

Exploring the compatibility of phosphopantetheinyl transferases with acyl carrier proteins spanning type II polyketide synthase sequence space

Areta L. N. Bifendeh,¹ Kenneth K. Hsu,¹ Christina M. McBride,¹ Charlie M. Ferguson,¹ Eva R. Baumann,² Diego Capcha-Rodriguez,² Xinnuo Chen,¹ Berlensie Chery,¹ Margo M. Chihade,¹ Paola Delgado Umpierre,¹ Taliyah Evans,² Carolyn H. Everett,¹ Syeda F. Faheem,² Oscar D. Garrett,² Aliya R. Gottesfeld,¹ Ishir G. Gupta,¹ Jason D. Haas,¹ Theresa A. Haupt,¹ Jean Katz,¹ Sadie Kim,¹ Matthias Langer,² Vy Le,¹ Kevin K. Li,¹ Baldwin Zhao,² Siyue Lin,² Kelsey N. Mabry,¹ Anna Malkov,¹ Abigail T. Marquis,¹ Kieran R. McDonnell,¹ Kristen Min,² Nicholas B. Mostaghim,¹ Krysta M. Nichols,¹ Rebecca A. Osbaldeston,² Trisha T. Phan,¹ Alana T. Ponte,¹ Tala Qaraqe,² Bianca S. Rosas,¹ Caroline S. Smith,¹ Logan E. Smith,¹ Maisie W. Smith,² Aviva C.R. Soll,² Gabriel Rocco Sotero,¹ Isabel E. Thornberry,¹ Kristina Tran,¹ Quynh K. Vo,¹ Marcos G. Yoc-Bautista,¹ Madison Young,² Kelly A. Zukowski,¹ Robert Fairman,² Kimberly A. Wodzianowski,² Michael A. Herrera,^{3,*} Yae In Cho,^{1,^*,*} Louise K. Charkoudian^{1,*}

¹Department of Chemistry, Haverford College, Haverford, PA 19041, USA

²Department of Biology, Haverford College, Haverford, PA 19041, USA

³School of Chemistry, The University of Edinburgh EH9 3FJ, UK

[^]Current address: Department of Chemistry and Biochemistry, Providence College, Providence, RI, 02918, USA

22 *Corresponding authors: Michael A. Herrera (mherrera@ed.ac.uk), Yae In Cho
23 (ycho@providence.edu) and Louise K. Charkoudian (lcharkou@haverford.edu)

24

25

26 **Keywords**

27 phosphopantetheinyl transferase, acyl carrier protein, polyketide, synthase

28

29 **One sentence summary**

30 Seventeen acyl carrier proteins from diverse type II polyketide synthases were evaluated
31 for their compatibility with three phosphopantetheinyl transferases; Results, along with
32 sequence level-analyses and predictive structural modelling, reveal specific regions that
33 can guide future strategic engineering efforts.

34

35

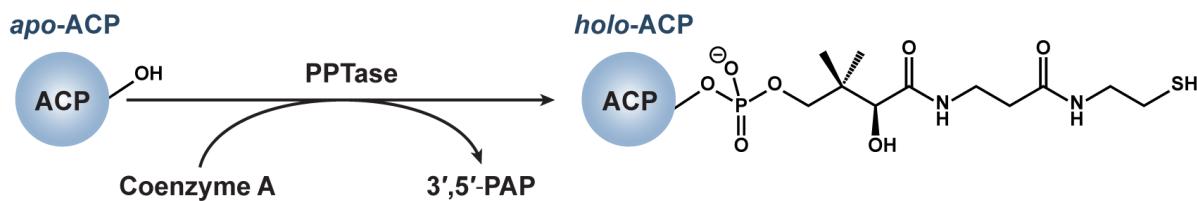
36 **Abstract**

37 Phosphopantetheinyl transferases (PPTases) play an essential role in primary and
38 secondary metabolism. These enzymes facilitate the post-translational activation of acyl
39 carrier proteins (ACPs) central to the biosynthesis of fatty acids and polyketides.
40 Modulation of ACP-PPTase interactions is a promising approach to both increase access
41 to desired molecular outputs and disrupt mechanisms associated with disease
42 progression. However, such an approach requires understanding the molecular principles
43 that govern ACP-PPTase interactions across diverse synthases. Through a multi-year,
44 course-based undergraduate research experience (CURE), 17 ACPs representing a
45 range of putative type II polyketide synthases, from actinobacterial and non-
46 actinobacterial phyla, were evaluated as substrates for three PPTases (AcpS, Sfp, and
47 vulPPT). The observed PPTase compatibility, sequence-level analyses, and predictive
48 structural modelling suggest that ACP selectivity is driven by amino acids surrounding the
49 conserved, modified serine on the ACP. We propose that vulPPT and Sfp are driven
50 primarily by hydrophobic contacts, whereas AcpS may favor ACPs which exhibit high net-
51 negative charge density, as well as a broad electronegative surface distribution.
52 Furthermore, we report a plausible, hitherto unreported hydrophobic interaction between
53 vulPPT and a conserved ACP crease, upstream of the invariant serine, which may
54 facilitate docking. This work provides a catalog of compatible and incompatible ACP-

55 PPTase partnerships, highlighting specific regions on the ACP and/or PPTase that show
56 promise for future strategic engineering and inhibitor development efforts.
57

58

59


60

61 **Introduction**

62 Phosphopantetheinyl transferases (PPTases) play a critical role in a range of metabolic
63 pathways. These enzymes facilitate the post-translational activation of acyl carrier
64 proteins (ACPs) in fatty acid synthases (FASs) and polyketide synthases (PKSs), as well
65 as peptidyl carrier proteins (PCPs) in non-ribosomal peptide synthetases (NRPSs). ACPs
66 and PCPs, which are considered central hubs of their synthase/synthetases, present as
67 ~ 10 kDa helical bundles with a conserved serine at the *N*-terminus of helix II (Crosby &
68 Crump, 2012). PPTases install an 18 Å, coenzyme-A (CoA) derived 4'-
69 phosphopantetheine (Ppant) arm at the conserved serine site on the ACP/PCP, thereby
70 converting the inactive *apo*-ACP/PCP to its active *holo* form (**Figure 1**). The terminal thiol
71 of the protein-bound Ppant arm serves as a molecular tether to transport building blocks
72 (e.g. malonyl CoA) and intermediates as thioesters during the multi-step assembly of a
73 natural product.

74 Characterizing the interaction between ACPs and the PPTases that modulate their activity
75 could increase access to medicinally relevant agents. For example, Sørensen and
76 colleagues increased the *in vivo* production of target fungal polyketides with promising
77 bioactivity by discovering ACP-PPTase partnerships that maximized natural product
78 formation (Pedersen et al., 2022). Alternatively, inhibitors of PPTase-mediated activation
79 could act as novel antimicrobial agents, as shown by Ballinger and colleagues through
80 the identification of a small molecule that inhibit the PPTase crucial for the biosynthesis
81 of mycobacterial structural and virulence lipids (Ballinger et al., 2019). Expanding the
82 impact of such approaches requires an improved understanding of ACP-PPTase
83 compatibility across a wide sequence space.

84

85

86 **Figure 1.** The PPTase-catalyzed conversion of an inactive "apo" ACP to the active "holo"
87 ACP. *apo*-ACPs are activated to their *holo* form via the PPTase-catalyzed installation of

88 a coA-derived 4'-phosphopantetheine (Ppant) arm onto the conserved serine at the *N*-
89 terminus of ACP helix II.

90 ACP structure and function are largely conserved across species. For example, ACPs
91 from both type II PKS and FAS systems are discrete proteins that iteratively load malonyl
92 CoA, present it to a cognate ketosynthase (KS) for a decarboxylative Claisen-like
93 condensation reaction, then transfer the growing chain to other synthase components
94 and/or back to the KS. In addition to this conserved role, ACPs engage in a suite of other
95 protein-protein interactions (PPIs), as exemplified by the archetypical FAS ACP ("AcpP"),
96 which interacts with >25 protein partners (Bartholow et al., 2021).

