Downloaded via UNIV OF WISCONSIN-MADISON on September 3, 2025 at 18:30:10 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

S

pubs.acs.org/est

Statistical Mapping of PFOA and PFOS in Groundwater throughout
the Contiguous United States

Bumjun Park,* Hyunseung Kang, and Christopher Zahasky

Cite This: Environ. Sci. Technol. 2024, 58, 19843-19850 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

chemicals that are increasingly being detected in groundwater. The /*

negative health consequences associated with human exposure to PFAS &
make it essential to quantify the distribution of PFAS in groundwater
systems. Mapping PFAS distributions is particularly challenging because
a national patchwork of testing and reporting requirements has resulted
in sparse and spatially biased data. In this analysis, an inhomogeneous
Poisson process (IPP) modeling approach is adopted from ecological
statistics to continuously map PFAS distributions in groundwater across
the contiguous United States. The model is trained on a unique data set
of 8910 PFAS groundwater measurements, using combined concen-
trations of two PFAS analytes. The IPP model predictions are compared
with results from random forest models to highlight the robustness of this statistical modeling approach on sparse data sets. This
analysis provides a new approach to not only map PFAS contamination in groundwater but also prioritize future sampling efforts.

Inhomogeneous Poisson
Process (IPP) Model
quantile prediction
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ABSTRACT: Per-and polyfluoroalkyl substances (PFAS) are synthetic al . IU ~
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1. INTRODUCTION and analytical quantification of PFAS in water down to parts-

Per- and polyfluoroalkyl substances (PFAS) have emerged as a per-trillion (ppt) concentrations. The cost-intensive and highly
. . L technical nature of collecting and analyzing groundwater
growing concern in recent years due to their widespread

. . . samples across a broad geographic area has limited
presence in the environment and risk to ecosystems and p geograp

. . 11
human health."” These synthetic chemicals, many of which comprehensive and spatially resolved assessments.

exhibit resistance to heat, water, and oil, have found extensive Tl.lese. challenges are. further a.mpllﬁed in the existing
. . . . 3 monitoring framework in the United States where PFAS
use in a variety of industrial and consumer products.” PFAS

can be traced back to applications as diverse as nonstick testing and management is primarily overseen by state

cookware, firefighting foam, waterproof clothing, and food environmental and natural resource agencies, resulting in
packaging, As PFAS use has become ubiquitous, concerns stark disparities in sampling and data availability. This
about their persistence, mobility, and adverse health effects 1nt.r0duces sampling biases du,e to opportunistic  testing.

! 1 : . . Widespread groundwater sampling surveys for PFAS may
have risen.” As drinking water is a primary vector for negative

: : : o It of f ies (e.g,”'>"), h PFA,
health impacts, understanding and forecasting the distribution orcculrl;s atrersu tn(i h?lcusednstruclilles (e g; m 3’ ?rweve;tl irs1
of PFAS in groundwater is essential for mitigating negative groundwater samping generaty occurs more frequenty
health impacts time or space in areas with greater population, or in high-risk

. . T areas such as near industrial sites or airports.” If unaccounted
Mapping and monitoring PFAS contamination in ground— . A . .
. : for, a model built upon data with such sampling biases may
water is key for enabling regulatory and groundwater

c i” . h AS i f 1 I iti
management decisions to mitigate human exposure. Despite exaggerate the PFAS risk of densely populated cities and

. . . . underestimate the risks of nonpoint sources. State-level testing
this importance, nationwide groundwater sampling and data o b .
. . - also leads to strong variability in data density. States such as
aggregation remains a challenge. PFAS compounds originate 5
. . . . Massachusetts, California, and New Jersey currently have vast
from a diverse array of point and nonpoint sources. Point
sources include applications such as firefighting foam,
industrial discharges, and landfills, while nonpoint sources Received: June 5, 2024
include activities such as biosolid spreading and wet Revised:  October 15, 2024
deposition.”™” The array of pathways for PFAS to enter the Accepted:  October 16, 2024
environment makes it difficult to uniquely identify the origins Published: October 23, 2024
of PFAS contamination.* '? A second barrier to widespread
monitoring is the expense associated with extensive sampling
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Figure 1. (Left) locations of all the 8910 PFAS observations. States with at least 2 observations per 1000 square miles, and at least one observation
within every 1 by 1° pixel are considered presence-absence data and are highlighted in green (additional details in Supporting Information 1 Figure

