

Bayesian modeling of HFC production pipeline suggests growth in unreported CFC by-product and feedstock production

Stephen Bourguet

stephen.bourguet@georgetown.edu

Georgetown University

Megan Lickley

Georgetown University <https://orcid.org/0000-0001-5810-8784>

Article

Keywords:

Posted Date: July 24th, 2024

DOI: <https://doi.org/10.21203/rs.3.rs-4718479/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

¹ Bayesian modeling of HFC production pipeline suggests growth
² in unreported CFC by-product and feedstock production

³ Stephen Bourguet^{1*} and Megan Lickley^{1,2}

⁴ ¹Earth Commons, Georgetown University, Washington, DC 20057, USA

⁵ ²Science, Technology, and International Affairs Program, Georgetown University,
⁶ Washington, DC 20057, USA

⁷ *Corresponding author: stephen.bourguet@georgetown.edu

⁸ July 9, 2024

⁹ **Abstract**

¹⁰ Observationally-derived emissions of regulated ozone depleting substances (ODSs) must be
¹¹ scrutinized to maintain the progress made by the Montreal Protocol in protecting the strato-
¹² spheric ozone layer. Recent observations of three chlorofluorocarbons (CFCs), CFC-113, CFC-
¹³ 114, and CFC-115, suggest that emissions of these compounds have been higher than expected
¹⁴ given global reporting. These emissions have been associated with hydrofluorocarbon (HFC) pro-
¹⁵ duction, which can require CFCs as feedstocks or generate CFCs as by-products, yet emissions
¹⁶ from these pathways have not been rigorously quantified. Here, we develop a Bayesian framework
¹⁷ to jointly infer emissions of CFC-113, CFC-114, CFC-115, and hydrochlorofluorocarbon HCFC-
¹⁸ 133a during HFC-134a and HFC-125 production. We estimate that feedstock usage in HFC-134a
¹⁹ production accounted for 86% (75–92%) and 62% (46–74%) of CFC-113 and CFC-114 emissions,
²⁰ respectively, from 2015–2019, while by-product generation during HFC-125 production accounted
²¹ for 81% (68–92%) of CFC-115 emissions. Our results suggest that unreported feedstock produc-
²² tion in Article 5 countries may explain the unexpected atmospheric growth rates of CFC-113
²³ and CFC-114, although uncertainties within the chemical manufacturing processes call for further
²⁴ investigation and industry transparency. Nonetheless, this work demonstrates the environmen-
²⁵ tal benefits of tightened ODS feedstock regulations and underscores the importance of the HFC
²⁶ production phasedowns scheduled by the Kigali Amendment.

²⁷ **1 Introduction**

²⁸ When released into the atmosphere, chlorofluorocarbons (CFCs) contribute to stratospheric ozone loss
²⁹ while heating the earth's surface with radiative forcings thousands of times stronger than CO₂ on a
³⁰ centennial timescale [1]. Due to their ozone depleting potential (ODP), the production of CFCs for
³¹ most uses is banned by the Montreal Protocol; accordingly, the atmospheric mixing ratios of the most
³² abundant CFCs (e.g., CFC-11 and CFC-12) have declined in recent years, and there have been initial
³³ signs of ozone recovery [2, 3, 4, 5, 6]. However, the detection of unexpected sources of CFC emissions
³⁴ in recent years [7, 8, 9] has underscored the need to continually evaluate the consistency of reported
³⁵ values with atmospheric observations.

³⁶ Ensuring compliance with the Montreal Protocol requires that unexpected emissions of controlled
³⁷ substances be carefully considered – which in turn requires a thorough assessment of emissions from
³⁸ permitted sources. For example, while CFC production for emissive uses has been banned globally since
³⁹ 2010, ongoing emissions of these gases from reservoirs produced prior to 2010, such as refrigerators and
⁴⁰ foams, continues to be a source of emissions [10]. The quantity of ODSs stored in these “banks” and
⁴¹ the rate at which they are released have been the focus of recent work [11, 12, 13]. Additionally, there is
⁴² an exemption for regulated CFCs to be produced and “entirely used” as feedstocks in the production of
⁴³ other compounds [14], such as hydrofluorocarbons (HFCs), with the requirement that this production
⁴⁴ is reported to the Ozone Secretariat of United Nations Environmental Program (UNEP) [14, 15, 16].

45 However, if a controlled substance is not isolated and is instead produced and consumed as part of
46 a multi-step process in the same integrated chemical manufacturing facility, then it is considered an
47 intermediate and reporting of its production is not required [15, 16]. Furthermore, controlled substances
48 may be produced as unwanted by-products during the manufacturing of other compounds, but there
49 is no reporting requirement for this production. Facilities are encouraged to maintain best practices to
50 minimize by-products emissions [16], but certain production processes do yield “substantial emissions”
51 of unwanted by-products [17], including the emission of CFC-115 during HFC-125 production [17].

52 In this work, we focus on recent atmospheric observations of CFC-113, CFC-114, and CFC-115
53 which indicate that there may have been sustained emissions of these compounds from 2004–2019
54 [18, 19, 20, 21, 22]. While the ozone depletion and surface warming caused by the emissions of
55 minor CFCs from 2010–2020 has been estimated to be minimal, continued growth in emissions could
56 negate some of the progress made by the Montreal Protocol [22], prompting further evaluation of these
57 observations. Previous work has suggested that emissions from banked reservoirs of CFC-113, CFC-
58 114, and CFC-115 cannot explain observationally-derived values [13], and while the portion of CFC-113,
59 CFC-114, and CFC-115 emissions that cannot be accounted for by estimated bank emissions (i.e., the
60 non-bank emissions) increased between 2004 and 2019 (Fig. 1A), the globally-aggregated feedstock
61 production of CFC-113 and CFC-114 reported to the Ozone Secretariat decreased during this time
62 (Fig. 1B; data from [23]). Thus, an unknown source of emissions may have contributed to atmospheric
63 growth rates of these compounds.

64 Two possible explanations for these unexpected emissions are that either the chemical manufac-
65 turing pipeline that consumes CFC feedstocks became increasingly leaky or that feedstock reporting
66 lagged actual feedstock production during this time. The Medical and Chemical Technical Options
67 Committee’s (MCTOC) 2022 Assessment Report estimated that improvements in emissions abate-
68 ment technologies led to a decrease in feedstock emission rates from 4% (3–5%) in the 1980s to around
69 2.5% (0.9–4%) in the modern-day (not including emissions during transportation) [16], implying that
70 under-reporting of feedstock production may be the more likely scenario. However, emission rates of
71 feedstocks and by-products during the production of fluorinated greenhouse gases are “highly uncer-
72 tain” and are thought to vary widely depending on factors specific to each manufacturing facility [24] –
73 the 2019 Refinement to the 2006 IPCC Guidelines on National Greenhouse Gas Inventories suggested
74 an emission factor of 4% with an uncertainty range of 0.1–20% [24] – so it is possible that global mean
75 feedstock leakage rates have increased as older facilities have aged and new facilities have been built
76 in regions with fewer regulations [25].

77 Regardless, these explanations both implicate the production of hydrofluorocarbons (HFCs), which
78 are the main end-products of manufacturing processes associated with CFC-113, CFC-114, and CFC-
79 115 emissions [15, 16, 26]. In particular, the estimated growth of production of the refrigerants HFC-
80 134a and HFC-125 from around 200 Gg·y⁻¹ in 2004 to 500 Gg·y⁻¹ in 2019 (shown in Fig. 1C–D; data
81 from [25]) has been associated with the concurrent rise in a suite of CFC emissions [18, 19, 20, 22, 27].
82 However, these emissions have not been studied jointly or at a process level.

83 As is summarized in Fig. 2 (adapted from [23]) and described further in the Supplementary
84 Note, there are multiple pathways for the production of HFC-134a and HFC-125 [26, 28, 29, 30],
85 and the conversion efficiencies between feedstocks, intermediates, and end-products depend on the
86 specific catalysts and reaction environments used [26]. These pathways are distinguished here by their
87 unsaturated feedstocks, which are sequentially fluorinated into CFCs and/or hydrofluorinated into
88 HCFCs and ultimately HFC end-products [26]. The allocation of production between these pathways
89 is not publicly known, although it has been reported that the trichloroethylene (TCE) pathway, which
90 may emit HCFC-133a but not CFCs, is more commonly used for HFC-134a production [31, 32, 33].
91 Recent reports on the atmospheric abundance of the intermediate compound HCFC-133a suggest
92 that HFC-134a production by the TCE pathway may have increased since 2004, but the increase of
93 observationally-inferred HCFC-133a emissions has not been consistent, and it is possible that emissions
94 may be influenced by facility-level containment practices [21, 34]. For HFC-125, it was reported that
95 8 out of 12 production facilities in China used the tetrafluoroethylene (TFE) pathway [27], which is
96 not known to emit CFCs as by-products, in 2011. However, it was also reported in 2023 that “most”
97 HFC-125 was produced using PCE [17]. There is no known proxy for the TFE HFC-125 production
98 pathway [29], so the usage of each production pathway cannot be inferred from observations. Given
99 that the portion of each HFC produced by its corresponding production pathways determines feedstock,
100 intermediate, and by-product generation, the unknown flow through the HFC production pipeline is a

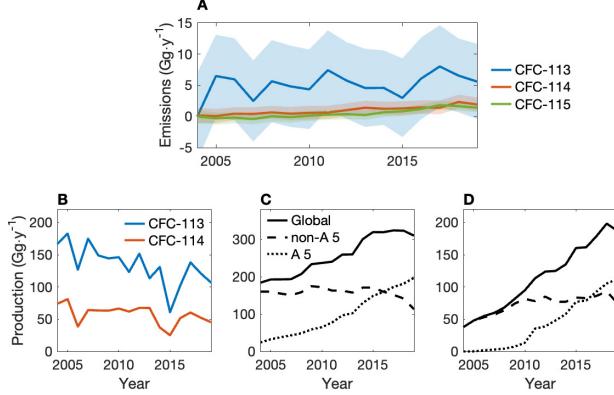


Figure 1: (A) The estimated portion of observationally-derived global emissions of CFC-113 (blue), CFC-114 (orange), and CFC-115 (green) that cannot be attributed to leakage from estimated banked reservoirs. (B) The globally-aggregated production of CFC-113 (blue) and CFC-114 (orange) for use as a feedstock, as reported to the Ozone Secretariat (no CFC-115 production was reported during this time; data from [23]). (C) HFC-134a and (D) HFC-125 estimated production globally (solid) and in A 5 (dotted) and non-A 5 countries (dashed) (data from [25]). In (A), the lines show median emissions, and the shaded regions encompass the $1-\sigma$ range of emissions based on emission model and bank uncertainties. Global emissions are derived using the AGAGE 12-box model [38, 61], and the calculation of bank emissions is described in the Methods.

101 key source of uncertainty in attributing CFC emissions to HFC production.

