that do not depend on input data.
Subsequent tests are conducted both with and without
specialized input datasets to observe variations in code
coverage. For instance, running the function using inputs
from the GPT-4 simple corpus, the recorded coverage
increases to 51.21%. This value is adjusting by subtracting
the baseline coverage to isolate the impact of fuzzing from the
inherent baseline activity of simply loading the library. Thus,
the net increase in coverage due to the corpus is calculated
as 51.21% — 23.30% = 27.91%. This adjusted coverage
increment, representing the additional code paths explored
due to the input from the GPT-4 corpus, is then documented
in Table 3.

F. VALIDATION

To enhance the understanding of coverage behaviors, a series
of standard linear regression models were trained. Linear
regression is a statistical method used to model the rela-
tionship between a dependent variable and one or more
independent variables by fitting a linear equation to observed
data [46]. The primary goal is to find the best-fit line
that minimizes the differences between predicted values and
actual observations. This approach allows for predicting the
dependent variable based on the values of the independent
variables, providing insights into how different factors, such
as model configurations or operating parameters, influence
the overall coverage outcomes in our study.

This analysis was conducted on a per-function basis to
accommodate the significant variance observed in coverage
metrics. A predictor for each function was created using the
mean (u) of all observed values. Utilizing this method is a
common approach for constructing a ‘dummy’ classifier to
compare against other models [47].

The effectiveness of these models was evaluated by
measuring the mean squared error (MSE), which was

156071

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

expected to decrease as the correlation to coverage results
improved. Additionally, the coefficient of determination (R?)
was monitored, a critical metric for assessing the accuracy
of the models in replicating observed outcomes. Higher
R? values, approaching 1.0, indicate better explanatory
power, while values near 0.0 suggest a minimal relationship
between the predictors and the outcomes [48].

The models developed serve to test the following null and
alternate hypotheses:

Hy : p accurately predicts coverage outcomes.

H, : Linear regression can improve estimation accuracy.
Validation of the alternative hypothesis, H,, depends on
meeting specific statistical criteria. If the MSE for the
average-based model, denoted as MSE,y,, exceeds that of the
linear regression model, MSE}y,, then H, is considered sup-
ported. Additionally, if the coefficient of determination (R?)
for the linear regression model, Rlznr’ surpasses that of the
average model, Rgvg, this provides further evidence for H,,.
These conditions demonstrate that the linear regression model
not only reduces prediction errors but also more effectively
captures the variability in the observed data, outperforming a
simple mean value predictor.

The variables evaluated in the regression models include
Model (M), Temperature (t), additional fuzzing (Fuzzing),
and complexity-focused prompt directives (Complex). The
Model variable encompasses the distinct LLMs: Claude;
(for Claude Instant), Claudep (for Claude Opus), GPTs,
GPT4, and Gemini. These variables are analyzed to determine
their correlation with the coverage outcomes observed.
Algorithm 1 is employed to provide a structured and
comparative analysis of the two competing hypotheses.

To uniformly analyze the coverage deltas across all func-
tions, the data is standardized using z-score normalization
as seen in Equation 1. This technique adjusts the scaling to
ensure that each function has a mean (ur) of 0 and a standard
deviation (oy) of 1, facilitating comparisons across diverse
datasets [49].

Coverageinitial — Iuf)
of

Importantly, this normalization process is reversible,
allowing for the restoration of function-specific values:
Coverage,,jcq = (Coverage;yia — 1r)/0f

= oyCoverage,.,eq = Coverage;niia — Uf

Coveragescaled =

= Coverage;pja = of Coverage, . ioq + 1f

The values derived from the z-score normalization are utilized
to formulate a generalized equation that estimates coverage
increases based on the study variables, shown in Equation 2.
This formula quantifies the relative impact of each variable
on the outcome, where the absolute value of the coefficients
indicates the strength of each variable’s influence. Larger
values signify a more substantial impact on coverage changes,
regardless of the direction of the effect. This methodological
approach enables a comprehensive analysis of how each fac-
tor contributes to variations in coverage, providing a nuanced
understanding of LLM impacts to fuzzing improvements.

156072

Algorithm 1 Construct and Evaluate Regression Model for
Coverage Predictions per Function
1: procedure RegressionModel(D, F')
2: Input: Dataset D filtered by Function F
3: Output: Formula, MSE, R? statistics
Data Preparation:
Dencoded < Encode categorical variables in D
Dirain, Diest < Split Dencoded (20% test data)

Model Setup:

6: < mean(Drain)

7 avg(u) < Null hypothesis, mean predictor

8: linear(Dyrain) <— Train linear regression Model
Formula Construction:

9: coefficients, intercept <— Extract from linear

10: formula < intercept

11: for each coeff in coefficients do

12: formula < formula + coeff - feature

13: end for

Null Hypothesis Test:

14: i’avg < avg(Dyest)
15: MSE,y, < MeanSquaredError(Dies(, Yave)

16: R%Vg <« RaScore(Diest, Yave)
Model Statistics:
17: Vinr < linear(Dyegt)

18: MSEj,; < MeanSquaredError(Diegt, Yinr)
19: R < RyScore(Diest, Jinr)

Output:
20: return formula, MSEuyg, MSEinr, Ra g, R,
21: end procedure

IV. RESULTS AND ANALYSIS

A comprehensive evaluation of the effectiveness of LLMs
in enhancing fuzzing coverage across software systems
using our framework is presented following the methodology
described in Section III. The aim is to determine how different
models and their generated corpora contribute to improving
software testing outcomes, with the full set of result averages
and 95% confidence intervals captured in Table 3.

These findings not only validate the established assessment
framework but also shed light on the optimal strategies
for employing LLMs in targeted fuzzing applications. The
following analysis will explore the implications of these
results, focusing on how variations in LLM settings, corpus
characteristics, and other operational factors influence the
overall effectiveness of the fuzzing process.

A. FRAMEWORK OUTPUTS

Exploring the relationship between LLM configurations and
the characteristics of the resulting fuzzing seeds highlights
the framework’s effectiveness. It assesses how well LLMs can
generate valuable fuzzing inputs. Through detailed, function-
specific analyses, we show how changes in seed composition
and size are influenced by the choice of LLM and the specific
prompts used. Our objective is to ensure that the framework

VOLUME 12, 2024

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

TABLE 3. Average coverage delta per model and function.

