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Abstract—Federated learning (FL) has rapidly evolved as a
distributed learning paradigm, enabling clients to collaboratively
train models while retaining data privacy on their devices, which
can guarantee the privacy of the training data. However, it faces
distinct challenges on both server and client fronts. On the server
side, there is a lack of efficient strategies for selecting high-
performing clients, leading to potential degradation in training
accuracy due to subpar model updates. On the client’s side, they
are often deterred from participation due to significant energy
consumption during both computation and data transmission
processes. Existing incentive mechanisms in FL seldom consider
both the energy consumption of the clients and the learning
quality of the server. To bridge this gap, this paper introduces
an adaptive incentive mechanism, which considers both the
anticipated learning quality of clients and the associated energy
costs during training. We propose a novel distributed Matching-
based Incentive Mechanism (MAAIM) for client selection in FL.
Leveraging a deferred acceptance algorithm, MAAIM facilitates
stable client-server pairings, ensuring that both parties’ primary
concerns are addressed. Experimental results demonstrate the
effectiveness of the proposed MAAIM.

Index Terms—Federated Learning, Learning Quality, Match-
ing, Optimization

I. INTRODUCTION

During the last decade, with the rapid development of
smart mobile devices such as cellphones, smartwatches, fitness
trackers, computer tablets, etc, the Internet of Things (IoT)
has fast evolved. Due to the ubiquitous mobile devices with
embedded sensors and an extensive set of IoT applications,
a massive amount of data has been generated and collected.
Advanced machine learning techniques become an emerging
paradigm, which can utilize the data from mobile devices to
build promising high-performance models. Internet giants such
as Google and Amazon have been offering “machine learning
as a service” (MLaaS) [1]. The customer first uploads data
to the cloud, the machine learning model will be trained on
the cloud and the constructed model will be delivered to the
customer as a black-box API.

However, the rising popularity of MLaaS is putting the
learning pipelines at risk of cyber threats more than ever
before [2]. The MLaaS users are supposed to upload their
raw data to the server to receive service, whereas the raw
data may contain users’ sensitive and private information. For
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instance, the electronic health records (EHR) collected from
mHealth applications contain personal private information like
drug usage patterns of the individual patient. Due to the arising
concerns of privacy leakage, federated learning (FL), a novel
framework for distributed learning, is proposed to address the
privacy and security concerns. Within the FL framework, the
mobile edge devices referred to as FL clients train local models
and only share the model parameters with the centralized
cloud server instead of transmitting their original data samples.
Based on the aggregated model parameters from each edge
device, the server can update the global model with various
averaging algorithms such as FedAvg [3].

In FL, the global model accuracy is highly dependent on
how to select participating clients. Due to the data quality on
mobile edge devices, further efforts are needed to design an
effective client selection mechanism that can guarantee global
training performance. Efforts have been made to improve FL
performance with the client selection optimization problem.
In [4], the authors proposed to deploy multi-agent rein-
forcement learning to solve the client selection optimization
problem by jointly considering the global model accuracy
and communication latency. In [5], the authors formulated
a stochastic optimization problem for maximizing the global
model performance. However, these works all use the cen-
tralized algorithm to solve the client selection optimization
problem in FL. While the centralized method can solve the
client selection optimization problem, practically, with an
extremely large number of clients, a centralized algorithm
is inefficient. Moreover, the cost on the clients’ side is not
taken into consideration. To motivate clients to participate
in the FL, it is necessary to utilize incentive mechanisms to
compensate for the extra energy cost to clients during the local
training and transmission with the central FL server. In [6],
Kang et al. studied the reputation of clients and designed
the incentive mechanism based on contract theory. In [7],
Deng et al. proposed a quality-aware incentive mechanism and
formulated a reverse auction problem to select high-quality
learning clients. Even though these works select the clients by
incentive mechanisms according to the learning quality of the
clients, none of them consider the extra energy cost of clients
to work for different servers.

In this paper, we propose a novel distributed MAtching
bAsed Incentive Mechanism (MAAIM) which jointly con-
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Fig. 1. System architecture.

siders the learning quality and task-based energy cost for
the clients, and allows resource allocation between servers
and clients in a distributed manner. In MAAIM, we employ
dynamic matching to select different clients to maximize
training performance. We mathematically model the problem
by employing the deferred acceptance matching algorithm to
solve the problem and conduct FL performance evaluations.
Our salient contributions are listed as follows.

• We formulate an optimization problem to maximize the
server’s learning quality with consideration of the server’s
bid price and the client’s energy consumption in each
iteration.