102 To date, emission rates have been estimated for each gas in isolation by calculating the ratio of
 103 observationally-inferred CFC emissions to HFC production [22, 35]. This, however, does not account
 104 for the balance between production pathways in the chemical manufacturing pipeline or the efficiency
 105 of conversion between intermediate products. As such, the sources of emissions (i.e., feedstocks, banks,
 106 and by-products) have not been comprehensively quantified, and reported feedstock and by-product
 107 emission rates [16, 24] have not been constrained with atmospheric observations. Quantifying these
 108 emission rates could inform future controls of the Parties to the Montreal Protocol and add to the
 109 environmental benefits (i.e., reduced surface warming and ozone depletion) attributable to the Kigali
 110 Amendment [25], which is estimated to avoid 0.4°C of warming by the end of the century through a
 111 phasedown of HFC production [7].

112 Here, we develop a probabilistic modeling approach, using Bayesian Parameter Estimation (BPE),
 113 that extends previous work [12] to jointly model CFC-113, CFC-114, and CFC-115 emissions from
 114 production, banks, use as feedstocks, and by-production as a function of their HFC-134a and HFC-125
 115 end-products. (Unless otherwise noted, we refer to the sum of CFC isomers by the dominant isomer;
 116 i.e., CFC-113 refers to CFC-113+CFC-113a. Implications of this are discussed in the Methods.) We
 117 explicitly model HFC-134a production as the sum of two possible pathways (Fig. 2) and include
 118 observed HCFC-133a mixing ratios as an additional constraint on the relative production of HFC-
 119 134a through each pathway. (We chose HCFC-133a as a proxy for the TCE production pathway as
 120 HCFC-133a is the final intermediate of this pathway [26, 28]. Relative to HCFC-132b, HCFC-133a is
 121 also preferable in that it has a lower lifetime uncertainty and thus simulated mixing ratios are better
 122 constrained [21].) We do not include other HCFC intermediates as constraints for HFC-125 production
 123 as HCFC-123 and HCFC-124 have other known end-uses [26], and HCFC-122 may be used as an
 124 intermediate in their production. Previously reported estimates of HFC-134a and HFC-125 production
 125 in A 5 (low to middle income) and non-A 5 (high income) countries [25] are used to jointly model and
 126 constrain feedstock production and by-product emission rates from the manufacturing pipeline in the
 127 two classifications of countries. We draw on previously reported emission rates [16, 24], and production
 128 patents [26, 28, 36, 37] are used to inform conversion rates between feedstocks, intermediates, and their
 129 HFC end products. By explicitly modeling the conversion and by-production of these CFCs and HCFC-
 130 133a through the HFC-125 and HFC-134a manufacturing pipelines in A 5 and non-A 5 countries, we
 131 attempt to explain the apparent discrepancy between reported feedstocks and observationally-derived

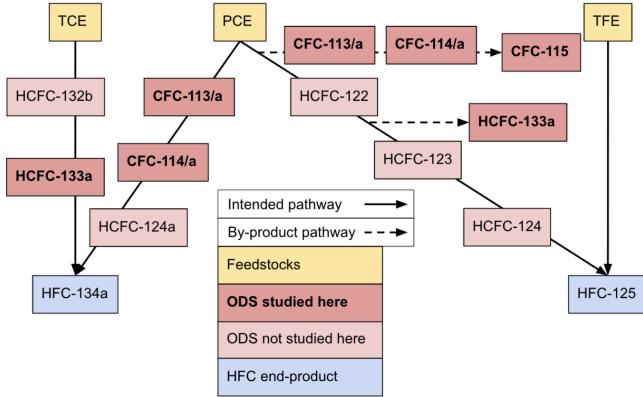


Figure 2: A schematic adapted from [23] of the known production processes for HFC-134a and HFC-125 according to relevant patents, as summarized in [26]. TCE = trichloroethylene, PCE = perchloroethylene, TFE = tetrafluoroethylene.

132 emissions and quantify feedstock and by-product emission rates in each country classification. Finally,
 133 we provide a lower-bound estimate of the unintended global warming and ozone depleting potential for
 134 recent HFC-125 and HFC-134a production, which quantifies the projected climate and ozone impact
 135 of their continued production under the Kigali Amendment.

2 Results

2.1 Simulated mixing ratios and emissions

138 The BPE posterior distributions of simulated CFC-113, CFC-114, CFC-115, and HCFC-133a surface
 139 mixing ratios accounting for emissions attributable to HFC production contain observations from 2004–
 140 2020 (Fig. 3, left column), confirming that our simulation model and parameter space are statistically
 141 consistent with observations. To quantify the impact of HFC production on observed mixing ratios, we
 142 compare BPE posterior mixing ratios with a scenario in which HFC-production-related emissions had
 143 not occurred from 2004–2019 (i.e., simulating mixing ratios using posterior emissions from non-HFC
 144 sources only). These results suggest that HFC production elevated the mixing ratios of CFC-113, CFC-
 145 114, and CFC-115 by 1.7 ppt (1.6–1.9 ppt), 0.79 ppt (0.70–0.90 ppt), and 0.57 ppt (0.52–0.61 ppt),
 146 respectively. We assume that HCFC-133a is only emitted during HFC-134a and HFC-125 production;
 147 therefore, due to its relatively short atmospheric lifetime, we estimate that the mixing ratio of HCFC-
 148 133a would have decayed to less than 0.01 ppt in 2020 had there been no HFC production throughout
 149 this time period.

150 Relative to previous work [13], the magnitudes and trends of the BPE posterior emission dis-
 151 tributions for these gases provide an improved comparison with observationally-derived emissions
 152 from 2004–2019 (Fig. 3, right column). While it is apparent that the interannual variability in
 153 observationally-derived emissions cannot be explained by our results, several factors may contribute
 154 to this discrepancy. First, HFC production is informed partly by a top-down emission estimate, which
 155 cannot account for temporal misalignment in production and consumption and therefore may not cap-
 156 ture the correct timing of production [25]. Next, our assumptions of constant emission rates from
 157 production cannot capture variability in facility-level emissions, such as leakage during maintenance or
 158 improvements to containment following modernization [34]. Finally, limitations in inferring emissions
 159 from surface observations may arise due to neglected variability in atmospheric transport [38], leading
 160 to the misinterpretation of variability in stratosphere-troposphere exchange as emissions fluctuations.
 161 These factors do not impact variability beyond interannual timescales and therefore do not impact our
 162 conclusions regarding emissions from 2004–2019.

163 The estimated contribution of each emission source is also shown in the right column of Fig. 3. (As
 164 CFC production for most end-uses was phased out by 2010, we combine emissions from production
 165 for non-feedstock use and banks here and refer to the sum as banks.) According to the BPE posterior
 166 distributions, bank emissions for CFC-113, CFC-114, and CFC-115 were approaching zero by 2019,

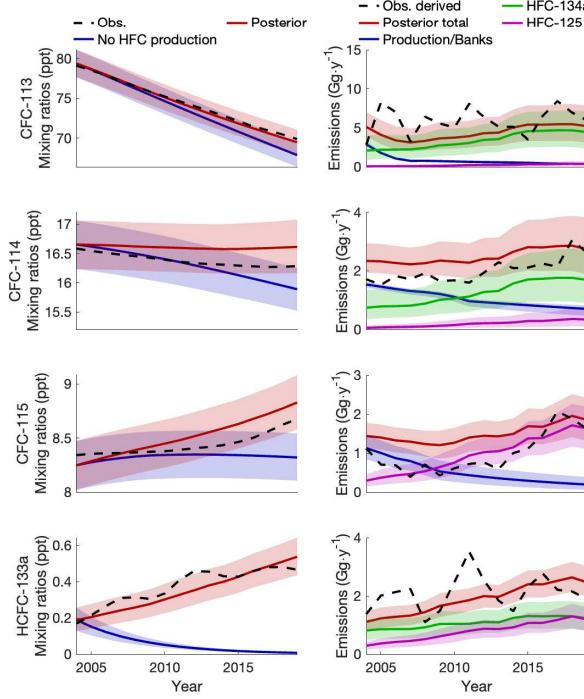


Figure 3: BPE posterior distributions of global mean surface concentrations (left column) and emissions attributable to the sources considered here (right column) for CFC-113 (top row), CFC-114 (second row), CFC-115 (third row), and HCFC-133a (bottom row). The dashed black lines are observations from AGAGE, and the colored lines and shaded regions are the median and $1-\sigma$ CI of each time series.

167 while HFC production drove the overall increases in total emissions, consistent with previous work
 168 associating HFC production to CFC and HCFC emissions [19, 20, 21, 22]. For CFC-113, our results
 169 attribute 76% ($1-\sigma$: 61–84%) of total emissions from 2004–2019 to HFC-134a production, including
 170 86% (75–92%) from 2015–2019. In contrast, we estimate that HFC-134a production did not contribute
 171 a majority of annual CFC-114 emissions until 2012, although it did account for 62% (45–74%) of emissions
 172 from 2015–2019. Bank emissions were the largest source of CFC-114 prior to 2012, and they
 173 contributed 29% (21–40%) of emissions from 2015–2019. Our results also suggest that bank emissions
 174 were the dominant source of CFC-115 emissions through 2009, after which HFC-125 production dom-
 175 inated, including contributing 81% (68–92%) of emissions from 2015–2019. Finally, we estimate that
 176 58% (53–68%) of HCFC-133a emissions from 2004–2019 were the result of HFC-134a production, with
 177 the remaining portion attributable to HFC-125 production, although these sources were statistically
 178 equivalent by 2019.

179 2.2 Emissions from HFC-134a production

180 As discussed above, HFC-134a can be produced via two different pathways, one of which consumes
 181 CFC-113 and CFC-114, while the other consumes HCFC-133a. Consistent with previous reports of
 182 the dominance of the TCE production pathway [31, 32, 33], which uses HCFC-133a, our BPE analysis
 183 suggests that this pathway accounted for 65% (49–80%) of global HFC-134a production from 2004–2019
 184 (Fig. 4A). This percentage dropped as HFC-134a production grew in A 5 countries while decreasing
 185 in non-A 5 countries: We estimate that 59% (39–84%) of HFC-134a was produced via HCFC-133a in
 186 A 5 countries and 68% (45–89%) was produced via HCFC-133a in non-A 5 countries from 2004–2019.

187 As is shown in Fig. 4B–C, BPE estimated CFC-113 feedstock production grew from $114 \text{ Gg}\cdot\text{y}^{-1}$
 188 ($52\text{--}189 \text{ Gg}\cdot\text{y}^{-1}$) in 2004 to $238 \text{ Gg}\cdot\text{y}^{-1}$ ($144\text{--}322 \text{ Gg}\cdot\text{y}^{-1}$) in 2019, while CFC-114 feedstock production
 189 grew from $102 \text{ Gg}\cdot\text{y}^{-1}$ ($44\text{--}172 \text{ Gg}\cdot\text{y}^{-1}$) to $214 \text{ Gg}\cdot\text{y}^{-1}$ ($126\text{--}292 \text{ Gg}\cdot\text{y}^{-1}$), and HCFC-133a production
 190 grew from $155 \text{ Gg}\cdot\text{y}^{-1}$ ($109\text{--}194 \text{ Gg}\cdot\text{y}^{-1}$) to $234 \text{ Gg}\cdot\text{y}^{-1}$ ($182\text{--}292 \text{ Gg}\cdot\text{y}^{-1}$). The estimated growth in
 191 the production of these compounds followed the growth in production of HFC-134a by the pathway

192 relevant to these compounds.