Function Claude-Instant ~ Claude-Opus GPT-3 GPT-4 Gemini-1.0 none
PIL.Image.open 1.08 + 0.54 1.19 + 0.46 1.31+0.24 3.94 + 0.47 1.60 + 0.41 132 +£0.18
ast.literal_eval 2454+ 0.38 2.42 +0.39 2.41 +0.49 2.46 +0.23 2.55 +0.67 2.25 +0.07
bs4.BeautifulSoup 0.73 + 0.07 0.74 £ 0.06 0.74 £ 0.12 0.72 + 0.08 0.75 £ 0.05 0.74 £ 0.03
cgi.parse_header 1.39 +0.18 1.11 £ 0.63 1.31 £ 0.36 1.48 +0.13 1.27 £ 0.62 0.38 + 0.00
cgi.parse_multipart 4.80+0.18 4.92 +0.00 4.84 £ 0.65 4.93 +£0.05 458 £ 1.15 4.62 +£0.15
chardet.detect 45.50 £2.92 46.23 £2.31 4336 =4.00 43.61 £2.46 45.81 +4.70 46.47 £ 0.15
configparser.read_string 9.67 +0.32 8.04 +£2.75 6.71 +1.42 13.19 + 1.04 1043 + 1.14 489+ 1.44
construct.Struct.parse 1.43 4+ 0.00 1.43 + 0.00 1.43 + 0.00 1.43 + 0.00 1.43 + 0.00 1.43 £ 0.00
django.core.deserialize 0.02 £ 0.01 0.01 4+ 0.00 0.05 £ 0.07 0.38 £ 0.61 0.02 £ 0.01 0.01 £ 0.00
email.message_from_string 0.94 +0.30 1.06 +0.23 1.22 +£0.10 225+ 1.35 2.16 + 1.45 1.19 £+ 0.07
email.parser.Parser.parsestr 0.88 £ 0.32 1.05 £ 0.23 1.20 £ 0.07 1.33 £ 0.18 1.85 £ 1.02 1.22 £ 0.00
email.parser.parsebytes 1.92 £ 1.00 4.00 £ 0.22 1.29 £ 0.16 337 £1.18 1.21 £ 0.09 1.23 £ 0.02
email.utils.parseaddr 2.65 +0.28 294 +0.14 2.89+0.14 3.14+0.11 3.00 £ 0.10 2.80 + 0.06
email.utils.parsedate 1.32+0.12 1.36 + 0.08 1.15+0.11 1.36 + 0.08 123 +0.11 0.53 + 0.00
exrex.getone 15.72 + 1.61 13.68 £ 0.73 10.16 £ 1.69 1574 £ 1.41 17.30 = 3.99 7.83 £ 0.80
fnmatch.filter 37.63 £ 2.27 42.79 £ 0.38 39.36 :=4.16 42.70 4+ 0.61 37.77 £ 4.47 36.64 4+ 3.98
ftplib.FTP 1.64 £ 0.00 1.64 £ 0.00 1.64 £ 0.00 1.64 £ 0.00 1.09 £ 0.78 1.64 £ 0.00
geojson.loads 1471 £ 2.13 16.99 + 0.64 1451 £1.92 1674 £1.32 16.43 + 0.80 0.00 £ 0.00
glob.glob 29.70 + 1.40 32.83 £ 3.01 3536 +3.34 3524 +2.84 29.54 + 4.67 23.58 +2.31
html.parser. HTMLParser.feed 6.26 & 3.64 6.77 £4.29 12.15+3.48 12.06 £ 3.67 8.77 £4.76 13.09 &+ 3.67
html5lib.parse 10.52 + 1.36 12.53 + 1.17 7.45 +£0.79 17.34 + 1.40 7.79 £+ 0.69 2.93 £+ 0.08
ics.Calendar 891 +£3.24 8.18 £ 4.17 2.36 +0.24 12.49 +2.53 7.27 + 3.98 2.42 +0.02
iptcinfo3.IPTCInfo 2.30 4 1.68 3.07 £0.10 3.09 + 0.65 13.79 £2.45 3.05+0.73 3.14 £ 0.00
json.loads 1.55 +£0.45 1.57 £ 0.41 2.254+0.24 2.27+£0.27 1.76 + 0.56 2.31 +£0.07
markdown.markdown 13.62 4+ 1.39 9.95 +4.35 1470 £ 097 1292 +1.22 1332 +2.42 12.09 4+ 0.48
markdown2.markdown 12.14 £2.92 12.22 £ 4.65 1122 4+3.22 10.82 £2.16 8.42 £ 2.00 8.56 £ 0.46
mido.MidiFile 0.10 £ 0.05 1.22 +0.40 0.13 £+ 0.00 426 £+ 1.89 0.36 £ 0.16 0.13 + 0.00
pandas.read_csv 0.29 £+ 0.03 0.29 + 0.02 0.31 +£0.04 0.35 £ 0.07 0.29 + 0.03 0.32 £ 0.05
paramiko.SSHClient.connect 1.15 + 3.64 8.92 +5.84 7.01 £6.26 12.81 + 0.06 2.97 +5.38 10.26 £+ 5.03
phonenumbers.parse 447 +0.24 5.154+0.10 5.00 +0.18 5.60 4+ 0.24 5.19+0.24 471 +£0.19
plistlib.dumps 23.51 £0.90 1749 £ 11.57 2320+£2.22 25954322 17.15 4+ 11.35 18.80 £ 2.15
pydub.AudioSegment.from_file 1.57 4+ 0.71 1.55 £ 0.70 1.87 £0.18 1.87 £ 0.10 1.25 £ 0.67 1.88 4 0.09
pyexcel.get_sheet 1.92 +0.02 1.92 +0.02 1.92 +0.02 1.93 + 0.00 1.92 +0.02 1.93 £ 0.00
pygments.lex 0.04 +0.02 0.04 + 0.02 0.05 + 0.02 0.05 £ 0.02 0.05 £ 0.01 0.06 = 0.00
quopri.decodestring 1.20 & 0.00 1.20 = 0.00 1.20 + 0.00 1.20 = 0.00 1.20 + 0.00 1.20 & 0.00
rarfile.RarFile 338 £2.22 0.29 + 0.00 0.29 £+ 0.00 529 +1.87 0.29 £+ 0.00 0.29 + 0.00
requests.get 4.71 £0.04 15.49 £ 0.97 4.74 £0.02 17.28 +2.50 14.58 £ 0.18 4.75 + 0.00
scipy.optimize.minimize 0.08 + 0.06 0.08 £ 0.06 0.12 £ 0.03 0.12 £ 0.03 0.11 +0.04 0.13 + 0.00
shlex.split 21.16 +2.41 21.41 +£1.52 21.84+1.95 22.16 + 0.68 2222+ 1.24 2228 + 0.46
simplejson.loads 0.47 £ 0.11 0.47 £0.11 0.51 +0.06 0.52 £ 0.04 0.53 +0.01 0.53 + 0.00
smtplib.SMTP 3.18 £0.32 2.33 +£0.00 2.33 +0.00 2.46 +£0.24 2.99 +0.46 2.72 +0.48
sunau.open 1.21 £0.00 2.01 £ 0.57 1.21 £ 0.00 4.05 £3.09 1.21 £ 0.00 1.21 £ 0.00
tablib.import_set 1.28 +0.27 1.28 +0.26 1.40 £0.16 1.60 £ 0.04 1.38 £ 0.17 1.43 +£0.03
toml.loads 28.33 + 3.87 32.88 +3.99 2312+ 640 3584 +13.55 1991 +3.10 13.08 + 4.47
urllib.parse.parse_qs 1.60 £ 0.34 1.80 £ 0.05 1.29 £ 0.49 1.82 £ 0.05 1.47 £0.52 0.96 £ 0.40
urllib.parse.parse_gsl 0.91 +0.42 1.68 + 0.05 1.21 +0.49 1.71 £ 0.04 0.79 +0.32 0.88 +0.40
wave.open 0.67 + 0.00 7.38 +4.41 0.67 &+ 0.00 11.62 + 1.90 0.67 &+ 0.00 0.67 + 0.00
xlIrd.open_workbook 0.74 + 0.90 1.92 + 0.04 1.99 +0.10 1.48 £ 1.04 1.96 + 0.05 1.98 £ 0.03
yaml.load 19.75 4+ 6.32 23.64 £ 1.55 23.67+£3.04 2791 +1.74 22.70 +4.27 23.84 + 0.46
yaml.safe_load 22.27 + 4.05 23.39 4+ 3.63 2236 +3.73 27.28 +2.00 22.54 + 4.28 23.43 + 0.30

adjusts to various testing environments and consistently
offers insights into the practical benefits of using LLMs to
improve program testing.

