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Abstract. Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder, posing a growing
public health challenge. Traditional machine learning models for AD prediction have relied on single
omics data or phenotypic assessments, limiting their ability to capture the disease’s molecular complex-
ity and resulting in poor performance. Recent advances in high-throughput multi-omics have provided
deeper biological insights. However, due to the scarcity of paired omics datasets, existing multi-omics
AD prediction models rely on unpaired omics data, where different omics profiles are combined without
being derived from the same biological sample, leading to biologically less meaningful pairings and caus-
ing less accurate predictions. To address these issues, we propose UnCOT-AD, a novel deep learning
framework for Unpaired Cross-Omics Translation enabling effective multi-omics integration for AD
prediction. Our method introduces the first-ever cross-omics translation model trained on unpaired
omics datasets, using two coupled Variational Autoencoders and a novel cycle consistency mechanism
to ensure accurate bidirectional translation between omics types. We integrate adversarial training
to ensure that the generated omics profiles are biologically realistic. Moreover, we employ contrastive
learning to capture the disease specific patterns in latent space to make the cross-omics translation more
accurate and biologically relevant. We rigorously validate UnCOT-AD on both cross-omics translation
and AD prediction tasks. Results show that UnCOT-AD empowers multi-omics based AD predic-
tion by combining real omics profiles with corresponding omics profiles generated by our cross-omics
translation module and achieves state-of-the-art performance in accuracy and robustness. Source code
is available at https://github.com/abrarrahmanabir/UnCOT-AD
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1 Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that primarily affects the elderly and
is characterized by cognitive decline, memory loss, and ultimately, a loss of bodily functions. The number
of AD cases is expected to increase significantly in the coming decades, creating a serious public health
challenge globally [1]. Despite numerous studies attempting to identify molecular risk factors involved in AD
pathogenesis, the precise mechanisms underlying AD occurrence and progression remain poorly understood.
Current treatments for AD can only alleviate symptoms without addressing the root causes of the disease
[2,3].

Research has primarily focused on analyzing phenotypic data, such as magnetic resonance imaging (MRI)
and neuropsychological assessments [4]. Biomarkers associated with AD pathology, such as β-amyloid depo-
sition and tau proteins, have been explored as well, with some recent studies incorporating these biomarkers
for more accurate diagnoses [5,6]. However, a significant limitation in many existing AD prediction models
is their reliance on single omics, rather than integrating multi-omics data to capture the complexity of AD.
Recent advances have allowed for the collection of multi-omics data, which provide a more comprehensive
view of biological systems [7,8,9,10,11]. A few studies proposed methods that utilize multi-omics data for pre-
diction. For example, gene expression and DNA methylation data were combined to predict AD [12,13,6]. As
paired multi-omics data from the same group of people is not available, the studies used all possible pairs of
gene expression profiles from one group of people and DNA methylation profiles from another group of people
as surrogate of paired data to predict AD. Using all possible pairs of gene expression and DNA methylation
profiles can introduce biologically irrelevant and unrealistic combinations, which adversely affects prediction
performance.

To address the challenges posed by the scarcity of paired multi-omics data and the limitations of current
multi-omics based AD prediction methods, we propose a novel deep learning framework, UnCOT-AD for
Unpaired Cross-Omics Translation and multi-omics integration for AD prediction. UnCOT-AD performs
cross-omics translation using unpaired training datasets, unlike state-of-the-art models such as BABEL [14]
and Polarbear [15] that require paired data. Our major contributions are:

1. Cross-Omics Translation From Unpaired Data: We introduce a novel Cross-Omics Translation
module to perform cross-omics translation using unpaired omics datasets. To the best of our knowledge,
this is the first work of cross-omics translation trained on unpaired data. This method allows us to map
between different omics types, such as gene expression and DNA methylation, and generate one omics
profile from another, even when direct pairings between the two omics types are not available while
training. This approach addresses a significant gap in multi-omics integration by enabling biologically
meaningful data generation across modalities.

2. Multi-Omics Based AD Prediction Using Generated Paired Omics Data : Using the cross-
omics translation module, we are able to perform multi-omics-based AD prediction even in the absence
of fully paired datasets. By generating a corresponding omics profile (e.g., DNA methylation) from real
omics data (e.g., gene expression), we effectively create paired multi-omics data and then fuse the two
modalities with our prediction module for AD prediction.