97 Despite having nearly identical roles in these systems, ACPs from type II PKSs typically
98 cannot be interchanged with ACPs from type II FASs (Cho et al., 2022; Worthington et
99 al., 2008, 2010; Ye & Williams, 2014). This phenomenon— where ACP function is highly
100 conserved across PKSs, while ACP-partner compatibility is not – extends to ACP-PPTase
101 interactions as well (Bräuer et al., 2020; Crosby & Crump, 2012; Cummings et al., 2019;
102 Li et al., 2025; Pedersen et al., 2022). Historically, the PPTase from the *Escherichia coli*
103 FAS system, AcpS (Lambalot & Walsh, 1995), and the PPTase from the *Bacillus subtilis*
104 surfactin biosynthesis pathway, Sfp (Quadri et al., 1998; Sunbul et al., 2009), have been
105 widely used in biosynthetic engineering efforts due to their broad substrate specificity.
106 Yet, recent reports suggest that these “gold standard” promiscuous PPTases are not
107 compatible with all ACPs, especially those from underexplored phyla (Bräuer et al., 2020;
108 Li et al., 2025; Liu et al., 2020; Pedersen et al., 2022). While this incompatibility is a barrier
109 to accessing ACPs in their *holo* state, it simultaneously offers a unique opportunity to
110 explore the factors that govern ACP-PPTase interactions.

111 As part of a course-based undergraduate experience (CURE), 17 ACPs (**Tables S1** and
112 **S2**) from phylogenetically diverse putative type II PKSs were surveyed for their
113 compatibility with each of three PPTases – AcpS, Sfp (specifically the R4-4 mutant,
114 engineered to increase substrate scope) (Sunbul et al., 2009), and a newly discovered
115 PPTase from *Dictyobacter vulcani* (Hsu et al., 2025), which is referred to as vulPPT in the
116 present manuscript. The data herein support that the interaction between ACP and
117 PPTases is driven by specific protein-protein interactions. Using the data from this panel
118 enabled us to infer the role of specific ACP sequence motifs and physicochemistry in
119 determining ACP-PPTase compatibility.

120 The impact of this work is three-fold. First, this work was carried out through CUREs,
121 exposing 47 students to the exciting field of natural product biosynthesis, enabling them
122 to learn foundational concepts and techniques of biochemistry while contributing to the
123 field. Second, conclusions drawn from these studies can guide the selection of the optimal
124 PPTase to activate ACPs from different sources, thereby supporting combinatorial
125 biosynthesis efforts. Third, our molecular-level insights can be used to develop more
126 specific ACP-PPTase inhibitors for antimicrobial applications and/or engineer
127 ACPs/PPTases to confer compatibility and improve synthase output.

128 **Materials and Methods**

129 **Protein expression and purification.** In pairs, students enrolled in the CURE identified
130 and worked on a single target ACP. Plasmids were constructed and transformed into *E.*
131 *coli* BL21(DE3) cells as outlined in Supplementary Data.

132 A single colony of *E. coli* BL21(DE3) transformed with the target plasmid was used to
133 inoculate 10 mL of LB medium supplemented with 50 μ g/mL kanamycin. The culture was
134 incubated at 37 °C with shaking at 200 rpm for 12–18 hours. This 10-mL seed culture was
135 then used to inoculate 1-L LB medium with 50 μ g/mL kanamycin, which was grown at 37
136 °C, 200 rpm in a shaking incubator until the optical density at 600 nm (OD₆₀₀) reached
137 0.4–0.6. This production culture was induced by adding isopropyl- β -D-thiogalactoside
138 (IPTG) to a final concentration of 250 μ M, and the culture was incubated overnight (~18
139 hours) at 18 °C with shaking at 200 rpm. Cells were harvested by centrifugation (Beckman
140 Coulter Avanti J-E High-Speed Centrifuge, JA-10 rotor, 6,000 rpm, 4 °C, 20 min). Cell
141 pellets were transferred to a 50-mL conical tube and stored at –80 °C until purification.

142 The expressed cell pellet from a 1-L expression culture was resuspended with 20–30 mL
143 of ice-cold lysis buffer (50 mM sodium phosphate buffer, 300 mM NaCl, 10 mM imidazole,
144 10% (v/v) glycerol, pH 7.6). Cell lysis was performed on ice using an XL-200 Microson
145 ultrasonicator at 40% amplitude with 30 sec on/30 sec off cycles for 10 minutes or longer,
146 until the lysate became visibly more translucent. The lysate was centrifuged (Beckman
147 Coulter Avanti J-E High-Speed Centrifuge, JA-18, 13,000 rpm, 4 °C, 1 hour). The resulting
148 supernatant was transferred into a 50-mL conical tube and incubated with 1 mL of pre-
149 equilibrated Ni-NTA resin (GoldBio). The mixture was gently nutated at 4 °C for at least
150 1.5 hours to allow protein binding to resin before transferring to an Econo-Pac gravity flow
151 column (Bio-Rad). After collecting the flow-through, the resin was washed sequentially
152 with ~20 mL of the lysis buffer, followed by the addition of wash buffer (50 mM sodium
153 phosphate buffer, 300 mM NaCl, 30 mM imidazole, 10% (v/v) glycerol, pH 7.6) until the
154 A₂₈₀ < 0.05 (~50 mL). Protein elution was performed using elution buffer (50 mM sodium
155 phosphate buffer, 100 mM NaCl, 250 mM imidazole, 10% (v/v) glycerol, pH 7.6) and 10
156 x 1-mL elution fractions were collected. Protein concentration of each fraction was
157 determined by Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific), and the
158 fractions with A₂₈₀ > 0.15 and A₂₆₀/A₂₈₀ < 1.00 were pooled, aliquoted, flash-frozen with
159 liquid N₂, and stored at –80 °C. The concentration of purified proteins was determined
160 using the bicinchoninic acid (BCA) assay. Purified proteins were characterized by SDS-
161 PAGE (**Figure S1**) and LC-MS (**Figure S3**).

162 **ACP-PPTase Phosphopantetheinylation Assay**

163 Each apo-ACP was reacted with each of the three PPTases (Sfp R4-4, AcpS, and
164 vulPPT) by combining the following components in a 1.5-mL microfuge tube to achieve
165 the final concentrations indicated in 100 μ L total volume: ACP (80 μ M), 50 mM sodium
166 phosphate buffer, pH 7.6, dithiothreitol (DTT) (2.5 mM, from 1 M stock), MgCl₂ (10 mM,
167 from 250 mM stock), coenzyme A (0.8 mM, from 50 mM stock), and PPTase (1 μ M, added
168 last to initiate the reaction). Reactions were incubated at room temperature with gentle
169 shaking on an orbital shaker for 18 hours. At the 18-hour mark, 50 μ L of the reaction
170 mixture was removed and quenched by adding 10 μ L of 25% (v/v) formic acid. All
171 experiments were repeated in triplicate by a senior undergraduate thesis student to
172 increase experimental rigor and ensure reliability of results.

173 **Liquid Chromatography-Mass Spectrometry (LC-MS)**

174 ACP samples were analyzed using an Agilent InfinityLab G6125B LC-MS system coupled
175 with an Agilent 1260 Infinity II LC, fitted with a Waters XBridge Protein BEH C4 reverse
176 phase column (300 Å, 3.55 µm, 2.1 mm × 50 mm) and an XBridge Protein BEH C4 Sentry
177 guard cartridge (300 Å, 3.5 µm, 2.1 mm × 10 mm). The column temperature was
178 maintained at 45 °C during liquid chromatography. Mass spectra were acquired using
179 electrospray ionization mass spectrometry (ESI-MS) in positive mode. Two LC-MS grade
180 solvent sources were used: Solvent A (H₂O + 0.1% (v/v) formic acid) and Solvent B
181 (acetonitrile + 0.1% (v/v) formic acid).

182 *For post-purification confirmation of apo-ACP starting material:* Samples were prepared
183 by diluting 10 µL of apo-ACP with 90 µL of LC-MS grade water. The following solvent
184 gradient was used after 20 µL injection of the sample: 0–1 min, held at 5% B; 3.1–4.52
185 min, 5% → 95% B; 4.52–4.92 min, 95% → 5% B, and 4.92–9 min held at 5% B. The flow
186 rate was maintained at 0.4 mL/min, with ESI-MS parameters set to a capillary voltage of
187 3000 V and a fragmentation voltage of 75 V.