S2). (Right) compilation of potential PFAS point sources.

publicly available data sets, while others have minimal publicly
available data on groundwater testing. Furthermore, for
regulatory reasons, states often focus primarily on public
water supply testing, introducing an additional layer of
complexity when water supplies are sourced from both surface
water and groundwater and may include some form of
treatment.'* These monitoring and groundwater sampling
disparities result in data sparsity, sampling bias, and regional
imbalances, collectively impeding efforts to synthesize a
cohesive nationwide PFAS risk map.

Geostatistical modeling approaches have been widely used
to produce distribution maps of groundwater contaminants—
including PEAS—ranging from classical regression to machine
learning methods. For contaminants such as atrazine and
nitrate, there are vast nationwide groundwater sampling data
sets spanning decades. These massive data sets enable robust
mapping over much of the United States. For example, atrazine
has been mapped over the contiguous U.S. using a Tobit linear
regression model,"* while the distribution of nitrate has been
mapped using approaches including nonlinear regression,'®
logistic regression,”’ random forest,'® and extreme gradient
boosting."

Unlike these contaminants where data has been collected in
groundwater for decades, limitations on existing data and
model development have restricted PFAS mapping to relatively
confined geographic areas. The most widespread method for
these smaller regional studies utilize random forest models
(RFs), a machine learning method that combines multiple
decision trees.”””** RFs have demonstrated high predictive
accuracy for estimating PFAS in water resources and
ecosystems at the regional scale, however when cast to a
national scale, the data sparsity and sampling bias can present
challenges for these models. Specifically, RFs were not
designed to handle heterogeneity in sampling of the training
data; RFs typically assume that each datum is an independent
draw from the same underlzfing population to justify the
bagging procedure inside RFs.”* Previous work has also shown
that when applied to groundwater data, RFs can perform
poorly when the dependent variable is close to zero,” a
characteristic of PFAS data at a national scale. Other
conventional linear regression models such as the LASSO or
Ridge regression model similarly fail when observations are not
independent or identically distributed,” neither of which is
true for the sparse and opportunistically sampled PFAS data.

In this work, a new approach is developed for modeling
national PFAS risks in groundwater inspired by models
employed for mapping plant and animal species in ecological
statistics.””~>” Issues of PFAS data sparsity and opportunistic
sampling have strong parallels to the field of ecological
statistics. For instance, when constructing a model for the
spatial distribution of a particular bird species, it is difficult to

conduct a meticulous grid search over a region. Therefore,
models must rely on observation locations that are irregularly
scattered across the region of interest. These models are
developed to handle intrinsic sampling bias as species are more
likely to be observed where there are more potential observers,
such as areas of higher human density or wildlife sanctuaries.
Such opportunistic data is referred to as presence-only data in
that it is gathered only from sightings of presences of a species.
Its counterpart, presence-absence data, is compiled from a
thorough grid search examining each spatial unit for presences
and absences of an organism.’’ When creating a species
distribution map using both presence-only and presence-
absence data, ecological statisticians apply various methods of
adjustment. This study adopts one such method for mapping
combined perfluorooctanoic acid (PFOA) and perfluoroocta-
nesulfonic acid (PFOS) distributions in groundwater.

2. MATERIALS AND METHODS

The specific ecological statistics model is called the
inhomogeneous Poisson process (IPP) model.”” An IPP
model is governed by the intensity function A(p) where p
represents the set of spatial observations or events in a region.
This intensity function represents the expected number of
observations within a small area around a point. Or, it could be
interpreted as the relative probability of observing an event at
one given point compared to another. For example, if the
intensity at one point is twice the intensity at another, it is
twice as likely to observe an event at that point compared to
the other. An IPP model built upon the intensity function A(p)
is denoted as IPP(A(p)).

