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Artificial Intelligence and Multiscale Modeling for
Sustainable Biopolymers and Bioinspired Materials

Xing Quan Wang, Zeqing Jin, Dharneedar Ravichandran, and Grace X. Gu*

Biopolymers and bioinspired materials contribute to the construction of
intricate hierarchical structures that exhibit advanced properties. The
remarkable toughness and damage tolerance of such multilevel materials are
conferred through the hierarchical assembly of their multiscale (i.e., atomistic
to macroscale) components and architectures. Here, the functionality and
mechanisms of biopolymers and bio-inspired materials at multilength scales
are explored and summarized, focusing on biopolymer nanofibril
configurations, biocompatible synthetic biopolymers, and bio-inspired
composites. Their modeling methods with theoretical basis at multiple
lengths and time scales are reviewed for biopolymer applications.
Additionally, the exploration of artificial intelligence-powered methodologies is
emphasized to realize improvements in these biopolymers from functionality,
biodegradability, and sustainability to their characterization, fabrication
process, and superior designs. Ultimately, a promising future for these
versatile materials in the manufacturing of advanced materials across wider
applications and greater lifecycle impacts is foreseen.

1. Introduction

Every living being is a masterpiece of nature, intricately crafted
with biopolymers whose precise multiscale hierarchical struc-
tures energize bio-inspired composites. Biopolymers can be clas-
sified into natural biopolymers and synthetic biopolymers. Nat-
ural biopolymers are the polymers produced by living organ-
isms, such as proteins and polysaccharides. Biopolymer nanofib-
rils (e.g., cellulose, chitin, silk) are the typical natural biopoly-
mers that spur innovation and interest due to their remarkable
hierarchical structural features and functional outcomes, along
with their green origins.[1–3] The sophisticated hierarchical struc-
ture of biopolymer nanofibrils, spanning from the molecular to
nano and macroscopic scales, features well-organized structural
elements interconnected by extensive hydrogen bonding net-
works within semicrystallinematrices at each level. This intricate
arrangement provides biopolymer nanofibrils with remarkable

X. Q. Wang, Z. Jin, D. Ravichandran, G. X. Gu
Department of Mechanical Engineering
University of California Berkeley
Berkeley, CA 94709, USA
E-mail: ggu@berkeley.edu

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adma.202416901

DOI: 10.1002/adma.202416901

mechanical stability and strength. Similarly,
synthetic biopolymers can also possess a
hierarchical structure, depending on the
specifics of their design and synthesis pro-
cesses. Many synthetic biopolymers are de-
signed to mimic the natural hierarchical
structures found in biological systems, of-
ten leading to enhanced properties simi-
lar to their natural counterparts.[4,5] By en-
gineering synthetic biopolymers with hier-
archical features, researchers can replicate
some of the remarkable properties of nat-
ural materials, such as toughness, elastic-
ity, or self-healing capabilities.[6,7] For in-
stance, biodegradable polyesters can be syn-
thesized and processed to form structures
with hierarchical features, such as crys-
tallites at the nanoscale and fibrous as-
semblies at larger scales, leading to im-
proved strength and biodegradability. Syn-
thetic collagen has a distinct hierarchi-
cal arrangement, synthetic versions can be
designed to self-assemble into fibrils or

higher-order structures to achieve similar mechanical proper-
ties. Bioinspired composites are designed based on principles ob-
served in natural systems, which incorporate both synthetic and
natural components for replicating their multiscale hierarchical
structures and functionalities.[8,9] Sustainable biopolymers and
bioinspired materials are engineered to minimize environmen-
tal impact throughout their lifecycle by leveraging biodegradabil-
ity, recyclability, or compostability, making them essential for
addressing pressing challenges such as reducing persistent mi-
croplastics,mitigating greenhouse gas emissions, and improving
resource efficiency within circular economy frameworks. A deep
understanding of how natural systems organize matter, from the
atomic to the macroscopic scale, is pivotal not only for appreciat-
ing the intrinsic properties of biopolymers but also for informing
the synthesis of new and sustainable materials.
Computational and theoretical models provide essential tools

for designing and optimizing biopolymer-based systems. Cap-
turing the multiscale phenomena inherent to these materials re-
quires multiscale approaches that span broad temporal and spa-
tial resolutions. Multiscale modeling techniques in biopolymer
and bio-inspired design differ primarily in how they integratemi-
croscopic details into the macroscopic scale.[10] Based on these
differences, multiscale modeling approaches are categorized as
hierarchical and concurrent methods.[11] Hierarchical methods
decompose a problem into multiple levels based on temporal
or spatial scales, with information flowing from fine-scale to
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macroscopic through step-by-step analysis, allowing specialized
techniques to be applied at each level. In contrast, concurrent
methods, address multiple scales simultaneously within a sin-
gle computational domain, integrating different scales, and us-
ingmathematical relationships for real-time interaction and scale
coupling. Multiscale modeling for biopolymers primarily relies
on hierarchical methods rather than concurrent methods due to
the complex, scale-dependent nature of biopolymer structures
and their properties.[12,13] For biopolymers and biological pro-
cesses, the typical length scales range from the ångström-level in-
teractions of individual chemical bonds to the interactions at the
level of monomers and single polymer chains, extending to the
formation of specific domains and more complex 3D structures
unique to these systems. This hierarchical organization is evident
not only in the crystalline regions and blending characteristics of
polymer mixtures and composites, but also in the higher-order
assembly of proteins and polysaccharides, which provide addi-
tional contributions to the formation of macroscopic structures
in biopolymers. Consequently, hierarchical methods are particu-
larly well-suited for such systems, as they allow the problem to
be decomposed across different scales, facilitating the optimiza-
tion of material structures at each level according to the perfor-
mance requirements associated with the relevant scale. Further-
more, hierarchical approaches offer greater computational effi-
ciency in modeling biopolymers by simultaneously simulating
multiple scales within a single computational domain.[14] These
methods enable the progressive upscaling of information from
the atomistic to the macroscopic level, making themmore practi-
cal for capturing the full complexity of biopolymer systems while
maintaining both precision and computational feasibility. When
combined with experimental validation techniques such as 3D
printing,[15–20] multiscale methods allow for precise control over
hierarchical structures in synthetic biopolymers, enhancing key
material properties such as mechanical strength, porosity, and
biodegradability.
Integrating artificial intelligence (AI) into the design of

biopolymers and bio-inspired composites offers a promising
approach to advancing sustainability in materials science.[21–24]

AI, particularly through machine learning (ML) algorithms, ex-
cels at processing and analyzing large datasets, which include
molecular structures, processing conditions, and environmental
impacts.[25–29] By uncovering complex patterns and relationships
within these datasets, AI facilitates accurate predictions of mate-
rial properties and performance, significantly reducing the need
for extensive experimental trials. In ML-driven biopolymer de-
sign, ML models are typically categorized into three types based
on their outputs: regression models, which provide continuous
numerical predictions; classification models, which assign in-
puts to distinct categories; and clustering models, which group
data points based on shared features without supervision.[30]

These models often use design parameters as input features, en-
abling the prediction of critical mechanical and chemical prop-
erties such as strength, deformation, toxicity, stiffness, and sta-
bility. This predictive capability accelerates the discovery of new
biopolymers with optimized traits, such as improved biodegrad-
ability, mechanical strength, and thermal stability, reducing both
resource consumption and waste. Generative models form a dis-
tinct class of algorithms focused on learning from data to create
new samples or design novel objects, rather than simply predict-

ing or classifying.[31] In the context of bio-inspired composites,
generative models like generative adversarial networks (GANs)
and variational autoencoders (VAEs) can generate novel microar-
chitectures that mimic natural hierarchical patterns, producing
materials with superior mechanical properties and reduced envi-
ronmental impacts. Transformers, the foundational architecture
of large language models (LLMs), employ a self-attention mecha-
nism to capture global relationships within input data, including
both text and images. This flexibility has made Transformers one
of themost widely adopted deep learning frameworks. In biopoly-
mer research, Transformers are expected to be applied in analyz-
ing material life cycles by evaluating factors such as energy con-
sumption, carbon emissions, and recyclability. These compre-
hensive analyses support the development of biopolymers that
are both functional and sustainable across their entire lifespan.
AI also plays a key role in bridging the gap between laboratory
discoveries and industrial production by optimizingmanufactur-
ing processes such as 3D printing parameters and self-assembly
techniques.[32–35] This approach helps identify optimal process-
ing conditions, reducing energy consumption andmaterial waste
while enhancing overall material performance.
This review presents a multiscale perspective on AI-enhanced

sustainable biopolymers and bioinspired design. We begin with
a comprehensive overview of the multiscale architectures of
biopolymers, introducing the progression from simple to hier-
archical to complex configurations in both natural and synthetic
biopolymers, as well as sustainable copolymers for hierarchy de-
velopment in bio-composites. Next, we exploremultiscale model-
ing approaches for biopolymers, covering both particle-based and
field-based methods, along with experimental validation tech-
niques. We then highlight how AI can be leveraged for charac-
terization, fabrication optimization, and generative design of ad-
vanced biopolymers. Finally, we conclude with an outlook on fu-
ture developments in the field.

2. Multiscale Architectures of Biopolymer:
Simple-Hierarchical-Complex Configurations

The architecture of polymers refers to the specific arrangement
and connectivity of polymer chains, which significantly influ-
ences their physical, thermal, and chemical properties.[36] Natu-
ral biopolymers like proteins, nucleic acids, and polysaccharides
exhibit highly complex hierarchical architectures that span from
individual monomers to large macroscopic assemblies.[37] This
complexity is the result of millions of years of evolution fine-
tuning them for specific biological roles. In contrast, synthetic
biopolymers engineered by humans have simpler architectures
but offer precise control, allowing customization for specific in-
dustrial or scientific applications.[38] A key difference between
natural and synthetic biopolymers lies in their inherent complex-
ity and composition: natural biopolymers have intricated, special-
ized architectures optimized for biological performance, while
synthetic biopolymers provide greater design flexibility for tai-
lored uses. Table 1 underscores this contrast by highlighting the
complexity of natural biopolymers and the versatility of synthetic
ones.[8,39–41] While nature’s biopolymers perform essential bio-
logical functions precisely, synthetic biopolymers are adaptable
and valuable across fields like medicine, material science, and
engineering.
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Table 1. Comparison of natural and synthetic biopolymers highlighting the key differences in their architecture.

Natural Biopolymers Synthetic Biopolymers

Structure Exhibits complex, multilevel organization. Exhibits a more uniform and less complex architecture.

Composition Monomers are arranged in precise, biologically determined
sequences providing unique folding and functions.

Engineering monomer sequence giving tailored
properties and functionalities.

Conformations Can form helices, sheets, and complex 3D structures often
stabilized by hydrogen bonding and other interactions.

It can be linear, branched, star-shaped, or form
networks providing specific applications.

Versatility Can self-assemble spontaneously and organize into
higher-order structures.

Can produce hydride structures through a combination
of synthetic and natural components.

Dispersity These are monodispersed, i.e., all molecules have the
same mass and composition.

Often polydisperse with a distribution of masses.

Hierarchy Exhibit multiple levels of hierarchical organization from
primary to quaternary or individual units to branched

structures

Generally, lacks the complex hierarchical organization.

Functionality Produces highly specific and complex biological functions. Can be designed for specific functions.

Biodegradability Many natural polymers are inherently biodegradable. Not all synthetic polymers are biodegradable but are
biocompatible.

2.1. Natural Biopolymers

Natural biopolymers, derived from living organisms such as
plants, animals, and microorganisms, are regarded as environ-
mentally sustainable due to their natural origin, biocompatibil-
ity, and biodegradability.[42] Natural biopolymers such as cellu-
lose produced by plants contribute to environmental sustainabil-
ity by sequestering up to 2–3 gigatons of carbon annually, which
helps reduce atmospheric CO2 levels.