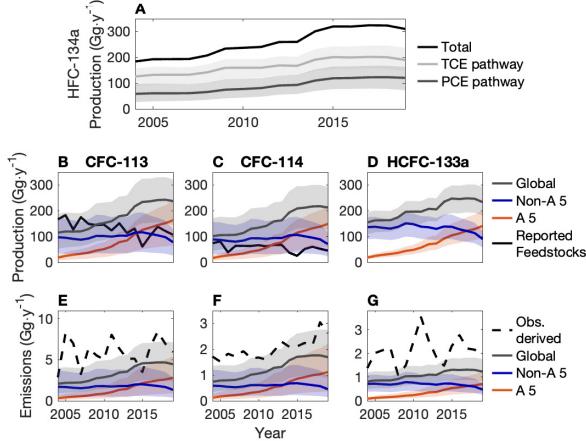


Figure 4: (A) Estimated global HFC-134a production (black; data from [25]) and the BPE estimated mass of HFC-134a produced using TCE (light gray) and PCE (dark gray) as feedstocks. BPE posterior distributions of (B–D) production and (E–G) emissions of CFC-113 (left), CFC-114 (middle), and HCFC-133a (right). The lines and shaded regions are the median and $1-\sigma$ CI, respectively, and in B–G, the gray, blue, and orange coloring denotes global, non-A 5, and A 5 countries, respectively. For reference, the mass of feedstock production reported to the Ozone Secretariat [23] is included in B and C, and the observationally-derived emissions are included in E–G.

193 To assess the efficacy of current reporting practices, we compare the globally-aggregated CFC-113
 194 and CFC-114 feedstock production data reported to the Ozone Secretariat with our BPE estimated
 195 feedstock production (Fig. 4B–C). Notably, reported production values fall within our $1-\sigma$ interval
 196 for estimated non-A 5 production; given that reported values for CFC-113 came only from non-A 5
 197 countries from 2008–2019 [15], this is an independent validation of our results. However, our results
 198 suggest that there is a large and growing portion of CFC-113 and CFC-114 feedstock production going
 199 unreported. Following from the previously reported estimate of HFC production in A 5 and non-A 5
 200 countries used to inform our priors [25], 57% (35–80%) of CFC-113 and CFC-114 production occurred
 201 in A 5 countries from 2015–2019, up from 22% (9–47%) in 2004–2008, thereby increasing the portion
 202 of global feedstock production that was not reported.

Table 1: BPE posterior distributions of feedstock emission rates (FE in Eq. 2) for species used in the production of HFC-134a. Values are relative to inferred mass of feedstocks produced (see Fig. 4B–D). For global emission rates, the time mean of each percentile in the years 2015–2019 is taken. Median values are shown with $1-\sigma$ confidence intervals.

Species	Global	non-A 5	A 5
CFC-113	2.0% (1.3–2.8%)	2.0% (1.1–3.0%)	2.0% (1.1–3.0%)
CFC-114	0.8% (0.4–1.7%)	0.8% (0.4–1.3%)	0.9% (0.5–1.4%)
HCFC-133a	0.5% (0.3–0.8%)	0.6% (0.3–0.9%)	0.5% (0.3–0.9%)

203 BPE posterior distributions of the global emission rates of CFC-113, CFC-114, and HCFC-133a
 204 relative to inferred feedstock production are provided in Table 1. The emission rate distribution is
 205 highest for CFC-113 – 2.0% (1.3–2.8%) globally from 2015–2019 – while CFC-114 and HCFC-133a
 206 emission rates were 0.8% (0.4–1.7%) and 0.5% (0.3–0.8%), respectively. This CFC-113 emission rate
 207 estimate is at the low end of the MCTOC likely range of 1.5–6.2%, indicating that production facilities
 208 are operating as is expected for well-regulated modern facilities [16]. Based on our results, it is also
 209 possible that CFC-113 was not transported between production and consumption and therefore was
 210 not subject to the 0.3–1.2% emission rate that is expected during this step [16]. Meanwhile, the
 211 CFC-114 and HCFC-133a emission rates estimates were below the MCTOC range, suggesting that
 212 these compounds also may have not been transported between production and consumption and could

213 be considered intermediates without reporting requirements. For HCFC-133a, this is consistent with
214 previous reports of it being a non-isolated intermediate in the production of HFC-134a [39].

215 Table 1 also provides estimated emission rates of CFC-113, CFC-114, and HCFC-133a in A 5
216 countries and non-A 5 countries. Contrary to previous assumptions that A 5 countries emit at a
217 higher rate [40], the estimated non-A 5 and A 5 emission rates are not statistically different at the 1- σ
218 confidence level. If our modeling assumptions are correct, this suggests that containment technologies
219 are comparable across both sets of countries. As a result, the global feedstock emission rates have not
220 changed as production has shifted to A 5 countries, and emissions in Fig. 4E–G have followed the
221 same trends as inferred production.

222 Due to limited chemical conversion rates and the mass ratio between HFC-134a and its feedstocks,
223 emission rates relative to HFC-134a production are higher than those relative to feedstock production
224 itself. According to relevant patents and reports on the conversion processes [36, 37], approximately
225 98% of CFC-113 can be converted into CFC-114a and 94% of CFC-114a can be converted into HFC-
226 134a. Meanwhile, the respective molar masses of CFC-113, CFC-114a, and HFC-134a are 187, 171,
227 and 102 g mol⁻¹ – therefore, about 2 g of CFC-113 could be needed to produce 1 g of HFC-134a.
228 By dividing observationally-derived emissions of CFC-113 and CFC-114 by the BPE estimated mass
229 of HFC-134a produced using the PCE pathway, our results suggest that the CFC-113 and CFC-114
230 emission rates relative to HFC-134a production from 2015–2019 were 4.0 wt% (2.6–5.4 wt%) and 1.5
231 wt% (0.9–2.2 wt%), respectively. An analogous calculation for the HCFC-133a emission rate relative
232 to the estimated mass of HFC-134a produced by the TCE pathway suggests an emission rate of 0.7
233 wt% (0.4–0.9 wt%).

234 2.3 Emissions from HFC-125 production

Table 2: BPE posterior distributions of emission rates (*BP* in Eq. 2) for species produced as by-products in the production of HFC-125. Values are relative to the mass of HFC-125 produced (see Fig. 1D); percentages are therefore wt%. For global emission rates, the time mean of each percentile in the years 2015–2019 is taken. Median values are shown with 1- σ confidence intervals.

Species	Global	non-A 5	A 5
CFC-113	0.2% (<0.1–0.3%)	0.2% (<0.1–0.4%)	0.2% (<0.1–0.4%)
CFC-114	0.2% (<0.1–0.3%)	0.1% (<0.1–0.3%)	0.2% (<0.1–0.4%)
CFC-115	0.7% (0.5–1.0%)	0.8% (0.4–1.2%)	0.9% (0.5–1.4%)
HCFC-133a	0.7% (0.4–0.9%)	0.8% (0.4–1.1%)	0.5% (0.3–0.9%)

235 Given limited knowledge of by-product production, release, and destruction rates, it is not possible
236 to determine the mass of by-products generated during HFC-125 production, so emission rates are
237 reported in Table 2 relative to the mass of HFC-125 produced. Globally, the CFC-115 BPE estimated
238 by-product emission rate was 0.7 wt% (0.5–1.0 wt%) from 2015–2019, which is consistent with the
239 estimated range of 0.1–1 wt% recently reported by the UNEP’s Technology and Economic Assessment
240 Panel for this emission rate [17]. Following our modeling assumptions regarding the relative magnitude
241 of CFC-115 emissions (see Methods; [17, 30]), the BPE estimated CFC-113 and CFC-114 emission rates
242 (0.2 wt% (<0.1–0.3 wt%)) were lower than that of CFC-115. These rates are higher than what was
243 recently reported based on plant data (<0.0001 wt%, [17]) but lower than the default emission factor
244 of 4 wt% suggested by the 2019 Refinement to the 2006 IPCC Guidelines on National Greenhouse Gas
245 Inventories [24].

246 Although the BPE estimated CFC-115 by-product emission rate is not inconsistent with UNEP’s
247 recent emission rate estimate, we expect our result to be biased low. As discussed above, it is not known
248 how much HFC-125 is produced using the PCE pathway, which produces CFC-115 as a by-product,
249 but it has been reported that only 4 out of 12 Chinese factories that produced HFC-125 in 2011
250 used this production pathway [27]. If global HFC-125 production follows the same ratio as Chinese
251 factories, then the estimated CFC-115 emission rate would be 2–3 wt%, which would be closer to the
252 2019 Refinement to the 2006 IPCC Guidelines on National Greenhouse Gas Inventories value [24].
253 The BPE posterior emission rate of HCFC-133a, which does not have a specific previously estimated
254 by-product emission rate, would also be within this 2–3 wt% range.

255 Table 2 shows that the BPE posterior HFC-125 by-product emission rates distributions are not

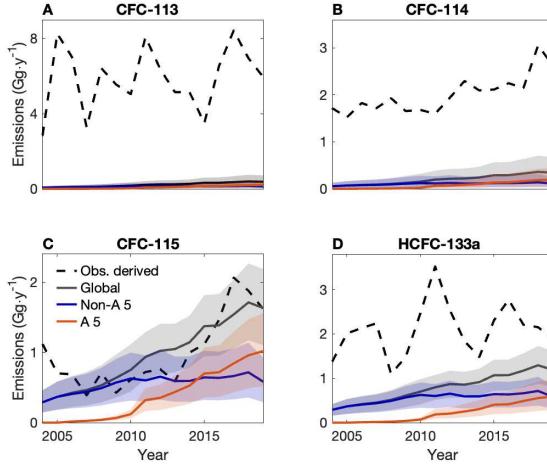


Figure 5: BPE posterior distributions of by-product emissions from the manufacture of HFC-125 for (A) CFC-113, (B) CFC-114, (C) CFC-115, and (D) HCFC-133a. Gray lines denote global emissions, while blue and orange lines denote emissions in non-A 5 and A 5 countries, respectively. Lines and shaded regions are the median and $1-\sigma$ CI, respectively, and observationally-derived emissions are included for reference.

higher in A 5 countries than in non-A 5 countries. Yet, despite the similarities in these rates, our results suggest that the rise in emissions from HFC-125 production from 2010-2019 was driven by an increase in production in A 5 countries. As is shown in Fig. 5, BPE estimated by-product emissions of CFC-115 and HCFC-133a from non-A 5 countries were flat during this time period, while emissions from A 5 countries followed the growth of HFC-125 production. Production of HFC-125 is expected to be dominated by A 5 countries in the coming decades [25], so improved technology for the separation and containment of unwanted by-products during the production of HFC-125 in A 5 countries may be needed to prevent future emissions of CFC-113, CFC-114, and in particular, CFC-115.