Additionally, as our cross-omics translation module is designed to be compatible with any two omics types
and our translation and prediction modules are separate, our method can be applied solely for cross-omics
translation between two modalities, even in the absence of paired data. We rigorously validate UnCOT-AD
on both cross-omics translation performance and AD prediction tasks, achieving state-of-the-art results in
accuracy and robustness.

2 Methodology

Our method is divided into two steps. In the first step, a Cross-Omics Translation Module is trained on
unpaired omics data, meaning there is no one-to-one correspondence between samples from two different
types of omics datasets. The translation module learns a bidirectional mapping such that, at inference, it
can take one omics profile as input and translate it to the corresponding profile in the other omics. Next, a
Prediction Module combines the real omics profile and the translated omics profile, predicted from the real
omics using the pretrained translation module, to predict AD.
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Fig. 1: A. Coupled VAE architecture that takes two different types of unpaired omics vectors denoted as
X1 and X2. B. Cycle Consistency Mechanism. C. Latent representations of both omics are trained to be
modality invariant through a discriminator loss and an additional contrastive loss pushes the model to learn
AD-specific patterns. D. Two additional discriminators attempt to distinguish between generated and real
omics profiles, while the model aims to "fool" these discriminators, ensuring the generated profiles appear
biologically realistic.

Fig. 2: A. Cross Omics Translation Module generates corresponding paired omics profile (e.g, gene expression)
from real omics profile (e.g, DNA methylation or proteomics). B. Architecture of prediction module. Xreal

and Xpred are feature vectors of the real and generated omics and mreal and mpred are learnable weight
vectors. ⊙ is element-wise multiplication.
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2.1 Cross-Omics Translation Module

The goal of Cross-Omics Translation Module is to learn bidirectional mappings between two omics data
types, denoted as x1 ∈ Rd1 and x2 ∈ Rd2 where the given training samples are unpaired (Figure 1). d1 and
d2 represent the respective dimensionalities of the two omics data types. The empirical data distributions of
the two types are denoted as x1 ∼ Pdata1(x1) and x2 ∼ Pdata2(x2). We employ two separate Variational Au-
toencoders (VAEs)[16]. Despite being unpaired, to ensure consistent translations between the two modalities,
we incorporate a cycle consistency mechanism. Additionally, three adversarial discriminators are utilized to
enforce modality invariance in the latent space and generate biologically realistic omics profiles. To capture
AD-specific features, a contrastive loss is introduced to encourage the separation of AD and control samples
in the latent space.

Variational Autoencoder (VAE) : Each VAE models the latent variable distributions for the two
omics types. The encoder for each VAE approximates the posterior distribution of the latent variable z given
the input data x. Specifically, for omics type x1, the encoder Eθ1 : Rd1 → Rl approximates qϕ1(z1|x1),
where l is the dimensionality of the latent space. The posterior is assumed to be a multivariate Gaussian
distribution with a diagonal covariance structure: qϕ1

(z1|x1) = N (µ1,σ
2
1) where the encoder outputs µ1 (the

mean) and logσ2
1 (the log-variance). Similarly, for omics type x2, the encoder Eθ2 : Rd2 → Rl approximates

qϕ2
(z2|x2) = N (µ2,σ

2
2). To sample from the latent distribution, we employ the reparameterization trick,

which ensures differentiability by expressing z as a function of the mean, variance, and a noise term ϵ drawn
from a standard normal distribution: z1 = µ1 + σ1 · ϵ, ϵ ∼ N (0, I) , where σ1 = exp(0.5 logσ2

1). Similarly,
for z2: z2 = µ2 + σ2 · ϵ, ϵ ∼ N (0, I) , where σ2 = exp(0.5 logσ2

2). The latent variables z1 and z2 are then
decoded by Dϕ1

and Dϕ2
to reconstruct the input omics data:

x̂1 = Dϕ1
(z1), x̂2 = Dϕ2

(z2).

Here, Dϕ1
: Rl → Rd1 and Dϕ2

: Rl → Rd2 represent the decoders that reconstruct the input. To ensure that
the learned posterior qϕ1

(z1|x1) is close to the prior p(z1) = N (0, I), a KL divergence regularizer is applied.
The KL divergence for each VAE is computed as:

KL(qϕ(z|x)∥p(z)) =
1

2

l∑
j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

)
Cycle Consistency Loss : Without having a direct paired mapping between the two modalities, the

model might fail to properly align the features of one omics type with the other. To overcome this limitation,
we incorporate a cycle consistency loss to enforce bidirectional mapping between x1 and x2. We sample
x1 ∼ Pdata1(x1), encode it to obtain z1, and then decode z1 into the other modality as : x̂2 = Dϕ2

(z1).
The translated data x̂2 is re-encoded using Eθ2 to obtain z′2 = Eθ2(x̂2), which is then decoded back to the
original modality:

x̂
(cyc)
1 = Dϕ1(Eθ2(x̂2)).