188 *For apo/ho/ quantification after phosphopantetheinylation assay:* Quenched reactions
189 (50 µL of the reaction mixture + 10 µL of 25% (v/v) formic acid) were neutralized and
190 diluted by sequentially adding 20 µL of 5% (v/v) NaOH and 20 µL of LC-MS grade water,
191 yielding a final volume of 100 µL. Before sample injection, the column was first
192 equilibrated for 10 min at 10% B. A 20 µL injection was followed by the following solvent
193 gradient: 0–5 min, 10% → 30% B; 5–40 min, 30% → 50% B; 40–45 min, 50% → 95% B;
194 45–46 min, held at 95% B; 46–51 min, 95% → 10% B; and 51–62 min, held at 10% B.
195 The flow rate was maintained at 0.4 mL/min, and ESI-MS was conducted using the same
196 ionization parameters as above.

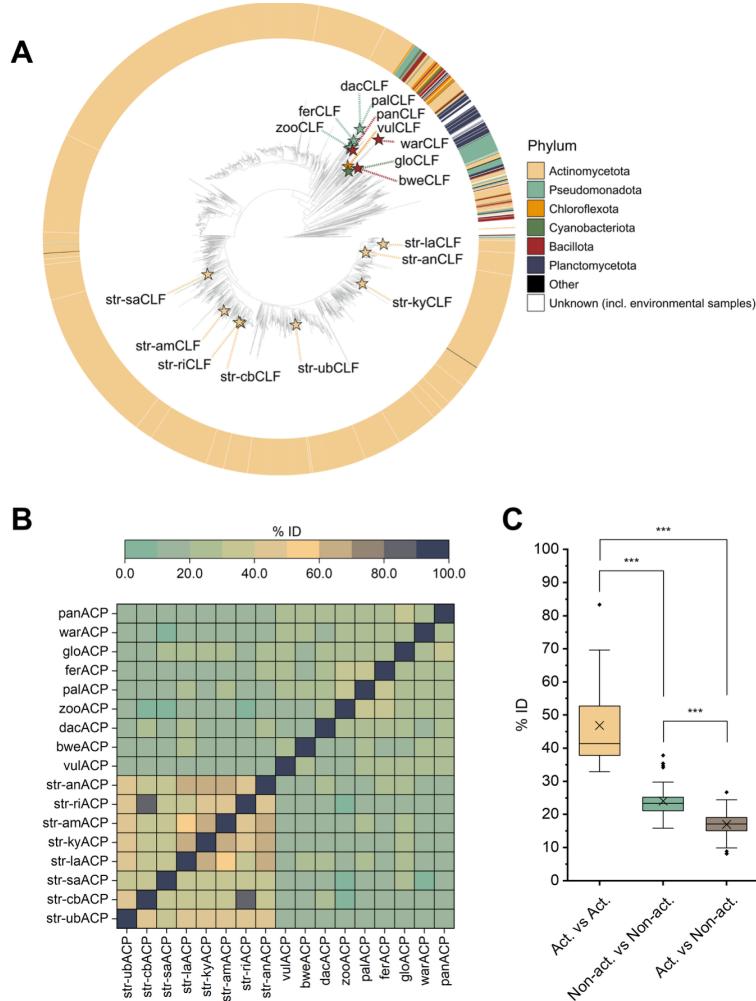
197 Acquired mass spectra were deconvoluted using ESIprot online (Winkler, 2010). The
198 resulting molecular weights (MWs) were compared to the theoretical MWs to verify
199 successful phosphopantetheinylation. For *apo/ho/* quantification, LC chromatograms at
200 280 nm absorbance were baseline-corrected, and the area under the curve for each *apo-*
201 and *ho/*-ACP peak was used to calculate their relative abundance in Microsoft Excel. All
202 LC-MS and LC chromatograms were plotted using Origin 2023b.

203

204 **Sequence analysis, predictive structural modelling and molecular dynamics
205 simulation.** The nucleotide accession number for each ACP which underwent less than
206 98% *ho/* conversion with at least one tested PPTase was input into the antiSMASH (Blin
207 et al., 2023). The corresponding PPTase for bweACP was omitted, as the corresponding
208 genome in NCBI was unannotated (bweACP) and thus could not be easily searched using
209 antiSMASH. The type II PKSs containing the ACPs were searched for genes annotated
210 as a “*ho/*-(acyl-carrier-protein) synthase” or “4'-phosphopantetheinyltransferase.” A
211 corresponding PPTase for dacACP was not annotated in the cluster and was thus
212 omitted. The relevant protein sequences were retained, and the accession numbers were
213 searched in NCBI for annotation of predicted PPTase type (Sfp vs. AcpS). Multiple
214 sequence alignments (MSAs) were performed using Clustal Omega (EMBL-EBI,

215 European Molecular Biology Laboratory-European Bioinformatics Institute) (Madeira et
216 al., 2024), and visualised in ESPript 3 (Robert & Gouet, 2014). Sequence net charges
217 were computed using Isoelectric Point Calculator 2.0 (Kozlowski, 2021). All structural
218 predictions were performed using AlphaFold3 (via AlphaFold server) (Abramson et al.,
219 2024) Simulations were performed using GROMACS 2021 (Abraham et al., 2015).
220 Protein charges were computed using CHARMM36 all-atom forcefield (Huang &
221 MacKerell, A. D., 2013). Models were solvated in TIP3P water in a cubic box, and the net
222 protein charge was counterbalanced using simulated sodium/chloride ions. The system
223 was energy-minimized by sequential steepest descent/conjugate gradient descent and
224 equilibrated to 300 K and 1 bar using V-Rescale thermostat/Berendsen barostat.
225 Following a 10 ns (1 x10⁸ time steps) production MD, the trajectory was re-centered with
226 additional rotational and translational fitting. UCSF Chimera v1.18 (Pettersen et al., 2004)
227 was used for trajectory visualization and ensemble clustering. General model viewing and
228 analysis was performed using ChimeraX v1.8 (Pettersen et al., 2021) and PyMOL 3.0.4.
229

230 **Results and Discussion**


231 **Diversity of Selected ACP Candidates**

232 Target ACPs were selected to represent a range of putative type II PKSs from the well-
233 studied actinobacterial and the largely uncharacterized group of non-actinobacterial phyla
234 (**Figure 2 and Tables S1 and S2**) (McBride et al., 2023). ACPs with variations in the
235 region flanking the conserved serine were prioritized. To further narrow down ACPs to
236 incorporate into the CURE, we selected those that came from an organism residing in an
237 intriguing environment that might stimulate student curiosity. For example, vulACP
238 originates from *Dictyobacter vulcani* isolated from a volcano in Japan (Zheng et al., 2020),
239 and zooACP originates from *Zooshikella hareniae* sp WH53 isolated from Pacific oysters
240 (Pira et al., 2021). The ACPs selected show broad sequence-level diversity, ranging from
241 8.11-83.3% identity with a median of 20.3%. From MSAs, the selected actinobacterial
242 ACPs show moderate sequence identity with other ACPs from the same phylum (46.7 ±
243 13.2%, **Figure 2B-C**). In contrast, the selected non-actinobacterial ACPs are more
244 diverse, both within their own phylum (24.0 ± 5.16%) and compared to our actinomycete
245 ACPs (16.9 ± 3.46%, **Figure 2B-C**). Collectively, these candidates cover a wide area of
246 the type II ACP sequence space. Therefore, we anticipated an array of PPTase
247 compatibilities useful for developing sequence-function hypotheses.
248

250 ***E. coli* serves as a heterologous host for robust expression of ACPs from diverse 251 phyla**