2.4 Ozone depletion and global warming potentials

While HFCs do not destroy ozone, the CFC and HCFC emissions considered in this analysis will do so. Per Gg of HFC-134a and HFC-125 produced, our results suggest that the ODPs of unintended ODS emissions were about 0.015 ODP-Gg (0.009–0.022 ODP-Gg) and 0.006 ODP-Gg (0.004–0.008 ODP-Gg), respectively, from 2015–2019.

Following from the increase in HFC-134a production, we estimate that the unintended ODP from HFC-134a production grew from $1.6 \text{ ODP-Gg}\cdot\text{y}^{-1}$ ($0.8\text{--}2.9 \text{ ODP-Gg}\cdot\text{y}^{-1}$) in 2004 to $3.5 \text{ ODP-Gg}\cdot\text{y}^{-1}$ ($2.0\text{--}5.3 \text{ ODP-Gg}\cdot\text{y}^{-1}$) in 2019 (Fig. 6A). This is consistent with the combined ODP of CFC-113 and CFC-114 feedstock emissions reported in Chapter 7 of the 2022 Scientific Assessment of Ozone Depletion ($2.3\text{--}4.6 \text{ ODP-Gg}\cdot\text{y}^{-1}$) [23]. Emissions of CFC-113, which has both the highest ODP of the ODSs considered here and the highest BPE estimated emission rate from HFC-134a production, account for 75% (64–83%) of the unintended HFC-134a ODP over this time period. For HFC-125, the unintended ODP is smaller, with a maximum of $1.2 \text{ ODP-Gg}\cdot\text{y}^{-1}$ ($0.9\text{--}1.5 \text{ ODP-Gg}\cdot\text{y}^{-1}$) in 2018 (Fig. 6B). By gas, we estimate that CFC-115 contributed 60% (46–74%) of HFC-125’s unintended ODP from 2004–2019, while CFC-113 and CFC-114 contributed 20% (7–34%) and 16% (5–28%), respectfully. Emissions of HCFC-133a, which has a much lower ODP than any CFC, account for 0.8% (0.4–1.6%) and 3% (2–4%) of the ODP for HFC-134a and HFC-125, respectively. We estimate the total ODP of unintended emissions attributed to HFC-134a and HFC-125 production was $4.7 \text{ ODP-Gg}\cdot\text{y}^{-1}$ ($3.1\text{--}6.3 \text{ ODP-Gg}\cdot\text{y}^{-1}$) from 2015–2019, which is about 7% of the ODP of CFC-11 emissions during that time period [41].

By including the 100-year global warming potential (GWP) of unintended feedstock and by-product emissions, the total GWP attributable to HFC-134a and HFC-125 from 2004–2019 increases by 12% (7–18%) and 9% (6–11%), respectively (Fig. 6C–D). CFC-113 emissions from HFC-134a production had the largest GWP, which was $24.8 \text{ TgCO}_2\text{eq}\cdot\text{y}^{-1}$ ($12.9\text{--}39.6 \text{ TgCO}_2\text{eq}\cdot\text{y}^{-1}$) in 2019, while the 15.7

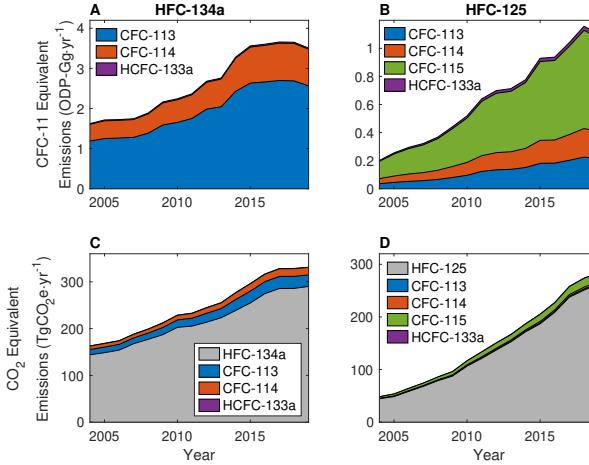


Figure 6: The (A, B) ODP and (C, D) GWP of emissions attributed to (A, C) HFC-134a and (B, D) HFC-125 production, with the blue, orange, green, and purple sectors representing the contributions of CFC-113, CFC-114, CFC-115, and HCFC-133a, respectively. HFC-134a and HFC-125 have no ODP and are therefore not included in A–B, while the GWP of HFC-134a and HFC-125 emissions are included for reference in C–D. GWP and ODP values were calculated with median emissions values; uncertainty ranges are presented in the text.

288 TgCO₂eq·y⁻¹ (10.6–21.1 TgCO₂eq·y⁻¹) of emissions of CFC-115 was the largest GWP of the HFC-125
 289 by-products in 2019. The combined GWP of feedstocks and by-products of HFC-134a and HFC-125
 290 was 62.5 TgCO₂-eq·y⁻¹ (45.2–81.2 TgCO₂-eq·y⁻¹) from 2015–2019 – which is equivalent to 0.2% of
 291 the approximately 36,000 Tg·y⁻¹ of global CO₂ emissions during this time [42], increasing the total
 292 GWP attributable to HFC-134a and HFC-125 production to about 1.6% of global CO₂ emissions.

293 If future production of HFC-134a and HFC-125 maintain the same emission rates and allocation
 294 between respective production pathways, then the ODP and GWP estimated here will persist until
 295 production of HFC-134a and HFC-125 ends. By assuming that global emission rates and the the
 296 isomeric composition of emissions remain the same, we can estimate this future unintended ODP and
 297 GWP using the average of a recent HFC production projection that adheres to the Kigali Amendment
 298 [25], in which global HFC production peaks by the end of this decade and begins to decline around
 299 2030. We project that unintended emissions of ODSs during HFC-134a production could result in
 300 a total of 79 ODP-Gg (50–107 ODP-Gg) and 910 TgCO₂-eq (574–1249 TgCO₂-eq) from 2020–2050,
 301 while HFC-125 production could result in 29 ODP-Gg (18–42 ODP-Gg) and 522 TgCO₂-eq (336–
 302 755 TgCO₂-eq). The estimated ODP and GWP of remaining halocarbons banks were about 3,600
 303 ODP-Gg and 21,000 TgCO₂-eq in 2020 [13]; thus we estimate that unintended emissions from future
 304 HFC-134a and HFC-125 production could increase ODS contributions to ODP and GWP by 3% and
 305 7%, respectively. If the CFC-emitting production pathways are eliminated, then the future ODP and
 306 GWP of HCFC-133a emissions from HFC-134a production would be 0.9 ODP-Gg and 16.7 TgCO₂-eq,
 307 while HFC-125 production could have no unintended ODP and GWP from the compounds considered
 308 here.

309 The ODP and GWP values presented here do not include the impacts of other feedstocks, interme-
 310 diates, or by-products that are released during the production of HFC-134a and HFC-125. Two such
 311 compounds, HCFC-31 and HCFC-132b, have been detected in the atmosphere in small abundances
 312 (less than 0.2 ppt) leading to emission estimates of about 1 Gg·y⁻¹ of each. These compounds have
 313 ODPs of 0.019 and 0.038, respectively, and GWPs of 85 and 332, respectively; therefore, the total
 314 ODP and GWP of emissions related to HFC-134a and HFC-125 production is higher by about 1%
 315 due to these HCFCs. A full life-cycle analysis of HFC-134a and HFC-125 is outside of the scope of
 316 this work, but the contribution of CCl₄, which is a feedstock for PCE production, would need to be
 317 considered to capture the full ODP and GWP of these HFCs.

318 **3 Summary and Discussion**

319 **3.1 Montreal Protocol reporting practices fall short in capturing increased**
320 **CFC production**

321 By jointly modeling the emissions of CFC-113, CFC-114, CFC-115, and HCFC-133a from reported
322 non-feedstock production and from HFC-134a and HFC-125 production, we find that the increase
323 in non-bank emissions of CFC-113, CFC-114, and CFC-115 from 2004–2019 can be explained by the
324 concurrent increase in HFC production. In particular, we find that the use of CFC-113 and CFC-114 as
325 feedstocks or intermediates during the production of HFC-134a and the undesirable production of CFC-
326 115 in a side reaction during the production of HFC-125 were likely the dominant sources of emissions
327 for these compounds. Additionally, we find that HCFC-133a emissions during this time came primarily
328 from its use as an intermediate in the production of HFC-134a, although the increase in emissions from
329 2004–2019 may have been driven by undesirable by-production during the manufacturing of HFC-125.

330 Our results suggest that recent reporting of feedstock production is not sufficient to account for the
331 production and emission of CFC-113, CFC-114, and CFC-115. From 2008–2019, A 5 countries did not
332 report feedstock production of CFC-113, although some quantity of this compound is thought to be
333 produced in these countries for use as a feedstock [15]. If our modeling assumptions are correct, then
334 our results would suggest that CFC-113 (and CFC-114) were likely produced in increasing quantities in
335 A 5 countries for use in HFC-134a production. Meanwhile, our estimated production of CFC-113 and
336 CFC-114 for use as HFC-134a feedstocks in non-A 5 countries was consistent with reported feedstock
337 production values for these compounds, which were not used to inform our model. Assuming that non-
338 A 5 feedstock reporting is accurate, this consistency provides some external validation of our modeling
339 results. From 2015–2019, we estimate that A 5 countries accounted for 61% (33–86%) of CFC-113 and
340 CFC-114 production, and the fraction of production occurring in A 5 countries will grow as global
341 HFC production continues to shift to that part of the world. Thus, if reporting practices persist, we
342 expect that the unreported fraction of CFCs used in manufacturing HFCs will continue to grow.

343 It has previously been suggested that the non-reporting of CFC-113 production in A 5 countries
344 indicates its use as an intermediate, rather than a feedstock, in the production of other fluorinated
345 compounds [15]. This distinction has practical implications for emissions – intermediates should be
346 emitted at a lower rate – and regulatory implications for whether or not production is required to be
347 reported under the Montreal Protocol. Due to the magnitude of uncertainty in our results relative to the
348 precision needed to differentiate between use as a feedstock and intermediate, we cannot definitively
349 say whether CFC-113 and CFC-114 were produced and consumed as intermediates or feedstocks.
350 However, assuming that the HFC-134a production estimate used here is accurate and that non-A 5
351 countries produced and consumed feedstocks in separate processes, results from our analysis suggest
352 that A 5 countries have either not fulfilled their reporting obligations or have facilities that emit at
353 a higher rate than non-A 5 facilities. The latter assumption is supported by the consistency between
354 reported CFC-113 and CFC-114 feedstock production and our model-inferred feedstock production
355 values in non-A 5 countries – reporting would not have been required if production and consumption
356 occurred in the same integrated process. If all steps in the production process emit at the same rate
357 across the globe, then emissions from processing and transport are required for A 5 emission rates
358 to match non-A 5 emission rates. Conversely, if CFC-113 and CFC-114 are produced and consumed
359 as part of an integrated production process in A 5 countries, then some other part of the production
360 process must emit at a higher rate to compensate for the 0.3–1.2% emission rate that occurs during
361 transportation [16]. If our modeling assumptions are correct, then A 5 countries either need to report
362 feedstock production or improve emission containment to match that of non-A 5 countries. However,
363 we note that our results are contingent on our assumptions regarding of HFC production totals, the
364 distribution of production between A 5 and non-A 5 countries, and the relative utilization of each
365 production pathway, which represent critical sources of uncertainty that cannot be resolved in the
366 present modeling framework.