In addition to the intensity function A(p), a bias function is
used to account for a mixture of presence-only data and
presence-absence data. Presence-only data is when the vast
majority of PFAS sampling in groundwater occurs in known or
suspected contaminated aquifers. Presence-absence data is
considered PFAS data from states that conducted more
systematic groundwater testing. Areas with greater bias are
more likely to be sampled compared to other areas. When the
bias function is considered, the IPP model is represented as
IPP(A(p)b(p)) where the bias function b(p) either intensifies
or attenuates the intensity function.

Both the intensity and the bias functions depend on a set of
spatial covariates. This study assumes a set of 15 covariates that
may affect both the intensity and the bias. Such an assumption
is made on the basis that PFAS sampling is more likely in areas
that are suspected to have higher PFAS intensity, causing b(p)
and A(p) to be affected by similar covariates. The covariates
that are considered are the distances to suspected PFAS
sources such as airports large enough to require firefighting
training drills (part 139) or military bases that regularly train
with firefighting foam containing PFAS, landfills, and various
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manufacturers that produce or frequently use PFAS. Potential
PFAS contamination from these types of sources has been well
documented.”®*" These locations are compiled using
resources such as the North American Industry Classification
System (NAICS) and the Facility Registry Service, and
illustrated in the right pane of Figure 1. The specific list of
covariates, their units of measurement, sources, relevant
summary statistics, and reasons for inclusion are detailed in
Tables S1, S2 and S3 of the Supporting Information 1. In
addition to potential PFAS sources, covariates include
hydrologic process information such as precipitation, and
human geography information such as population density and
median income. Using these covariates, we use maximum
likelihood estimation to estimate the parameters of the model.
Additional details about the model are available in the
Supporting Information 1 Section S6.

This set of covariates neglects additional geologic and
hydrologic parameters that are known to have an important
influence on rates of PFAS loading and transport in
groundwater systems such as depth to the water table and
the presence of cocontaminants in the vadose zone,>* >’ the
extent of aquifer confinement, soil/bedrock properties,®® and
water chemistry conditions.*”** While most of this information
is not reported or available for PFAS testing locations,
neglecting these parameters is expected to only limit the
ability of a model to capture rates of spreading in the
subsurface. The combination of these transport limitations, the
resolution of this national level model, and the lack of
constraint on the timing of most PFAS sources into the
environment, highlights that this model is intended to
represent a relatively static risk map based largely on
knowledge of potential source loading into the environment.

The IPP model is trained on a unique data set of 8910 PFAS
measurements compiled and preprocessed from state and
national databases and web dashboards using the most recently
available data at the time of data collection. Other data
preprocessing during the compilation stages included removing
duplicate locations and missing entries, masking exact
locations, and other quality control steps. These steps were
necessary to ensure consistency in data management standards
and maintaining a coherent data structure. Despite extensive
data gathering efforts, there is not yet enough data at a national
level to perform a meaningful time-series or spatiotemporal
analysis. The exclusion of the temporal aspect is also
considered justifiable due to the persistent nature of PFAS in
groundwater. Details of each data source, including ones that
were excluded from the data, are included in the Supporting
Information 2. The full data set is available in an online
repository.41

In this data set, PFAS observations are defined as the sum of
PFOS and PFOA. These two analytes are chosen as they are
the most commonly reported and are of specific regulatory
focus of state and national agencies. All observations with
greater than 8 parts per trillion (ppt) of total PFOA and PFOS
detected were considered presence data. For example, if there
was 8 ppt of PFOA and PFOS was not detected, the sample
would be classified as a presence. On the other hand, if there
was 7 ppt of PFOA and 0.9 ppt of PFOS, the sample would not
be a presence. While potentially masking individual relation-
ships with each analyte, combining these two analytes allows a
more comprehensible investigation of the general relationship
between the covariates and PFAS presence in groundwater.
Utilizing combined concentrations can account for a wide

range of analytical detection and reporting standards while
illustrating general PFAS risk. The 8 ppt threshold was selected
to align with the sum of the maximum contaminant levels of 4
ppt each for PFOA and PFOS set by the US Environmental
Protection Agency (EPA) to establish legally enforceable limits
on PFAS in groundwater.”” The extent and density of these
PFAS measurements is illustrated in the left map of Figure 1.
The exact distribution of concentrations within the data set are
displayed in Figure S1 of Supporting Information 1.