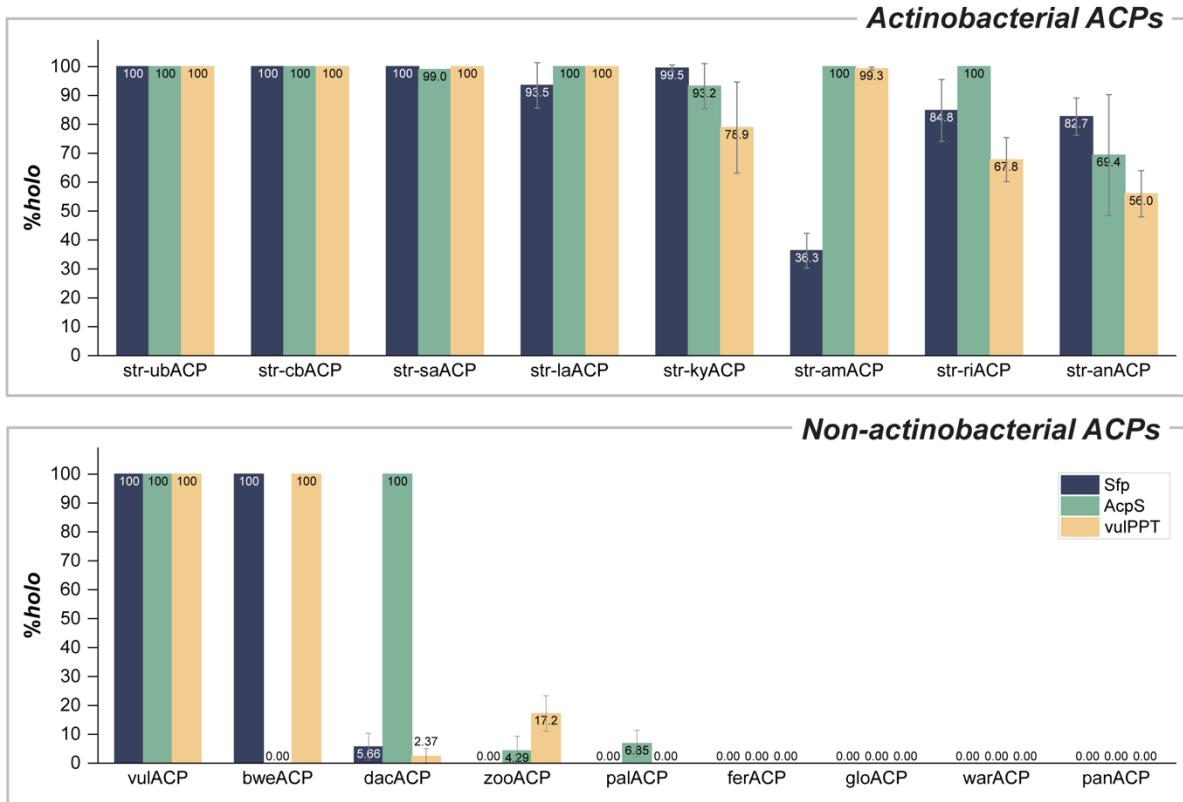
252 All 17 ACPs chosen were expressed in *E. coli* BL21(DE3) cells with an *N*-terminal His₆-
253 tag and were subsequently purified via Ni-NTA affinity chromatography with yields
254 ranging from 5 – 26 mg per liter culture. The observed yields demonstrate the robustness
255 of a single expression/purification protocol to obtain a diverse set of ACPs. The ACPs
256 were expressed primarily in their *apo* form with their SDS-PAGE migration patterns in
257 alignment with their ~ 10 kDa molecular weights under both reducing and non-reducing

258 conditions (Figure S1 – S3). The observed migration patterns are consistent with other
 259 type II PKS ACPs and in contrast to the *E. coli* AcpP, which migrates at a higher-than-
 260 expected molecular weight, attributed to its unique charge distribution (Garwin et al.,
 261 1980).

262
 263 **Figure 2. The type II PKS ACPs addressed in this study belong to phylogenetically**
 264 **diverse BGCs. (A)** The featured phylogenetic tree represents 6,322 type II PKS chain
 265 length factor (CLF) protein sequences identified in our previous global bioinformatic
 266 analysis of type II PKS BGCs. For methods associated with the construction of the tree,
 267 see McBride et al. (2023). The ring signifies the phylum classification for each terminal
 268 node. Cognate CLFs for the ACPs explored in this study are marked with a star. **(B)**
 269 Pairwise percent sequence identity (%ID) heatmap between all actinobacterial and non-
 270 actinobacterial ACPs selected for study. **(C)** Box plot showing the distribution and central
 271 tendency of ACP %IDs, both within and between the actinobacterial (act) and non-
 272 actinobacterial (non-act) phyla. Boxes represent the interquartile range (IQR). Whiskers
 273 extend to data points up to 1.5 x the IQR from the lower and upper quartiles. Median
 274 values are shown as black bands, means are shown and black crosses. (***) = $p \leq 0.001$
 275 (Welch's ANOVA with Games-Howell post-hoc test).

276

277


278 **PPTases demonstrate preference for actinobacterial ACPs over non-**
279 **actinobacterial ACPs.**

280 The conversion of ACPs from their *apo* to *holo* form was monitored by a +340 Da change
281 in mass corresponding to the installation of the Ppant arm. Analysis via single quadrupole
282 LC-MS, resulted in each ACP displaying a set of ~10 m/z peaks within the 650-1400 Da
283 range corresponding to the +9 to + 18 charge states, which can be deconvoluted using
284 ESIprot (Winkler, 2010) to establish the molecular weight of the ACP.

285 Optimization of LC-MS methods using our set of 17 ACPs led to a method that could
286 effectively separate the *apo* and *holo* forms of most ACPs by LC. Peak boundaries were
287 determined by coupling UV absorbance with the MS data at each time point: integration
288 ranges were defined based on reproducible retention behavior across replicates and
289 confirmed by MS identity to ensure that each region corresponds to a single ACP species;
290 the area under the curve(s) was then used to determine the relative percent of each ACP
291 in the *apo* versus *holo* form after reaction with each PPTase. ACPs in their *apo* form
292 typically eluted later than those in their *holo* form (**Figures S4-S20**). The broadened
293 and/or heterogenous peaks observed in the ACP LC traces reflect the established
294 conformational heterogeneity and flexibility of ACPs (Wang et al., 2016; Sztain et al.,
295 2021; Nguyen et al., 2014; Purcell et al., 1999).

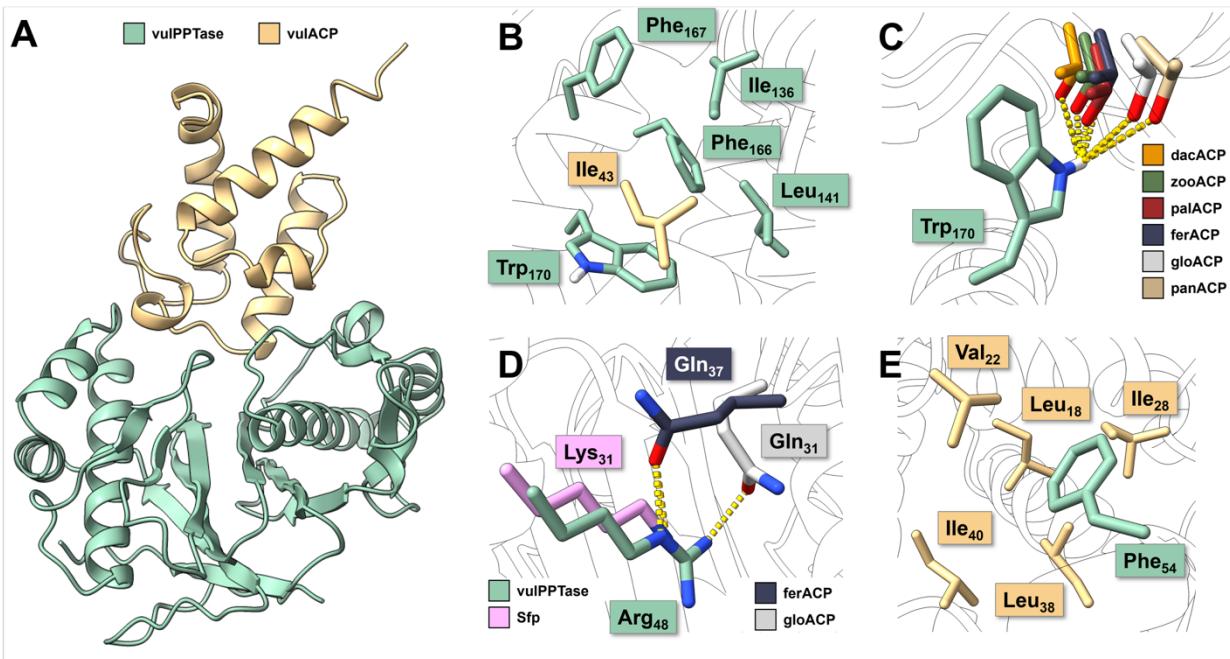
296 The three PPTases explored (Sfp, AcpS, and vulPPT) show varied preferences for ACP
297 substrates; notably, all three PPTases phosphopantetheinylate the actinobacterial ACPs
298 (**Figure 3, top panel**). In fact, of the eight actinobacterial ACPs explored, only one ACP-
299 PPTase pairing (str-amACP-Sfp) demonstrated less than 50% conversion. Four ACPs
300 (str-ubACP, str-cbACP, str-saACP, str-laACP) were fully or near-fully
301 phosphopantetheinylated with all three PPTases. In contrast, ACP-PPTase compatibility
302 was less commonly observed in the non-actinobacterial group (**Figure 3, bottom panel**).
303 Of the nine non-actinobacterial ACPs explored, only one ACP from the non-
304 actinobacterial group (vulACP) was phosphopantetheinylated with all three PPTases.
305 While bweACP and dacACP were fully converted to their *holo* forms by one (dacACP-
306 AcpS) or two (bweACP-Sfp and bweACP-vvulPPT) PPTases, others in this group were
307 not converted to a majority *holo* state by any of the three PPTases. Two ACPs (zooACP
308 and palACP) showed low-level (~2-4%) activation with AcpS, and vulPPT was able to
309 convert zooACP to 17% *holo* state under the conditions studied. The remainder of the
310 ACP-PPTase partnerships studied in this group were deemed non-compatible, with no
311 conversion observed. It is possible that modifying the conditions (e.g., temperature) could
312 improve conversion rates, as has been observed previously (Hsu et al., 2025).