Key artifacts supporting this analysis include Table 3,
which presents average fuzzing coverage for all tested LLMs,
offering a comparative performance overview. Additionally,
Figure 2 details improvements in fuzzing effectiveness for
each function, categorized by strategy. Sample outputs from
the models illustrate the diversity and relevance of the
generated seeds and their correlation with the observed
coverage improvements. Moreover, Figure 3 displays graphs
that show the number of samples each LLM produces per
prompt type, highlighting the impact of different prompt
strategies on seed generation.

VOLUME 12, 2024

1) FUNCTION TYPES

The effectiveness of these seeds varied significantly among
different functions, as detailed in Fig. 2. Three scenarios were
analyzed: No Corpus, using only the Atheris fuzzing tool;
LLM + Corpus, combining Atheris with LLM-generated
seeds; and LLM Only, employing seeds independently
without additional mutations.

The LIM + Fuzzing approach was the most effec-
tive, improving coverage in 70% of the tested functions
(35 out of 50). However, some libraries like bs4,
smtplib, and xlrd saw better results with fuzzing
alone, often due to the poor quality of LLM-generated
seeds. For example, seeds for the x1rd.open_workbook
function generated by GPT-3.5 were ineffective, leading

156073

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

x1lrd.open_workbook (b’ important’)
x1lrd.open_workbook (b’ fuzzing’)
xlrd.open_workbook (b’ random’)
x1lrd.open_workbook (b’ fuzzdatal’)
x1lrd.open_workbook (b’ fuzzdata2’)

LISTING 5. GPT-3.5 seed samples for xird.

to wasted cycles
in Listing 5.

Further analysis showed that using LLM-generated seeds
alone provided better average coverage for libraries like
exrex, requests, and rarfile. Performance was
comparable to LLM + Fuzzing in libraries such as ics,
attributed to the presence of fewer, higher-coverage seeds.
In contrast, traditional fuzzing with 100, 000 mutations
tended to lower the overall average by exploring with
low-coverage samples in these cases.

Certain libraries, including construct, pyexcel,
and quopri, showed no coverage improvement with
LLM-generated seeds, with results remaining consistent
across different input scenarios. This lack of variation,
marked by an absence of confidence intervals, indicates the
same level of coverage in every test.

It is important to note that none of the tests achieved
complete 100% coverage. The chardet library recorded the
highest total test coverage, reaching a maximum of 78.66%
when utilizing the LLM + Fuzzing approach. This indi-
cates that there is potential for further improvement through
additional fuzzing techniques.

These findings highlight the variable efficacy of
LLM-generated seeds in enhancing fuzzing coverage. While
beneficial in most contexts, their impact is limited in others,
suggesting a need for a strategic blend of LLM-generated
seeds and traditional mutation fuzzing to fully explore
program behaviors. This approach demonstrates how to
baseline and test LLMs for improvements. It is readily
apparent where the models failed to provide meaningful,
and sometimes detrimental seeds by analyzing the resulting
impact to coverage.

on non-functional inputs as seen

2) SAMPLES GENERATED

The total number of samples generated for each program
varied significantly depending on the LLM used, as shown
in Fig. 3. Although instructions were given to limit outputs
to a single reply, most models produced far fewer than the
maximum allowable tokens. The exception was Claude
Opus, which often reached or exceeded the token limit and
required truncation. Importantly, as discussed in Section II,
the size of the generated corpora did not correlate with the
quality of fuzzing — larger datasets do not necessarily translate
to better fuzzing outcomes. This is a critical insight for
optimizing fuzz testing strategies, as it suggests a shift in
focus from quantity to the quality and relevance of the data
generated from LLMs.

156074

The complexity of the directions given, whether simple
or complex, had minimal impact on the size of the corpora
but significantly influenced the content of the seeds. For
instance, complex directives typically resulted in longer
samples with more variation. An example from GPT-4
using our yaml . 1oad function shows that the most detailed
sample from the simple corpus includes type enforcement
and sequences, as seen in Listing 6. Conversely, the most
elaborate comp 1ex sample includes shape types, namespace
tagging, and comments, as detailed in Listing 7.

a:
b: !!lset

? Ilseqg [a]

? !lseqg [b]

LISTING 6. GPT-4 yaml.load simple corpus sample.

$TAG ! tag:sample.domain,2002:
!'shape
Use the ! handle for presenting
x: 1
y: 1
width: 10

LISTING 7. GPT-4 yaml.load complex corpus sample.

B. MODEL SELECTION

The selection of LLM was the most crucial factor influencing
the enhancement of early coverage metrics during fuzzing
processes, as depicted in Fig. 4. Among the various models
tested, GPT—-3.5 demonstrated the least effectiveness; its
samples not only failed to improve coverage but also
performed worse than direct fuzzing executed in isolation.
This indicates a significant limitation in the GPT-3.5
model’s ability to generate useful fuzzing inputs compared
to other models.

On the other hand, GPT-4 stood out by consistently
surpassing all other models in performance, yielding higher
averages across the majority of the evaluated functions,
as shown in Table 3. This superior performance suggests
that GPT—4’s advanced training and broader knowledge base
likely contribute to generating more effective and diverse test
cases, which translates to early gains in fuzzing coverage.

The performance of GPT-4 was not notably enhanced
by the use of the Atheris fuzzing tool. The generated
mutations did not substantially enhance the coverage beyond
the original samples generated by GPT-4. This observation
shows that the coverage achieved with an average of
37 samples (see Fig. 3) from GPT-4 was comparable to
that of direct fuzzing using the same set of samples over
100, 000 steps. This could suggest that the initial samples
from GPT—-4 were already well-suited for improving initial
fuzzing steps, leaving little room for early coverage gains
through mutation.

VOLUME 12, 2024

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

Generated Sample Counts

- B simple_corpus
GPT-3 o complex_corpus
- BN merge_corpus
GPT-4 —
I
|
Claude-Opus —
e
[o
Claude-Instant -
 a
-
Gemini-1.0 -—
. ——
0 20 40 60 80
Count

FIGURE 2. Comparison of coverage across the 50 Python functions tested
using three strategies: ‘No Corpus’ (Atheris fuzzer without seeds), ‘LLM +
Fuzzing’ (combines LLM outputs with Atheris), and ‘LLM Only’ (solely
LLM-generated seeds). 95% Cl lines on each bar highlight reliability.