This process ensures that x1 can be recovered through the translation cycle. Similarly, the same process is
applied to x2. The cycle consistency loss is formulated as:

Lcycle = Ex1∼Pdata1∥x1 − x̂
(cyc)
1 ∥2 + Ex2∼Pdata2∥x2 − x̂

(cyc)
2 ∥2.

This loss encourages consistency between the two omics types, ensuring that even though the data is un-
paired, the model can translate accurately in both directions and preserve the essential features of the original
data. By enforcing this cycle consistency, we mitigate drift between the two modalities and effectively push
the model to learn to generate paired data.

Adversarial Loss : In addition to cycle consistency, we utilize three adversarial discriminators to ensure
modality invariance in the latent space and to enforce that the generated omics profiles are realistic. The
first discriminator, Dψ, operates in the latent space to ensure that z1 and z2 are indistinguishable, enforcing
modality invariance. Modality invariance in latent space is crucial because we use the latent space of one
omics type to reconstruct the other omics profile through the opposite decoder. The adversarial loss for
modality invariance is:

LDmod = −E[logDψ(z1)]− E[log(1−Dψ(z2))].
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The second and third discriminators, Dψ1 and Dψ2 , ensure that the generated omics data from Dϕ1 and
Dϕ2 , respectively, are indistinguishable from real data. For x1, the adversarial loss is given by:

LD1 = −Ex1∼Pdata1 [logDψ1(x1)]− Ex̂1∼Pgen1 [log(1−Dψ1(x̂1)].

Similarly, for x2, the adversarial loss is:

LD2 = −Ex2∼Pdata2 [logDψ2
(x2)]− Ex̂2∼Pgen2 [log(1−Dψ2

(x̂2)].

Pgen1 and Pgen2 represent the distributions of the generated omics profiles from the cross-omics trans-
lation. These adversarial losses ensure that the generated omics profiles remain biologically plausible and
realistic, and that the latent space enforces modality invariance.

Contrastive Loss : To capture AD-specific features in the latent space, we employ a contrastive loss
that encourages latent representations of omics data from the same class (AD or control) to be closer in the
latent space. For a pair of latent variables z1 and z2 which represent positive pairs meaning samples with
the same label y1 = y2 ∈ {0, 1}, the contrastive loss is defined as:

Lcontrastive = − log
exp(z⊤1 z2/τ)∑
j exp(z

⊤
1 zj/τ)

,

where τ is a temperature parameter that controls the concentration of the distribution and j runs over all
samples in the batch, including both positive and negative samples.

Overall Objective : The total loss for this translation module is defined as :

Ltotal = Lrec + λcycleLcycle + λadv(LDmod + LD1 + LD2) + λcontrastiveLcontrastive + λKL(KL1 + KL2).

where Lrec = Ex1∼Pdata1∥x1−Dϕ1(z1)∥2+Ex2∼Pdata2∥x2−Dϕ2(z2)∥2 and lambdas control the relative impor-
tance of each loss component. This formulation ensures that the translated omics data remains biologically
realistic, AD-specific features are captured, and the unpaired nature of the data is properly handled through
cycle consistency.

2.2 Prediction Module

Let xr ∈ Rdr represent the real omics profile of one type, and x̂p ∈ Rdp represent the predicted omics
profile of another type, generated by the pretrained translation module. dr and dp represent the respective
dimensionalities of the real and predicted omics types. The pretrained Cross-Omics Translation Module T
maps the real omics profile to the predicted omics profile as follows: x̂p = T (xr), where T is the mapping
function learned during the translation training phase. The prediction module combines these two profiles,
xr and x̂p, to perform AD classification (Figure 2). The fusion of the real and predicted omics profiles
is performed by projecting each profile into a lower dimensional space of same dimension. The real omics
profile xr and the predicted omics profile x̂p are separately projected using linear transformations: gr =