313

314

315 **Figure 3. Sfp, AcpS and vulPPT demonstrate broader substrate scope within the**
 316 **actinobacterial ACPs (top) than non-actinobacterial ACPs explored (bottom).** The
 317 % *holo* was calculated based on the ratio of the area under the curve for the Abs₂₈₀ peak
 318 in the LC trace corresponding to *holo* versus the total area under the curve for the Abs₂₈₀
 319 peaks in the LC trace corresponding to total ACP and multiplying by 100. The bar height
 320 represents the average % *holo* for the ACP-PPTase pair evaluated in triplicate, with error
 321 bars representing the standard deviation. All reactions were run at room temperature for
 322 18 hours under the following conditions: ACP (80 μ M), DTT (2.5 mM, from 1 M stock),
 323 MgCl₂ (10 mM, from 250 mM stock), coenzyme A (0.8 mM, from 50 mM stock), PPTase
 324 (1 μ M) in 50 mM sodium phosphate buffer, pH 7.6. Full names of each ACP and their
 325 corresponding sequence can be found in Supplementary Data (**Tables S1 and S2**) along
 326 with the LC-MS results for each phosphopantetheinylation reaction.

327


328 Sequence Analysis and Structural Modelling

329 To complement our experimental analyses, we generated structural models of each
 330 PPTase (AcpS, vulPPT, Sfp) docked with their respective cognate carrier proteins
 331 (**Figure 4**). Alongside available crystal structures (PDB: 4MRT, 5VCB) and primary
 332 sequence analyses (**Figure S21**), we aimed to rationalize the influence of ACP sequence
 333 motifs, and physicochemistry on PPIs with our selected PPTases. This analysis may help
 334 to elucidate the differential apo-to-holo conversion efficiencies amongst actinobacterial
 335 and non-actinobacterial ACPs. Each structure was generated using AlphaFold3
 336 (Abramson et al., 2024) and relaxed in a very brief (10 ns) molecular dynamics simulation,

337 from which frames were clustered and extracted to study PPIs. MSA of all ACPs was
 338 used to identify sequence motifs (and deviations therein), and structural models were
 339 analyzed using a suite of molecular visualization tools in ChimeraX (Pettersen et al.,
 340 2021).

341

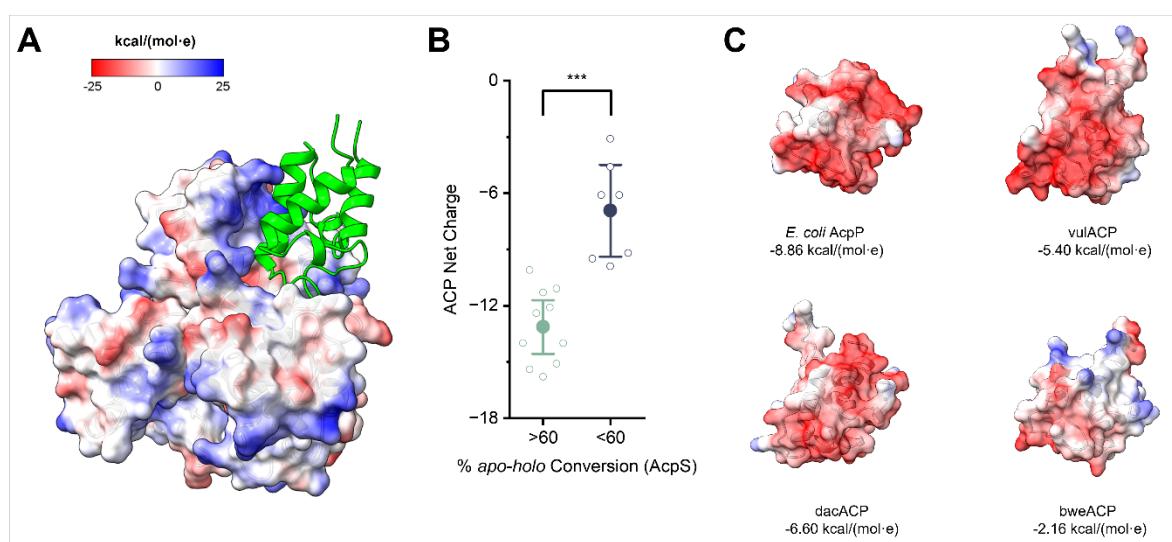
342

343
 344

345 **Figure 4. Predictive structural modelling of vulPPT with cognate and non-cognate**
 346 **ACPs. (A)** Predicted vulPPT-vulACP complex (predicted TM score = 0.89) following
 347 relaxation by molecular dynamics simulation. **(B)** vulACP Ile43 buried in a conserved
 348 vulPPT hydrophobic pocket. **(C)** Structural alignment of non-cognate, non-actinobacterial
 349 ACPs carrying a (Ile/Leu)→Thr variation, and a possible hydrogen-bonded contact with
 350 vulPPT Trp170. **(D)** Plausible hydrogen-bonded contacts between ferACP Gln₃₇/gloACP
 351 Gln₃₁ and Sfp Lys₃₁/vulPPT Arg₄₈. **(E)** Plausible hydrophobic interactions between vulPPT
 352 Phe₅₄ and a conserved vulACP hydrophobic crease.

353

354 Analysis of the predicted vulPPT-vulACP complex (predicted TM-score = 0.89; **Figure**
 355 **4A**) revealed an extensive hydrophobic binding pocket in vulPPT (**Figure 4B**). This
 356 pocket is sculpted by Ile₁₃₆, Leu₁₄₀ and aromatic residues (Phe₁₄₆, Phe₁₆₆, Phe₁₆₇, Trp₁₇₀).
 357 Together, these residues accommodate Ile₄₃ on vulACP, which lies directly C-terminal of
 358 the invariant, modifiable Ser (Ser₄₂). The architecture of this pocket resembles that of Sfp
 359 (Tufar et al., 2014), whose cognate surfactin PCP partners harbour a Ile→Leu variation
 360 at this equivalent position. Previously, we demonstrated by NMR titration experiments
 361 that ACPs carrying a Leu→Thr variation cannot undergo *apo*-to-*holo* conversion using
 362 Sfp, due to increased binding affinity that impedes complex dissociation (Li et al., 2025).
 363 Following *in silico* mutagenesis of vulACP Ile₄₃, we hypothesize that the Thr hydroxyl
 364 group may form a hydrogen-bond with the indole moiety of vulPPT Trp₁₇₀, or its equivalent
 365 Trp₁₄₇ in Sfp (**Figure S22**). Of note, six of the studied non-actinobacterial ACPs carry a