‘LLM + Fuzzing’ consistently shows the best performance, with ‘LLM Only’
as a close competitor, demonstrating the ability to achieve reasonable
coverage gains with a minimal set of targeted samples.

In contrast to GPT—-4, all other tested models benefited
from mutation-based fuzzing applied to their generated seeds.
The application of mutations introduced new variations
and complexities into the input data, which then exposed
more edge cases not covered by the original samples. This
improvement underscores the potential value of combining
LLM-generated seeds with traditional fuzzing techniques to
maximize early coverage and uncover more subtle software
bugs.

This conclusion is expected, as transformer-based LLMs
are designed to identify patterns and dependencies in
sequences of data, constructing probability distributions to
generate outputs based on their training data [50]. These
distributions are influenced by the characteristics of the
datasets and are further refined by techniques such as
reward-based feedback [51]. Consequently, a model with
more comprehensive distributions that cover a broader array
of input types and that has enhancements for structural
validity will inherently outperform a model with less effective
distributions. Increasing only the model size and the number
of parameters, without optimizing these factors, will not nec-
essarily lead to improvements in task-specific performance.

The use of safety systems can introduce notable limitations
for LLM-assisted fuzzing, as evidenced by challenges
encountered with the Gemini model. For example, when
using the ftplib.FTP function, Gemini frequently
produced errors citing ‘dangerous content’, as detailed in
Listing 8. Similar issues arose with nearly all network-
focused libraries, such as those for ssh and e-mail. The safety
mechanisms often activated unexpectedly, necessitating

VOLUME 12, 2024

safety_ratings {
category:
HARM_CATEGORY_DANGEROUS_CONTENT
probability: HIGH

LISTING 8. Gemini safety blocking for FTP testing.

multiple attempts to obtain usable results. Additionally,
a recurrent ‘recitation’ error, where no output was produced
because the response was too similar to the training
data, required further repetitive testing [52]. Despite these
challenges having minimal impact on scoring due to repeated
trials, they compromise the model’s capability for automated
code coverage testing, thus undermining its reliability and
effectiveness in many practical scenarios.

C. LLM SETTINGS IMPACT

As mentioned in Section IV-B, the quality of fuzzing seeds is
mainly determined by the models’ learned distributions. Our
experiments show that changing how we sample from these
models, such as adjusting the temperature, changing prompts,
or varying the sizes of the datasets, has little impact on the
results. This indicates that the success of LLMs in fuzzing
tasks depends mainly on their training and fine-tuning, rather
than on how they are accessed through the API.

1) TEMPERATURE SETTING

Adjusting the temperature parameter (tr), which affects
the token choice probability distribution, showed negligible
effects on the quality of the generated fuzzing seeds. Setting
the temperature to 0.0 led to slightly worse outcomes for both
GPT models, though these differences were not statistically
significant. The relationship between temperature settings
and fuzzing coverage is depicted in Fig. 5 and detailed results
across both models are provided in Table 4.

To further understand the differences in behavior based
on temperature settings, an analysis of the GPT-4 outputs
for the yaml.load example is shown. At a temperature
setting of 0.0, all generated samples exhibit a high degree
of similarity in structure, as documented in Listing 9.
Specifically, 42 of the 44 samples begin with a :, and all but
one include the string ! ! python.

Conversely, when the temperature is set to 1.0—as shown in
Listing 10—the samples display significantly greater diversity.
This includes a lack of repetitive patterns, suggesting that
these samples are more likely to cover a wider range
of program behaviors. Ultimately, these enhanced samples
demonstrated minimal impact on the average final coverage
scores.

2) PROMPT DIRECTIVES

The adjustments made to the prompting directives also
exhibited minimal impact. Requests for increased complexity
and diversity in the samples, as outlined in Listing 2, as well
as the combination of outputs from different prompts within

156075

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

Coverage Increase By Function and Strategy

PIL.Image.open
ast.literal_eval
cgi.parse_header
cgi.parse_multipart
configparser.read_string
django.core.deserialize
email.message_from_string
email.parser.parsebytes
email.parser.Parser.parsestr
email.utils.parseaddr
email.utils.parsedate
exrex.getone

fnmatch filter

ftplib.FTP

glob.glob
html.parser.HTMLParser.feed
json.loads
paramiko.SSHClient.connect
plistlib.dumps

requests.get
scipy.optimize.minimize
shlex.split

smtplib.SMTP

sunau.open
urllib.parse.parse_qs
urllib.parse.parse_gsl
wave.open

yaml.load
construct.Struct.parse
geojson.loads
Iptcinfo3.IPTCInfo
mido.MidiFile
pandas.read csv
phonenumbers.parse
pydub.AudioSegment.from_file
pyexcel.get_sheet
pyaments.lex
tablib.import_set
bs4.BeautifulSoup
chardet.detect
htmlI5lib.parse

ics.Calendar
markdown.markdown
markdown2.markdown
quopri.decodestring
rarfile.RarFile
simplejson.loads
toml.loads
xird.open_workbook
yaml.safe_load

" || ™

[=]
=
o

Model
mmm No Corpus
mm LM + Fuzzing
s LM Only

20

w
o

40
Coverage Delta

FIGURE 3. Comparison of generated sample counts across three corpora: simple, complex, and their combined samples (merge), annotated
with 95% confidence intervals to highlight variability. The results from each LLM tested are shown, emphasizing the influence of model
selection on sample volume. This graph underscores the differences between LLM offerings and demonstrates minimal impact on the final

corpus size when prompting for additional complexity.

the same models, showed little effect. As depicted in Fig. 6,
only the merge corpus demonstrated a slight advantage
over the corpora generated from complex or simple
prompts. However, on average, the use of LLM-generated
corpora resulted in notably better outcomes, especially when
compared to fuzzing without seeds, as indicated by the None
entry.

3) NUMBER OF SAMPLES
No significant correlation was observed between the number
of samples generated by a model and the resultant coverage,

156076

as illustrated in Fig. 7 where comparisons are made across
all models and individual functions. Models that generated
larger corpora, such as Claude Opus, did not consistently
demonstrate a corresponding increase in coverage. However,
they occasionally influenced the variation observed in the
confidence intervals.

For clarity, the yaml.load function is examined in
isolation. This analysis is depicted in Fig. 8, showing that
the size of the corpus has minimal impact on the average
coverage, although the confidence intervals do exhibit fluctu-
ations in certain instances, notably for Gemini and Claude

VOLUME 12, 2024

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

TABLE 4. Temperature (z) averages for GPT-3.5 and GPT-4.