367 **3.2 Lingering uncertainty**

368 The assumptions underlying our simulation of CFC emissions from HFC production are informed by
369 published patents and estimated HFC production data. Nonetheless, biases in these assumptions would
370 affect our results; thus, our analysis is limited by a lack of insight into industrial processes. For example,

371 we assume that chemical conversion rates are at the high end of reported values. Yet if chemical
372 conversion rates were lower – in line with those reported by a recent review of fluorinated refrigerants
373 [26] – then our estimated CFC-113 feedstock production would be higher, while the estimated CFC-
374 114 feedstock production would be lower, bringing both in closer agreement with reported values
375 (see Supplementary Fig. 1). It is also possible that a temporal increase in conversion rates could
376 account for some portion of the decrease in reported feedstock production, but we do not account for
377 changes in conversion rates in our model. Therefore, the chemical conversion rates are a key source
378 of uncertainty that cannot be resolved without further transparency from the chemical manufacturing
379 industry. Additionally, given that we do not have observable proxies for both HFC-125 production
380 pathways, we cannot evaluate which pathway was used or whether temporal or geographic variability
381 in pathway usage contributed to apparent increases in by-product emissions. In particular, the sharp
382 increase in observationally-derived CFC-115 emissions around 2012 could be explained by a shift in
383 production towards the PCE pathway, which produces CFCs as unwanted by-products. This would
384 be consistent with the shift from 4 out 12 Chinese factories using the PCE pathway in 2011 [27] to
385 “most” global factories using this pathway in 2023 [17], but this cannot be confirmed without industry
386 knowledge.

387 Without additional industry knowledge, it also remains possible that the emissions of CFCs from
388 HFC production are very small, and that the non-bank emissions that we are concerned with come
389 from an unrelated process. In our results, we show that it is possible for HFC production to explain
390 CFC-113, CFC-114, and CFC-115 emissions, but we do not include a term for “unknown or unrelated
391 production” in our simulations, and the previously reported values that inform our priors include
392 combinations of emission and conversion rates that allow HFC production to explain CFC-113, CFC-
393 114, and CFC-115 observations. Previous reports suggest that the large majority of reported CFC-113
394 produced for use as a feedstock ended up as HFC-134a [15], but this is a qualitative statement that could
395 quantitatively change over time, and given that A 5 countries did not report CFC-113 production, this
396 only pertains to non-A 5 countries. If HFCs are entirely produced by non-CFC production pathways in
397 A 5 countries, then HFC production is not sufficient to explain recent CFC observations and another
398 source of emissions must exist. In particular, recent production of chlorotrifluoroethylene (CTFE)
399 plastics, trifluoroacetic acid (TFA), and the hydrofluoroolefin HFO-1336mzz(Z) were likely to have
400 used CFC-113 or CFC-113a as a feedstock or intermediate [15, 43, 44]. We assume that emissions
401 from those production processes are negligible here, but future work may have to consider them as the
402 production of those end-products grows.

403 Uncertainty in global emissions of these compounds and their emission rates also arises from
404 the compounds’ lifetimes, which are inversely proportional to emissions in top-down estimates [38].
405 Observationally-derived emissions and simulated mixing ratios were both calculated here using the
406 median of a previously reported “most likely” lifetime range [45], but different methods for calculating
407 lifetimes yield values that are at least 10% longer or shorter than the lifetimes used here [12, 38, 45, 46].
408 We test the sensitivity of our model results to CFC lifetimes by simulating mixing ratios using a range
409 of lifetimes informed by previous work, as described further in the Supplementary Methods. By doing
410 so, we find that BPE posterior emission rates from feedstock production vary between 1.8% (1.1–2.6%)
411 and 2.2% (1.5–2.9%) for CFC-113 and between 0.7% (0.3–1.6%) and 0.9% (0.5–1.7%) for CFC-114,
412 and the BPE posterior emission rate for CFC-115 from HFC-125 production varies between 0.7 wt%
413 (0.5–1.0 wt%) and 0.8 wt% (0.5–1.0 wt%). Thus, estimated feedstock and by-product emission rates
414 vary within the $1-\sigma$ range of estimated uncertainty as the atmospheric lifetimes of these compounds
415 vary within our prescribed range of lifetimes, and adopting these different lifetime values does not
416 qualitatively change the conclusions regarding feedstock reporting.

417 A final caveat to the assumption that CFC-113 and CFC-114 emissions come from HFC-134a
418 production is that only the minor isomer of CFC-114 (CFC-114a) is required for HFC-134a production.
419 CFC-114a can be produced from CFC-114, or it can be produced directly from CFC-113 or CFC-
420 113a, thereby avoiding the major isomer [26, 47]. Thus, it is possible for CFC-114a to be the only
421 isomer emitted during the production of HFC-134a. Yet, CFC-114a emissions alone cannot explain the
422 increase in the emissions of the sum of the two isomers, so some amount of CFC-114 must be produced
423 and emitted, either as part of the HFC-134a production process or elsewhere. It is also possible that
424 CFC-113a is avoided in the production of HFC-134a (if CFC-113 is converted directly into CFC-114a
425 [47]), but we assume this is unlikely given the enhancement of both CFC-113a and CFC-114a measured
426 in air samples collected downwind of a region where HFC-134a is produced in China [18].

427 **4 Conclusion**

428 We have developed a Bayesian method that jointly models the production and emission of CFC-
429 113, CFC-114, CFC-115, and HCFC-133a during the chemical manufacturing of HFC-134a and HFC-
430 125. In our model, unintended emissions from these manufacturing processes are able to explain the
431 recent observations of CFC-113, CFC-114, CFC-115, and HCFC-133a that appear inconsistent with
432 reported production of these compounds. If our assumptions are correct, then this indicates that
433 a growing share of feedstock production is going unreported (possibly due to being considered an
434 intermediate), largely in A 5 countries. We also infer emission rates from facilities around the world
435 that are consistent with best practices, but the added ozone depletion and surface warming potential of
436 these unintended emissions will have to be considered when estimating the total impact of future HFC
437 production nonetheless. This work prompts a broader consideration of the use of regulated substances
438 as feedstocks, including CCl_4 , and enhances the benefits of compliance with the Kigali Amendment.

439 **Methods**

440 We extended a previously developed Bayesian model [12, 13] to jointly estimate the production for
441 non-feedstock end-uses, banks, feedstock usage, emissions, and mixing ratios of CFC-113, CFC-114,
442 CFC-115, and HCFC-133a. The modeling approach uses Bayesian Parameter Estimation (BPE), a
443 form of Bayesian analysis which allows us to apply inference to a deterministic simulation model
444 [48, 49]. In earlier iterations of the BPE model, the production priors were modeled independently
445 across compounds [12, 13]. Here, we have updated the BPE model to explicitly model feedstock
446 production and by-product generation as a function of relevant HFC production in A 5 and non-A 5
447 countries, thus differentiating emissions by region and accounting for inter-dependencies between the
448 production of these molecules in the manufacturing pipeline.

449 The BPE model is implemented using the following steps. First we specify a simulation model of
450 production, banks, emissions, and mixing ratios to jointly represent the manufacturing and emission
451 processes impacting the suite of compounds in our analysis (Eqs. 1–6). Next, we develop prior
452 distributions for most of the input parameters to reflect published estimates and their corresponding
453 uncertainties. We then sample from the prior distributions and run the simulation model to obtain
454 a joint distribution of output parameters, including banks, emissions, and mixing ratios. And finally,
455 using Bayes’ Rule, we jointly update both input and output parameters given observed mixing ratios
456 of CFC-113, CFC-114, and CFC-115 from 1990–2020 and observed mixing ratios of HCFC-133a from
457 1990–2019. The methods are provided in more detail below.

458 **Bayesian Parameter Estimation Model**

459 Mixing ratios ($M_{i,t}$) for compound i in time t are simulated as

$$M_{i,t+1} = M_{i,t} * e^{-\tau_i^{-1}} + A * E_{i,t}, \quad (1)$$

460 where A is a constant that converts the mass of emissions (Gg) into mixing ratios (ppt) and accounts for
461 the discrepancy between surface and global mean atmospheric mixing ratios [10]. Previously reported
462 atmospheric lifetimes (τ_i) of 93, 191, 540, and 4.6 years were used for CFC-113, CFC-114, CFC-115,
463 and HCFC-133a, respectively [45, 50]. The lifetimes for CFC-113 and CFC-114 used here are for
464 the dominant isomer of these compounds and therefore overestimate the total lifetime of the sum of
465 the isomers (lifetimes of CFC-113a and CFC-114a are 55 and 105 years, respectively [51]). If the
466 atmospheric abundance of minor isomers was significant, then posterior estimates would be biased
467 towards simulations with lower total emissions. However, atmospheric mixing ratios of CFC-113a and
468 CFC-114a were 1.0 ppt and 1.1 ppt in 2020 [22], while atmospheric mixing ratios of the sum of CFC-113
469 and CFC-114 isomers were 69.4 ppt and 16.3 ppt, respectively [52], so we assume this bias is small.

470 To simulate the emissions time series used in Eq. 1, we summed the four emission sources that we
471 assume comprise the total emissions of each compound. These include emissions from: production for
472 non-feedstock use ($Prod_{i,j,t}$, where j denotes the application type), banks ($B_{i,j,t}$), use as a feedstock
473 in HFC-134a production ($FS_{i,t}^k$, where k denotes use in A 5 or non-A 5 countries), and generation
474 as a by-product during the manufacturing of HFC-125 ($HFC125_t^k$). Note that $Prod_{133a,j,t} = 0$ and
475 $B_{133a,j,t} = 0$ for all t , as production of HCFC-133a was not reported. In addition, $FS_{115,t}^k = 0$ for all

476 t , as CFC-115 is not used as a feedstock in manufacturing HFC-134a. For each non-feedstock end-use,
 477 the fraction of production emitted directly (i.e., the direct emission rate) is denoted by $DE_{i,j}$ and the
 478 fraction of the bank released each year (i.e., the release fraction) is denoted by $RF_{i,j}$. Feedstock and
 479 by-product emission rates for each country classification are denoted by FE_i^k and BP_i^k . Thus, the
 480 emission time series for each compound is calculated as

$$E_{i,t} = \sum_{j=1}^{N_1} (DE_{i,j} * Prod_{i,j,t} + RF_{i,j} * B_{i,j,t}) + \sum_{k=1}^{N_2} (FE_i^k * FS_{i,t}^k + BP_i^k * HFC125_t^k), \quad (2)$$

481 where direct and bank emissions are summed over N_1 equipment types (i.e., long and short banks),
 482 and feedstock and by-product emissions are summed over N_2 country classifications (i.e., A 5 and
 483 non-A 5).