Out of the 8910 observations, this study assumes that data
from a select number of states with at least 2 observations per
1000 square miles, and at least one observation within every 1
by 1° pixel, is presence-absence data. The states of California,
Colorado, Maryland, Massachusetts, Michigan, New Hamp-
shire, New Jersey, North Carolina, Ohio, Rhode Island, South
Carolina, West Virginia, and Wisconsin met these criteria and
thus their data were classified as presence-absence. Data
collected from other states with more sparse and opportunistic
PFAS testing were classified as presence-only data (see
additional details in Supporting Information 1 Figure S2).
To interpolate the PFAS intensity over the contiguous United
States, 50,000 points were randomly generated to establish
where the IPP model was evaluated. The number of randomly
generated points was chosen to provide adequate model
interpolation at the national scale. This number of points was
sufficient for producing national maps. However, future users
of this methodology may use more points to provide an
intensity map with a finer spatial resolution.

In addition to the IPP model, a random forest model was fit
using the same set of data to illustrate differences in model
robustness to sparse and biased data. Rather than producing
estimates of species intensity, the RF model produces a
probability estimate for the chances of observing PFAS at each
point. To highlight the robustness of RF and IPP approaches
to opportunistically collected data, an additional set of models
were fit to an intentionally skewed data set. In this comparison,
50% of the lowest PFAS concentration observations were
dropped, and the remaining 4455 observations were used to fit
the second IPP and RF models. For all cases, the same 50,000
randomly generated points were used for evaluating the models
across the contiguous United States.

The RF models were fit in R (R version 4.3.2) using the
randomForest (4.7.1.1) package,43 using 500 decision trees, 3
variables per split, a minimum node size of 1, and no
restriction on the number of maximum terminal nodes. The
100% RF model had a sensitivity of 0.64, which means 64% of
the actual detects were correctly identified, and specificity of
0.81, which means 81% of the nondetects were correctly
identified. The 50% RF model had a sensitivity of 0.97 and
specificity of 0.36 (Table 1). The importance of each covariate
as weighted by the RF model is included in Supporting
Information 1 Table S6.

The fitted IPP and RF models were both evaluated on the
same 50,000 randomly generated data points to create maps
over the contiguous United States. Triangulated irregular
network (TIN) interpolation was used on the modeled points
and the 50,000 background points to create a network of
triangles between these points to interpolate values in between.
The specific details of how each model treats the data is
included in Supporting Information 1 Section S6. A
comparison with a map created from Kriging, another popular
geostatistical method for spatial interpolation, is available in
Supporting Information 1 Figure SS. All mapping and
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Table 1. Confusion Matrices for 100% RF Model (Left) and
50% RF Model (Right)

predicted
0 1
actual 0 4203 993
1 1336 2378

predicted
0 1
actual 0 268 473
1 96 3618

interpolation was performed using the QGIS software** in the
WGS 84 coordinate reference system. This CRS was chosen as
it is the standard system used b}f the United States Geological
Survey for national level maps.”® The code and data used for
analyses are available in the following repository.*'

3. RESULTS AND DISCUSSION

The results of the IPP and RF models with full and skewed
data sets are illustrated in Figure 2. The left two maps in Figure
2 show the predicted unbiased intensity of combined PFOA
and PFOS produced by the IPP model. The upper map is
fitted using the entire data set while the bottom map uses the
skewed data set where 50% of the lowest combined PFOA and
PFOS observations were not included in the model develop-
ment. The intensity maps represent the expectation of how
often PFAS detects occur in small locations. The intensity is
truncated to a maximum intensity of one, the point at which
we expect to make at least one observation of PFOA and/or
PFOS within a unit pixel (0.01 by 0.01°, approximately 1.1 km
by 1.1 km). The right two maps show the predicted probability
of observing PFOA and/or PFOS produced by the RF model
using 100% and 50% of the data. While the intensity signifies
where the detects are more common, probability signifies how
likely an event is at a given location.