Function 7=0.0 7=0.5 T=1.0
ast.literal_eval 2.44 +0.26 2.54 +£0.28 2.354+0.50
bs4.BeautifulSoup 0.76 + 0.04 0.76 + 0.04 0.69 £0.13
cgi.parse_header 1.45+0.14 1.33 +0.43 1.39 £0.19
chardet.detect 47.05 £0.27 46.61 + 0.34 41.45 £2.90
construct.Struct.parse 1.43 £ 0.00 1.43 + 0.00 1.43 £ 0.00
email.message_from_string 1.24 +0.02 1.22 +£0.03 2.60 £+ 1.41
email.parser.Parser.parsestr 1.20 £ 0.06 1.21 +£0.04 1.37 £ 0.20
email.utils.parseaddr 3.01 £0.12 3.09 + 0.18 2.96 £+ 0.19
email.utils.parsedate 123 +£0.14 1.22 £0.10 1.29 £0.17
exrex.getone 13.09 £ 3.08 12.79 £2.39 1291 +£3.82
fnmatch.filter 41.90 £ 0.87 40.95 + 3.53 40.32 £ 4.39
ftplib. FTP 1.64 £ 0.00 1.64 + 0.00 1.64 + 0.00
geojson.loads 15.90 + 1.01 15.85 £ 1.01 15.16 +2.90
glob.glob 36.03 £+ 2.82 36.29 +£1.23 33.83 +3.81
html.parser HTMLParser.feed ~ 12.71 & 3.21 13.31 4+ 3.06 10.56 +3.73
html5lib.parse 11.75 + 4.81 11.96 4 4.85 13.01 +5.39
ics.Calendar 6.72 £5.19 8.03 £5.86 7.15 £4.99
json.loads 2.30 = 0.09 2.32 +£0.07 2.16 +0.39
markdown.markdown 13.04 + 1.06 14.58 +1.33 13.90 + 1.38
markdown2.markdown 8.77 £ 1.46 11.67 £ 2.66 12.48 +2.46
paramiko.SSHClient.connect ~ 9.82 £ 5.34 10.67 £ 4.71 9.25 £5.66
phonenumbers.parse 5.19 £ 0.33 542+ 047 5.26 £ 0.26
plistlib.dumps 22.60 £ 3.80 2424 £ 141 26.50 £ 2.12
pyexcel.get_sheet 1.93 £ 0.00 1.93 4+ 0.00 1.91 +£0.03
quopri.decodestring 1.20 £ 0.00 1.20 + 0.00 1.20 £ 0.00
requests.get 9.89 +5.20 10.18 £5.51 12.47 £7.86
scipy.optimize.minimize 0.13 £ 0.00 0.13 £ 0.00 0.11 £0.05
shlex.split 22.65 +0.48 22.07 £ 0.37 21.39 +2.19
simplejson.loads 0.53 £ 0.00 0.53 £ 0.00 0.50 £ 0.09
smtplib.SMTP 2.33 +0.00 2.53 +£0.27 2.33 +£0.00
tablib.import_set 1.51 +£0.10 1.52 £+ 0.09 1.46 +0.21
toml.loads 31.16 = 11.40 3348 +£10.81 23.00 +11.33
urllib.parse.parse_gs 1.34 £0.51 1.50 + 0.49 1.77 £ 0.07
urllib.parse.parse_gsl 1.53 £0.38 1.27 £0.49 1.55 £0.36
xIrd.open_workbook 1.18 = 0.95 1.96 £+ 0.20 2.16 £0.28
yaml.load 25.87 +2.44 25.63 £+ 2.09 28.95 +4.29
yaml.safe_load 2529 £2.11 2495 £2.32 21.70 £5.22

'l'python/apply:__builtins___.open
'lpython/apply:_ _builtins_ .eval
'lpython/apply:_ _import__ (’os’) cen
''python/apply:__import__ (’subpr ...

(r

!''python/apply:___import__ (’shuti

[V VR TR)

LISTING 9. yaml.load: 7=0.0 samples (One per line).

- step: !!'omap\n - id: testl\n -nam...
receipt: Oz-Ware Purchase Invoice\n d...
- !'!python/name:module.submodule.Clas...
a: ’single quoted string with special...

? — Detroit Tigers\n - Chicago cubs

LISTING 10. yaml.load: v=1.0 samples (One per line).

Instant. Despite these variations, the areas of uncertainty
are not substantial enough to result in statistically significant
overlap with the highest performing model, GPT—-4.

D. LINEAR REGRESSION TESTING

Multiple linear regression models were developed for each
function as detailed in Section III-F. We recorded the
MSE and the coefficient of determination (R?) for the

VOLUME 12, 2024

average-based (avg) and linear regression (linear) models.
These correspond to the null hypothesis (Hp) and the
alternative hypothesis (H,), respectively. Metrics and their
differences are displayed for each function in Table 5.
Functions without notable coverage changes, as specified in
Section IV-Al, are excluded from the table. Furthermore,
all Rﬁvg values were consistently near 0.0 and are omitted due
to their minimal impact.

In all instances, a significant reduction in prediction
error was observed for the linear regression model. This
was evident from the comparison of MSE values between
the linear regression (MSE,) and average-based (MSE,y,)
models, with a mean difference of 8.34. Even more indicative
of the model’s effectiveness are the Rlznr values, which were
consistently high, with the majority exceeding 0.5. These
results demonstrate a strong correlation between coverage
predictions and the variables associated with different models
and prompt settings. Considering the specific model, prompt
directives, and temperature settings, it is often possible to
achieve reasonably accurate predictions of code coverage.

We further explored these correlations across all functions
using z-score normalization, as shown in Equation 1. This
process yields the coefficients for each variable, presented in
Equation 2. The variable with the greatest impact is Fuzzing

156077

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

Coverage Increases by Model

Strategy

8 --- No Corpus
== LLM + Fuzzing
s LLM Only
6
E _______ - -
T
[=]
]
o
ol
o4
>
<3
o
2
0
GPT-3 GPT-4 Claude-Opus Claude-Instant Gemini-1.0
Model

FIGURE 4. Observed coverage increases across different models using
‘LLM + Fuzzing’ and ‘LLM Only’ strategies, compared against a baseline
represented by a dashed red line for ‘No Corpus’. While model selection
notably impacts coverage, differences between ‘LLM + Fuzzing’ and
‘LLM Only’ are minor, indicating that both strategies effectively enhance
coverage beyond the baseline at a similar rate in most cases. These
findings underscore the role of LLM model choice in optimizing test
coverage.

Coverage Differences by Temperature

—_——————

85 .”””/,,’—/—””’7

8.0

Model
— GPT:3
75 —— GPT4

Coverage Delta

—_—
65 -/

0.0 0.2 0.4 0.6 0.8 10
Temperature

FIGURE 5. Assessment of temperature impact on observed coverage
delta between GPT models. The grey areas represent the 95% confidence
intervals over all tests. The results show minimal variation in coverage as
temperature changes within each model, showing limited influence of the
temperature setting. However, the models themselves show notable
differences, highlighting the importance of LLM selection over
temperature adjustments in optimizing fuzzing strategies.

at 1.06, which indicates an improvement in coverage when
using the Atheris fuzzer in conjunction with LLM-generated
seeds. Following this, the selection of the model Mgpr,,
with a coefficient of 0.89, confirms earlier findings that
GPT-4 consistently outperforms other LLMs. In contrast,
the use of Mgpr, shows the least improvement, with a
coefficient of only 0.01. Overall, the choice of model and
the integration of seed generation with fuzzing significantly
influences outcomes.