366 Thr at this equivalent position (dac/zoo/pal/fer/glo/war/panACP). Our experimental data
367 show that these ACPs either were not modified or underwent minimal conversion using
368 vulPPT/Sfp (**Figure 3**). *In silico* replacement of vulACP with these non-actinobacterial
369 ACPs (by structural alignment; **Figure 4C**) places their respective Thr residues within
370 plausible hydrogen-bonding distance to vulPPT Trp₁₇₀. Together with our prior NMR data,
371 we propose that the additional hydrogen-bond afforded by (Leu/Ile)→Thr substitution may
372 over-stabilize the ACP-vulPPT/Sfp complex, thus impeding productive turnover of *holo*-
373 ACP.
374

375 We further propose a key role for vulACP Gly₃₉ in minimizing steric clashes with vulPPT.
376 In actinomycete ACPs, Gly at this position is tightly conserved as part of the GY(D/E)SL
377 motif. We hypothesize that deviations from Gly may hamper productive engagement and
378 dissociation of the ACP-PPTase complex. For instance, we have previously observed by
379 NMR how Gly → Gln variants (as seen in fer/gloACP) form tighter complexes with Sfp (Li
380 et al., 2025). From our modelling data, we propose that this could arise due to hydrogen-
381 bonding with Sfp Lys₃₁, a contact which could plausibly occur with vulPPT Arg₄₈ (**Figure**
382 **4D**). Further variations may result in steric clashes (war/zooACP) or electrostatic effects
383 (palACP), albeit the precise mechanisms have yet to be studied.
384

385 Distinctly from Sfp, vulPPT may exploit a hydrophobic crease on vulACP, formed by the
386 loop connecting helices $\alpha 1$ and $\alpha 2$. In our model, Phe₅₄ in vulPPT (C α pLDDT = 90.2) is
387 buried by Leu₁₈, Val₂₂, Ile₂₈, Leu₃₈, Gly₃₉ and Ile₄₀ of vulACP (mean C α pLDDT = 85.8;
388 **Figure 4E**). Of note, Phe₅₄ is located on the joint of a helix-turn-helix in vulPPT. By
389 comparison, the connecting “turn” is shorter in Sfp due to the deletion of this equivalent
390 Phe₅₄ position, which may prevent deeper engagement with this ACP crease.
391 Furthermore, through vulACP-Sfp docking (predicted TM score = 0.87) and simulation,
392 we observed that Sfp Tyr₃₆ engages in hydrogen-bonding with vulACP Asp₂₆, further
393 impeding access to this hydrophobic crease (**Figure S23**). By structural alignment with
394 vulACP, we observed that all ACPs studied could, in principle, accommodate vulPPT
395 Phe₅₄ via similar hydrophobic interactions, and subtle variations in this pocket may give
396 rise to different conversion efficiencies. Furthermore, the cognate vulACP-vulPPT
397 complex may benefit from additional stabilizing contacts, including a salt bridge between
398 vulPPT Arg₅₁ and vulACP Asp₃₇, as well as a H-bond between vulPPT Tyr₅₃ and vulACP
399 Glu₂₇ and Asp₃₇. These interactions may serve an additional role to “pull” the ACP loop
400 over vulPPT Phe₅₄, further burying it within the crease (**Figure S24**).
401

402 Taken all together, we find that ACPs that are compatible with both vulPPT and Sfp share
403 the motif Gx(D/E)S(I/L), where x is Tyr or an equivalent hydrophobic residue. In
404 conjunction with our previous NMR studies, we propose that Gly and Leu/Ile in the
405 Gx(D/E)S(I/L) motif modulate the dynamics of ACP-Sfp and ACP-vulPPT interactions by
406 mitigating sidechain-sidechain clashes and minimizing overly stabilizing hydrogen-
407 bonding. Furthermore, the hydrophobic residue x may facilitate docking with vulPPT by
408 helping to bury Phe₅₄, which is unique to vulPPT, within the binding interface. The present
409 model lays the foundation for future crystallographic and mutagenesis studies.
410

411 In contrast, AcpS-ACP compatibility seems to be governed by a distinct set of non-
 412 covalent interactions. The *E. coli* AcpP–AcpS docking interface is more extensive and
 413 governed primarily by electrostatics (Marcella et al., 2017). The electropositive binding
 414 surface of AcpS (**Figure 5A**) is composed of several Arg residues (Arg_{15/22/26/29/30/69/115}),
 415 which can form numerous salt bridges with the highly acidic AcpP. Like Sfp/vulPPT,
 416 additional hydrophobic contacts involving AcpS (Val₁₁, Ile₁₆, Val₁₉, Leu₂₇, Val₃₁, Leu₅₀,
 417 Phe₅₄, Phe₇₄) and AcpP helix αII (Leu₃₈, Val₄₁, Met₄₅) further contribute to the binding
 418 interface (**Figure S25**). Due to the complexity of this interaction surface, it remains difficult
 419 to predict specific residue variations (or combinations thereof) that could impede *apo*-to-
 420 *holo* conversion. Interestingly, we revealed by isoelectric point prediction (Kozlowski,
 421 2021) that ACPs which performed well with AcpS (>60% post-translational modification)
 422 exhibit significantly greater negative net charge at pH 7.4 (-14.1 ± 1.44 , $n = 10$), compared
 423 to ACPs which performed poorly (-6.93 ± 2.64 , $n = 7$, $p = 3.11 \times 10^{-4}$; **Figure 5B**).
 424 Electrostatic potential surface maps (**Figure 5C**) further indicate that both the magnitude
 425 and spatial distribution of negative charge are potential predictors of AcpS compatibility.
 426 Notably, all actinobacterial ACPs (alongside dac/vulACP) present extensive
 427 electronegative surfaces that closely resemble AcpP (**Figure 5C and S26**). These
 428 observations suggest that effective AcpS recognition relies on an AcpP-like electrostatic
 429 presentation, supported by hydrophobic contacts on helix αII, to drive productive
 430 engagement and post-translational modification with AcpS. Future studies are needed to
 431 determine whether AcpS compatibility can be engineered into non-cognate ACPs via the
 432 strategic incorporation of acidic residues.
 433

434
 435 **Figure 5. Electrostatic rationale for AcpS-ACP interaction.** (A) Reconstructed *E. coli*
 436 AcpP-AcpS complex (PDB: 5VCB). The electrostatic surface potential map of AcpS is
 437 shown. *E. coli* AcpP is depicted in lime green. (B) ACP net charge comparison between
 438 ACPs showing strong (>60% conversion) and poor (<60% conversion) compatibility with
 439 AcpS. Error bars represent 95% confidence interval. (*** $= p \leq 0.001$ (Welch two-sample
 440 t-test). (C) Electrostatic surface potential maps of *E. coli* AcpP and non-actinobacterial

441 ACPs vul/dac/bweACP. All ACPs are rendered in the same orientation. Color map is
442 identical to panel (A). Mean electrostatic potentials (kcal/(mol·e)) are shown.
443 The four ACPs that were not activated by any of the three PPTases studied (ferACP,
444 gloACP, warACP and panACP) and the two that were minimally activated (zooACP and
445 palACP) each originate from BGCs harboring a gene annotated as encoding for a ‘*holo*-
446 acyl carrier protein synthase’ or ‘4'-phosphopantetheinyl transferase’ (**Figure S27**). It is
447 unclear at this time whether there are features of these PPTases that make them uniquely
448 suited to activating their cognate ACPs. In the case of gloACP, the putative cognate
449 PPTase did not convert *apo*-gloACP to *holo*-gloACP under the traditional conditions
450 studied, suggesting yet-to-be realized factors may be at play (Li et al., 2025).