When comparing the maps using all of the available data, the
robustness of the IPP model is striking. Both models correctly
highlight areas with known PFAS risk such as St. Paul, MN,

Chicago, IL, and other industrialized cities. However, the RF
map overemphasizes the risk in areas from which more
observational data was available. In the RF maps, the states of
MA, NJ, and WV exhibit much higher predicted probabilities
than neighboring regions because of the abundance of
measurements relative to states with less data. In the RF
models another issue is apparent in regions from which very
few data points were collected. Despite vast distances from
potential sources and the paucity of PFAS observations, rural
regions in Nevada, the northern Rocky Mountains, and the
northern Great Plains are questionably flagged as high-risk
areas by the RF model. In comparison, the IPP model is much
more specific in its predictions, as indicated by the higher
intensity predictions in localized areas.

In the predicted distributions relying on skewed data, the
IPP model robustness becomes even more evident. The RF
model was severely challenged by the bias that was introduced,
losing most of its specificity and highlighting virtually every
region as PFAS probability close to one. On the other hand,
the IPP model produced a nearly identical intensity prediction
to the model that relied on 100% of the available data. More
precise examinations of how the predicted intensities and
probabilities shifted as data was removed are included in
Supporting Informationl Figure S4.

In addition to these intensity estimates, the IPP model
produces an estimate of sampling bias. The bias function b(p)
represents the expected proportion of PFAS observations near
point p that are included in the presence-only data. In essence,
given that two points have identical intensity, the point with
greater bias will have more PFAS detections compared to the
other. Thus, the estimated bias function estimates the pattern
of opportunistic sampling in PFAS testing and can be used to
identify regions that would most benefit from additional
groundwater sampling. The estimated bias map is included in
Supporting Informationl Figure S3.

To further inspect the IPP model and illustrate the potential
practical utility, Figure 3 shows the intensity of PFAS colorized
based on percentiles. Regions in the darkest shade of blue are
in the 99th percentile of expected number of observations of
PFAS, while regions in white are below the 50th percentile.
Not only does this map correctly identify clusters of observed

3
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Figure 2. Predicted combined PFOA and PFOS intensity produced by the IPP model (left) and the predicted combined PFOA and PFOS
detection probability produced by the RF model (right). Using 100% of the data (top) or using 50% of the data (bottom).
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Figure 3. Percentile map of PFAS intensity from IPP model.
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Figure 4. Relative risk of combined PFOA and PFOS detection compared to the average of the city of Boston, MA (top) and a closer look around

the city of Boston (inset). Relative risk was truncated at 2.

PFAS in groundwater samples from Figure 1, it also identifies
regions from which little, if any, data was provided. Despite the
lack of PFAS observations, this map also highlights many
regions of elevated PFAS risk that could be used to better
inform future sampling campaigns. For example, while central
Washington has limited groundwater sampling data in this
model data set, the high PFAS intensity could inform and
corroborate PFAS ecosystem and bioacculation studies.”

Furthermore, an analysis of the specific covariates allows an
inspection of PFAS risk even in absence of this map. For
example, among the strongest covariates affecting PFAS
intensity were distances to military bases, leather manufac-
turers, or landfills. As the distance from these facilities
increases, the intensity, the likelihood of observing PFAS at a
certain location, would decrease. Exact analysis on how each of
the 15 covariates would affect PFAS intensity and by how
much are included in Sections S7 and S8 of Supporting
Information 1.