[43] Their biodegradability
under natural conditions ensures minimal environmental per-
sistence, as materials like chitosan decompose within weeks to
months in soil or aquatic systems and significantly reduce waste
accumulation.[44] Their eco-friendly nature and inherent biologi-
cal properties have led to widespread use in various applications,
especially in fields that prioritize sustainability and health. Based
on their repeating structural units, natural biopolymers can be
classified into three main categories: polynucleotides (e.g., DNA
and RNA), polypeptides (e.g., proteins or protein-based biopoly-
mers like gelatin), and polysaccharides (e.g., chitosan). All nat-
ural biopolymers exhibit a multiscale hierarchical architecture
that allows them to display complex behaviors and functions
across different length scales, playing a crucial role in deter-
mining the properties and capabilities of biological systems.[45]

At the nanoscale level, individual monomers form the basic
building blocks. The monomer assembly into a polymer chain
forms the secondary structure. The polymer chains are further
organized into tertiary and quaternary structures, and on larger
scales, they assemble into networks, fibers, and macroscopic
structures. The structural organization varies among biopolymer
types: polypeptides have a complex, well-defined four-level struc-
ture with amino acids forming primary sequences, secondary
structures like alpha helices or beta sheets, tertiary structures
as the overall 3D shape of a single protein molecule, and qua-
ternary structures as assemblies of multiple protein subunits;
polysaccharides have a simpler organization with primary struc-
tures of monomer sequences and linkage types, secondary struc-
tures of local chain conformations, and higher-order assemblies
that are not as well-defined or universal as in polypeptides, al-
though some exhibit multiscale hierarchical structures similar

to proteins.[46,47] This hierarchical organization is determined by
factors such as the chemical properties of the monomers, the
types of bonds that link them, and the specific biological roles of
the biopolymer. While polynucleotides are essential for numer-
ous applications, they fall outside the scope of this review and
will not be discussed much further.

2.1.1. Polypeptides

The hierarchical structure of polypeptides involves several lev-
els of organization, from the primary amino acid sequence to
intricate 3D architectures. This complexity arises through coop-
erative self-assembly processes, where higher-order structures
are stabilized by interactions like hydrogen bonding and 𝜋-𝜋
stacking.[48] These interactions enhance both the stability and
complexity of the resulting structures. For long-range, ordered
crystalline formations, self-assembly is governed by thermody-
namic principles that dictate how polypeptides organize into spe-
cific forms. Unlike traditional crystallization mechanisms, hier-
archical self-assembly employs a multiscale approach that coor-
dinates both the structure and function of the material.[49] This
process leads to diverse architectures such as nanofibers, twisted
nanoribbons, and nanotubes, depending on the sequence inter-
actions between polypeptide chains. The chemical functionali-
ties of the polypeptides and their interactions with other poly-
mers play crucial roles in directing self-assembly into complex,
stable structures, which are widely used in applications like bio-
materials for cell culture scaffolds.[50] The hierarchical organiza-
tion of polypeptides is characterized by multiple levels of struc-
tural complexity (Figure 1A). The primary structure is the lin-
ear sequence of amino acids connected by peptide bonds, serv-
ing as the foundation for the polypeptide’s overall shape and
function. Each amino acid has a unique side chain, or R-group,
which influences how the polypeptide folds and interacts with
other molecules. The secondary structure refers to the local spa-
tial arrangement of the polypeptide chain, resulting in common
motifs like alpha helices and beta sheets stabilized by hydro-
gen bonds between backbone atoms.[51] The tertiary structure
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Figure 1. Hierarchical architecture of A–C) polypeptides and D–G) polysaccharides: A) the fundamental organization of polypeptides; Adapted with
permission.[281] Copyright 2024, OpenStax B) the hierarchy of collagen; C) The hierarchy of silk fibroin; Adapted with permission.[64] Copyright 2023,
MDPI. D) the fundamental branching structure of polysaccharides; Adapted with permission.[67] Copyright 2020, RSC. E) molecular diagram of amy-
lose of starch and a 3D illustration of the spiral amylose structure containing six glucose units per turn due to the hydrogen bonding; Adapted with
permission.[282] Copyright 2024, OpenStax. F) the hierarchy of cellulose. G) the hierarchy of chitin extracted from crawfish, highlighting the multilevel
organization that enhances its properties and versatility. Adapted with permission.[80] Copyright 2021, Wiley.
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describes the overall 3D shape of a single polypeptide molecule,
influenced by interactions between side chains, including disul-
fide bonds, hydrophobic interactions, hydrogen bonds, and ionic
interactions.[52] Some polypeptides exhibit a quaternary structure
by forming larger functional complexes with other polypeptide
chains.[53] This level involves interactions of multiple subunits
held together by noncovalent bonds and sometimes stabilized by
disulfide bridges, critical for the function of many multisubunit
proteins like hemoglobin. The hierarchical structure of polypep-
tides is inherently dynamic, with different levels exhibiting dis-
tinct timescales of motion. Rapid local fluctuations, such as side
chain movements, occur within the pico- to nanosecond range.
Motions of secondary structure elements like alpha helices and
beta sheets happen over nano- tomicrosecond timescales. Larger-
scale movements, including rearrangements of entire domains
or subunits, span from microseconds to milliseconds. These dy-
namicmovements are crucial for polypeptide functions, enabling
processes like enzyme catalysis, ligand binding, and allosteric
regulation.[54–56] Understanding these hierarchical and dynamic
properties is key to exploring their roles in biological systems,
from enzymatic activity to molecular recognition, and provides
a basis for innovations in biomaterials and protein engineering.
Bymanipulating these structural hierarchies, researchers can de-
velop new biomaterials and drugs with targeted functionality.
Collagen and silk are the typical natural biopolymers with hi-

erarchical structures that provide mechanical strength, bioac-
tivity, and suitability for biomedical applications. Collagen, the
most abundant protein in the human body, exemplifies the he-
lical structure in polypeptides and possesses a complex hierar-
chical organization crucial for its biological functions and tissue
engineering applications.[57] Beginning with amino acid chains
forming its primary structure, collagen progresses frommolecu-
lar triple helices to microfibrils, fibril bundles, and macroscopic
fibers.[58] This multiscale architecture enhances its mechanical
properties like strength and toughness, making it suitable for
load-bearing applications.[59] The rigid, rod-like triple helices con-
tribute to stability and functionality (Figure 1B), while the D-
periodic cross-striated pattern of microfibrils adds mechanical
strength.[60] Collagen’s structure also supports cell attachment,
growth, and differentiation, making it an ideal scaffold for tis-
sue regeneration.[61] Silk, a natural polymer composed of fibroin,
exemplifies the 𝛽-sheet structure in polypeptides and has been
used in medical applications like surgical sutures.[62] Silk fi-
broin, constituting about 70% of silk, possesses favorable proper-
ties such as strong mechanical performance, hydrophilicity, and
biocompatibility.[63] Its unique structural characteristics and hier-
archical organization are crucial for tissue engineering and bio-
materials (Figure 1C).[64] Similar to collagen, silk fibroin exhibits
a multilevel structure from molecular arrangements to macro-
scopic scaffolds.[65] At the primary level, silk consists of twomain
proteins: fibroin and sericin. Fibroin is composed of a heavy
chain (H-chain) and a light chain (L-chain) linked by disulfide
bonds; the H-chain, rich in glycine, alanine, and serine, forms
stable structural units. At the secondary level, the H-chain folds
into stable anti-parallel 𝛽-sheets, providing strength and rigid-
ity. These 𝛽-sheets aggregate to form tropo-silk, the fundamen-
tal building block of silk fibers. Tropo-silk aggregates align into
fibrils, which bundle into fibers ranging from 10 to 30 microns
in diameter, offering exceptional tensile strength and elasticity. At

themacroscopic level, these fibers are organized into larger struc-
tures that can be processed into films, scaffolds, or threads.[62,63]

This hierarchical organization allows silk fibroin to mimic the
natural extracellular matrix, providing an ideal environment for
cell adhesion and growth.[66] Understanding and replicating the
natural hierarchies of collagen and silk are crucial for developing
advancedmaterials with enhanced performance and biocompati-
bility, particularly in regenerative medicine, surgical sutures, and
other biomedical applications.

2.1.2. Polysaccharides

Unlike polypeptides, which have a well-established understand-
ing of their multiscale molecular architecture, polysaccharides
are less comprehended at the molecular level. This is due to
challenges such as the lack of pure materials, difficulty in syn-
thesis, and their branched structures (Figure 1D).[67] Isolating
polysaccharides from natural sources requires extensive purifica-
tion and harsh treatments, often leading to polydisperse samples.
However, polysaccharides exhibit a multilevel hierarchy, from ba-
sic monosaccharide units to complex supramolecular architec-
tures. This hierarchy, including constituent sugars, branching
patterns, macromolecular architecture, and supramolecular or-
ganization, plays a crucial role in determining their functional-
ity and properties.[46] At the primary level, polysaccharides are
composed of monosaccharide units linked by glycosidic bonds,
forming either homopolysaccharides or heteropolysaccharides.
The primary structure involves glycosidic linkages in 𝛼 or 𝛽 con-
figurations at different carbon positions. The secondary struc-
ture refers to the spatial arrangement influenced by hydrogen
bonding and linkage types, resulting in helices (e.g., amylose) or
ribbon-like structures (e.g., cellulose). At the tertiary and quater-
nary levels, polysaccharides form more complex 3D shapes, ei-
ther as single molecules or as networks that interact with other
biomolecules.[68–70] These higher-order structures are affected
by intramolecular interactions, branching patterns, and exter-
nal factors such as pH, temperature, and ionic strength. There-
fore, understanding this hierarchical organization is essential
for appreciating their diverse functions and roles in biological
systems.[71–73] Despite being abundant in food, the literature on
key polysaccharides like starch and alginate is incomplete due
to structural complexity and analytical limitations.[67] Neverthe-
less, their hierarchical structure is fundamental to their func-
tional properties and applications in fields such as food science,
drug delivery, and tissue engineering.
Starch is a polysaccharide composed of amylose and amy-

lopectin, featuring a layered architecture that affects its solubil-
ity, digestibility, and industrial performance. Amylose, making
up about 35% of natural starches, is a linear chain of glucose
molecules.[74] Its unbranched structure forms helical arrange-
ments, influencing the starch’s ability to gelatinize and resist
enzymatic breakdown (Figure 1E). In contrast, amylopectin is
the branched component with glucose units organized into clus-
ters. This branching creates a dense network that affects how
starch interacts with water, making it ideal for thickening agents,
adhesives, and biodegradable materials.[75] The biodegradabil-
ity of amylopectin lies in its glucose-based structure, which
can be enzymatically hydrolyzed by amylase and other naturally
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occurring enzymes into simple sugars that microorganisms can
easily metabolize. Studies have demonstrated that starch-based
materials rich in amylopectin achieve over 50% biodegradation
within weeks under composting conditions,[76] highlighting their
rapid and eco-friendly decomposition. The hierarchical arrange-
ment of linear amylose interwoven with branched amylopectin
determines starch’s properties such as gelatinization tempera-
ture, viscosity, and resistance to digestion, which are crucial for
its applications in food and industry.[77] Similarly, alginate de-
rived from brown seaweed is composed of blocks of mannuronic
acid (M) and guluronic acid (G) arranged in a specific hierar-
chical structure. The alternating sequence of M and G blocks
gives alginate unique properties, such as forming hydrogels in
the presence of divalent cations like calcium.[78] This hierarchi-
cal organization is essential for its use in applications such as
drug delivery and tissue engineering. Alginate’s gel-forming abil-
ity is harnessed to encapsulate cells, proteins, or drugs for con-
trolled release.[79] The hierarchical structures of both starch and
alginate are critical for their interactions, stability, and functional
properties.
Cellulose is an organic compound and the primary structural