Wrxr and gp = Wpx̂p, where gr ∈ Rd′ and gp ∈ Rd′ are the projected representations, and Wr ∈ Rd′×dr ,
Wp ∈ Rd′×dp are learnable projection matrices. To dynamically weigh the contributions of each omics profile
type, we apply learnable element-wise weights mr and mp : hr = gr ⊙ mr and hp = gp ⊙ mp, where ⊙
denotes element-wise multiplication. Both mr and mp are of same dimension d′.
The fused latent representation is then computed as:

zfused = hr + hp

This fused representation zfused ∈ Rd′ captures complementary information from both the real and
predicted omics profiles of different types, and it will be used for AD classification. The fused representation
zfused is passed through a multi-layer classifier to predict the probability of Alzheimer’s Disease. The classifier
is composed of multiple fully connected layers with ReLU activations and batch normalization to ensure
robust learning. The classifier computes the prediction as follows: ŷ = σ(C(zfused)), where C is the classifier’s
transformation and σ(·) is the sigmoid activation function, which outputs ŷ ∈ [0, 1]. The prediction module
is trained to minimize the binary cross-entropy loss between the predicted probability ŷ and the true label
y ∈ {0, 1} for Alzheimer’s Disease.
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3 Experiments

We validated the performance and effectiveness of UnCOT-AD by conducting different experiments. We
divided the experiments in two parts - one is AD prediction performance by integrating multi-omics data
and the other is cross-omics translation performance analysis. For the experiments, we consider three different
types of omics - gene expression, DNA methylation and proteomics. We performed 5 fold cross validation
for each of the experiments.

3.1 Dataset

We collected the preprocessed gene expression and DNA methylation dataset from [6] and proteomics dataset
from [17]. The gene expression data were obtained by integrating GSE33000 [18] and GSE44770 [2], containing
257 normal and 439 AD samples. DNA methylation data were collected from GSE80970 [19], comprising 68
normal and 74 AD samples. Proteomics dataset is comprised of 328 AD and 91 normal samples. Differentially
expressed genes (DEGs) and differentially methylated positions (DMPs) were identified by filtering with P-
value < 0.01 for DEGs, and P-value < 0.01 for DMPs and P-value < 0.05 for differentially expressed
proteins(DEPs). Finally we got 200 DEGs, 500 DMPs and 696 DEPs. Detailed preprocessing steps can be
found in [6,17].

3.2 UnCOT-AD Improves AD Prediction by Integrating Multi-Omics Data Over Single
Omics

Initially, we trained individual classifiers on three separate omics datasets (gene expression, DNA methyla-
tion, and proteomics) to predict Alzheimer’s Disease (AD). Next, we trained three Cross-Omics Translation
Modules: one for gene-proteomics translation, one for gene-DNA methylation translation, and another for
DNA methylation-proteomics translation, all in a bidirectional manner. After training the translation mod-
ules, we generated predictions by combining real and translated omics data. For example, we took the real
gene expression data and used the pretrained gene-to-proteomics translation module to generate the corre-
sponding proteomics profile. The real gene expression data and the predicted proteomics profile were then
passed into the prediction module for AD prediction. We repeated this process for all possible pairs of three
different omics.

Table 1: Performance Metrics for AD Prediction
Omics Type Accuracy Precision Recall F1 Score MCC

Multi Omics

Gene+Predicted DNA Methylation 0.9498 0.9743 0.9453 0.9594 0.8950
Gene+Predicted Protein 0.9427 0.9662 0.9429 0.9540 0.8792
Protein+Predicted Gene 0.9189 0.9487 0.9484 0.9474 0.7759
Protein+Predicted DNA Methylation 0.9429 0.9958 0.9303 0.9587 0.8842
DNA Methylation+Predicted Protein 0.8828 0.8857 0.8800 0.8828 0.7657
DNA Methylation+Predicted Gene 0.8759 0.8842 0.9067 0.8941 0.7469

Single Omics

Gene 0.8765 0.8922 0.9157 0.9035 0.7335
DNA Methylation 0.8335 0.8312 0.8667 0.8474 0.6674
Protein 0.8904 0.9703 0.8879 0.9232 0.7636

Table 1 presents the results of AD prediction using both single omics and integrated multi-omics data. The
performance of gene expression and proteomics, with accuracies of 0.8765 and 0.8904 respectively, suggests
that these modalities offer substantial predictive power when used alone. However, DNA methylation, with an
accuracy of 0.8335, performs less effectively on its own, indicating that it may not capture the full complexity
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of AD on its own. Despite these reasonable results for single omics datasets, relying on a single data source
limits the ability to fully capture the diverse biological signals related to AD.