The practicality of the IPP model extends further beyond its
robustness to skewed and biased data. The PFAS intensity is
easily converted to a more interpretable metric of relative risk
by taking the ratio of locations relative to each other. For
example, if one pixel has twice the intensity of another, the risk
of observing PFAS there would be twice as high. The city of
Boston, MA has extensive water sampling and publicly
available data in terms of PFAS documentation and manage-
ment so it could be used as the benchmark to compute a
relative risk over the contiguous United States. Figure 4

19847

illustrates this relative risk across the contiguous U.S. relative
to Boston, MA. The average intensity across the city
boundaries of Boston, as seen in the inset of Figure 4 was
set as the reference, with a relative risk of one. The red regions
in the map have two times or greater chance of observing
PFAS compared to Boston, while the blue regions have a
comparatively negligible chance. This example of relative risk
can be performed not only at the national level but also at a
more local level. This could be especially valuable for the
allocation of sampling, remediation, and other technical
resources at a local, regional, or national scale.

The application of IPP statistical approaches to forecasting
PFAS risk in this study provides a new approach to overcome
the inherent issues and limitations of groundwater sampling for
PFAS and other emerging contaminants. The resulting PFAS
distribution maps highlight known contamination regions and
identify regions where future sampling campaigns could be
focused. In comparison with random forest model predictions,
the IPP model predictions were extremely robust. This is clear
from qualitative assessment of national scale predictions, where
the RF model forecasts broad regional elevated risks in some of
the most undersampled and sparsely populated regions of the
United States. These effects were amplified when the data was
further skewed so that only the top 50% of PFAS observations
were retained. In this case the RF model prediction was
significantly degraded while the IPP model remained relatively
robust as indicated by minimal changes in the relative intensity
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distribution relative to the model results that utilized all of the
available data.

Omission of 50% of the data serves as a proxy for cross-
validation, a method commonly used to assess how well a
model will perform on new and unseen data by intentionally
withholding data, or other machine learning performance
metrics. In the case of point processes, the concept of new and
unseen data does not apply as the 8910 observations are
considered a single observation of 8910 potentially related
points, invalidating the purpose of cross-validation. Rather, by
intentionally skewing the data by deleting the bottom half of
PFAS observations, the stability and reproducibility of each
model is tested, as models should be robust to such forms of
sampling bias. As detailed in Figure S4 of Supporting
Information 1, the IPP model exhibits such stability while
the RF model does not.

While this IPP model has shown promising results, this
approach has limitations. First, due to the decentralized nature
of PFAS sampling and management, the data used in this study
lacks uniformity. The data was gathered from multiple sources
and state-level databases, all of which had different PFAS
quantification, analytes sampled, detection limits, and report-
ing standards. A nationwide uniform PFAS sampling scheme
would improve this and future model efforts. Second, this
study simplifies the convoluted structure of PFAS distribution.
For the sake of statistical modeling, this study only considered
15 continuous covariates, disregarding other potentially
influential factors. Additional studies may use this same
framework to evaluate the effect of other possible covariates
such as more granular hydrogeologic conditions or additional
PFAS source information. Third, for the sake of comprehen-
sibility, this study summed PFOA and PFOS together to
observe an overarching relationship between these common
PFAS and the covariates. Using this novel methodology to its
fullest extent, with more fine-grained data, more detailed
relationships between each individual analytes may be
examined in future studies. Finally, even if all of the relevant
covariates are included, the IPP model is a parametric model. If
the relationship between spatial distribution of PFAS and
spatial covariates are nonlinear and complex, the IPP model
predictions may be inaccurate. Despite these possibly
restrictive parametric assumptions, the IPP model outperforms
common machine learning approaches, primarily because the
proposed model properly adjusts for the sparse sampling and
data heterogeneity inherent in the data set. Therefore, the
problem of model mis-specification may not be a major
concern. However, future work may focus on expanding to
semiparametric or nonparametric IPP models.

Despite these limitations, this study provides a unique and
extensive data set and model to better understand the state of
PFAS contamination in the contiguous United States. In
addition, this approach provides new insights and method-
ologies for devising PFAS sampling schemes. If facing time and
cost restrictions, stakeholders may choose to target only the
areas of high PFAS intensity since the IPP model inherently
accounts for sampling likelihood which in turn provides
robustness against opportunistic sampling. Even in the absence
of a meticulous presence-absence sampling within a region, this
analysis provides an important starting point for gathering
more information about the distribution of PFAS in ground-
water systems across the United States.
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