• To obtain feasible solutions to the proposed optimization
problem in a distributed manner, we propose a novel
MAAIM scheme with a dynamic many-to-one matching
deferred acceptance algorithm.

• In MAAIM, we formulate clients’ preference lists based
on their total monetary gain, which is related to the
servers’ bidding price and the task-based energy cost.
We also formulate servers’ preference lists based on the
clients’ learning quality estimation. The preference lists
of servers will evolve during each iteration.

• Through extensive simulations, we show that the pro-
posed MAAIM outperforms the FedAvg method.

II. SYSTEM DESCRIPTION

A. Network Configuration

We consider a FL framework consisting of M clients in a set
M, and N servers in a set N . We show the proposed MAAIM
in Figure 1 with an example for M = 5 and N = 3. We assume
that every server has a distinct learning task, each associated
with a unique dataset for training. We also assume that each
server can accommodate Rn clients during the FL process,
with the capacity to accept an equivalent number of clients in
subsequent iterations. We denote the j ∈N server can accept
total as quota |R j| clients to train the model. Additionally,
we operate under the assumption that a client can collaborate

with only one server at any given moment. In the MAAIM,
to motivate clients to participate in the FL process, each
server offers monetary awards to clients for the engagement of
the specific learning task. Because of the limited budget, the
goal of servers is to involve clients, who can provide better
learning results in their learning tasks. Meanwhile, despite the
monetary awards, client i ∈M considers the energy efficiency
for completing different FL tasks as well [8]. For example, in
Fig. 1, Client A ranks Server 1 at the top of its preference
list due to the maximum net profit it offers, calculated as the
monetary reward from Server 1 minus the energy expenses
for dataset training. For Server 1, Client A is the preferred
choice due to its ability to provide the highest learning quality
model. In conclusion, through the deployment of the MAAIM
algorithm, servers prioritize clients with superior training
quality to ensure model accuracy. Conversely, clients opt for
servers that provide the greatest net revenue, factoring in both
the monetary reward and energy costs.

B. Energy Consumption and Learning Quality Estimation

1) Client’s Energy Consumption: The extra energy con-
sumption of FL for each client takes place during the training
and uploading of the local updates, where the former is
based on computation and the latter is based on transmission.
The energy consumption of computation is mainly dependent
on the amount of local training data samples. The energy
consumption of transmission is related to the data size of
local updates and transmission channels between the client
and server. In practice, the client energy consumption at the
provided time slot when given a dataset with size |Πi| of client
i, occupying bandwidth of B for updates transferring. the link
e between client i and server j can be calculated by [9]:

Ei j = ρi |Πi|+ si
ϒ

B log2

(
1+ hesi

νe

) , (1)

where ϒ denotes the size of the local updates, ρi denotes the
energy consumed to process one sample on client i which
depends on the hardware components, si indicates the signal
power, he and νe define the wireless channel gains and the
white noise of link e, respectively. On the right-hand side
of Eq. 1, the first term indicates the energy consumption
for model training and the second term expresses the energy
consumption of local updates transmission, based on the
Shannon-Hartley formula [10].

2) Learning Quality Estimation: The learning quality is
highly related to the local training dataset quality of each
client. To achieve better performance, the server prefers to
select clients that can benefit more from the global model
updates. To this end, the servers quantify each client’s learning
quality by evaluating the current global model on every client’s
local training results. The estimated learning quality is then
calculated by subtracting the overall server evaluation loss
from the evaluated client loss as follows [7],

q j
i = loss j(t)− loss j

i (t +1), (2)
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where loss j is the average loss value of the global model on
server j in round t and loss j

i is the average loss value of
client i’s local model in round t + 1. The estimated learning
quality for each client is then ranked in descending order,
which is used to form each server’s preference list. A higher
evaluated loss implies there is higher learning utility available
in a particular client’s dataset, and thus the server ranks the
client of higher priority on its preference list.

III. OPTIMIZING CLIENT SELECTION IN
MATCHING-BASED INCENTIVE MECHANISM

A. Centralized Optimization Formulation of Client Selection
in MAAIM

The goal of our proposed MAAIM is to optimize global
training performance by selecting clients with high learning
quality in each training iteration. Let the binary variable δ

j
i

denotes whether client i ∈ M is chosen by server j ∈ N to
work on the specific training task. We use δ

j
i = 1 denotes

that client i train model for server j and communicate to
j, otherwise 0. The centralized optimization problem can be
formulated as follows,

Maximize ∑
i∈M

∑
j∈N

δ
j

i q j
i (3)

s.t.:
δ

j
i ∈ {0,1},∀i ∈M, j ∈N , (4)

∑
j∈N

δ
j

i ≤| R j | ∀i ∈M, (5)

δ
j

i δ
j′

i = 0 ∀i ∈M, j, j′ ∈N , (6)

where q j
i denotes the learning quality of client i for the task

of server j that is defined in Eqn. (2). Eqn. (5) means the
number of clients working for server j cannot be more than
the number of the capacities | R j | that server j occupies.
Eqn. (6) presents each time, one client can only train a
model for one server. This formulated optimization problem
is a mixed-integer nonlinear programming (MINLP) problem.
We propose to utilize the matching algorithm to solve this
proposed optimization problem in a decentralized way.