component of plants and algae, found in fruits, vegetables, and
whole grains. Its complex hierarchical structure greatly influ-
ences its mechanical properties and wide range of applications
(Figure 1F).[80] At themolecular level, cellulose consists of repeat-
ing units of 𝛽-d-glucose connected by glycosidic bonds, form-
ing long, linear chains.[81] This straight-chain nature allows ex-
tensive hydrogen bonding between chains, which is crucial for
stability. Each glucose unit contains hydroxyl (–OH) groups that
enable these bonds, affecting cellulose’s solubility and reactiv-
ity. At the fibrillar level, individual cellulose molecules aggre-
gate to form microfibrils (i.e., bundles held together by hydro-
gen bonds). These microfibrils are typically 10 to 30 nm in di-
ameter. They have crystalline regions that provide strength and
rigidity and amorphous regions that offer flexibility and allow
the material to absorb stress without breaking.[82] Microfibrils
further bundle into larger fibers ranging from 10 to 20 μm in
diameter that are organized to support plant cell walls. Fiber ori-
entation varies based on function: parallel alignment withstands
stretching forces, while random or patterned arrangements re-
sist compression.[83] Cellulose fibers are embedded in a matrix
of hemicellulose, lignin, and other polysaccharides within the
plant cell wall, forming a composite structure that provides both
mechanical strength and flexibility.[84] The plant cell wall is orga-
nized into three layers: an outer flexible layer for cell growth, a
thicker inner layer for additional support, and a pectin-rich mid-
dle layer that acts as glue between adjacent cells.[85] The hierarchi-
cal organization of cellulose from molecular structure to macro-
scopic arrangement is critical to its function as a biomaterial by
providing mechanical strength and supporting essential biologi-
cal processes.
Chitin ranks as the second most abundant polysaccharide fol-

lowing cellulose. It is a long-chain polymer comprised of N-
acetylglucosamine units connected by glycosidic bonds. Found
in the cell walls of fungi and the exoskeletons of insects and crus-
taceans, its hierarchical structure greatly influences its mechan-
ical properties and applications (Figure 1G).[80] At the molecu-
lar level, chitin’s linear chains can self-assemble into organized
matrices at multiple scales. These scales range from nanofib-

rils to macroscopic forms. Environmental factors like pH can
trigger this self-assembly into nanofibrils.[86] Techniques such
as binary-solvent-induced self-assembly create chitin hydrogels
with enhanced damping properties.[87] Chitin exists in three
polymorphic forms.[87] 𝛼-chitin has antiparallel chains provid-
ing high stability. 𝛽-chitin has parallel chains found in marine
organisms. 𝛾-chitin is a combination of both forms. At the fib-
rillar level, chitin molecules form microfibrils which are bun-
dles stabilized by hydrogen bonds. These microfibrils have di-
ameters of 2 to 5 nanometers and lengths extending to several
hundred nanometers. Crystalline regions contribute to mechani-
cal strength. Amorphous regions provide flexibility.[87] These mi-
crofibrils bundle into larger fibers 10 to 20 microns in diameter.
These fibers are organized into layered structures that support
biological systems. Chitin also forms cuticles, which provide the
protective outer layer of organisms with a multilayered architec-
ture composed of chitin composites.[88] Fibers are arranged in
a twisted, plywood-like structure, enhancing properties such as
toughness and fracture resistance. This hierarchical organization
makes chitin ideal formedical devices, biomimeticmaterials, and
other engineering fields.[89]

2.2. Biocompatible Synthetic Polymers to Biocomposites:
Hierarchy Development

2.2.1. Synthetic Biopolymers and Synthesis

While natural biopolymers possess exceptional properties and
functionalities, their extraction and processing often lead to sig-
nificant performance deterioration including limited modifiabil-
ity, poor solubility, and variability among batches.[90] Consider-
ing these challenges, synthetic biopolymers have emerged as a
promising alternative. Synthetic biopolymers, derived from re-
newable resources, offer cost-effective synthesis, tunable prop-
erties, and biodegradability, making them attractive for a wide
range of applications in biomedical, pharmaceutical, and pack-
aging industries.[91] Unlike natural polymers, synthetic biopoly-
mers can be tailored to meet specific requirements, allowing
for greater control over their physical, chemical, and mechan-
ical properties.[92] The sustainability of a synthetic biopolymer
depends on whether it is derived from renewable resources,
biodegradable under natural or industrial conditions, and recy-
clable or upcyclable to support a circular economy. Its production
should prioritize minimizing energy consumption and green-
house gas emissions while ensuring nontoxicity to humans and
ecosystems. Examples such as polylactic acid (PLA), polyvinyl al-
cohol (PVA), polyhydroxyalkanoates (PHAs), and polycaprolac-
tone (PCL) demonstrate how functionality can be effectively com-
bined with environmental responsibility. These sustainable syn-
thetic polymers are widely used in applications such as drug de-
livery systems, tissue engineering, and 3D printing due to their
biodegradability, biocompatibility, and favorable interaction with
biological systems. Their ability to promote healing and regen-
eration, while minimizing adverse reactions, makes them par-
ticularly valuable in medical device manufacturing and tissue
scaffolding.[6]

Advancements in the fabricationmethods have enabled the de-
velopment of sustainable synthetic biopolymers, making them
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Table 2. Key synthesize methods and examples of synthetic biopolymers.

Method Technique Description Examples Refs.

Polymerization Coordination polymerization Used to synthesize polyisoprenes, which are synthetic
analogs of natural rubber. This method employs

Ziegler-Natta catalysts to facilitate the
polymerization process

Cis-1,4-polyisoprene,
trans-1,4-polyisoprene

[277]

Ring-opening metathesis
polymerization

This technique allows for precise control over polymer
structure, including side-chain placement, which is
crucial for tailoring properties such as hydrophilicity

and biocompatibility

Polynorbornene [278]

Chemical Polycondensation and
polyaddition

These methods are commonly used to create PHAs
and other biodegradable polymers. They involve the

stepwise reaction of monomers to form high
molecular-weight polymers

Poly(3-
hydroxobutyrate),
polyurethane,

poly(hydroxovaleric
acid)

[279]

Esterification and hydrolysis These reactions can modify existing biopolymers or
synthesize new ones by linking monomers through
ester bonds or breaking them down into simpler

units

PVA, PCL, PLA,
polyphosphazene

[279]

Chemoenzymatic – Enzyme-assisted synthesis utilizes specific enzymes to
catalyze reactions, facilitating the formation of
complex structures like polysaccharides and

glycosaminoglycans. This approach can enhance
specificity and yield in biopolymer production

PHAs, heparin,
synthetic

polysaccharides

[280]

ideal for specific biomedical applications. These polymers are
synthesized through a range of chemical processes designed to
replicate the beneficial properties of natural polymers while ad-
dressing their limitations. By refining the fabrication processes,
researchers can fine-tune the structure and functionality of syn-
thetic biopolymers to meet the demands of applications. Addi-
tionally, growing concerns over plastic pollution have increased
interest in synthetic biopolymers as ecofriendly alternatives to
conventional plastics, positioning them as essential contribu-
tors to achieving a more sustainable, carbon-neutral society.[93]

Table 2 provides an overview of major synthesis methods for sus-
tainable synthetic biopolymers, along with a brief description of
each process. While it is challenging to replicate the precise spa-
tial configurations of natural polymers, synthetic polymers offer
several advantages that could surpass natural counterparts. The
cost-effective fabrication of synthetic polymers, combined with
superior strength, durability, tunable properties, and consistent
production, leads to greater processability and adaptability across
various applications.
Moreover, unlike natural polymers, which inherently exhibit

a hierarchical architecture, synthetic biopolymers also possess a
hierarchical structure that can be described from the molecular
to the macroscopic level (Figure 2A).[80] They adhere to the clas-
sical definition of polymers, which are composed of repeating
monomer units linked together through various polymerization
processes. The primary structure is given by the arrangement of
thesemonomers. At the nanoscale, synthetic biopolymers exhibit
self-assembly into nanosized structures, where linear polymers
can fold into cyclic forms, contributing to the formation of in-
tricate hierarchical nanostructures. At the microscale, polymer
chains can aggregate into larger domains through intermolecular
interactions, influencing properties such as mechanical strength
and thermal stability. At themacroscopic level, the bulk character-

istics of synthetic biopolymers such as shape, size, and mechan-
ical performance become important for practical applications.[38]

For example, crosslinked polymers form networks that enhance
durability and resistance to deformation, making them suitable
for demanding real-world conditions. Specifically, the hierarchi-
cal architecture of synthetic biopolymers such as PHA, PVA,
and PCL significantly influences their sustainability and func-
tionality by regulating biodegradation rates, optimizing mechan-
ical properties, enhancing processability, and enabling tailored
molecular interactions. Studies have shown that the crystalline-
to-amorphous ratio in PHAs affects enzymatic hydrolysis,[94,95]

while the interplay between crystalline and amorphous regions in
PCL provides a balance of flexibility and durability.[96,97] However,
their relatively simple structural configurations limit their func-
tionality compared to natural polymers. To address this, modifi-
cations to side groups or the main polymer chain can introduce
greater complexity and mimic biological systems, enabling the
development of more advanced materials. Through multiscale
optimization, synthetic biopolymers can achieve application-
specific performance by tailoring properties across molecular,
microstructural, and macroscopic levels, minimizing material
and energy use, reducing waste, and supporting sustainable end-
of-life strategies such as recycling or controlled degradation.

2.2.2. Biocompatible and Sustainable Copolymer

Copolymers are intricate macromolecules created by polymer-
izing two or more different monomers, leading to diverse
structures and properties. They can be categorized into sev-
eral types, including random, alternating, block, graft, star,
and hyperbranched copolymers, each offering unique molecular
configurations and applications. Figure 2B-a illustrates various
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Figure 2. A) Illustration of the hierarchical structure of synthetic biopolymer chain assembly frommolecular to microscale; Adapted with permission.[80]

Copyright 2021, Wiley. B) Self-assembly and the hierarchy of block copolymers a) composition, microstructure, topology, and functionality of copolymer-
ization, Adapted with permission.[98] Copyright 2005, Elsevier. b) highlights scenarios to construct hierarchically self-assembled polymeric structures
with different sizes and lengths, Adapted with permission.[99] Copyright 2004, RSC. c) a molecular dynamic simulation showing the self-assembly of
cyclic brush copolymer, Adapted with permission.[100] Copyright 2021, Springer Nature. d) illustration of various microstructures of self-assembled
deblock copolymers. Adapted with permission.[101] Copyright 2008, Elsevier.
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molecular arrangements, topologies, and functional attributes of
these copolymer types.[98] Copolymers can be synthesized on dif-
ferent substrates to generate molecular structures that enable
the controlled formation of nanostructured morphologies. As
shown in Figure 2B-b, monomers of varying sizes can be com-
bined to create a higher hierarchical structure, utilizing differ-
ent length scales to facilitate self-assembly.[99] Figure 2B-c depicts
an example of hierarchical structure formation by synthetic poly-
mers through biomimetic folding and self-assembly at multiple
scales, modeled via molecular dynamic simulations at different
concentrations.[100] Among copolymer types, block copolymers
are among the most extensively studied, typically comprising
two (di-) or three (tri-) chemically distinct monomers linked by
covalent bonds. These block copolymers can self-assemble into
micro- or mesostructures with nanometer-scale features, driven
by the volume fraction of each polymer block, as illustrated in
Figure 2B-d.[101] This self-assembly leads to hierarchical orga-
nization across different scales due to the interplay of compet-
ing interactions between the polymer blocks. Moreover, copoly-
merization techniques improve polymer performance by enhanc-
ing properties like mechanical strength and corrosion resistance,
making them suitable for applications such as gas separation
membranes. Copolymers can also be synthesized using methods
like free radical polymerization, offering cost-effective produc-
tion and customization.[102] The versatility of copolymers makes
them highly valuable across various industries, including coat-
ings, electronics, and biomedical fields.[103]