Coverage . jcqg = —1.49
+ 0.23 - Mclaude; + 0.43 - Mclaude,
+0.01 - Mgpr, + 0.89 - Mgpr,
4 0.21 - MGemini + 1.06 - Fuzzing
+0.09 - Complex +0.19 - t 2

156078

Coverage Increase by Corpus

Coverage Delta (%)
o8] w f= w [=3] -

=

FIGURE 6. Coverage improvements across different corpora types with
data from all trials. A marked improvement is seen between the ‘None’
baseline, which shows significantly lower coverage, and the enhanced
results using LLM-generated seeds. While all corpora types improve upon
the baseline, the ‘Merge’ corpus exhibits a slight additional increase.
This finding highlights the contributions of the LLM-generated seeds in
providing early coverage improvements to fuzzing.

Sample Size Impact On Coverage (All Functions)

Model
GPT-3
GPT-4
Claude-Opus
Claude-Instant
Gemini-1.0

40

Coverage Delta

0 50 100 150 200 250 300
File Count

FIGURE 7. Coverage delta as a function of the number of generated
samples (File Count), each LLM model is differentiated by line color.
Despite varying sample sizes, each set of coverage improvements is
consistent for each permutation of model and function. This indicates
minimal correlation between the number of samples a given LLM creates
and coverage improvements. This consistency shows that early coverage
gains are predominantly influenced by the choice of LLM model,
consistent with the other findings in the paper.

The MSE values and R? scores for the unified formula
were recorded and showed positive improvements over the
average-based predictor:

MSEgyg — MSEjy

=1.0-0.71 = 0.29R}, — R%,, = 0.31 — 0.0 = 0.31

avg

The R? value of 0.31 indicates that 31% of the variability
in the dependent variable is accounted for by the predictors.

VOLUME 12, 2024

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

Sample Size Impact On Coverage (yaml.load)

Model
27 — GPT-3
GPT-4
Claude-Opus
Claude-Instant
Gemini-1.0

26

25

24

23
.
—s

Coverage Delta

22

21
ey

0 50 100 150 200 250 300
File Count

FIGURE 8. Early fuzzing results comparison for yaml.load across model
types, illustrating the relationship between fuzzing coverage and corpus
size. Each model’s performance is depicted by a unique color with the
95% confidence intervals shaded around each line. In this case GPT-4
achieves substantial early coverage, a trend that was seen in most other
tests. Changes in the number of samples do not significantly impact
coverage results, reflecting the similarity of generated constructs in
samples sourced from the same LLM.

This suggests that our all-function model has captured
a significant portion of the available explanatory power.
However, it does not match the accuracy of the function-
specific models, which achieved an average R* score of 65%.
This outcome is expected, as targeted regression models tend
to fit more closely to the underlying dataset.

Overall, the results from the application of linear regres-
sion models reveal a notable ability to predict coverage
changes, as evidenced by the decrease in MSE and the
increase in R* values for the linear models compared to
average-based predictors. This demonstrates the effective-
ness of incorporating specific variables such as model type,
fuzzing practices, and temperature settings, which are closely
correlated with coverage enhancements.

V. DISCUSSION

This study investigated the role of LLMs in enhancing
the effectiveness of fuzzing tasks, particularly in achieving
early coverage gains during mutation-based exploration. Our
findings reveal that LLM-generated fuzzing seeds readily
boost initial coverage in our test scenarios. In certain
cases, the use of LLM-generated samples alone can yield
results comparable to those of short-duration coverage-
guided fuzzing techniques. This demonstrates the potential
for LLMs to partially replace traditional methods in specific
contexts while using far fewer samples.

The impact of generated samples is strongly influenced by
the choice of model, which proved to be the best indicator of
early gains. Temperature settings and prompt modifications
showed minimal impacts and should be secondary con-
cerns when performing LLM-assisted testing. Despite these
promising results, no testing scenario achieved complete code
coverage, indicating room for improvement in the application
of LLMs for software testing. For instance, the highest total
coverage observed was with the chardet library, which

VOLUME 12, 2024

TABLE 5. Summary of validation performance metrics.

Function IMSE;,, MSEwg 1RZ,
PIL.Image.open 0.06 1.40 0.95
ast.literal_eval 0.09 0.20 0.52
cgi.parse_header 0.12 0.14 0.18
cgi.parse_multipart 0.26 0.33 0.23
configparser.read_string 1.45 11.85 0.88
django.core.deserialize 0.10 0.15 0.29
email.message_from_string 0.44 1.53 0.71
email.parser.parsebytes 0.41 1.77 0.77
email.parser.Parser.parsestr 0.01 0.06 0.76
email.utils.parseaddr 0.01 0.05 0.79
email.utils.parsedate 0.01 0.02 0.74
exrex.getone 3.10 11.54 0.73
fnmatch.filter 10.26 19.50 0.47
ftplib. FTP 0.00 0.00 0.34
glob.glob 6.24 16.13 0.61
html.parser. HTMLParser.feed 7.48 17.92 0.58
json.loads 0.01 0.18 0.94
paramiko.SSHClient.connect 19.09 34.53 0.45
plistlib.dumps 12.89 24.84 0.48
requests.get 1.45 42.29 0.97
shlex.split 1.22 4.07 0.70
smtplib.SMTP 0.02 0.13 0.83
sunau.open 2.58 4.76 0.46
urllib.parse.parse_qs 0.07 0.13 0.45
urllib.parse.parse_gsl 0.09 0.23 0.59
wave.open 3.38 29.27 0.88
yaml.load 5.05 20.96 0.76
geojson.loads 2.63 6.39 0.59
iptcinfo3.IPTClInfo 247 29.94 0.92
mido.MidiFile 1.15 3.57 0.68
pandas.read_csv 0.00 0.00 0.19
phonenumbers.parse 0.03 0.14 0.79
pydub.AudioSegment.from_file 0.01 0.03 0.68
tablib.import_set 0.02 0.06 0.70
bs4.BeautifulSoup 0.00 0.01 0.47
chardet.detect 2.55 14.40 0.82
html5lib.parse 0.45 18.72 0.98
ics.Calendar 7.15 22.35 0.68
markdown.markdown 1.64 3.79 0.57
markdown2.markdown 5.75 11.03 0.48
rarfile.RarFile 1.25 6.54 0.81
simplejson.loads 0.00 0.01 0.88
toml.loads 64.50 110.78 0.42
xIrd.open_workbook 0.26 0.45 0.41
yaml.safe_load 2.71 19.16 0.86
Average 3.83 11.17 0.65

reached 78.66%. These outcomes highlight the necessity for
further refinement and development of LLM strategies to
maximize their potential in comprehensive software testing
environments.

A. FUTURE WORK
Future research will broaden the scope of our framework by
incorporating diverse fuzzing harnesses, extended mutation
steps, and multiple programming languages, enabling an
evaluation of our methods in varied software environments.
This will enhance the general applicability and validity of
our findings, currently focused on input parsing, binary
processing, and network technologies.