451

452

453 **Conclusions**

454 The ACP-PPTase interaction is an ideal target for the development of new therapeutics
455 given its central role in modulating both primary and secondary metabolism. Here, we
456 catalog the ACP-PPTase compatibility of 17 diverse ACPs with three PPTases: AcpS,
457 Sfp, and vulPPT. We find that actinomycete-derived ACPs, which show moderate
458 sequence identity with one another, are more readily activated by the PPTases explored
459 in this study, as compared with the non-actinobacterial ACPs that represent a larger
460 sequence space. While previous studies highlight the role of amino acids C-terminal to
461 the conserved ACP serine in PPTase compatibility, our work suggests that the identity of
462 the amino acids *N*-terminal to this site also direct ACP-PPTase functional interactions.
463 Through structural modelling, we speculate that specific hydrophobic and hydrogen
464 bonding interactions, as well as steric clashes modulate the functional interactions
465 between ACPs with Sfp and vulPPT, whereas more general electrostatic interactions
466 guide ACP-AcpS compatibility. The highly tuned balance between ACP-PPTase complex
467 formation and disassociation required for compatibility suggests that mutations that alter
468 these non-covalent interactions will lead to changes in the ability of the PPTase to
469 phosphopantetheinylate the ACP. We remain intrigued by those ACPs that are not
470 activated by any of the three PPTases studied, and raise questions about whether these
471 ACPs can be natively activated by their putative cognate PPTases. Future work will
472 systematically evaluate inferences made from the current work to deepen our
473 understanding of the molecular ground rules that govern ACP-PPTase interplay.
474 Important unanswered questions of the field that are notably amenable to CUREs include
475 “what is the role of Phe54 (vulPPT) in guiding ACP compatibility?”, “Can the putative
476 cognate PPTases activate those ACPs that were not activated by Sfp, AcpS and
477 vulPPT?”, “Why is str-amACP a better substrate for vulPPT than Sfp”? and “how does
478 the charge/size/polarity of amino acids upstream from the invariant Ser direct ACP folding
479 and ability to be modified by PPTases?” Answers to these foundational questions can be
480 applied to benefit human health by increasing access to natural products and inhibiting
481 the virulence factors of common pathogens.

482

Acknowledgements

483 We would like to thank Haverford College for supporting the integration of research and
484 teaching. We are grateful to Nicole Cunningham, Dr. Angus Unruh and Dr. Zak Kerrigan

485 for their support with media preparation and instrument maintenance/training. We are
486 grateful to Yarra Ellett and Anna-Lee Thompson for helpful discussions.

487

488 **Supplemental Information**

489 Detailed experimental protocols, ACP names and sequences, SDS-PAGE data and LC-
490 MS spectra are available in the accompanying Supplemental Information.

491 **Author Contributions**

492 L.K.C., Y.I.C., R.F. and K.A.W. designed and taught the course-based undergraduate
493 experiences (CURE) with support of T.T.P., B.Z., C.M.M., C.M.F., and N.B.M. The
494 following authors contributed to the manuscript through a CURE that involved
495 experimental design, conducting experiments, analyzing data and contributing to the
496 writing/review of this manuscript: C.M.M., E.R.B., D.C.R., X.C., B.C., M.M.C., P.D.U.,
497 T.E., C.H.E., S.F.F., O.D.G., A.R.G., I.G.G., J.D.H., T.A.H., J.K., S.K., M.L., V.L., K.K.L.,
498 S.L., K.N.M., A.M., A.T.M., K.R.M., K.M., N.B.M., K.M.N., R.A.O., T.T.P., A.T.P., T.Q.,
499 B.S.R., C.S.S., L.E.S., B.W.S., A.C.R.S., G.R.S., I.E.T., K.T., Q.K.V., M.G.Y-B., M.Y.,
500 K.A.Z. In addition, A.L.N.B., K.K.H., C.M.M., C.M.F., and Y.I.C. expanded and vetted the
501 data set. M.A.H. conducted structural and sequence-based analyses. L.K.C., Y.I.C.,
502 C.M.M., A.L.N.B. and M.A.H. wrote the manuscript.

503 **Funding**

504 We are thankful to Haverford College and the National Science Foundation (CHE-
505 2201984) for funding and supporting this project. C.M.M. was supported by a Beckman
506 and Goldwater Scholarship.

507 **Conflict of Interest**

508 The authors declare no conflict of interest.

509 **Data Availability**

510 Data available upon request.

511 **References**

512 Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015).

513 GROMACS: High performance molecular simulations through multi-level parallelism
514 from laptops to supercomputers. *SoftwareX*, 1–2, 19–25.
515 <https://doi.org/10.1016/j.softx.2015.06.001>

516 Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore,
517 L., Ballard, A. J., Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-C., O'Neill, M.,
518 Reiman, D., Tunyasuvunakool, K., Wu, Z., Žemgulytė, A., Arvaniti, E., ... Jumper, J. M.
519 (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3.
520 *Nature*, 630(8016), Article 8016. <https://doi.org/10.1038/s41586-024-07487-w>

521 Ballinger, E., Mosior, J., Hartman, T., Burns-Huang, K., Gold, B., Morris, R., Goullieux, L., Blanc,
522 I., Vaubourgeix, J., Lagrange, S., Fraisse, L., Sans, S., Couturier, C., Bacqué, E., Rhee, K.,
523 Scarry, S. M., Aubé, J., Yang, G., Ouerfelli, O., ... Nathan, C. (2019). Opposing reactions
524 in coenzyme A metabolism sensitize *Mycobacterium tuberculosis* to enzyme inhibition.
525 *Science*, 363(6426), eaau8959. <https://doi.org/10.1126/science.aau8959>

526 Bartholow, T. G., Sztain, T., Patel, A., Lee, D. J., Young, M. A., Abagyan, R., & Burkart, M. D.
527 (2021). Elucidation of transient protein-protein interactions within carrier protein-
528 dependent biosynthesis. *Communications Biology*, 4(1), 340.
529 <https://doi.org/10.1038/s42003-021-01838-3>

530 Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw,
531 B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T.
532 (2023). antiSMASH 7.0: New and improved predictions for detection, regulation, chemical
533 structures and visualisation. *Nucleic Acids Research*, 51(W1), Article W1.
534 <https://doi.org/10.1093/nar/gkad344>

535 Bräuer, A., Zhou, Q., Grammbitter, G. L. C., Schmalhofer, M., Rühl, M., Kaila, V. R. I., Bode, H.
536 B., & Groll, M. (2020). Structural snapshots of the minimal PKS system responsible for
537 octaketide biosynthesis. *Nature Chemistry*, 12(8), 755–763.
538 <https://doi.org/10.1038/s41557-020-0491-7>

539 Cho, Y. I., Armstrong, C. L., Sulpizio, A., Acheampong, K. K., Banks, K. N., Bardhan, O.,
540 Churchill, S. J., Connolly-Sporing, A. E., Crawford, C. E. W., Cruz Parrilla, P. L., Curtis,
541 S. M., De La Ossa, L. M., Epstein, S. C., Farrehi, C. J., Hamrick, G. S., Hillegas, W. J.,
542 Kang, A., Laxton, O. C., Ling, J., ... Charkoudian, L. K. (2022). Engineered Chimeras
543 Unveil Swappable Modular Features of Fatty Acid and Polyketide Synthase Acyl Carrier
544 Proteins. *Biochemistry*, 61(4), 217–227. <https://doi.org/10.1021/acs.biochem.1c00798>

545 Crosby, J., & Crump, M. P. (2012). The structural role of the carrier protein – active controller or
546 passive carrier. *Natural Product Reports*, 29(10), 1111–1111.
547 <https://doi.org/10.1039/c2np20062g>

548 Cummings, M., Peters, A. D., Whitehead, G. F. S., Menon, B. R. K., Micklefield, J., Webb, S. J.,
549 & Takano, E. (2019). Assembling a plug-and-play production line for combinatorial
550 biosynthesis of aromatic polyketides in *Escherichia coli*. *PLoS Biology*, 17(7), Article 7.
551 <https://doi.org/10.1371/journal.pbio.3000347>

552 Garwin, J. L., Klages, A. L., & Cronan, J. E. (1980). Structural, enzymatic, and genetic studies of
553 β -ketoacyl-acyl carrier protein synthases I and II of *Escherichia coli*. *Journal of Biological
554 Chemistry*, 255(24), 11949–11956.

555 Hsu, K. K., Ferguson, C. M., McBride, C. M., Mostaghim, N. B., Mabry, K. N., Fairman, R., Cho,
556 Y. I., & Charkoudian, L. K. (2025). *A Phosphopantetheinyl Transferase from Dictyobacter
557 vulcani sp. W12 Expands the Combinatorial Biosynthetic Toolkit.*
558 <https://doi.org/10.1101/2025.03.24.645039>

559 Huang, J. & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field:
560 Validation based on comparison to NMR data. *J. Comp. Chem.*, 34, 2135–2145.