B. Matching Algorithm Preliminaries

1) Stable Marriage Matching: Matching theory is widely
researched across various fields of study such as economics,
mathematics, and computer science [11], [12]. The stable
marriage matching problem (SMP) (Man, Woman, ≻) is the
most fundamental one-to-one matching problem. Given two
sets of elements of the same size, i.e., males and females,
each person has a ranking of all members of the opposite
sex by their personal preference. For instance, mani :≻mani

represents man i’s preference list from the most favorite to
the least favorite woman based on his preferences. Similarly,
each woman has her preferences over men.

2) College Admissions Matching: The many-to-one college
admissions matching model (Student, College, quota, ≻) con-
sists of a finite set of colleges, a finite set of students and a
finite non-negative quota quotacollegei for collegei ∈ College.
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Fig. 2. Toy Example of MAAIM.

Each college has its preferences over the firms, and based on
the college’s preferences for students, each college accepts a
group of students below the college’s quota.

3) Gale-Shapley Algorithm: The Gale-Shapley or “deferred
acceptance” solution [13] to the SMP and College-Admission
matching takes place in several rounds. Each member has
a preference list that includes all members of the opposite
group. In SMP, in the first round, each “single” male makes
a proposal to their most preferred female based on their
rankings. Each female tentatively thinks over the proposal by
replying “maybe” and in the meantime while engaged, she
rejects all other suitors. Each following round, while there are
still males that are not engaged, each unengaged male proposes

991



to his next most preferred female option regardless if the
female is already engaged. The female then replies “maybe”
if they are not currently engaged or if she is engaged and
prefers the new male suitor over her current partner, she then
rejects her current partner’s proposal for the new one. This
process continues until all males are engaged and by default
all females as well.

C. Generating Preference Lists for Servers and Clients

The purpose of server j is to maximize its learning quality
qi shown as follows,

Maximize ∑
i∈M

δ
j

i q j
i , (7)

s.t.:
δ

j
i ∈ {0,1}, (8)

∑
i∈M

δ
j

i ≤| R j |, (9)

δ
j

i δ
j′

i = 0 ∀i ∈M, j, j′ ∈N . (10)

Therefore, the preference relation ≻ j for j is established as

u ≻ j v ⇔ q j
u ≻ j q j

v, u,v ∈M. (11)

Moreover, server j can accept as many as | R j | clients same
time.

On the other hand, the goal of client i is to maximize its rev-
enue, i.e., Maximize ∑ j∈N δ

j
i (bi −Ei j), subject to δ

j
i ∈ {0,1}

and δ
j

i δ
j′

i = 0. In the assumption, all servers have the same
bid proposal, i.e., $1. The unit energy cost is denoted as w.
Therefore the client would prefer the server with the model
which causes less energy consumption. Hence a preference
relation ≻i for i ∈M is established, as follows

k ≻i l ⇔ δ
k
i (bi −Eik)≻i δ

l
i (bi −Eil) , (12)

where k, l ∈N and δ k
i δ l

i = 0.

D. Dynamic Many-to-One Matching Deferred Acceptance Al-
gorithm

We employ the deferred acceptance algorithm for our pro-
posed MAAIM mechanism as detailed in [13]. The specifics
are outlined below.

1) Preference List Preparation: First of all, all clients and
servers will start by evaluating the other side and preparing
their preference lists. The client i constructs its preference list
PL(i) according to (11) and server will construct its preference
list PL( j) according to (12).

2) Tentative matching with clients’ proposal: In the initial
round, all clients propose to their most preferred server as per
their preference list. Servers, upon receiving these proposals,
assess the clients based on their preference lists. They then
provisionally accept clients, considering both their preferences
and their capacity quotas. Example: In Figure 2(a), For
demonstration, we’ve arbitrarily generated preference lists for
clients and servers using Eqns. (11) and (12). Servers 1 and
2 can match with a maximum of 2 clients each, while Server
3 can only match with 1 client. In round 1: Server 1 receives

proposals from clients A, B, and D. Given its quota and
preference list, it accepts clients A and B, but declines client
D. Client C proposes to and is matched with Server 2. Client
E proposes to and is paired with Server 3.