For example, biocompatible copolymers are versatile materials
designed for various biomedical applications, particularly in tis-
sue engineering and drug delivery. They are advanced materials
designed to interact safely with biological systems, making them
essential in various biomedical applications. These polymers can
be synthesized to exhibit specific properties such as hydrophilic-
ity, biodegradability, and mechanical strength. For instance, am-
phiphilic heterograft copolymers have been developed with bio-
compatible and biodegradable grafts, enabling self-assembly into
various morphologies like nanospheres and vesicles, which are
crucial for drug encapsulation.[104] Additionally, dynamic hydro-
gels made from well-defined synthetic copolymers can mimic
extracellular matrix properties, providing strain-stiffening and
stress relaxation, essential for tissue engineering.[105] Further-
more, biocompatible sensors utilizing copolymers have been cre-
ated for intracellular pH monitoring, showcasing their potential
in cellular applications.[106]

Taking Chitosan, a natural polysaccharide as an example. It is
well-known for being nontoxic and biodegradable properties. It
can be grafter with thermos-responsive polymers to create mate-
rials that respond to temperature changes, enhancing their util-
ity in drug delivery applications.[107] Chitosan-based copolymers
are versatile materials derived from chitosan, a biopolymer ob-
tained from chitin through deacetylation. These copolymers ex-
hibit unique properties that make them suitable for various ap-
plications, particularly in the biomedical field. Chitosan-graft-
polyacrylic acid (Ch-g-PAA) is a copolymer synthesized by graft-
ing acrylic acid onto chitosan.[108] It exhibits excellent swelling
properties and is used for controlled drug release applications,
particularly for anti-inflammatory drugs like diclofenac sodium.
Chitosan-graphene oxide composite is another example whose
combination enhancesmechanical strength, electrical conductiv-

ity, and adsorption properties.[109] It is explored for applications
in biosensing, drug delivery, and water treatment. Besides, the
PEG modification in chitosan-PEG copolymers can improve the
solubility of chitosan in physiological environments, enhances
the biocompatibility of quaternized chitosan.[110] These materi-
als change their solubility based on temperature, making them
suitable for applications that require controlled drug release or
injectable hydrogels that gel at body temperature. These poly-
mers can be further categorized into lower critical solution tem-
perature (LCST) and upper critical solution temperature (UCST)
types. Poly(N-isopropylacrylamide) (PNIPAM), one of the most
studied thermos-responsive polymers, is known for its LCST
of around 32 °C.[111] Below this temperature, PNIPAM is hy-
drophilic and soluble in water, while above it becomes hydropho-
bic and precipitates out of solution. PNIPAN grafts has been used
for applications in intelligent surfaces for cell culture systems as
temperature-responsive cell culture surfaces (TRCS) where cell
attachment and detachment are modulated by mild temperature
changes.[112]

Similar to biocompatible copolymers, sustainable copolymers
are innovative materials designed to address environmental chal-
lenges while providing functional properties for diverse applica-
tions. Derived from renewable resources, these copolymers of-
fer biodegradability, making them a promising alternative to tra-
ditional petroleum-based plastics. Commonly synthesized from
bio-based feedstocks like plant sugars or lactic acid, they can natu-
rally decompose, reducing plastic waste. Through copolymeriza-
tionwith variousmonomers, their properties can be fine-tuned to
enhance mechanical strength, thermal stability, and functionali-
ties such as improved adhesion or flexibility. PLA and its copoly-
mers are prime examples of sustainable materials with applica-
tions in both biomedical fields and environmental solutions. De-
rived from agricultural feedstocks like corn and sugarcane, the
greenhouse gas (GHG) emission of PLA is 1.3–1.7 kg CO2e per
kg, significantly less than conventional plastics like fossil-derived
polyethylene, which emit 2.6–3 kg CO2e per kg.

[113,114] PLA is
biodegradable under industrial composting conditions, achiev-
ing 90% decomposition within 180 days, which drastically re-
duces environmental persistence compared to traditional plastics
that can last centuries.[115,116] In biomedical fields, PLA and its
copolymers, such as PLGA, are FDA-approved for applications
like drug delivery and tissue engineering due to their biocompat-
ibility and controlled biodegradation, with complete bioabsorp-
tion occurring within weeks.[117] Environmentally, PLA is used in
single-use packaging, where it decomposes 20 times faster than
polyethylene under landfill conditions,[118] and its recyclability,
with depolymerization efficiencies reaching 90%, supports a cir-
cular economy. Poly(butylene succinate) (PBSu) copolymers of-
fer improved thermal transitions and mobility,[119] boosting per-
formance while retaining biodegradability. Recent efforts have
also centered on developing biodegradable conducting polymers
that merge electroactivity with sustainability, especially for use in
biomedical devices where conductivity and biocompatibility are
essential.[120,121]

3. Multiscale Modeling of Biopolymer

Biopolymers and bioinspired composites exhibit distinct charac-
teristics across different scales, making hierarchical multiscale
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methods widely applicable in computational analysis. Each level,
from atomic details to macroscopic behavior, can be described
separately. Classical hierarchical computational modeling meth-
ods are typically divided into particle-based and field-based ap-
proaches, which are summarized in Table 3. Particle-basedmeth-
ods represent biopolymers at resolutions ranging from individ-
ual atoms, chemical groups, and monomers to regions of poly-
mer melts or solutions, with effective potentials capturing the
relevant physicochemical interactions across length and time
scales. Field-based methods, on the other hand, describe sys-
tems from the perspective of energy functionals, effective po-
tentials, density fields, and collective dynamic variables, provid-
ing a materials-scale understanding. This section will explore the
theoretical foundations, applications, and validation of particle-
based and field-based modeling in biopolymers and bio-inspired
composites.

3.1. Theoretical Background

In the context of biopolymers, molecular dynamics (MD) is
the largest-scale modeling method capable of capturing detailed
atomic-level information aboutmaterials.[122] State-of-the-artMD
simulations can now encompass up to a billion atoms, with sim-
ulation timescales reaching 100 nanoseconds, leveraging highly
optimized calculations of nonbonded interactions and advanced
parallelized MD codes.[123] Within the scope of atomic MD mod-
eling, it is possible to obtain detailed structural and dynamic in-
formation on the interactions of atoms, chemical groups, and
short polymer chains (oligomers) in melts and solutions. The ba-
sic principles of MD simulations lie in the Newton’s second law
of motion

Fi = mi ai (1)

where Fi is the force acting on particle i,mi is the mass of particle
i, ai is the acceleration of particle i.
The forces acting on each particle are derived from a potential

energy function

Fi = −𝜕U∕𝜕ri (2)

where U is the total potential energy of the system, ri is the posi-
tion of particle i.
In biopolymers, interactions include both bonded forces (e.g.,

bond stretching, angle bending, and dihedral torsions) and non-
bonded forces (e.g., van der Waals interactions and electrostatic
forces). MD simulations track the evolution of these systems by
integrating equations of motion over time, typically using algo-
rithms such as the Verlet or velocity-Verlet method. The accu-
racy ofMD simulations depends heavily on the chosen forcefield,
such as CHARMM, AMBER, or GROMOS, which is essential for
capturing the structural and dynamic properties of biopolymers.
MD offers a detailed view of atomic-level processes, including
conformational changes, folding mechanisms, and interactions
with solvents, providing valuable insights into biopolymer behav-
ior across various environments and timescales, as further ex-
plored in Section 3.2.1.
Due to the limitations in length and time scales, MD sim-

ulations cannot capture the microphase separation and for-

mation of higher-order structures in biopolymers. To address
these phenomena, different levels of coarse-grained (CG) and
mesoscale modeling techniques are required.[124,125] While these
methods can model biopolymer assemblies over longer length
scales (i.e., up to millimeters) and time scales (i.e., from tens
of microseconds to milliseconds, depending on the degree of
coarse-graining), they inevitably reduce the chemical specificity
of biopolymers to varying extents. For instance, atomic-level
structural features, such as local charge correlations and hydro-
gen bonding, as well as solvent-specific effects arising from these
microscopic interactions, are often lost during coarse-graining.
Despite this trade-off, CG methods are highly effective in cap-
turing assembly behaviors driven by large-scale structural orga-
nization and immiscibility differences, which are less dependent
on microscopic details. The fundamental principle of CGmodel-
ing is to simplify the representation of biomolecules by grouping
multiple atoms (e.g., an entire amino acid residue) into a sin-
gle coarse-grained particle.[126] These particles are connected by
bonds and angles and may interact through nonbonded forces.
Although CG methods sacrifice many detailed interactions, they
focus on capturing the general effects or characteristics of various
interactions. By reducing the degrees of freedom and smooth-
ing the energy landscape, CGmethods lower computational costs
and accelerate the dynamics of the system. Consequently, CG ap-
proaches are well-suited for capturing nonlocal properties such
as hydrophobicity, hydrophilicity, and solvation differences, pro-
viding valuable insights into large-scale biopolymer organization.
For example, in 1990, Smit et al. introduced the first CG model
for simulating amphiphilic systems,[127] treating watermolecules
as water-like particles (w) and hydrophobic tails as oil-like parti-
cles (o). The interaction between particles wasmodeled using the
Lennard-Jones potential

∅ (r) = 4𝜖
[(

𝜎

r

)12
−
(
𝜎

r

)6]
(3)

with o–o and w–w interactions truncated at 2.5𝜎 to represent hy-
drophobic behavior, and o–w interactions truncated at 21/6𝜎 to en-
sure repulsion. This model successfully simulated amphiphilic
self-assembly into micelles, vesicles, and monolayers and was
later extended to biopolymer chain models, representing DNA
and proteins.[128] Although these chain models, with hydrophilic
and hydrophobic interactions, are widely used to study poly-
mer dynamics and surface interactions, their simplicity lim-
its their ability to predict the complex mechanical behavior of
biomolecules with intricate 3D conformations. Current CG re-
search offers a variety of simplified representations andmore rig-
orous parameterization methods, as detailed in Section 3.2.2.
Dissipative particle dynamics (DPD) and Langevin/Brownian

dynamics are also particle-based methods that offer distinct
advantages for modeling biopolymers, particularly in systems
where thermal fluctuations and hydrodynamic interactions are
important. DPD is a mesoscale simulation method designed to
model complex fluids and soft matter, including biopolymer sys-
tems, by introducing dissipative and random forces that mimic
the effects of solvent particles.[129] DPD differs from MD by in-
corporating a soft repulsive potential, which allows larger time
steps and focuses on hydrodynamic behavior over longer length
and time scales. ThismakesDPD suited for studying phenomena
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such as biopolymer self-assembly, vesicle formation, and large-
scale conformational changes. Langevin dynamics and Brownian
dynamics (BD) are mesoscale modeling techniques that extend
MD by introducing stochastic and frictional forces, which simu-
late the effect of a solvent without explicitly modeling solvent par-
ticles. Langevin dynamics introduces a frictional term and a ran-
dom force term in the Newtonian equation of motion, effectively
capturing solvent viscosity and thermal fluctuations. This ap-
proach is useful for simulating biopolymers in high-friction en-
vironments, such as protein folding or DNA dynamics.[130] Brow-
nian dynamics simplifies further by neglecting inertia, focusing
on overdamped systems where thermal motion dominates.[131]