484 Banks are simulated recursively for each equipment type as

$$B_{i,j,t+1} = (1 - RF_{i,j}) * B_{i,j,t} + (1 - DE_{i,j}) * Prod_{i,j,t}, \quad (3)$$

485 and feedstock production in each country classification is calculated as

$$FS_{114,t}^k = M_{114}/M_{134a} * \chi_t^k * HFC134a_t^k * 1/(C_{114 \rightarrow 134a} * (1 - FE_{114}^k)), \quad (4)$$

$$FS_{113,t}^k = M_{113}/M_{114} * FS_{114,t}^k * 1/(C_{113 \rightarrow 114} * (1 - FE_{113}^k)), \quad (5)$$

$$FS_{133a,t}^k = M_{133a}/M_{134a} * (1 - \chi_t^k) * HFC134a_t^k * 1/(C_{133a \rightarrow 134a} * (1 - FE_{133}^k)), \quad (6)$$

486 where M_k is the molar mass of compound k , χ_t^k is the fraction of HFC-134a produced via the PCE
 487 pathway (which may emit CFC-113 and CFC-114), and $C_{a \rightarrow b}$ is the conversion rate from compound a
 488 to compound b . χ_t^k thus represents the dependencies between CFC-114 and HCFC-133a feedstock pro-
 489 duction, and $C_{113 \rightarrow 114}$ represents dependencies between CFC-113 and CFC-114 feedstock production
 490 in the deterministic simulation model.

491 Prior distributions

492 Non-feedstock production priors, $Prod_{113,j,t}$, $Prod_{114,j,t}$, and $Prod_{115,j,t}$ were developed for years prior
 493 to 1989 using production data reported to Alternative Fluorocarbons Environmental Acceptability
 494 Study (AFEAS) [53]. For CFC-113, this data was augmented according to the WMO (2003) correction
 495 [46], and total production data from 1989–2016 were taken from the WMO 2022 report on production
 496 and consumption of ozone depleting substances [23]. We assume no production following the end of
 497 reporting. For CFC-114 and CFC-115, total production data from 1989–2003 were taken as the greater
 498 of AFEAS data or AFEAS data scaled to match WMO production data, and total production data
 499 from 2004–2019 were taken from WMO’s 2022 report [23]. To account for uncertainty in reported
 500 production, we assume lognormal distributions for $Prod_{113,j,t}$, $Prod_{114,j,t}$, and $Prod_{115,j,t}$, following
 501 previous work [11], where we assume the bias in reported data has a correlation term, $\rho_{i,j}$, that we
 502 infer in the BPE model (see [11] for more details). We set lower bounds of these distribution as 70%,
 503 95%, and 80% of reported values, respectively, to ensure that observed mixing ratios were within the
 504 simulated priors [12]; see [11] for further description of these distributions.

505 The allocation of production to short or long bank equipment types for CFC-113 and CFC-114
 506 was informed by AFEAS data when available and fixed to values from the final year of AFEAS data
 507 afterwards. Given the poor fit between simulated mixing ratios and observations that was previously
 508 reported for CFC-115 [13], we set the fraction of CFC-115 production allocated to short banks as an
 509 uncertain parameter with a prior uniform distribution between 50–90%. This uncertain parameter
 510 reflects uncertainty in AFEAS production allocation for CFC-115 – only production for refrigeration
 511 (i.e., long bank) was reported to AFEAS, but CFC-115 was also used as an aerosol propellant (i.e.,
 512 short bank) [54], though this was not documented in AFEAS data. The addition of this parameter

513 resulted in an improved fit between posterior simulated mixing ratios and observations (Supplementary
 514 Fig. 2), so we continued with this altered end-use allocation.

515 Production of HFC-134 and HFC-125, $HFC134a_t^k$ and $HFC125_t^k$, from 1990–2019 were taken from
 516 a previously reported joint bottom-up and top-down estimate [25] and were assumed to be 0 prior to
 517 1990. These data are calculated using data from several sources, including consumption reported by
 518 non-A 5 countries to the United Nations Framework Convention on Climate Change [55], previously
 519 estimated Chinese and Indian consumption estimates [56, 57], and emissions inferred from AGAGE [58]
 520 and National Oceanographic and Atmospheric Administration (NOAA) Global Monitoring Laboratory
 521 [59] observations of surface mixing ratios. Values are reported for A 5 and non-A 5 countries, thereby
 522 allowing for separation of production from the two classifications in our simulations. Note that we do
 523 not account for uncertainty in HFC production in our model, as uncertainties in the FE_i^k and BP_i^k
 524 terms in Eq. 2 and χ_i^k term in Eqs. 4 and 6 and would linearly compensate for biases in HFC
 525 production. Nonetheless, we note the posterior distributions of these terms are conditional on the
 526 adopted HFC production time series.

527 Prior distributions of $DE_{i,j}$ and $RF_{i,j}$ were specified for each non-feedstock end-use based on
 528 industry-reported data [60], following recent work [12]. FE_i^k distributions were informed by the range
 529 of likely values reported by MCTOC [16] (1.5–6.2%). For computational efficiency, after simulating
 530 each gas independently, the FE_i^k parameter space was updated to remove the tails of the parameter
 531 space where the conditional probability of the data given the parameter value was near zero. FE_i^k was
 532 also adjusted to include values less than 1.5%. BP_i^k distributions were informed by a recent patent
 533 for HFC-125 production that reports by-product generation rates relative to HFC-125 production [30],
 534 with maximum emission rates of 2% and 1.5% for CFC-115 and HCFC-133a, respectively, and CFC-
 535 113 and CFC-114 emission rates of no more than half of the CFC-115 emission rate. We do not know
 536 how much of each by-product is emitted (as opposed to captured and/or destroyed), so we assumed
 537 beta distributions with parameters (2, 2) for FE_i^k , BP_{115}^k , and BP_{133a}^k priors and uniform distributions
 538 between 0–0.5 * BP_{115}^k for BP_{113}^k and BP_{114}^k priors. Previous work has assumed that emission rates
 539 from chemical manufacturing are higher in A 5 countries than in non-A 5 countries [40]; to explore
 540 this possibility, we specify independent but identical priors for FE_i^k and BP_i^k for A 5 and non-A 5
 541 countries.

542 Following a series of patents in which the chemical conversion rates of CFC-113 to CFC-114, CFC-
 543 114 to HFC-134a, and HCFC-133a to HFC-134a are reported under various conditions [26, 28, 36, 37],
 544 $C_{113 \rightarrow 114}$, $C_{114 \rightarrow 134a}$, and $C_{133a \rightarrow 134a}$ were set to fixed values of 98% and 94%, and 95%, respectively.
 545 Although we do not know which catalysts and reaction conditions are used, we assume that conversion
 546 rates are at the high end of reported values based on the assumption that this is a mature industry
 547 where manufacturers would want to minimize unused resources. We set these as fixed values as the
 548 technology for these chemical conversion processes is not known to have changed with time. Simulations
 549 run with lower conversion rates suggest greater feedstock production, but this does not qualitatively
 550 change our conclusions (i.e., inferred under-reporting of CFC-113 feedstock production is increased
 551 when conversion rates are lowered, so our choice of conversion rates makes our unreported feedstock
 552 results conservative). Prior distributions for FE_i^k , BP_i^k , and $C_{a \rightarrow b}$ are summarized in Table S1.

553 χ^k was assumed to be a uniform distribution between 0–70%, based on previous reporting that the
 554 TCE pathway is more commonly used for HFC-134a production [31, 32, 33]. This prior incorporates
 555 an autocorrelation term that is sampled from a uniform distribution between 0.95–1.0 to reflect the
 556 potential for gradual change to global manufacturing.

557 As the initial year of reporting varies, we start our simulation model in 1955 for CFC-113, 1935
 558 for CFC-114 and CFC-115, and 1990 for HCFC-133a. Initial mixing ratios are assumed to be 0 for
 559 CFCs and 0.0489 ppt for HCFC-133a [34]. As available production data for our bottom-up emissions
 560 estimates end in 2019, we implement the simulation model out to 2020.

561 Likelihood function

562 As in previous work [12], the difference between modeled and observed mixing ratios was assumed
 563 to be normally distributed with a mean of zero. Therefore, the likelihood function is a multivariate
 564 normal likelihood function of the difference between modeled and observed mixing ratios:

$$P(D_i | \theta) = \frac{1}{\sqrt{(2\pi)^{N_{obs}} |\Sigma_i|}} e^{(-\frac{1}{2} \epsilon_i^T \Sigma_i^{-1} \epsilon_i)}, \quad (7)$$

565 where D_i is a vector of annual global mean observed mixing ratios for each year from 1990–2020, N_{obs}
 566 is the length of D_i ($N_{obs} = 31$ for CFCs and 6 for HCFC-133a, see below), θ is the vector of all input
 567 and output parameters from the simulation model, ϵ_i is an $N_{obs} \times 1$ vector of the difference between
 568 modeled and observed mixing ratios in each year with a temporal covariance matrix Σ_i .

569 Within the error covariance matrix, we assumed additive error in uncertainties for each compound.
 570 Therefore, Σ_i contains the sum of the uncertainties in observed and simulated mixing ratios along its
 571 diagonals with the off-diagonals autocorrelated with coefficient of 0.95, representing an expected high
 572 autocorrelation in error for both the observed and simulated mixing ratios. Based on uncertainties in
 573 measurements and the relationship between surface point observations and global mean mixing ratios,
 574 CFC-113, CFC-114, and CFC-115 global mixing ratios have uncertainties of 1.5%, 3.0%, and 3.0%,
 575 respectively [38]. The uncertainty in the simulation model is not known, and due to computational
 576 limitations, sampling model uncertainties in the joint BPE model was not feasible. We therefore iter-
 577 atively selected model uncertainties for each compound by initially specifying a prior model uncertainty
 578 error as a function of observed mixing ratios. We then ran the BPE model for each compound inde-
 579 pendently and selected the most likely model uncertainty term, with a precision of 0.5% of observed
 580 mixing ratios. This resulted in total uncertainties of 3.0% of observed mixing ratios for CFC-113 and
 581 4.0% for CFC-114 and CFC-115. For HCFC-133a, measurements had an estimated 2σ uncertainty of
 582 10% [34], and given that our assumptions do not capture variability in industrial practices that have
 583 previously been hypothesized to result in variability in HCFC-133a emissions [21], we aggregated the
 584 observational data into five-year annual means and adopted a total uncertainty of 20% of observed
 585 mixing ratios for HCFC-133a. As the autocorrelation term is uncertain, we modeled it as a beta dis-
 586 tribution between 0.6–0.8 with parameters (2, 2). We tested the sensitivity of our results to the model
 587 uncertainties by evaluating the likelihood function with uncertainties 50% smaller and 25% larger than
 588 those listed here, and the results were not qualitatively impacted.

589 Global mean mixing ratios were estimated by the AGAGE 12-box model of atmospheric transport
 590 [38, 61] using measurements taken by the AGAGE surface observation network [27, 58]. HCFC-133a
 591 data were taken from a previously published work [21] that followed this method.