In addition to expanding fuzzing harnesses and lan-
guage diversity, future studies will specifically address

156079

IEEE Access

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

the effectiveness of our fuzzing approach in identifying
faults. We plan to integrate mutation analysis into our
evaluation framework for cases when real-world defects
are not available, allowing for a systematic assessment
of how well LLM-generated fuzzing seeds can aid in
vulnerability discovery. This focus on defect detection will
enhance our understanding of the practical impacts of
fuzzing, evaluating reliability and security beyond coverage
metrics.

Future work will also explore the potential of format-
specific LLM models to address the variability in per-
formance attributed to insufficient training on specialized
data formats. Recognizing the challenges outlined in Model
Selection (Section III-C), such as corpus generation and
minimal established work, our research will investigate the
feasibility of employing tailored transformer-based models
for distinct data types. These efforts will extend the current
understanding of LLM capabilities for analyzing software
security and their potential limitations.

CONCLUSION

Our study makes multiple contributions to the emerging body
of research surrounding the use of LLMs to assist fuzzing and
software testing tasks. The key achievements of our research
are summarized as follows:

o Publicly Available Fuzzing Framework: We introduce
a publicly available framework that advances the
evaluation of LLMs for fuzzing tasks, systematically
assessing their impact across various software systems.
This framework has produced an extensive dataset with
over 38,000 samples from 50 Python security-relevant
libraries, significantly refining fuzzing techniques and
identifying libraries that benefit substantially from
LLM-enhanced approaches.

o Optimal LLM Selection: Our findings confirm that the
strategic selection of LLMs can boost fuzzing coverage
by up to 16%. This emphasizes the critical role of
choosing the proper models for generating program
inputs, which significantly enhances the effectiveness of
fuzzing coverage across Python libraries.

o Robustness of LLM Settings: The study demonstrates
that variations in LLM settings, such as temperature
and prompting styles, have minimal impact on the
quality of the fuzzing corpus. This finding suggests
that evaluations can be conducted effectively with fewer
samples due to the limited variability.

o Predictive Strength Testing: Our regression analysis
highlights the predictive strength of our framework, with
R? scores for linear models surpassing those of average-
based predictors. This not only shows the effectiveness
of our approach but also offers a reliable method for esti-
mating coverage improvements across different models
and functions. By providing a formulaic approach to
predict outcomes, our framework assists developers in
making informed decisions about LLM integration for
fuzzing.

156080

These contributions collectively enhance understanding
of LLM effectiveness when integrated into software testing
workflows to improve both the efficiency and observed
coverage of underlying logic.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the Center for Connected
Multimodal Mobility (C2M2) and the official policy or
position of the USDOT/OST-R, or any state or other entity.
The U.S. Government assumes no liability for the contents or
use thereof.

REFERENCES

[1] M. Boehme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections,” IEEE Softw., vol. 38, no. 3, pp. 79-86, May 2021.

[2] A. Zeller, R. Gopinath, M. Bohme, G. Fraser, and C. Holler, The Fuzzing
Book. Saarbriicken, Germany: CISPA Helmholtz Center for Information
Security, 2019.

[3] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. London, U.K.: Pearson Education, 2007.

[4] M. Sallam, “ChatGPT utility in healthcare education, research, and
practice: Systematic review on the promising perspectives and valid
concerns,” Healthcare, vol. 11, no. 6, p. 887, Mar. 2023.

[S] S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa, P. Denny, S. Bernstein,
and J. Leinonen, “Experiences from using code explanations generated by
large language models in a web software development E-book,” in Proc.
54th ACM Tech. Symp. Comput. Sci. Educ., 2023, pp. 931-937.

[6] A. Jungherr, “Using ChatGPT and other large language model (LLM)
applications for academic paper assignments,” SocArXiv, Mar. 2023, doi:
10.31235/0sf.i0/d84q6.

[7] H.Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar,
N. Barnes, and A. Mian, “A comprehensive overview of large language
models,” 2023, arXiv:2307.06435.

[8] Google. Atheris: A Coverage-Guided, Native Python Fuzzer. Accessed:
Nov. 22, 2023. [Online]. Available: https://github.com/google/atheris

[9] V.J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Trans. Softw. Eng., vol. 47, no. 11, pp. 2312-2331, Nov. 2021.

[10] L. Huang, P. Zhao, H. Chen, and L. Ma, “Large language models based
fuzzing techniques: A survey,” 2024, arXiv:2402.00350.

[11] C.Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, “A systematic review
of fuzzing techniques,” Comput. Secur., vol. 75, pp. 118-137, Jun. 2018.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 1-11.

[13] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing multi-
head self-attention: Specialized heads do the heavy lifting, the rest can be
pruned,” 2019, arXiv:1905.09418.

[14] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proc. 6th ACM SIGPLAN
Int. Symp. Mach. Program., 2022, pp. 1-10.

[15] M. Renze and E. Guven, “The effect of sampling temperature on problem
solving in large language models,” 2024, arXiv:2402.05201.

[16] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods in
natural language processing,” ACM Comput. Surv., vol. 55,n0.9, pp. 1-35,
Sep. 2023.

[17] C. Yang, Y. Deng, R. Lu, J. Yao, J. Liu, R. Jabbarvand, and L. Zhang,
“WhiteFox: White-box compiler fuzzing empowered by large language
models,” 2023, arXiv:2310.15991.

[18] Z.Liu, C. Chen, J. Wang, M. Chen, B. Wu, Z. Tian, Y. Huang, J. Hu, and
Q. Wang, “Testing the limits: Unusual text inputs generation for mobile
app crash detection with large language model,” in Proc. IEEE/ACM 46th
Int. Conf. Softw. Eng., Apr. 2024, pp. 1-12.

[19] J. Carver, R. Colomo-Palacios, X. Larrucea, and M. Staron, ‘“Automatic
program repair,” IEEE Softw., vol. 38, no. 4, pp. 122-124, Jul. 2021.

VOLUME 12, 2024

http://dx.doi.org/10.31235/osf.io/d84q6

G. Black et al.: Evaluating Large Language Models for Enhanced Fuzzing

IEEE Access

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for
input fuzzing,” in Proc. 32nd IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Oct. 2017, pp. 50-59.

C.Zhang, Y. Zheng, M. Bai, Y. Li, W. Ma, X. Xie, Y. Li, L. Sun, and Y. Liu,
“How effective are they? Exploring large language model based fuzz driver
generation,” 2023, arXiv:2307.12469.

C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, ‘‘Fuzz4all:
Universal fuzzing with large language models,” in Proc. IEEE/ACM 46th
Int. Conf. Softw. Eng., Apr. 2024, pp. 1-13.

Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proc. 32nd ACM SIGSOFT Int. Symp. Softw. Test.
Anal., Jul. 2023, pp. 423-435.

R. Meng, M. Mirchev, M. Bohme, and A. Roychoudhury, “Large language
model guided protocol fuzzing,” in Proc. 31st Annu. Netw. Distrib. Syst.
Secur. Symp. (NDSS), 2024, pp. 1-17.

J. Hu, Q. Zhang, and H. Yin, “Augmenting greybox fuzzing with
generative AL’ 2023, arXiv:2306.06782.

H. Dai, C. Murphy, and G. Kaiser, “Configuration fuzzing for software
vulnerability detection,” in Proc. Int. Conf. Availability, Rel. Secur.,
Feb. 2010, pp. 525-530.