This method is particularly useful for studying the slow dynam-
ics of large biopolymers or polymers in solution. Both DPD and
Langevin/Brownian dynamics differ from traditional MD and
CG by incorporating stochastic forces to simulate solvent effects
more efficiently and at larger scales. They are commonly ap-
plied in biopolymer modeling to study processes like polymer
chain diffusion, micelle formation, and interactions with biolog-
ical membranes, as detailed in Sections 3.2.3 and 3.2.4.
In the particle-based methods described above, capturing dy-

namic evolution tends to incur significant computational costs.
However, particle-based stochastic sampling approaches, which
do not require solving equations of motion or following time-
dependent trajectories, can bypass the large energy barriers that
may take longer to overcome in MD or CG simulations. Monte
Carlo (MC) simulations serve as a representative method in
stochastic sampling approaches.[132] MC simulations are compu-
tational methods that rely on random sampling to explore the
statistical properties of a system, particularly its equilibrium con-
figurations. Unlike MD which integrates the equations of mo-
tion, MC simulations use probability-based techniques to gen-
erate a series of configurations based on a predefined probabil-
ity distribution. The theoretical foundation of MC lies in statis-
tical mechanics, where the goal is to sample from a Boltzmann
distribution,[133] given by

P (x) ∝ e
− E(x)

kBT (4)

where P(x) is the probability of a system being in a state with con-
figuration x, E(x) is the energy of the configuration, is the Boltz-
mann constant, and T is the temperature. Metropolis algorithm
is the key in MC simulations, which generates a new configura-
tion x′ by making a random change to the current configuration
x. The acceptance of the new configuration is determined by a
probability function

Paccept = min
(
1, exp

(
−
E (x′ ) − E (x )

kBT

))
(5)

The probabilistic acceptance rule in MC simulations ensures
that the system primarily samples low-energy, more probable
states, while occasionally exploring higher-energy states to avoid
being trapped in local minima. Therefore, MC simulations are
widely used in fields such as materials science and biophysics
to calculate thermodynamic properties, phase transitions, and
structural formations, particularly when equilibrium properties
are more important than time-dependent trajectories. For exam-
ple, in protein folding and free energy landscape exploration, MC

methods effectively overcome energy barriers that might other-
wise trap systems in localminima. Furthermore,MC simulations
are applied to CGmodels to study large-scale processes like poly-
mer self-assembly and interactions, providing valuable insights
into the structural and thermodynamic behavior of biopolymers,
as discussed in Section 3.2.5.
Field-based methods represent a distinct class of computa-

tional techniques that focus on continuous fields rather than dis-
crete particles. These continuum-levelmethods treatmicroscopic
details as average or effective overall influences, allowing for the
capture of large-scale material responses. Two prominent field-
based methods are self-consistent field theory (SCFT)[134] and
density functional theory (DFT).[135] SCFT is commonly applied
in biopolymer modeling, which predicts the equilibrium struc-
ture and phase behavior of complex systems by solving for the
spatial distribution of polymer chains in terms of concentration
fields. By modeling polymers as continuous fields rather than in-
dividual chains, SCFT efficiently captures large-scale phenomena
such as phase separation, self-assembly, and polymer blending in
biopolymer systems. In contrast, DFT is a quantum mechanical
method used to model the electronic structure of molecules and
materials, particularly useful for studying smaller biomolecules
like nucleic acids, amino acids, or peptide chains. Instead of sim-
ulating atomic motions like particle-based methods (e.g., MD
or CG), DFT focuses on electron density distribution, providing
highly accurate insights into bonding and electronic behavior.
This makes it ideal for capturing the quantum mechanical ef-
fects in biopolymer interactions, such as hydrogen bonding and
charge transfer, which are critical for understanding the chemi-
cal specificity of biomolecules. Through continuous fields, field-
based methods offer more efficient ways to study long-range
interactions and large-scale structures in biopolymers, such as
phase behavior in SCFT or quantum-level interactions in DFT,
as discussed in Section 3.3.

3.2. Particle-Based Modeling

3.2.1. Molecular Dynamics Modeling

The development of forcefields and accuracy assessment of
atomic structures are critical components of atomistic modeling
for biopolymers. In MD simulations, the forcefield expresses the
potential energy function governing atomic interactions. Accu-
rate forcefields are essential for correctly calculating the poten-
tial energy surface, which dictates particle motion and enables
precise predictions of key system properties, including structural
stability, thermodynamic behavior, and molecular dynamics.[136]

Recent advancements, such as improved parallelization, have en-
abled simulations to reach microsecond (μs) to millisecond (ms)
timescales, allowingmore detailed studies of native protein struc-
tures, transient states, and assembly processes. Traditional force
fields often lacked polarizability, which limited their accuracy
in capturing electronic effects, but newer polarizable forcefields
now better represent phenomena like protein secondary struc-
ture stabilization. Constant-pH MD methods are a key recent
innovation, enabling the modeling of protonation state changes
in response to pH fluctuations, a crucial factor for biopolymers
such as proteins and nucleic acids. These methods improve
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accuracy in simulations where local pKa shifts, influenced by
neighboring groups, are critical. Despite these advancements,
forcefields like CHARMM and AMBER still exhibit limitations,
particularly inmodeling intrinsically disordered proteins and nu-
cleic acids, often leading to overly compact conformations due
to parameterization based on folded structures. To address these
challenges, newer forcefields have been fine-tuned to better bal-
ance nonbonded interactions such as salt bridges and hydropho-
bic effects, improving predictions of protein and nucleic acid
structures (Figure 3A-a).[137] Comparing forcefield predictions
with experimental data has become an essential approach for val-
idating models, particularly for systems like poly L-lysine, poly
L-glutamic acid, and DNA. The choice of forcefield and parame-
terization critically influences simulation outcomes, highlighting
the importance of selecting models based on their original ref-
erence systems and performing experimental verification when-
ever possible.
The application of full atomistic MD simulations focuses pri-

marily on structural, dynamic, and functional aspects, with a
heavier emphasis on biological systems than materials, except
in the area of cellulose.[138–140] For protein-based materials, hi-
erarchical structures play a significant role in their assembly
and mechanical properties.[141,142] Through all-atom MD, it has
been revealed that silk-like proteins exhibit nonlinear stress re-
sponses that localize deformation, contributing to the mechan-
ical robustness of spider webs.[143] MD simulations have also
explored the role of multiple attractive regions in silk proteins,
which form bi-continuous network structures that potentially in-
fluence the formation of fiber.[144] In another study on spidroins
(i.e., the primary proteins in spider silk), MD was used to in-
vestigate the effects of ethanol as a solvent additive on pro-
tein aggregation, solvation environment, and secondary struc-
ture (Figure 3A-b).[145] The results demonstrated that ethanol
weakens hydrophobic interactions, providing a tunable assem-
bly mechanism for protein-based materials. Beyond silk, other
protein materials, such as elastin-like peptides,[146–148] collagen
fibers,[58,149,150] and polypeptides,[151,152] have been investigated
using MD and CG simulations to study mechanical properties,
critical solution temperature responses, and energy dissipation
in protein-based materials. Additionally, MD has been employed
to explore biopolymer adsorption, particularly the interaction be-
tween peptides and surfaces such as silica nanoparticles, map-
ping how pH, particle size, and charge influence adsorption. De-
spite these insights, the limitations of MD regarding length and
time scales pose challenges in studying phenomena like film
formation and collective adsorption effects. Regarding cellulose-
based composites, MD simulations focus on interactions be-
tween cellulose nanofibrils (CNFs), hemicellulose, and lignin,
essential for understanding the mechanical properties of mate-
rials like wood (Figure 3A-c).[153] Simulations have shown that
hemicellulose lies flat on cellulose surfaces.[154,155] Meanwhile,
lignin occupies the matrix, which contributes to material distri-
bution within the wood cell wall. Mechanical loading studies re-
veal elastic and yield behavior driven by matrix molecule reorga-
nization and CNF sliding, breaking and reconstructing hydrogen
bonds.[156–158] However, while these models provide molecular-
level insights, they lack mesoscale structural features such as mi-
crofibril angles, limiting their ability to capture comprehensive
wood mechanics.

3.2.2. Coarse-Grained Modeling

CG models simplify atomistic or molecular details of biopoly-
mers by grouping atoms into CG beads, balancing detail with
the ability to simulate larger systems and longer time scales.
Two primary approaches exist for defining effective CG in-
teractions: bottom-up structure-based coarse-graining, which
derives potential from atomistic MD simulations, and top-
down thermodynamics-based coarse-graining, which fits inter-
actions to experimental data.[126,159,160] While the former pre-
serves chemical specificity, the latter produces more transferable
potentials.[126,161] Many CG models use a combination of both
approaches to iteratively refine forcefield parameters. A notable
example is the MARTINI forcefield, which represents groups of
atoms with specific CG bead types and models nonbonded in-
teractions using a Lennard-Jones potential fitted to thermody-
namic data like partition-free energies, while bonded interac-
tions are tuned to atomistic MD distributions. MARTINI has
been expanded to simulate proteins, DNA, RNA, polysaccha-
rides, and synthetic polymers, though it was originally designed
for lipids (Figure 3B-a).[162] However, its implicit solvent variant,
Dry MARTINI, speeds up simulations but is limited by its inabil-
ity to model soluble proteins or equilibrium betweenmembrane-
bound and dissolved compounds. Another widely used CG force-
field, SIRAH, avoids MARTINI’s constraints on protein sec-
ondary structure and allows for protein-DNA complex modeling.
Similarly, models like UNRES, SURPASS, and PRIMO extend
CG capabilities to various biomolecules, including membrane
proteins, by providing a smooth energy landscape compared with
all-atom (AA) model (Figure 3B-b).[162] One challenge with CG
models is that coarse-graining reduces the system’s entropy due
to fewer degrees of freedom, which is often compensated by in-
creasing enthalpic contributions, particularly in implicit solvent
models like Dry MARTINI.[163] Recent advancements also focus
on improving CG models by reparametrizing forcefields to bet-
ter capture hydrogen bonding and electronic polarizability, as
seen in the updated MARTINI forcefield.[164] Additionally, ML is
emerging as a tool for generating CG forcefields by deriving in-
teraction potential from quantum mechanical calculations, pro-
viding new avenues for CG model development.
The application of CG modeling in biopolymer systems

allows for the investigation of complex behaviors at larger
time and length scales. Examples include the exploration of
the mechanical properties of collagen,[165] oligonucleic acid
backbone chemistry variations on hybridization and melting
thermodynamics,[166] as well as the thermodynamics and assem-
bly of multiarm oligonucleic acid star polymer conjugates.[167]

CG modeling has also been used to investigate interac-
tions at interfaces, including protein folding and binding
(Figure 3B-c),[168] substrate patterning, and film morphology in
lamellar phase copolymers under different thermal and substrate
conditions.[124,169] A combination of all-atom and CG modeling
has proven valuable for studying intrinsically disordered proteins
at interfaces, elastin-like peptides’ lower critical solution temper-
ature, and collagen-mimetic fibril formation.[147,148,170] Addition-
ally, the self-assembly of tropoelastin into fibrils has been ex-
plored using the CG MARTINI forcefield.[170] Polyethylene gly-
col (PEG) polymers and PEG-conjugated lipids have also been
modeled in bulk and at interfaces with proteins or surfaces,
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highlighting their importance in bioengineering and drug deliv-
ery applications.[171,172] A minimal CG model has recently been
developed to account for the heterogeneity of intrinsically dis-
ordered proteins in nuclear pore complexes, validated against
experimental data on single-molecule interactions with nuclear
transport receptors.[173] Reviews have also highlighted the appli-
cation of CGmodels to colloid and protein adsorption.[174] In cel-
lulose modeling, CG methods have been used to match the me-
chanical responses of atomistic models, extending the scale to
hundreds of nanometers to assess the mechanical properties of
wood cell walls with various microfibril angles. As the microfib-
ril angle increases, cellulose nanofibrils deviate from the pri-
mary load-bearing direction, softening the material, with matrix
molecule sliding becoming more prominent.[175,176] These exam-
ples illustrate the versatility of CG models in capturing biopoly-
mer behavior, enabling detailed studies of assembly, mechanical
properties, and interface interactions across multiple scales.