The integration of multi-omics data provides both notable quantitative improvements and biological in-
sights into AD prediction. Combining gene expression with predicted DNA methylation achieves an 8.4%
accuracy improvement over gene expression alone and a 13.9% improvement over DNA methylation alone,
suggesting that transcriptional activity coupled with epigenetic information provides better understanding of
AD mechanisms. Likewise, gene expression combined with predicted proteomics yields a 7.5% improvement
over gene expression alone and 5.9% over proteomics alone, highlighting the complementary roles of tran-
scriptional and protein-level data. Protein expression with predicted gene expression reaches an accuracy of
0.9189, underscoring how upstream genetic regulation benefits protein-level prediction. Integrating protein
expression with predicted DNA methylation or DNA methylation with predicted proteomics improves ac-
curacy by 5.9% and 5.1%, respectively, reinforcing that combining epigenetic information with proteomics
leads to a more comprehensive model for AD prediction. We also report the Matthews Correlation Coefficient
(MCC) to provide a more comprehensive evaluation of the model’s performance [20]. For binary classification
tasks, MCC is particularly useful as it takes into account the balance between true positives, false positives,
true negatives, and false negatives. The highest MCC value is observed for the integration of gene expression
with predicted DNA methylation (MCC of 0.8950) and the next is protein with predicted DNA methylation
(MCC of 0.8842). These results indicate that the multi-omics models perform robustly across all confusion
matrix categories. We observe that the trend of improvement after integrating multi-omics data over single
omics is consistent accross all pairs of omics in every evaluation metric.

Table 2: Comparison of UnCOT-AD with Baseline Models on Multi-Omics AD Prediction
Gene + DM Gene+Protein Protein+DM

Acc. F1 MCC Acc. F1 MCC Acc. F1 MCC

Abbas et al. 0.8689 0.8712 0.7153 0.8932 0.8890 0.7415 0.8307 0.8412 0.7153
Mahendran et al. 0.8402 0.8549 0.6913 0.8805 0.8548 0.6892 0.8091 0.8180 0.6483
Park et al. 0.8611 0.8710 0.7099 0.8896 0.8581 0.7452 0.8457 0.8310 0.7359

UnCOT-AD Acc. F1 MCC

Gene + Predicted DNA Methylation 0.9498 0.9594 0.8950
DNA Methylation + Predicted Gene 0.8759 0.8941 0.7469

Gene + Predicted Protein 0.9427 0.9540 0.8792
Protein + Predicted Gene 0.9189 0.9474 0.7759

Protein + Predicted DNA Methylation 0.9429 0.9587 0.8842
DNA Methylation + Predicted Protein 0.8828 0.8828 0.7657

3.3 AD Prediction Performance Comparison with Baseline Models

We compared the performance of UnCOT-AD on multi-omics based AD prediction with three baseline mod-
els: Abbas et al., Mahendran et al., and Park et al.[12,13,6]. All of them used gene expression and DNA
methylation data. So, we trained their models with proteomics data as well and conducted a thorough perfor-
mance comparison. However, none of the baseline models utilized paired omics data. They used all possible
pairs of gene expression and DNA methylation profile for each label - normal and AD. We address this
limitation in UnCOT-AD by cross omics translation which gives us paired data. To show the effectiveness
of UnCOT-AD, we compared the baseline’s performance using gene expression and DNA methylation with
our results from both gene expression + predicted DNA methylation and DNA methylation + predicted
gene expression. From Table 2, we observe that UnCOT-AD gives better performance in both cases com-
pared to the baseline’s performance. This allowed us to show the added value of our cross-omics translation
method. Similarly, we extended this comparison across all possible pairs of omics. We observe that UnCOT-
AD consistently outperforms the baseline models across all evaluation metrics. The key factor behind this
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improvement is the use of our cross-omics translation module, which effectively generates paired omics data
from unpaired datasets.