561 Kozlowski, L. P. (2021). IPC 2.0: Prediction of isoelectric point and pKa dissociation constants.

562 *Nucleic Acids Research*, 49(W1), W285–W292. <https://doi.org/10.1093/nar/gkab295>

563 Lambalot, R. H., & Walsh, C. T. (1995). Cloning, Overproduction, and Characterization of the

564 Escherichia coli Holo-acyl Carrier Protein Synthase (*). *Journal of Biological Chemistry*,

565 270(42), 24658–24661. <https://doi.org/10.1074/jbc.270.42.24658>

566 Li, K., Cho, Y. I., Tran, M. A., Wiedemann, C., Zhang, S., Kowee, R. S., Hoang, N. K., Hamrick,

567 G. S., Bowen, M. A., Kokona, B., Stallforth, P., Beld, J., Hellmich, U. A., & Charkoudian,

568 L. K. (2025). Strategic Acyl Carrier Protein Engineering Enables Functional Type II

569 Polyketide Synthase Reconstitution In Vitro. *ACS Chemical Biology*, 20(1), 197–207.

570 <https://doi.org/10.1021/acschembio.4c00678>

571 Liu, X., Hua, K., Liu, D., Wu, Z.-L., Wang, Y., Zhang, H., Deng, Z., Pfeifer, B. A., & Jiang, M.

572 (2020). Heterologous Biosynthesis of Type II Polyketide Products Using *E. coli*. *ACS*

573 *Chemical Biology*, 15(5), 1177–1183. <https://doi.org/10.1021/acschembio.9b00827>

574 Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A. R. N., Lopez, R.,

575 & Butcher, S. (2024). The EMBL-EBI Job Dispatcher sequence analysis tools framework

576 in 2024. *Nucleic Acids Research*, 52(W1), W521–W525.

577 <https://doi.org/10.1093/nar/gkae241>

578 Marcella, A. M., Culbertson, S. J., Shogren-Knaak, M. A., & Barb, A. W. (2017). Structure, high

579 affinity, and negative cooperativity of the Escherichia coli holo-(acyl carrier protein):holo-

580 (acyl carrier protein) synthase complex. *Journal of Molecular Biology*, 429(23), 3763–

581 3775. <https://doi.org/10.1016/j.jmb.2017.10.015>

582 McBride, C. M., Miller, E. L., & Charkoudian, L. K. (2023). An updated catalogue of diverse type
583 II polyketide synthase biosynthetic gene clusters captured from large-scale nucleotide
584 databases. *Microbial Genomics*, 9(3). <https://doi.org/10.1099/mgen.0.000965>

585 Nguyen, C., Haushalter, R. W., Lee, D. J., Markwick, P. R. L., Bruegger, J., Caldara-Festin, G.,
586 Finzel, K., Jackson, D. R., Ishikawa, F., O'Dowd, B., McCammon, J. A., Opella, S. J.,
587 Tsai, S. C., & Burkart, M. D. (2014). Trapping the dynamic acyl carrier protein in fatty
588 acid biosynthesis. *Nature*, 505, 427–431. <https://doi.org/10.1038/nature12810>

589 Pedersen, T. B., Nielsen, M. R., Kristensen, S. B., Spedtsberg, E. M. L., Sørensen, T., Petersen,
590 C., Muff, J., Sondergaard, T. E., Nielsen, K. L., Wimmer, R., Gardiner, D. M., & Sørensen,
591 J. L. (2022). Speed dating for enzymes! Finding the perfect phosphopantetheinyl
592 transferase partner for your polyketide synthase. *Microbial Cell Factories*, 21(1), 9.
593 <https://doi.org/10.1186/s12934-021-01734-9>

594 Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., &
595 Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and
596 analysis. *Journal of Computational Chemistry*, 25(13), 1605–1612.
597 <https://doi.org/10.1002/jcc.20084>

598 Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J.
599 H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers,
600 educators, and developers. *Protein Science*, 30(1), 70–82. <https://doi.org/10.1002/pro.3943>

601 Pira, H., Risdian, C., Kämpfer, P., Müsken, M., Schupp, P. J., & Wink, J. (2021). Zooshikella
602 harenae sp. Nov., Isolated from Pacific Oyster *Crassostrea gigas*, and Establishment of
603 Zooshikella ganghwensis subsp. Marina subsp. Nov. And Zooshikella ganghwensis subsp.
604 Ganghwensis subsp. Nov. *Diversity*, 13(12), 641. <https://doi.org/10.3390/d13120641>

605 Purcell, A. W., Aguilar, M.-I., & Hearn, M. T. W. (1999). Probing the Binding Behavior and
606 Conformational States of Globular Proteins in Reversed-Phase High-Performance Liquid
607 Chromatography. *Analytical Chemistry*, 71(13), 2440–2451.
608 <https://doi.org/10.1021/ac9808369>

609 Quadri, L. E., Weinreb, P. H., Lei, M., Nakano, M. M., Zuber, P., & Walsh, C. T. (1998).
610 Characterization of Sfp, a *Bacillus subtilis* phosphopantetheinyl transferase for peptidyl
611 carrier protein domains in peptide synthetases. *Biochemistry*, 37(6), 1585–1595.
612 <https://doi.org/10.1021/bi9719861>

613 Robert, X., & Gouet, P. (2014). Deciphering key features in protein structures with the new
614 ENDscript server. *Nucleic Acids Research*, 42(W1), 320–324.
615 <https://doi.org/10.1093/nar/gku316>

616 Sunbul, M., Marshall, N. J., Zou, Y., Zhang, K., & Yin, J. (2009). Catalytic turnover-based phage
617 selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase.
618 *Journal of Molecular Biology*, 387(4), 883–898. <https://doi.org/10.1016/j.jmb.2009.02.010>

619 Sztain, T., Bartholow, T. G., Lee, D. J., Casalino, L., Mitchell, A., Young, M. A., Wang, J.,
620 McCammon, J. A., & Burkart, M. D. (2021). Decoding allosteric regulation by the acyl
621 carrier protein. *Proceedings of the National Academy of Sciences*, 118(16), Article 16.
622 <https://doi.org/10.1073/pnas.2025597118>

623 Tufar, P., Rahighi, S., Kraas, F. I., Kirchner, D. K., Lohr, F. nk, Henrich, E., Köpke, J., Dikic, I.,
624 Güntert, P., Marahiel, M. A., & Dötsch, V. (2014). Crystal Structure of a PCP/Sfp Complex
625 Reveals the Structural Basis for Carrier Protein Posttranslational Modification. *Chemistry*
626 & *Biology*, 21(4), 552–562. <https://doi.org/10.1016/j.chembiol.2014.02.014>

627 Wang, E. H., Nagarajan, Y., Carroll, F., & Schug, K. A. (2016). Reversed-phase separation
628 parameters for intact proteins using liquid chromatography with triple quadrupole mass
629 spectrometry: Liquid Chromatography. *Journal of Separation Science*, 39(19), 3716–3727.
630 <https://doi.org/10.1002/jssc.201600764>

631 Winkler, R. (2010). ESIprot: A universal tool for charge state determination and molecular weight
632 calculation of proteins from electrospray ionization mass spectrometry data. *Rapid
633 Commun. Mass Spectrom.*, 24(3), 285–294. <https://doi.org/10.1002/rcm.4384>

634 Worthington, A. S., Hur, G. H., Meier, J. L., Cheng, Q., Moore, B. S., & Burkart, M. D. (2008).
635 Probing the compatibility of type II ketosynthase-carrier protein partners. *Chembiochem*,
636 9(13), 2096–2103. <https://doi.org/10.1002/cbic.200800198>

637 Worthington, A. S., Porter, D. F., & Burkart, M. D. (2010). Mechanism-based crosslinking as a
638 gauge for functional interaction of modular synthases. *Organic & Biomolecular Chemistry*,
639 8(8), 1769–1769. <https://doi.org/10.1039/b925966j>

640 Ye, Z., & Williams, G. J. (2014). Mapping a ketosynthase:acyl carrier protein binding interface
641 via unnatural amino acid-mediated photo-cross-linking. *Biochemistry*, 53, 7494–7502.
642 <https://doi.org/10.1021/bi500936u>

643 Zheng, Y., Wang, C., Sakai, Y., Abe, K., Yokota, A., & Yabe, S. (2020). *Dictyobacter vulcani* sp.
644 Nov., belonging to the class Ktedonobacteria, isolated from soil of the Mt Zao volcano.
645 *International Journal of Systematic and Evolutionary Microbiology*, 70(3), Article 3.
646 <https://doi.org/10.1099/ijsem.0.003975>

647

648