3.2.3. Dissipative Particle Dynamics

DPD is a coarse-grained, particle-based simulation model us-
ing soft-core potentials, designed to capture the hydrodynamic
behavior and time evolution of fluid-like systems.[129] DPD op-
erates effectively at mesoscopic scales, capturing structural and
morphological changes, as well as large-scale flow dynamics,
which are particularly relevant in biopolymer modeling. Unlike
CG modeling, DPD can simulate self-assembly and morpholog-
ical transitions that occur over extended time scales. This is par-
ticularly valuable for studying copolymer assemblies, which ex-
hibit diverse morphologies in response to environmental stim-
uli, such as spheres, vesicles, and lamellar phases.[177] A notable
example includes the self-assembly of bio-based block copoly-
mers like poly 1,2-butadiene-b-polyethylene oxide (PB-b-PEO) in
ionic liquids, where DPD simulations revealed a wide range of
assembled structures dependent on polymer concentration and
block length ratios.[178] Biopolymer systems with hierarchical
structures are well-suited for DPD, provided the assembly be-
havior is governed by effective bead-bead interactions rather than
highly localized forces.[179] For instance, DPD has been used to
model the higher-order self-assembly of copolymer micelles into
complex structures like nanowires, as seen with PBLG-g-PEG
micelles (Figure 3C).[180] DPD simulations also extend to silk
protein fiber assembly, where the protein is treated as a multi-
block copolymer to explore processing conditions and design
parameters.[179] The high level of coarse-graining achievable with

DPD allows it to capture large-scale self-assembly phenomena,
such as protein aggregation and polymer self-assembly in 2D en-
vironments. For example, DPD simulations have demonstrated
entropy-induced attractions between protein complexes in lipid
bilayers, driven by complementary shapes.[181] The method has
also been applied to study polymer self-assembly in solution, re-
vealing structures such as rods, bent rods, and rings based on the
mix ratio of linear and branched polymers. Confinement effects
in self-assembly have also been investigated, showing that con-
strained geometries (e.g., vesicle curvature) can lead to unique
structures not observed in bulk (e.g., U-shaped and ring-like vesi-
cles). Furthermore, DPD has been expanded to include electro-
static interactions and polarizability.[182–184] Although polarizabil-
ity reduces the achievable level of CG, it enables accurate model-
ing of protein folding and native structures. These advancements
make DPD an essential tool for studying large-scale biopoly-
mer self-assembly, morphogenesis, and interaction with complex
environments.[119]

3.2.4. Langevin/Brownian Dynamics

Langevin dynamics[125] and BD[185] are both stochastic simula-
tion methods for modeling systems with thermal fluctuations,
particularly in biopolymer modeling. Langevin dynamics ex-
tends classical MD by adding a frictional force and a random
noise term to Newton’s equation of motion, effectively simu-
lating the interaction of particles with an implicit solvent. This
approach is ideal for studying systems where solvent viscosity
and temperature effects are important, such as protein folding
or diffusion in viscous environments.[130] In contrast, BD sim-
plifies the system by neglecting inertia, meaning the accelera-
tion term is omitted. This makes BD suitable for systems domi-
nated by thermal motion, such as large macromolecules in solu-
tion, where frictional forces are much stronger than inertia.[186]

Both BD and Langevin dynamics use stochastic methods to ac-
count for thermal fluctuations. However, Langevin dynamics
retains inertia, making it better for systems with moderate to
high friction. BD is ideal for slow dynamics in overdamped sys-
tems. While Langevin dynamics can model a wider range of
timescales and behaviors, BD is more computationally efficient
when inertia is negligible. Bothmethods are widely used to study
diffusion, conformational changes, and the self-assembly of
biopolymers.
Langevin dynamics is a powerful CG method for large-scale

simulations of biopolymers, effectively bridging time and length

Figure 3. Particle-based methods for the computational modeling of biopolymers. A) Molecular dynamics (MD) modeling: a) critical improvement to
simulations of lipid–protein bilayers resulting from changes to CHARMM36 to CHARMM27r forcefield. In CHARMM27r, the bilayer phase transitioned
inappropriately to gel phase, while CHARMM36 maintains liquid-crystalline phase; Adapted with permission.[137] Copyright 2011, American Chemical
Society. b) distribution of the solvent around the protein molecule: water molecules in the 94% ethanol concentration solvent system; Adapted with
permission.[145] Copyright 2023, American Chemical Society. c) cellulose microfibril bundle along the fibril axis and perpendicular to the fibril axis;
Adapted with permission.[153] Copyright 2021, Elsevier. B) Coarse-grained (CG) modeling: a) all-atom versus CG representation in the MARTINI model;
Adapted with permission.[162] Copyright 2016, American Chemical Society. b) schematic illustration of the rugged and complex energy landscape of an
AA model compared to the smooth surface in a CG model; Adapted with permission.[162] Copyright 2016, American Chemical Society. c) mechanism
of coupled folding and binding of the pKID/KIX complex; Adapted with permission.[168] Copyright 2014, American Chemical Society. C) Dissipative
particle dynamics (DPD) model of a rod-g-coil graft copolymer with simulation snapshots of spindle-like subunits and nanowire aggregates; Adapted
with permission.[180] Copyright 2016, Wiley. D) Langevin/Brownian dynamics (BD) for CG modeling of intrinsically disordered proteins at fixed degree
of hydrophobicity (red beads) and temperature; Adapted with permission.[189] Copyright 2020, AIP Publishing. E. Monte Carlo (MC) simulations of
protein-like lattice model folding in the free-energy landscape. Adapted with permission.[203] Copyright 2018, AIP Publishing.
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scales while addressing both assembly and dynamics. Despite
the challenges of constructing accurate interaction models and
parameter matching, it is highly effective for modeling biopoly-
mer behavior. For example, CG Langevin dynamics has been
used to explore how polymer conjugation affects the hybridiza-
tion thermodynamics of oligonucleic acids and howmacromolec-
ular crowding influences biopolymer collapse.[187,188] By incor-
porating scaling arguments and low-friction dynamics, these
models can accurately predict polymer size based on volume
fraction. Langevin dynamics is also applied to protein diffu-
sion in lipid bilayers and has become useful in studying in-
trinsically disordered proteins (IDPs). These models account
for steric, hydrophobic, and electrostatic interactions between
residues (Figure 3D).[189] In the study of liquid-liquid phase
separation, CG Langevin simulations have revealed complex
phase behaviors, such as the formation of liquid, membrane-
like, and micellar structures, driven by subtle changes in hy-
drophobic and hydrophilic sequence patterns.[190] Additionally,
Langevin dynamics has been used to investigate active poly-
mers adsorbed on cylindrical surfaces, providing insights into
polymer-fluid interactions and electrophoretic transport through
synthetic nanopores. In biopolymer networks with activemotors,
simulations have shown strain stiffening under increased shear
deformation, a key characteristic of cytoskeletal networks.[191]

This method is particularly valuable in modeling the dynamics
of actin-based cytoskeletal networks, offering insights into mech-
anisms critical to cellular processes.[192] Furthermore, Langevin
dynamics can simulate single protein conformations at con-
stant pH,[193] making it a versatile tool for studying com-
plex biological systems, sensor applications, and molecular
switches.
BD is widely used to model biopolymer systems, particularly

in crowded environments such as cells.[194] BD has been applied
to study proteins, with a recent focus on liquid-liquid phase sepa-
ration. For example, a CG bead-spring model combined with BD
has shown how silk-like block proteins’ length and concentration
affect self-assembly morphologies.[195] BD simulations have also
examined the role of charge inRNAandmodular proteins, reveal-
ing that nonspecific interactions significantly influence droplet
formation in phase separation at low protein-polymer interaction
energies. In protein solutions, BD retains atomistic detail while
treating the solvent as a continuous medium, resulting in quan-
titative agreement with experimental data.[196] BD methods are
also used to model polymeric networks, where crosslink density
and topology affect their mechanical properties.[197,198] In protein
hydrogels, the initial volume fraction is the key to network assem-
bly, but single protein characteristics also play a role. A hybrid
BD approach has integrated mean field models of hydrodynamic
interactions with automictically detailed protein simulations, re-
vealing the importance of weak protein-protein and solvent-
mediated interactions in concentrated protein solutions.[199] BD
has also been employed to model the self-assembly of amyloid-
forming proteins and to study the ejection dynamics of active
polymers through small pores, identifying entropy-driven, force-
accelerated, and force-dominated stages in the process.[200] Fi-
nally, BD techniques have been generalized to model diffusive
phenomena in biological systems, making them broadly applica-
ble for studying the dynamic behavior of biopolymers in various
environments.[201]

3.2.5. Monte Carlo Simulations

Particle-based approaches like MD use deterministic numeri-
cal integration to track system evolution, while methods like
DPD, Langevin, and Brownian dynamics include stochastic
noise and dissipative forces. In contrast, MC simulations rely
on stochastic sampling of possible system states rather than
time-dependent integration. The most common approach, the
Metropolis MC method, samples system states with weights cor-
responding to the Boltzmann distribution, typically within the
NVT ensemble.[132] While this method focuses on equilibrium
properties, more advanced MC variants (e.g., NpT and Grand
Canonical MC) allow sampling other ensembles, with applica-
tions including ligand-protein binding. Although MC methods
generally lack kinetic information, kinetic MC algorithms exist
to address this limitation.[202] MC simulations are often imple-
mented on a lattice, especially in biopolymer modeling, due to
their efficiency in sampling complex systems (Figure 3E).[203] Re-
cent MC studies have applied CG approaches to biopolymers,
such as protein amyloids.[204] These studies explored amyloid fib-
ril formation, oligomer dynamics, and protein aggregation on cell
membranes, revealing key pathways inmacromolecular aggrega-
tion and the influence of lipid membrane properties, such as flu-
idity and protein-membrane affinity, on protein aggregate mor-
phology and nucleation pathways.[205–207]

MC methods have also been extensively used to study liquid–
liquid phase separation and protein systems with anisotropic,
patchy interactions.[208,209] Hybrid approaches that integrate
molecular-level MC simulations into single chain in mean-
field simulations have successfully linked molecular structure
to large-scale polymer self-assembly.[210] MC modeling has been
employed to investigate phase behavior in Caenorhabditis el-
egans protein LAF-1 droplets, combining fluorescence cor-
relation spectroscopy with theoretical insights from AA MC
simulations.[211] These studies have elucidated the interactions
driving phase separation and droplet formation. Additionally, the
kinetics of poly-L-lysine adsorption on silica surfaces have been
explored using MC simulations combined with experiments, fol-
lowing the random sequential adsorption scheme.[212] MC ap-
proaches have also proven particularly powerful for predicting
biopolymer structures, uncovering key molecular interactions
and dynamic processes that govern self-assembly, phase behav-
ior, and adsorption in biological and synthetic systems.[213–215]

3.3. Field-Based Modeling

3.3.1. Self-Consistent Field Theory

SCFT, a CG mean-field approach, has proven highly effective
for modeling biopolymers by simplifying complex molecular
interactions through the assumption of Gaussian-distributed
monomers along polymer chains.[134] Initially developed for poly-
mer systems such as polymer brushes, homopolymer interfaces,
and block copolymer microstructures,[134] SCFT has since been
extended to more intricate macromolecular structures, includ-
ing dendrimers,[216] ring polymers,[216] and star copolymers,[158]

as well as processes like liquid-liquid phase separation in am-
phiphilic systems.[217,218] The core strength of SCFT lies in its
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Figure 4. Field-basedmethods for the computational modeling of biopolymers. A) Self-consistent field theory (SCFT): generative polymer field theory for
block polymer phase discovery a) the pipeline illustration of this generative approach; b) example of a data augmentation strategy involves duplicating the
unit cell during an SCFT trajectory, followed by random translation, rotation, and extracting a new unit cell for training data; Adapted with permission.[220]