3) Updated matching result with following round proposal:
In subsequent stages of our matching process, servers re-
evaluate their current list of clients when new proposals arrive.
If a server hasn’t filled its maximum client capacity, it will
consider the new proposals based on its set preferences.
However, if it’s already at its limit and receives a proposal
from a more preferred client, it will release its least preferred
client. This released client will then approach the next server
on its preference list. The process continues until every client
is paired with a server or exhausts all its options. Continuted
Example: In Round 2, depicted in Figure 2(b), Client D which
is still unmatched, approaches its next preferred server, Server
3. After evaluation, Server 3 decides it values Client D over
its current match-Client E, leading to Client E being released.
In Round 3, as shown in Figure 2(c), Client E which is now
unmatched, approaches its subsequent choice, Server 2, which
accepts it due to available capacity. This structured method
ensures optimal matches for both servers and clients.

4) Stability: The stability of deferred acceptance matching
is proved in [13].

5) Dynamic matching process: For each training iteration,
servers will choose new clients by the matching algorithm. In
each iteration, clients will broadcast training loss of each kind
of data set to servers and calculate the energy lost. After that,
the clients and servers will update their preference list by (12)
and (11), and start a new round of matching.

IV. PERFORMANCE EVALUATION

A. Experimental Settings

In our experimental setup, we consider four independent
servers, each of which is given a different learning task uti-
lizing four distinct datasets: EMNIST (digits only), CIFAR10,
SVHN, and Fashion MNIST (F-MNIST). We also assume that
there are 48 clients available. We will consider more clients
and servers in future work. Each client i has a local dataset
with si data samples, where si = piD j and D j is the size of
each server’s dataset, subject to 0 < pi < 1 and ∑i pi = 0.
The four central servers aggregate the local updates performed
on the clients and implement the MAAIM method that has
been suggested to create reliable client-server pairings. We use
distinct models for each dataset to achieve the best learning
performance: LeNet-5 is used for training on EMNIST and F-
MNIST, MobileNet for CIFAR 10, and EfficientNet for SVHN.
In our experimental evaluations, we compare the accuracies of
the random client selection-based FedAvg method (“random-
FedAvg”) with our suggested MAAIM approach. FedAvg [3]
is the first aggregation approach used in federated learning,
where the central server computes a weighted average of the
local results from clients to update the global model. When
implementing random client selection, we first randomize the
order of all available clients before distributing clients to
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Fig. 3. Accuracy comparison between random-FedAvg and MAAIM.

Fig. 4. Model accuracy of MAAIM scheme with 48 clients.

each server until we reach a predefined limit, ensuring a fair
distribution of clients among the servers.

B. Experimental Results

Figure 3 compares the proposed MAAIM scheme to FedAvg
in terms of model accuracy. The MAAIM technique starts a
training round by calculating client preferences. According to
Eqn. (12), each client evaluates the four servers’ desirability
based on elements including monetary gain and energy con-
sumption. Servers then deliver the appropriate models to the
chosen clients, who carry out local training. Using Eqn. (11),
the servers determine their preference lists based on each
client’s level of learning. After assigning clients to servers
using the matching algorithm, a training cycle takes place.
We assume that each server chooses a total of 24 clients
for the four servers in this experiment, dividing them evenly
based on the MAAIM and random FedAvg algorithms. In other
words, a total of |R j| = 6 clients are chosen by each server.
Across all four datasets, the experimental findings consistently
show that the proposed MAAIM method works better than
the FedAvg algorithm. The model performance of MAAIM
method is shown in Figures 4. Each server is permitted to
select |R j| = 12 clients for local training in this particular
trial. By keeping a check on the model’s accuracy during each
training round, we evaluate the effectiveness of each technique.
The statistics undeniably show that the suggested MAAIM

technique constantly outperforms the random-FedAvg method
in terms of accuracy.

V. CONCLUSION

In this paper, we have proposed a distributive incentive
mechanism MAAIM for FL, which considers learning quality,
energy consumption, and economic revenue of the client. In
MAAIM, we have formulated the learning quality comparison
of the average test loss value to the averaging training loss
value. We also formulate the energy cost with the consideration
of the energy consumption of model training and communica-
tion energy consumption. We construct the preference lists for
clients and servers based on their utility function, i.e. monetary
gain and learning quality. We employ the many-to-one deferred
acceptance algorithm in MAAIM and achieve stability. The
experimental results show that the proposed MAAIM scheme
can achieve better model accuracy than the benchmark scheme.
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