592 We tested the robustness of our results to a different observational dataset for CFC-113 from the
 593 NOAA network [59] in place of AGAGE observations. CFC-114, CFC-115, and HCFC-133a are not
 594 measured by the NOAA network and therefore were unchanged in this sensitivity test. Posterior
 595 estimates of feedstock and by-product emission rates calculated with AGAGE and NOAA datasets
 596 are within 1σ uncertainty (Table S2), indicating that our results are not specific to our choice of
 597 observational data.

598 Estimation of posterior distributions

599 To estimate the joint posterior distributions of the input and output parameters of Eqs. 1–6, we
 600 implement Bayes' Rule:

$$P(\theta|D_{113}, D_{114}, D_{115}, D_{133a}) \propto P(\theta)P(D_{113}|\theta)P(D_{114}|\theta)P(D_{115}|\theta)P(D_{133a}|\theta), \quad (8)$$

601 where θ denotes the input and output parameters of the deterministic simulation model (Eqs. 1–6),
 602 and thus $P(\theta)$ denotes the joint prior distribution of the input and output parameters. D_i denotes the
 603 observed mixing ratios of molecule i . As in previous work [12], we assume that the data $(D_{113}, D_{114},$
 604 $D_{115}, D_{133a})$ are conditionally independent given θ , and that $P(D_i|\theta)$ is the multivariate likelihood
 605 function of all years of observed mixing ratios for molecule i given θ . In addition, for computational
 606 efficiency, Eq. 8 is estimated through sequential Bayesian updating in three steps. We first update the
 607 input parameters given D_{115} :

$$P(\theta|D_{115}) \propto P(\theta)P(D_{115}|\theta). \quad (9)$$

608 The posterior $P(\theta|D_{115})$ distribution is then used as the prior and updated given D_{114} and D_{133a} :

$$P(\theta|D_{114}, D_{115}, D_{133a}) \propto P(\theta|D_{115})P(D_{114}|\theta)P(D_{133a}|\theta). \quad (10)$$

609 This posterior is then updated once more given D_{113} to obtain the full joint posterior:

$$P(\theta|D_{113}, D_{114}, D_{115}, D_{133a}) \propto P(\theta|D_{114}, D_{115}, D_{133a})P(D_{113}|\theta). \quad (11)$$

610 For further description on the implementation of the BPE model, see [12].

611 The posterior distribution was estimated using the sampling importance ratio (SIR) method [49,
 612 62, 63], which involves first sampling the prior distributions and then resampling the prior samples at
 613 a rate proportional to the importance ratio, which is proportional to the likelihood function defined in
 614 the previous subsection. As noted previously, we implement SIR through sequential updating. To do
 615 so, we first solve Eq. 9 by sampling 2,000,000 samples from θ 's prior distribution and run the simulation
 616 model for CFC-115. Note that for computational efficiency in the first iteration of sequential updating,
 617 we only sample the parameters that are used in the CFC-115 simulation model. We then resample
 618 1,000,000 samples from these prior samples, proportional to each sample's importance ratios, given by

$$\frac{P(\theta|D_{115})}{P(\theta)} \propto P(D_{115}|\theta). \quad (12)$$

619 Of all the parameters in the CFC-115 simulation model conditionally dependent on D_{115} , BP_{115}^k
 620 is the only one that informs priors for CFC-113 and CFC-114, and thus HCFC-133a as well. In the
 621 second iteration of sequential updating, the posterior samples of BP_{115}^k are used to inform the priors
 622 of BP_{113}^k and BP_{114}^k . For all other parameters in θ used in the CFC-114 and HCFC-133a simulation
 623 models, we sampled from their priors 1,000,000 times and ran the simulation model for CFC-114 and
 624 HCFC-133a. All 1,000,000 samples (i.e., both the updated parameters from the CFC-115 simulation
 625 and the prior samples from CFC-114 and HCFC-133a) were then resampled 300,000 times, proportional
 626 to the importance ratio:

$$\frac{P(\theta|D_{115}, D_{114}, D_{133a})}{P(\theta|D_{115})} \propto P(D_{114}|\theta)P(D_{133a}|\theta). \quad (13)$$

627 In the final sequence of updating, the FS_{114}^k posterior is used to inform the FS_{113}^k prior (Eq. 5).
 628 We drew 300,000 samples from all remaining parameters in θ and ran the CFC-113 simulation model.
 629 Finally, to obtain the full joint posterior distribution, all 300,000 samples (i.e., the updated parameters
 630 from the CFC-114, CFC-115, and HCFC-133a simulations and the prior samples from the CFC-113
 631 simulation) are resampled 100,000 times proportional to the importance ratio:

$$\frac{P(\theta|D_{115}, D_{114}, D_{133a}, D_{113})}{P(\theta|D_{115}, D_{114}, D_{133a})} \propto P(D_{113}|\theta). \quad (14)$$

632 Ozone depletion and global warming potentials

633 To quantify how HFC-134a and HFC-125 production may delay the healing of the ozone layer and
 634 warm Earth's surface, we calculated the ozone depleting potential (ODP) and 100-year global warming
 635 potential (GWP) of the emissions attributed to the production of these compounds. HFCs do
 636 not contribute to ozone destruction, so the ODP of unintended feedstock and by-product emissions
 637 constitutes the entire ODP attributable to HFC-134a and HFC-125. For GWP, we included the con-
 638 tribution of HFC-134a and HFC-125 emissions [25] (GWPs of 1300 and 3170, respectively). These
 639 observationally-derived emissions estimates can only account for what has been emitted (either di-
 640 rectly from the production process or from banks) and cannot capture the GWP of HFCs currently
 641 banked that may leak from their current reservoir until the end of their equipment's life.

642 For CFC-113 and CFC-114, which each had two isomers emitted from 2004–2019, we weighted
 643 ODPs and GWPs based on the recently reported isomeric composition of emissions. Emissions of the
 644 minor isomers, CFC-113a and CFC-114a, averaged $2.0 \text{ Gg}\cdot\text{y}^{-1}$ and $0.45 \text{ Gg}\cdot\text{y}^{-1}$ from 2004–2019 [22],
 645 respectively, making them both roughly 40% of the total CFC-113 and CFC-114 emissions. Using
 646 previously reported ODPs of 0.82, 0.73, 0.53, and 0.72 and GWPs of 6530, 3930, 9450, and 7410 for
 647 CFC-113, CFC-113a, CFC-114, and CFC-114a [64], respectively, we calculated weighted ODPs and
 648 GWPs of 0.78 and 0.61 and 5490 and 8634 for CFC-113 and CFC-114, respectively. For CFC-115 and
 649 HCFC-133a, we used previously reported ODPs of 0.45 and 0.019 and GWPs of 9630 and 378 [64]. We
 650 report ODP in units of ODP-Gg, which is the mass-weighted equivalent emissions of CFC-11, and we
 651 report GWP in units of TgCO₂eq, which is the mass of CO₂ that would result in the same radiative
 652 forcing on a 100-year time scale.

653 **Data and Code Availability**

654 All mixing ratio, production, and emissions data, as well as code for Bayesian analysis and plots, are
655 available through Zenodo (<https://doi.org/10.5281/zenodo.12207950>).

656 **Acknowledgements**

657 The authors would like to acknowledge support from VoLo foundation. M.J.L. would like to acknowl-
658 edge support from the Atmospheric Chemistry Division of the National Science Foundation (grant no.
659 2128617). The authors would also like to thank Luke Western for providing output from the AGAGE
660 12-box model, as well as Susan Solomon and Stefan Reimann for helpful discussions.

661 **Author Contributions**

662 Both authors conceptualized the work and developed the methods. SB conducted the analysis, inter-
663 preted the data, and drafted the manuscript. Both authors contributed revisions of the manuscript.

664 **Competing Interests**

665 The authors declare no competing interests.

666 **References**

- 667 [1] WMO: *Scientific Assessment of Ozone Depletion: 2022, Global Ozone Research and Monitor-
668 ing Project* (World Meteorological Organization, 2022). Available at: <https://csl.noaa.gov/assessments/ozone/2022/downloads/>.
- 670 [2] Solomon, S., et al. Emergence of healing in the Antarctic ozone layer. *Science* **353**, 269–274
671 (2016).
- 672 [3] Kuttippurath, J., & Nair, P. J. The signs of Antarctic ozone hole recovery. *Scientific Reports*, **7**,
673 585, (2017).
- 674 [4] Petrescu, R. V., Aversa, R., Apicella, A., & Petrescu, F. I. NASA sees first in 2018 the direct
675 proof of ozone hole recovery. *Journal of Aircraft and Spacecraft Technology* **2**, 53–64 (2018).
- 676 [5] Stone, K. A., Solomon, S., Kinnison, D. E., & Mills, M. J. On recent large Antarctic ozone holes
677 and ozone recovery metrics. *Geophysical Research Letters* **48** (2021), e2021GL095232.
- 678 [6] Weber, M., et al. Global total ozone recovery trends attributed to ozone-depleting substance
679 (ODS) changes derived from five merged ozone datasets. *Atmospheric Chemistry and Physics* **22**,
680 6843–6859 (2022).
- 681 [7] Montzka, S. A., et al. Hydrofluorocarbons (HFC's) Chapter 2 in *Scientific Assessment of Ozone
682 Depletion: 2018, Global Ozone Research and Monitoring Project – Report No. 58*. (World Mete-
683 orological Organization, 2018). Available at: <https://ozone.unep.org/sites/default/files/2019-05/SAP-2018-Assessment-report.pdf>
- 685 [8] Rigby, M., et al. Increase in CFC-11 emissions from eastern China based on atmospheric obser-
686 vations. *Nature* **569**, 546–550 (2019).
- 687 [9] Benish, S. E., Salawitch, R. J., Ren, X., He, H., & Dickerson, R. R. Airborne observations of
688 CFCs over Hebei province, China in Spring 2016. *Journal of Geophysical Research: Atmospheres*,
689 **126** (2021), e2021JD035152. Wiley Online Library.
- 690 [10] Daniel, J. S., Velders, G. J. M., Solomon, S., McFarland, M., & Montzka, S. A. Present and future
691 sources and emissions of halocarbons: Toward new constraints. *Journal of Geophysical Research: Atmospheres*, **112** (2007).

693 [11] Lickley, M., et al. Quantifying contributions of chlorofluorocarbon banks to emissions and impacts
694 on the ozone layer and climate. *Nature Communications*, **11**, 1380 (2020).

695 [12] Lickley, M., Fletcher, S., Rigby, M., & Solomon, S. Joint inference of CFC lifetimes and banks
696 suggests previously unidentified emissions. *Nature Communications*, **12**, 2920 (2021).

697 [13] Lickley, M. J., Daniel, J. S., Fleming, E. L., Reimann, S., & Solomon, S. Bayesian assessment
698 of chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and halon banks suggest large
699 reservoirs still present in old equipment. *Atmospheric Chemistry and Physics*, **22**(17), 11125–
700 11136 (2022).

701 [14] United Nations. *Montreal protocol on substances that deplete the ozone layer*. (United Nations,
702 1987).

703 [15] Technology and Economic Assessment Panel (TEAP). *Report of the Technology and Economic
704 Assessment Panel Volume 1: Progress Report*. (United Nations Environmental Programme, 2020).