3.4 UnCOT-AD Captures Alzheimer’s Disease-Specific Patterns

To validate that UnCOT-AD successfully captures Alzheimer’s Disease-specific patterns, we take a real omics
profile (e.g., gene expression) and use the cross-omics translation module to generate the corresponding omics
profile (e.g., DNA methylation or proteomics). The generated profile is then passed through its respective
encoder, and the resulting latent representations are plotted using t-SNE. From Figure 3, we observe that
AD and normal samples are well-separated on the latent space, as intended by the contrastive loss used
during training. This approach shows us UnCOT-AD effectively captures disease-specific patterns in the
latent space. However, we notice that the ones generated from DNA methylation (Figure 3d,3f) struggle to
capture AD specific features resulting in more sparsed distribution of AD and normal samples. On the other
hand, the ones generated from gene expression and proteomics show well clustured AD and normal samples.

(a) (b) (c)

(d) (e) (f)

Fig. 3: t-SNE visualization of translated omics profiles generated from real omics, with AD and control
samples shown in different colors.

3.5 Cross Omics Translation Performance

To assess the quality of cross-omics translation, researchers commonly use correlation-based metrics such as
Pearson or Spearman correlations. However, these methods are typically applied in paired omics translation,
where ground truth for cross-omics data is available for each sample. In our unpaired scenerio, where no
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Fig. 4: Comparison of Pearson correlation between real and predicted omics profiles across UnCOT-AD,
BABEL, and Polarbear for gene-to-protein and protein-to-gene translations.

such ground truth exists for the translated omics profiles, correlation-based evaluation is not applicable.
To address this challenge and effectively assess the performance of unpaired cross-omics translation, we
propose two evaluation metrics: Cycle Consistency Loss (CCL) and Fréchet Omics Distance (FOD). CCL
measures how well the original omics data can be reconstructed after cross-translation between different
omics modalities, serving as a key indicator of the preservation of relevant features during translation. A
low CCL indicates that the translated omics profile successfully preserves the underlying structure of the
original data, suggesting that the translation process generates omics data closely aligned with, or effectively
"paired" to, the original modality. A lower FOD quantifies the lower distributional difference between real-
world omics data and the omics profile generated through cross-omics translation, capturing how closely the
generated omics data aligns with the real omics profile in the latent space.

Cycle Consistency Loss (CCL) : The Cycle Consistency Loss (CCL) of X1 to X2 (X1 –> X2) is
computed as : CCL = ∥X1 − X̂1∥2. where X1 represents the input omics data from modality 1. First, X1

is passed through the encoder Enc1 of modality 1 to obtain its latent representation. This is then decoded
using the decoder Dec2 of modality 2 to generate the predicted omics X̂2. The predicted omics X̂2 is passed
through the encoder Enc2, followed by the decoder Dec1, resulting in the reconstructed data X̂1. The CCL
is then calculated as the mean squared error (MSE) between the original X1 and the reconstructed X̂1.

Fréchet Omics Distance (FOD) : Given two omics X1 and X2, let ZX1
represent the latent space of

X1 obtained via the encoder of the VAE corresponding to X1, denoted as ZX1 = EncX1(X1). The translated
omics X̂2 (from X1) is generated by decoding ZX1 using the decoder of the VAE corresponding to X2,
denoted X̂2 = DecX2

(ZX1
). The real omics X2 and The translated omics X̂2 are both passed through

the encoder of the VAE of X2, denoted as EncX2
, to obtain their respective latent representations ZX2

=
EncX2

(X2), ZX̂2
= EncX2

(X̂2). The Fréchet Omics Distance (FOD) between X2 and X̂2 is then computed
as:

FOD(X2, X̂2) = ∥µZX2
− µZX̂2

∥2 + Tr(ΣZX2
+ΣZX̂2

− 2(ΣZX2
ΣZX̂2

)
1
2 )

where µZX2
and ΣZX2

are the mean and covariance of the latent representations of real X2, and µZX̂2

and ΣZX̂2
are the corresponding statistics for the predicted X̂2.

Performance Analysis : We compared the bidirectional cross omics translation between gene expression,
DNA methylation and proteomics. As baselines, we employed CycleGAN (adapted for omics data) [21], an
autoencoder based architecture where we replace VAE with autoencoder, and a random baseline. From Table
3, we observe that UnCOT-AD significantly outperforms all the baselines for all pairs of omics which shows
the effectiveness of our approach. Moreover, we notice the lowest CCL for translation between gene expression
and proteomics. The cross modal translation involving DNA methylation with both gene expression and
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Table 3: Performance on Unpaired Cross Omics Translation
UnCOT-AD CycleGAN Autoencoder Random Baseline