Copyright 2023, National Academics Press. B) Density functional theory (DFT) a) single length scale self-assembled phase, refers to micelles in polymer
systems or droplets forming in a regular emulsion; Adapted with permission.[222] Copyright 2021, American Physical Society. b) phase separation
dynamics on spherical surfaces through minimal DFT. The plot shows two different configurations “A” and “B”. State “A” is the configuration with a
minimal energy cost. Turning one of the spheres away from this configuration (state “B”) leads to an extra energy cost; Adapted with permission.[227]

Copyright 2016, American Physical Society. c) Mollweide projection of equal area pixelization for the dynamic DFT calculation data showing evolution of
the particle density for the small sphere. Adapted with permission.[228] Copyright 2019, IOP Publishing.

ability to capture the spatial distributions of molecular compo-
nents, making it especially useful for predicting large-scale as-
sembly and phase behavior in biopolymer systems. Relevant to
both biological systems and industrial applications, SCFT has
been used to model polysaccharide-protein mixtures which of-
fer insights into their thermodynamic stability and structural
organization.[219] Recently, SCFT has also been used as a screen-
ing tool to guide experimental design. To address the challenge
of discovering new morphologies, a deep convolutional GAN is
trained on SCFT solutions. This approach has generated hun-
dreds of candidate polymer phases, including previously unex-
plored structures, by leveraging the trajectories from converged
SCFT simulations (Figure 4A).[220]

3.3.2. Density Functional Theory

DFT is an effective approach for studying structure formation, as-
sembly, and dynamic reorganization in polymeric systems. DFT

is particularly useful formodeling pattern formation, component
segregation, and phase separation on mesoscopic and contin-
uum length scales. Classical DFT (cDFT) operates by express-
ing the thermodynamic potential (e.g., free energy in the NVT
ensemble or grand canonical potential in the μVT ensemble) as
a density-dependent functional, which is minimized to resolve
the system’s density distribution. While cDFT sacrifices chemi-
cal specificity due to the effective nature of its interaction mod-
els, it excels at providing insights into large-scale phenomena
like phase separation, self-assembly, and transport, which are
otherwise inaccessible to more detailed approaches. For exam-
ple, DFT has identified key intermolecular interactions respon-
sible for complex self-assembled structures in binary polymer
mixtures,[221] offering guidance for controlling material assem-
bly in polymeric and protein-based systems. DFT has also been
combined with DPD to investigate the emergence of structures
with competing length scales in soft matter,[222] providing in-
sight into the phase behavior and crystallization in dendrimers
and star polymers (Figure 4B-a). These studies revealed rich
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Figure 5. Experimental approaches for the characterization of biopolymers. A) Raman spectroscopy, surface-enhanced Raman scattering, tip-enhanced
Raman scattering, coherent anti-stokes Raman spectroscopy, and Raman spectroscopic imaging; Adapted with permission. [230] Copyright 2023, MDPI.
B) SEM images of cotton fibers treated with a) water, b,c) ethanaminium 2-hydroxyN,N-bis(2-hydroxyethyl)-N-methyl-esters (TEQ) 1 wt.%, d,e) TEQ
1 wt% in presence of guar biopolymers; Adapted with permission. [233] Copyright 2021, MDPI. C) AFM height images with varying concentrations of
alginate and calcium. a,d) 2.0% (w/v) alginate and 22 × 10−3 m CaCO3, b,e) 1.0% (w/v) alginate and 18 × 10−3 m CaCO3, and c,f) 0.5% (w/v) alginate
and 15 × 10−3 m CaCO3. Ra is given as SEM ± STDEV for n = 3 gel surfaces. Scale bar is 2 μm; Adapted with permission.[234] Copyright 2022, Elsevier.
D) Longitudinal strain distribution of poly(vinyl alcohol) (PVA) hydrogel crosslinked by transient (physical) and covalent (chemical) bonds in circular
hole and semicircular edge notch using DIC method. Adapted with permission.[236] Copyright 2019, Springer Nature.

phase behaviors, including two crystalline phases, a fluid phase,
and metastable quasicrystal structures, particularly in systems
where monomers exhibit contrasting hydrophilic and hydropho-
bic properties across generations.[223,224] Moreover, DFT has been
employed to explore the adsorption kinetics of globular pro-
teins onto charged core-shell microgel particles, validated against
experimental data for lysozyme adsorption on PNIPAM-coated
nanoparticles.[225] DFT’s predictive capability extends to the self-
assembly of sphere-forming di-block copolymers in confined
environments, such as square wells and cylindrical nanopores,
where it accurately maps morphological transitions.[226] In an-
other example, a minimal DFT model was used to study phase
separation dynamics on spherical surfaces, motivated by het-
erogeneous domain structures observed on cell membranes
(Figure 4B-b).[227] This study found that the size of the sphere
influenced the dynamical response, with further analysis using
power spectra and Minkowski functionals confirming the size-
dependent phase behavior (Figure 4B-c).[228]

3.4. Experimental Validation

Besides various computational modeling approaches to under-
stand biopolymers better, various experimental methods are also

involved to measure and quantify the properties of biopolymers
in different scales.
In nano and mesoscale, Raman spectroscopy is often used

to identify the chemicals using the spectral fingerprint, quan-
tify the concentration or amount of chemicals, and reveal crys-
tallographic orientation and crystallinity of polymers through
interpretation of the Raman spectrum. The Raman spectrum
is usually obtained by shining a laser onto the sample based
on the Raman effect.[229] With the advances in lasers, detec-
tors and computing power, Raman spectroscopy has become
an important tool in materials characterization (Figure 5A).[230]

To get a better visual inspection of the sample, especially the
surface feature, scanning electron microscope (SEM)[231] and
atomic force microscope (AFM)[232] are two commonly used
devices. The former one utilizes a focused beam of high-
energy electrons to reveal the detailed surface characteristics
through analyzing the signals after the electrons interact with
the atoms in the sample (Figure 5B).[233] The latter one cre-
ates images by moving a small cantilever across the surface of
a sample. When the tip at the end of the cantilever touches
the surface, it causes the cantilever to bend, which changes
the amount of laser light reflected into the photodiode. The
height of the cantilever is adjusted accordingly to restore the re-
sponse signal and hence trace the surface (Figure 5C).[234] Both
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methods provide high-resolution imaging and analysis of sur-
faces in detail.
Under micro- and macro-scale range, emphasis has been

placed on the evaluation of porosity, cracks, and damages. For
instance, X-ray inspection methods are used to examine the in-
ternal structure of objects without damaging them. It works by
directing X-rays onto the sample and the radiation that passes
through is captured on the detector, creating an image based on
the varying absorption of the material. Moreover, a 3D profile
can be reconstructed by stacking multiple 2D images from dif-
ferent depths or angles, commonly referred as computed tomog-
raphy (CT). Besides, in order to capture the dynamic changes of
a sample under measurement, digital image correlation (DIC)
provides an optical-based approach to measure full-field strains
of the specimen.[235] It works by capturing images of the sample
before, during, and after the deformation, along with tracking the
movement of specific patterns or features on the surface to calcu-
late how much the material has deformed (Figure 5D).[236] DIC
offers a noncontact visualization technique to evaluate the sam-
ples under complex dynamic testings such as vibrations, impact,
or high-speed deformations.
In addition to experimental approaches and devices that are

used to characterize the materials, the fabrication of biopoly-
mers is another critical aspect to prototype the desired struc-
tures. Due to the increased complexity of biopolymers includ-
ing composite materials, intricate designs, and fabrication proce-
dures, additive manufacturing methods have shown promising
achievements in creating multimaterial, multiscale, and multi-
functional prototypes that are difficult to fabricate using conven-
tional approaches.[237,238] A wide range of biopolymers including
polysaccharide (i.e., starch, alginate, and chitosan) and protein
(i.e., silk, collagen, and gelatin) are printed using direct ink writ-
ing, binder jetting, or stereolithography techniques.[239] The capa-
bility of physically prototyping the virtual modeling biopolymers
is an indispensable counterpart to fulfill the final objectives and
functionalities.

4. AI-Enabled, Advanced Biopolymer and
Bioinspired Designs

The multiscale architecture of biopolymers and bio-inspired
composites provides special functionality of the material with
unique properties. Various modeling approaches are conducted
to explore the mechanism on different scales. Due to the in-
creased computational complexity and cost, it has been a long-
lasting challenge to comprehensively understand the processing-
structure-property relationships and generate superior designs.
In this section, solutions given fromML are discussed in biopoly-
mer characterization, fabrication process, and design prototyping
aspects.

4.1. Biopolymer Characterization

With the establishment ofmultiple polymer databases such as in-
house prepared datasets, PoLyInfo, and PI1M that contain over
ten thousand polymers for polymer informatics with about a hun-
dred critical properties, researchers are able to build analytical

models to understand the relationships between properties and
structures for biopolymers.[240] For instance, a multitask deep
neural network property predictor was developed for polyhydrox-
yalkanoates (PHAs), a type of bio-synthesized and biodegradable
bioplastics.[241] Based on the open-source experimental data that
include nearly 23 000 homo- and copolymer chemistries, the
predictor was able to identify 13 key thermal, mechanical, and
gas permeability properties with outstanding overall coefficient
of determination (R2) values (Figure 6A). Additionally, the pre-
dictive model was subsequently utilized to find bioreplacements
for seven commodity plastics, leading to two bioreplacements
for each commodity plastic that have superior properties with
possible chemical synthesis and biosynthesis routes. For specific
applications without existing open-source datasets, data-driven
approaches have been utilized to realize comprehensive charac-
terization of desired properties in a large design space. In a re-
cent study, high-throughput MD simulations were performed to
build ML models that predict the glass transition temperature
of biopolymers (Figure 6B).[242] A dataset comprising 546 poly-
mers was generated, which includes 58 homopolymers and 488
copolymers through 2184 MD simulations. Based on the simu-
lation data points, multiple ML algorithms including logistic re-
gression, k-nearest neighbors, support vector machines, and en-
semble learning algorithms were performed to achieve a mean
absolute error of 19.34 K and an R2 score of 0.83 when pre-
dicting the MD-calculated glass transition temperatures. In ad-
dition, to establish the analytical relationship between property
and polymer structure, a notation standard, SMILES (Simplified
Molecular Input Line Entry System) that represents the struc-
ture of chemical species in the form of a line notation using
short ASCII strings (letters and symbols) was used. This standard
naming convention provides direct opportunities for ML tasks
such as feature embedding, baseline comparison, and adaptivity
to utilizing language models. Conventionally, the symbol repre-
sentation of the polymer structure can be further encoded into
numbers throughmolecular descriptors calculated from the poly-
mer repeat units with open-access packages such asMordred.[243]

However, with the advancement of large language models, new
approaches have been explored to better encode the symbolic
polymer structures. For example, transformer-based language
models such as TransPolymer,[244] and polyBERT[245] were de-
veloped for polymer property prediction. Transformer architec-
ture shows superior capability to capture long-range dependen-
cies in structure strings using attention mechanisms. Moreover,
the trained encoder architecture such as the polyBERTmodel can
be fine-tuned for other downstream tasks, providing enhanced
transferability.