705 [16] Medical and Chemical Technical Options Committee (MCTOC). *Report of the Medical and Chem-
706 ical Technical Options Committee: 2022 Assessment*. (United Nations Environmental Programme,
707 2022).

708 [17] Technology and Economic Assessment Panel (TEAP), *Report of the Technology and Economic
709 Assessment Panel Volume 1: Progress Report*. (United Nations Environmental Programme, 2023).

710 [18] Laube, J. C., et al. Newly detected ozone-depleting substances in the atmosphere. *Nature Geo-
711 science*, **7**, 266–269 (2014).

712 [19] Adcock, K. E., et al. Continued increase of CFC-113a (CCl_3CF_3) mixing ratios in the global
713 atmosphere: emissions, occurrence and potential sources. *Atmospheric Chemistry and Physics*,
714 **18**, 4737–4751 (2018).

715 [20] Laube, J. C., et al. Tropospheric observations of CFC-114 and CFC-114a with a focus on long-term
716 trends and emissions. *Atmospheric Chemistry and Physics*, **16**(23), 15347–15358 (2016).

717 [21] Vollmer, M. K., et al. Unexpected nascent atmospheric emissions of three ozone-depleting
718 hydrochlorofluorocarbons. *Proceedings of the National Academy of Sciences* **118** (2021),
719 e2010914118.

720 [22] Western, L. M., et al. Global increase of ozone-depleting chlorofluorocarbons from 2010 to 2020.
721 *Nature Geoscience* **16**, 309–313 (2023).

722 [23] Daniel, J. S., et al. Scenarios and Information for Policymakers. In *Scientific Assessment of Ozone
723 Depletion*, **278**, 509 (World Meteorological Organization, 2022).

724 [24] Buendia, C., et al. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inven-
725 tories Task Force on National Greenhouse Gas Inventories. *Wetlands, IPCC Kyoto* (2019).

726 [25] Velders, G. J. M., et al. Projections of hydrofluorocarbon (HFC) emissions and the resulting
727 global warming based on recent trends in observed abundances and current policies. *Atmospheric
728 Chemistry and Physics* **22**, 6087–6101 (2022).

729 [26] A. J. Sicard, & Baker, R. T. Fluorocarbon refrigerants and their syntheses: Past to present.
730 *Chemical Reviews* **120**, 9164–9303 (2020).

731 [27] Vollmer, M. K., et al. Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF_3),
732 $\Sigma\text{CFC-114}$ ($\text{C}_2\text{Cl}_2\text{F}_4$), and CFC-115 (C_2ClF_5). *Atmospheric Chemistry and Physics* **18**, 979–1002
733 (2018).

734 [28] Scott, J. D. & Steven, R. A. Chemical process for the manufacture of 1,1,1,2-tetrafluoroethane.
735 U.S. Patent 5382722A (Jan. 1995).

736 [29] Piepho, E., Wilmet, V., & Buyle, O. Pentafluoroethane Production Method. U.S. Patent 7067707
737 (June 2006).

738 [30] Nose, M., Takahashi, K., & Shibanuma, T. Method for Producing Pentafluoroethane. U.S. Patent
739 8975455 (2015).

740 [31] McCulloch, A., & Lindley, A. A. From mine to refrigeration: a life cycle inventory analysis of the
741 production of HFC-134a. *International Journal of Refrigeration*, **26**, 865–872 (2003).

742 [32] Shanthan Rao, P., Narsaiah, B., Rambabu, Y., Sridhar, M., & Raghavan, K. V. Catalytic processes
743 for fluorochemicals: Sustainable alternatives, in *Industrial Catalysis and Separations: Innovations
744 for Process Intensification*, ed. K. V. Raghavan, B. M. Reddy, 407–435, (Apple Academic Press,
745 Toronto, 2015).

746 [33] Zhang, S., et al. Life cycle assessment and economic analysis of HFC-134a production from natural
747 gas compared with oil-based and coal-based production. *Frontiers of Chemical Science and
748 Engineering* **16**, 1713–1725 (2022).

749 [34] Vollmer, M. K., et al. Abrupt reversal in emissions and atmospheric abundance of HCFC-133a
750 ($\text{CF}_3\text{CH}_2\text{Cl}$). *Geophysical Research Letters* **42**, 8702–8710 (2015).

751 [35] Chemical Technical Options Committee (CTOC). *Report of the Chemical Technical Options Com-
752 mittee*. (United Nations Environmental Programme, 2014).

753 [36] Gumprecht, W. H., Longoria, J. M., & Christoph, F. J. Process for manufacture of 1,1-
754 dichlorotetrafluoroethane. European Patent 0426343A1 (1991).

755 [37] Morikawa, S., Samejima, S., Yositake, M., & Tatematsu, S. Process for Producing 1,1,1,2-
756 Tetrafluoroethane. U.S. 5426253 (1994).

757 [38] Rigby, M., et al. Re-evaluation of the lifetimes of the major CFCs and CH_3CCl_3 using atmospheric
758 trends. *Atmospheric Chemistry and Physics*, **13**, 2691–2702 (2013).

759 [39] Technology and Economic Assessment Panel (TEAP). *Report of the Technology and Economic
760 Assessment Panel Volume 1: Progress Report*. (United Nations Environmental Programme, 2021).

761 [40] Hossaini, R., et al. On the atmospheric budget of ethylene dichloride and its impact on strato-
762 spheric chlorine and ozone (2002–2020). *EGUsphere*, 1–29 (2024).

763 [41] Montzka, S. A., et al. A decline in global CFC-11 emissions during 2018–2019. *Nature*, **590**,
764 428–432 (2021).

765 [42] Friedlingstein, P., et al. Global Carbon Budget 2023. *Earth System Science Data*, **15**, 5301–5369
766 (2023).

767 [43] Andersen, S. O., et al. Narrowing feedstock exemptions under the Montreal Protocol has mul-
768 tiple environmental benefits. *Proceedings of the National Academy of Sciences*, **118** (2021),
769 e2022668118.

770 [44] Rust, D., et al. First Atmospheric Measurements and Emission Estimates of HFO-1336mzz(Z).
771 *Environmental Science & Technology* **57**, 11903–11912 (2023).

772 [45] Ko, M. K., et al. Recommended values for steady-state atmospheric lifetimes and their uncer-
773 tainties. *SPARC Report on the Lifetimes of Stratospheric Ozone-Depleting Substances, Their Re-
774 placements, and Related Species*. 6–1 (2013).

775 [46] WMO: *Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring
776 Project* — Report No. 47, (World Meteorological Organization, 2003). Available at: https://library.wmo.int/doc_num.php?explnum_id=7306.

778 [47] Gropelli, G., Fattore, V., Vecchio, M., & Castellan, A. Catalyst Based on Aluminum Fluoride
779 for the Fluorination in Gaseous Phase of Hydrocarbons. U.S. Patent 3787331 (1974).

780 [48] Poole, D., & Raftery, A. E. Inference for deterministic simulation models: the Bayesian melding
781 approach. *Journal of the American Statistical Association* **95**, 1244–1255 (2000).

782 [49] Bates, S. C., Cullen, A., & Raftery, A. E. Bayesian uncertainty assessment in multicompartment
783 deterministic simulation models for environmental risk assessment. *Environmetrics: The official
784 journal of the International Environmetrics Society*, **14**(4), 355–371 (2003).

785 [50] Burkholder, J. B. Appendix A: Summary of Abundances, Lifetimes, ODPs, REs, GWP_s, and
786 GTP_s. *Scientific Assessment of Ozone Depletion*, **58** (2018).

787 [51] Davis, M. E., Bernard, F., McGillen, M. R., Fleming, E. L., & Burkholder, J. B. UV and infrared
788 absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for
789 CCl₂FCCl₂F (CFC-112), CCl₃CClF₂ (CFC-112a), CCl₃CF₃ (CFC-113a), and CCl₂FCF₃ (CFC-
790 114a). *Atmospheric Chemistry and Physics*, **16**(12), 8043–8052 (2016).

791 [52] Prinn, R., et al. The Advanced Global Atmospheric Gases Experiment (AGAGE) Data, *Environmental
792 System Science Data Infrastructure for a Virtual Ecosystem* 2022.

793 [53] AFEAS: 2001 database. (2001). Retrieved March 10, 2022, from <https://agage.mit.edu/data/afeas-data>.

795 [54] Fisher, D. A., & Midgley, P. M. The production and release to the atmosphere of CFCs 113, 114
796 and 115. *Atmospheric Environment. Part A. General Topics*, **27**, 271–276 (1993).

797 [55] Climate Change Secretariat, UNFCCC: National Inventory Submissions 2020 to the United Nations
798 Framework Convention of Climate Change. (Bonn, Germany, 2021). Last accessed: May
799 2024. Available at: <http://unfccc.int>.

800 [56] Li, Y.-X., Zhang, Z.-Y., An, M.-D., Gao, D., & Yi, L.-Y. The estimated schedule and mitigation
801 potential for hydrofluorocarbons phase-down in China. *Advances in Climate Change Research*,
802 10(3), 174–180 (2019).

803 [57] Say, D., et al. Emissions of halocarbons from India inferred through atmospheric measurements.
804 *Atmospheric Chemistry and Physics* **19**, 9865–9885 (2019).

805 [58] Prinn, R. G., et al. History of chemically and radiatively important atmospheric gases from the
806 Advanced Global Atmospheric Gases Experiment (AGAGE). *Earth System Science Data* **10**,
807 985–1018 (2018).

808 [59] Montzka, S. A., et al. Recent Trends in Global Emissions of Hydrochlorofluorocarbons and Hydro-
809 fluorocarbons: Reflecting on the 2007 Adjustments to the Montreal Protocol. *The Journal of
810 Physical Chemistry A*, **119**, 4439–4449 (2015).

811 [60] Ashford, P., Clodic, D., McCulloch, A., & Kuijpers, L. Emission profiles from the foam and
812 refrigeration sectors comparison with atmospheric concentrations. Part 1: Methodology and data.
813 *International Journal of Refrigeration*, **27**(7), 687–700 (2004).

814 [61] Cunnold, D. M., et al. Global trends and annual releases of CCl₃F and CCl₂F₂ estimated from
815 ALE/GAGE and other measurements from July 1978 to June 1991. *Journal of Geophysical Re-
816 search: Atmospheres*, **99**, 1107–1126 (1994).

817 [62] Hong, B., Strawderman, R. L., Swaney, D. P., & Weinstein, D. A. Bayesian estimation of input
818 parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard Brook
819 Watershed Six. *Water Resources Research*, **41** (2005).

820 [63] Rubin, D. B. Using the SIR algorithm to simulate posterior distributions, in: *Bayesian statistics
821 3. Proceedings of the third Valencia international meeting, 1-5 June 1987*, 395–402 (1988).

822 [64] Burkholder, J. B., & Hodnebrog, O. Appendix A: Summary of Abundances, Lifetimes, ODPs,
823 REs, GWP_s, and GTP_s. *Scientific Assessment of Ozone Depletion: 2022, GAW Report No. 278*
824 (2022).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [HFCpipelineSINatComs.pdf](#)