CCL FOD CCL FOD CCL FOD CCL FOD

Gene → Protein 0.0476 0.5404 0.1254 1.2543 0.1804 2.2015 3.2831 4.7534
Protein → Gene 0.0396 1.3961 0.1209 2.1543 0.1754 2.8054 2.9103 3.6742
Gene → DM 0.1509 4.2545 0.2304 5.1230 0.2800 5.8056 4.5702 6.1223
DM → Gene 0.1070 4.0135 0.1953 4.8502 0.2456 5.6743 4.1209 6.0054
DM → Protein 0.1169 4.1921 0.2105 5.1344 0.2603 5.9801 4.3658 6.2917
Protein → DM 0.1513 3.8759 0.2356 4.7523 0.2901 5.3624 4.4503 5.8421

protein demonstrates higher CCL compared to gene and protein. This same pattern is observed with FOD
as well where cross modal translation involving DNA methylation yields higher FOD compared to gene and
protein. These results highlight the strong biological relationship between gene expression and proteins and
the challenge of capturing complex pattern of DNA methylation. From Section 3.2, we also notice that DNA
methylation shows less predictive power compared to the other two which aligns with the trend observed in
this experiment.

3.6 UnCOT-AD Shows Superior Performance in Paired Cross-Omics Translation

To further demonstrate the effectiveness of UnCOT-AD, we evaluated its performance in traditional paired
scenario with two state-of-the-art models, BABEL [14] and Polarbear [15], both designed specifically for
paired data training. We evaluated on two paired gene expression and proteomics datasets, which were
originally sourced from the TCGA BRCA cohort and made available in preprocessed form by [22]. The
evaluation was conducted based on Pearson correlation between real and predicted omics profiles. UnCOT-
AD consistently outperformed both BABEL and Polarbear across translation tasks in both directions: gene-
to-protein and protein-to-gene (Figure 4). This result highlights UnCOT-AD’s robustness and generalizability
in both paired and unpaired training scenarios.

3.7 Ablation Study

We performed an ablation study to evaluate the impact of key components in our framework: the Adversarial
Loss and Cycle Consistency Mechanism on cross-omics translation, and the contribution of the Contrastive
Loss in AD prediction. From Figure 5a, we observe that removing the cycle consistency mechanism signifi-
cantly increases the CCL while affecting the FOD to a lesser extent. This is because the cycle consistency
mechanism is crucial for generating omics profiles that can accurately reconstruct the input omics. The ab-
sence of this mechanism leads to poor alignment between the translated and original omics profiles, increasing
the CCL. On the other hand, FOD is more related to generating realistic omics profiles. Thus, removing the
adversarial loss leads to substantial increase in FOD, as the adversarial components helps ensure the gener-
ated omics data resemble the true distribution of omics profiles. Therefore, to achieve optimal performance
in both metrics (CCL and FOD), both the cycle consistency mechanism and adversarial loss are necessary.
Additionally, we validated the importance of learning AD-specific features in the cross-omics translation
module. From Figure 5b, we find that when the contrastive loss is excluded, the MCC of AD prediction
drops for every pair of omics data. This highlights the essential role of contrastive loss in encouraging the
separation of AD and control samples in the latent space.

4 Conclusion

In this paper, we introduce UnCOT-AD, a novel approach to address the challenge of unpaired multi-omics
data integration for Alzheimer’s Disease (AD) prediction. For the first time, we introduce a cross-omics
translation module that allows for the generation of paired omics profiles, even when the training data
from two modalities are unpaired. By combining the generated profiles with real omics data, we perform
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(a)

(b)

Fig. 5: Visualization of the Contribution of (a) Adversarial Loss, Cycle Consistency and (b) Contrastive Loss
in Cross Omics Translation and AD Prediction.

multi-omics based AD prediction, overcoming the limitations of existing approaches that rely solely on
single omics. Our method achieves state-of-the-art results in both cross-omics translation and AD prediction
tasks, demonstrating significant improvements in all evaluation metrics compared to existing approaches.
By generating biologically meaningful omics profiles and effectively integrating them, our framework has
proven to be a robust solution for multi-omics integration in AD prediction. Thus, UnCOT-AD presents
new potential by effectively combining multiple biological data modalities, enabling a more comprehensive
understanding of complex diseases like Alzheimer’s Disease. Our cross-omics translation module is designed
to be compatible with any two omics types. Additionally, as our translation and prediction modules are
separate, our method can be applied solely for cross-omics translation between two modalities, even in the
absence of paired data.
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