4.2. Fabrication Process Optimization

Besides leveraging AI approaches in the computational domain
for biopolymer characterization, AI-driven methods were also
actively applied in the fabrication process to determine better pro-
cess parameters.[34,246] To realize the different functionalities of
various biopolymers with distinct structures and compositions,
a series of processing and fabrication methods were developed
including solvent casting, electrospinning, injection molding,
and heat pressing.[247,248] For instance, alginate films were
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Figure 6. AI-enabled, advanced biopolymer and bio-inspired designs. A) The design pipeline of combining 540 polyhydroxyalkanoates (PHAs) with 13
conventional polymers to copolymers and the architecture of the multitask neural network predictors; Adapted with permission.[241] Copyright 2022,
Springer Nature. B) Illustration of using high-throughput molecular dynamics simulations and machine learning to predict the glass transition tem-
perature of biopolymers; Adapted with permission.[242] Copyright 2024, American Chemical Society. C) Convolutional neural networks based real-time
anomaly detection for 3D-bioprinting processes; Adapted with permission.[252] Copyright 2023, American Chemical Society. D) Flowchart of using ge-
netic algorithms and conditional variational autoencoders to design bioinspired composite structures. Adapted with permission.[264] Copyright 2023,
MDPI.

prepared by solvent casting technique for antibacterial wound
dressing applications;[249] chitosan membranes were fabri-
cated using post-electrospinning treatment for guided bone
regeneration;[250] and biodegradable thermoplastic cassava
starch/sodium alginate composites[251] were created using in-
jection molding for enhanced mechanical properties. Besides
these processing techniques, 3D-bioprinting methods provide a
unique way to realize customizable prototypes that are difficult
to fabricate using conventional methods. With the advancement
of AI algorithms, promising results have been presented to
realize prints with high printing quality and advanced prop-
erties under optimal processing conditions. For instance, Jin
et al., utilized camera devices and CNN algorithms to realize
layer-wise defects detection during the 3D bioprinting process
of GelMA material (Figure 6C).[252] Even for transparent GelMA
material, the model was able to reach satisfactory performance
in classifying different defects that happened during the printing
process. Bone et al., built a hierarchical ML model based on
deep neural networks to predict and optimize the print fidelity
of alginate hydrogel 3D prints through refining printing pa-
rameters including flow rate, printhead traveling velocity, and
nozzle diameter.[253] Besides reaching better fabrication quality,
the mechanical properties of the prints can be improved as
well. For example, the ultimate tensile strength of 3D-printed
polyether ether ketone (PEEK) specimen was optimized by
modifying infill density, infill patterns, as well as layer height,
and printing speed during fabrication.[254] By building an ML
regression model using support vector machine and random for-
est models based on the experimental data, optimized candidate
process parameters were proposed using genetic algorithms.
Considering the high cost and increasing efforts for physical

experiments, other AI algorithms were actively utilized to reduce
the amount of data collection and manual operating procedures.
For example, Yang et al. used small amount of experimental data
and neural network models to predict the optimal processing
condition that leads to the highest specific mechanical prop-
erties for mycelium-based wood composites.[248] The machine
learning method demonstrated the ability to predict outcomes in
a high-dimensional design space that experiments cannot com-
prehensively explore. The ML predictive model could also reveal
complex relationships between input factors such as process
and design parameters against output objectives such as fabrica-
tion quality and material properties. Bayesian optimization (BO)
methods are able to perform process optimization tasks based on
a small amount of experimental data through Gaussian process
surrogate modeling and probabilistic estimation. In this study,
the printability and resolution of PCL-MgO nanocomposite
were optimized by only 11 iterations of refining printing speed,
pressure, and nozzle temperature.[255] Moreover, such processes
can be fully augmented in automation and real-time monitoring
using cameras and programmed robotic arms in autonomous
labs. For instance, A-Lab, a fully automated materials-discovery
laboratory, realized synthesizing novel compounds with a high
success rate (71%) and faster speed than human operator.[256]

This platform provided an interdisciplinary thrust that combines
robotic automation and data-driven ML methods to experimen-
tally validate predictions made on the basis of computational
results with superior success rate. In addition to new material
discovery, structural optimization was achieved by BEAR,[256–258]

a Bayesian experimental autonomous researcher that leverages
Bayesian optimization and autonomous high-throughput ex-
perimentation using robotic arms. The toughness of a type of

Adv. Mater. 2025, 2416901 © 2025 Wiley-VCH GmbH2416901 (20 of 27)

 15214095, 0, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202416901 by U
niv of C

alifornia Law
rence B

erkeley N
ational Lab, W

iley O
nline Library on [04/04/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.advancedsciencenews.com
http://www.advmat.de


www.advancedsciencenews.com www.advmat.de

lattice structure was explored and optimized using a series of
3D-printers to iteratively build candidate prototypes based on
the compression results. BEAR realized 60 times acceleration in
identifying high-performing structures compared to a grid-based
search.

4.3. Generative Designs

In addition to understanding the fundamental knowledge of
biopolymer characteristics and fabrication process using various
AI algorithms, novel biopolymer materials and bio-inspired de-
signs can be actively optimized and generated to reach supe-
rior performance in chemical, mechanical, and biological prop-
erties. For instance,[259] the concentration of a chitosan-agarose-
gelatin biomaterial ink was optimized for its printing fidelity us-
ing the BO algorithm and the proposed concentration combi-
nation shows satisfactory performance in viscosity, hydrophilic-
ity, degradability, and biological response. A similar optimization
process has been applied to improve bio-inspired structures as
well. For example, superior lattice structures with enhancedmod-
ulus and strength was obtained through a hybrid neural network
and genetic optimization (NN-GO) adaptive method.[260,261] The
geometry of the lattice beam could be customized using Bézier
curves to reduce high stress concentration profile. Furthermore,
inspired from nature species, shark denticle bioinspired riblet
structures were optimized using the response surface method
to minimize the coefficient of drag.[262] However, these appli-
cations usually perform optimization in the predefined design
space. With the booming of generative AI algorithms, new tech-
niques including generative adversarial networks (GANs), vari-
ational autoencoders (VAEs), and diffusion models have been
applied to generate intricate bio-inspired designs using the la-
tent space learned from data. Shen et al., utilized the Style-
GAN algorithm to generate leaf-inspired unit cells with superior
stiffness.[263] The approach is able to generate infinite variant de-
signs that are even outside the boundaries of the collected dataset,
providing a unique way to explore broader design space. Besides,
Chiu et al., designed bioinspired composite structures using con-
ditional variational autoencoder (CVAE) to fulfill the desired stiff-
ness and toughness with high efficiency (Figure 6D).[264] Fracture
toughness tests were performed to verify the performance of gen-
erated designs with good accuracy. Moreover, Lu et al., conducted
graph-focused attention-based diffusion models and autoregres-
sive transformer architectures to create spider-web inspired de-
signs with heterogeneous hierarchical structures.[265] The estab-
lished framework has the potential to provide insights for funda-
mental biological understanding and meet with diverse design
opportunities.

5. Challenges and Outlook

Industry and academic interests in biopolymers have grown due
to their renewability, biodegradability, and customizable proper-
ties. Influenced by factors like composition and environment,
biopolymers show promise in the biomedical, agricultural, and
food sectors. They are expected to replace nonbiodegradable ma-
terials, though further research is needed on durability, per-
formance, and life-cycle evaluation to support market expan-

sion. The primary research challenges in advancing biopolymer-
related material systems for future development can be broadly
summarized as developing rational design strategies that utilize
the assembly and functionality of existing biopolymers with su-
perior properties to enhance their performance.[1,266] The first
route is to leverage the functionality of natural nanofibers to de-
velop biopolymer composites with improved performance. Natu-
ral fiber-reinforced biopolymers exhibit advantages like reduced
weight, low cost, recyclability, and superior mechanical proper-
ties. However, they face challenges such as poor moisture re-
sistance, dimensional stability, and limited fiber-polymer com-
patibility, which restrict potential applications, such as increased
fiber content that enhances impact strength but raises brittleness
and moisture absorption. Moreover, long-term properties like
creep and fatigue behavior of natural fiber-reinforced biopoly-
mers remain unclear. New approaches are needed to evaluate
their performance throughout their lifespan, addressing compat-
ibility and stability to broaden practical applications. Secondly,
mimicking multiscale assemblies found in natural nanofibers
(e.g., cellulose, chitin, and silk) also provides a promising
route.[267] By forming hierarchical structures, multiscale de-
sign can optimize the structure–property–function relationships.
MD modeling can customize chemical structures, molecular
weight, functional groups, and hydrophobicity/hydrophilicity,
enabling priori predictions of nanofiber formation and assem-
bly. At mesoscopic and macroscopic levels, nanofiber materials’
mechanical, optical, and dynamic responses can be engineered
throughmultiscalemodeling integratedwith experimentalmeth-
ods like spinning, film casting, and 3D printing. Introducing
anisotropic nanofiber alignments and gradients enhances me-
chanical strength, flexibility, and dynamic interaction with envi-
ronmental stimuli, such as humidity or temperature. Multiscale
modeling can also predict deformation behavior for different
nanofiber arrangements, while 3D printing enables site-specific
construction of optimized structures.[237] This rational approach
is applicable throughout the entire design process, frommolecu-
lar sequence to macroscopic manufacturing, promoting the re-
alization of biopolymer materials with tailored properties and
performance.
Multiscale modeling is crucial for designing and fabricat-

ing advanced biopolymer material systems, yet computational
developments are still needed. First, the accuracy of model-
ing at all scales must be improved, for example, by developing
more precise toolkits (e.g., forcefields, algorithms, and theories)
to enhance the prediction of targeted functionalities.[161,268,269]

Second, balancing the required information and model resolu-
tion remains challenging. Generally, higher chemical specificity
of models provides more detailed information about biopoly-
mers. However, the connection to specific polymers becomes
weaker when increasing the length and time scale. Neverthe-
less, large-scale predictions can capture broad polymer assem-
bly reactions and dynamics.[270] Third, bridging different scales
in modeling is a pressing challenge, requiring advancements
in both technical aspects and the integration of physics-based
and data-driven approaches.[271] Fourth, integration with ex-
perimental techniques remains underdeveloped. Further un-
derstanding of the structure–property–function relationships in
natural materials will drive bioinspired strategies for the cost-
effective design of novel biopolymer nanofiber-based functional
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materials. These insights can be achieved through the syner-
gistic integration of multiscale modeling with advanced static
and dynamic characterization techniques, including electron mi-
croscopy, synchrotron sources, and ultrafast spectroscopy.[272]

However, discrepancies between modeling scales and experi-
mental conditions continue to hinder effective coupling between
simulation results and experimental data.
Although AI-driven techniques have been demonstrated in

various applications including accurately predicting material
characterization, optimizing fabrication processes, and generat-
ing bioinspired designs, challenges still remain in two major
areas including data preparation and ML models. In specific,
datasets for polymers, chemicals, and proteins play a crucial role
in establishing foundations for large AI models and can serve
as benchmarks within the communities.[273,274] However, unlike
typical materials and chemicals that have systemic representa-
tions and formats, bio-inspired designs usually have problem-
specific settings and often require unique data collection and
AI model choices. It remains a tough task to scale up AI ap-
proaches to these mechanics-related problems that have distinct
design spaces, varied boundary conditions, and even different
physics objectives (e.g., solid mechanics, fluid dynamics, and
biological applications). Additionally, the existing datasets also
face challenges from such as incomplete information and incon-
sistent data formats. For instance, data may originate from di-
verse sources, including computational simulations and exper-
imental results. Building an accurate ML model requires more
specific techniques and architectures. For example, multifidelity
models, such as co-kriging methods, can be constructed using
two datasets, each representing either low-fidelity or high-fidelity
features. Co-kriging approach was successfully applied in devel-
oping a predictive model for polymer bandgaps with data from
multiple sources including the Perdew–Burke–Ernzerhof (PBE)
exchange-correlational functional (“low-fidelity”) and the Heyd–
Scuseria–Ernzerhof (HSE06) functional (“high-fidelity”) of den-
sity functional theory.[275] Their findings demonstrated not only
improved performance compared to a single-fidelity Gaussian
process method but also enhanced generalization capabilities
for the model. Besides the mentioned approaches, active learn-
ing (i.e., reinforcement learning) and transfer learning (i.e., fine-
tuning) can also be performed tomitigate the gap between predic-
tivemodel trained on simulation dataset and physical experimen-
tal ground truth. Lastly, we have seen varying AI approaches to
different tasks and applications such as graph-based methods on
GENoME, and transformer-based methods on AlphaFold3.[276]

Leveraging the pretrained model for other related topics still
requires more generalized AI models and thoughtful technical
approaches.
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