T. Zhang, W. H. Lee, M. Gao, and J. Zhou, “File guard: Automatic format-
based media file sanitization: A black-box approach against vulnerability
exploitation,” Int. J. Inf. Secur., vol. 18, no. 6, pp. 701-713, Dec. 2019.
G. Xiong, J. Tong, Y. Xu, H. Yu, and Y. Zhao, ““A survey of network attacks
based on protocol vulnerabilities,” in Proc. Web Technol. Appl., Changsha,
China. Cham, Switzerland: Springer, 2014, pp. 246-257.

A. Singh, B. Singh, and H. Joseph, “Vulnerability analysis for mail
protocols,” in Vulnerability Analysis and Defense for the Internet. Cham,
Switzerland: Springer, 2008, pp. 47-70.

T. Scholte, D. Balzarotti, and E. Kirda, ‘““Have things changed now? An
empirical study on input validation vulnerabilities in web applications,”
Comput. Secur., vol. 31, no. 3, pp. 344-356, May 2012.

E. Rigtorp. Fuzzing/Docs/Structure-Aware-Fuzzing.md at Master
Google/Fuzzing. Accessed: Feb. 15, 2024. [Online]. Available: https://
github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
LibFuzzer—A Library for Coverage-Guided Fuzz Testing.—LLVM
19.0.0Git Documentation. Accessed: Feb. 15, 2024. [Online]. Available:
https://llvm.org/docs/LibFuzzer.html

GitHub—Yaml/Pyyaml: Canonical Source Repository for PyYAML—
Github.com. Accessed: May 21, 2024. [Online]. Available: https://github.
com/yaml/pyyaml

R. Dutra, R. Gopinath, and A. Zeller, “FormatFuzzer : Effective fuzzing
of binary file formats,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 2,
pp. 1-29, Dec. 2023, doi: 10.1145/3628157.

A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: Automatic grey-box
fuzzing for structured binary formats,” in Proc. 29th ACM SIGSOFT Int.
Symp. Softw. Test. Anal., Jul. 2020, pp. 1-13.

OpenAl et al., “GPT-4 technical report,” 2023, arXiv:2303.08774.
Introducing the Next Generation of Claude. [Online]. Available: https:/
www.anthropic.com/news/claude-3-family

G. Team et al., “Gemini: A family of highly capable multimodal models,”
2023, arXiv:2312.11805.

T. Dohmke. GitHub Copilot X: The Al-Powered Developer Experience—
Github.Blog. Accessed: May 29, 2024. [Online]. Available: https://github.
blog/2023-03-22-github-copilot-x-the-ai-powered/

L. Tunstall, L. Von Werra, and T. Wolf, Natural Language Processing With
Transformers. Sebastopol, CA, USA: O’Reilly Media, 2022.

J. Shieh. Best Practices for Prompt Engineering With OpenAl API.
OpenAl. Accessed: Jun. 28, 2024. [Online]. Available: https://help.openai.
com/en/articles/6654000-best-practices-for-prompt-engineering

J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why
Johnny can’t prompt: How non-Al experts try (and fail) to design LLM
prompts,” in Proc. CHI Conf. Hum. Factors Comput. Syst. New York, NY,
USA: ACM, 2023, pp. 1-21, doi: 10.1145/3544548.3581388.

J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar,
J. Spencer-Smith, and D. C. Schmidt, ““A prompt pattern catalog to enhance
prompt engineering with ChatGPT,” 2023, arXiv:2302.11382.
Coverage.py—Coverage.py 7.5.1 Documentation. Accessed: Nov. 22,
2023. [Online]. Available: https://coverage.readthedocs.io/en/7.5.1/

M. Pezze and M. Young, Software Testing and Analysis: Process,
Principles and Techniques. Hoboken, NJ, USA: Wiley, 2008.

VOLUME 12, 2024

(46]

(47]

(48]
(49]

[50]

[51]

[52]

D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear
Regression Analysis. Hoboken, NJ, USA: Wiley, 2021.
DummyClassifier—Scikit-Learn.org. Accessed: Jun. 6, 2024. [Online].
Available: https://scikit-learn.org/stable/modules/generated/sklearn.
dummy.DummyClassifier.html

D. Zhang, “A coefficient of determination for generalized linear models,”
Amer. Statistician, vol. 71, no. 4, pp. 310-316, Oct. 2017.

S. G. K. Patro and K. K. Sahu, “Normalization: A preprocessing stage,”
2015, arXiv:1503.06462.

S. Chan, A. Santoro, A. Lampinen, J. Wang, A. Singh, P. Richemond,
J. McClelland, and F. Hill, “Data distributional properties drive emergent
in-context learning in transformers,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 35, 2022, pp. 18878-18891.

J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin, and
X. Hu, “Harnessing the power of LLMs in practice: A survey on ChatGPT
and beyond,” ACM Trans. Knowl. Discovery Data, vol. 18, no. 6, pp. 1-32,
Jul. 2024.

GenerateContentResponse | Google Al for Developers | Google for
Developers—AI.Google.dev. Accessed: May 30, 2024. [Online]. Avail-
able: https://ai.google.dev/api/rest/v1/GenerateContentResponse

GAVIN BLACK (Member, IEEE) received the
B.S. degree in computer science and mathematics
from Purdue University and the M.S. degree
in applied and computational mathematics from
the University of Massachusetts. He is currently
pursuing the Ph.D. degree in computer and cyber
sciences with Dakota State University, Madison,
SD, USA. He is a Senior Researcher with Leidos
Inc., with a focus on machine learning applications
for cybersecurity problems. He previously worked

as the Technical Lead, a Researcher, and a Subject Matter Expert for various
government agencies through the MITRE Federally Funded Research
Center.

VARGHESE MATHEW VAIDYAN received the
Bachelor of Technology degree from the Univer-
sity of Calicut, India, the M.S. degree from the
University of Glasgow, U.K., and the Ph.D. degree
from Iowa State University. He is currently an
Assistant Professor with the Beacom College of
Computer and Cyber Sciences, Dakota State Uni-
versity, Madison, SD, USA. His areas of research
interests include the IoT security and machine
learning. His publications cover the IoT device

security and hybrid quantum architecture-based methods. In addition, he is
a regular reviewer of multiple journals and conferences, including several
IEEE papers.

GURCAN COMERT received the B.Sc. and M.Sc.
degrees in industrial engineering from Fatih Uni-
versity, Tiirkiye, in 2003 and 2005, respectively,
and the Ph.D. degree in civil engineering from
the University of South Carolina, Columbia, SC,
USA, in 2008. He is currently with Benedict
College. He is also the Associate Director of the
USDOT Center for Connected Multimodal Mobil-
ity (C2M2) and a Researcher with the Information
Trust Institute, University of Illinois Urbana—

Champaign. His research interest includes applications of probabilistic
models to transportation problems.

156081

http://dx.doi.org/10.1145/3628157
http://dx.doi.org/10.1145/3544548.3581388

